Deep learning performance analysis for facial expression based autism spectrum disorder identification
Abstract
The subject matter of this paper revolves around the utilization of Deep Learning techniques for the identification of Autism Spectrum Disorder (ASD) through facial expression analysis. The goal is to assess the performance of various Deep Learning architectures in this context, aiming to support the evaluation of AI-based ASD identification technologies within medical imaging standards. The tasks undertaken include conducting a comprehensive performance analysis of different Deep Learning models, emphasizing the significance of data augmentation techniques, and evaluating the convergence ability of these models. Methods employed involve a simulation setup for evaluating Deep Learning architectures using facial expression images of children with ASD. The research utilizes secondary data from open-source sharing platforms comprising 2,840 optical images. The evaluation is conducted with consideration of data ratio settings and data augmentation procedures. Results indicate that data augmentation significantly improves the recall performance, with ResNet-101 architecture demonstrating superior accuracy, precision, and convergence ability compared to ResNet-50 and VGG-16. Finally, the conclusion drawn from this analysis highlights the efficacy of ResNet-101 with augmented data. It stands out as the most suitable model for ASD identification based on facial expressions, emphasizing its potential for early intervention and increased awareness. the scientific novelty of the results obtained lies in its contribution to advancing the state of the art in AI-driven ASD identification, adhering to medical standards, enhancing model performance through data augmentation, and facilitating early intervention strategies for improved patient outcomes.
Keywords
Full Text:
PDFReferences
Hughes, H. K., Moreno, R. J., & Ashwood, P. Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain, Behavior, and Immunity, 2023, vol. 108, pp. 245–254. DOI: 10.1016/j.bbi.2022.12.001.
Astuti, H. P., & Suminar, D. R. The Experiences of Mother who Has Children with Autism. Indonesia Journal of Early Childhood Education Studies, 2022, vol. 11, iss. 2, pp. 117–123. DOI: 10.15294/ijeces.v11i2.58495.
Kallitsounaki, A., & Williams, D. M. Autism Spectrum Disorder and Gender Dysphoria/Incongruence. A systematic Literature Review and Meta-Analysis. Journal of Autism and Developmental Disorders, 2023, vol. 53, iss. 8, pp. 3103–3117. DOI: 10.1007/s10803-022-05517-y.
Buch, A. M., Vértes, P. E., Seidlitz, J., Kim, S. H., Grosenick, L., & Liston, C. Molecular and network-level mechanisms explaining individual differences in autism spectrum disorder. Nature Neuroscience, 2023, vol. 26, iss. 4, pp. 650–663. DOI: 10.1038/s41593-023-01259-x.
Vysotska, O., Davydenko, A., & Potenko, O. Modeling the mindfulness People’s function based on the recognition of biometric parameters by artificial intelligence elements. Radioelectronic and Computer Systems, 2023, no. 3(107), pp. 136–149. DOI: 10.32620/reks.2023.3.11.
Perepelitsyn, A. Method of Creation of FPGA based implementation of artificial intelligence as a Service. Radioelectronic and Computer Systems, 2023, no. 3(107), pp. 27-36. DOI: 10.32620/reks.2023.3.03.
Surianarayanan, C., Lawrence, J. J., Chelliah, P. R., Prakash, E., & Hewage, C. Convergence of Artificial Intelligence and Neuroscience towards the Diagnosis of Neurological Disorders – A Scoping Review. Sensors, 2023, vol. 23, iss, 6, article no. 3036. DOI: 10.3390/s23063062.
Shoka, A. A. E., Dessouky, M. M., El-Sayed, A., & Hemdan, E. E. D. An efficient CNN based epileptic seizures detection framework using encrypted EEG signals for secure telemedicine applications. Alexandria Engineering Journal, 2023, vol. 65, pp. 399–412. DOI: 10.1016/j.aej.2022.10.014.
Pan, Y., & Foroughi, A. Evaluation of AI tools for healthcare networks at the cloud-edge interaction to diagnose autism in educational environments. Journal of Cloud Computing, 2024, vol. 13, article no. 39. DOI: 10.1186/s13677-023-00558-9.
Derbali, M., Jarrah, M., & Randhawa, P. Autism Spectrum Disorder Detection: Video Games based Facial Expression Diagnosis using Deep Learning. International Journal Advanced Computer Science Applications, 2023, vol. 14, no. 1, pp. 110–119. DOI: 10.14569/IJACSA.2023.0140112.
Melinda, M., Yunidar, Y., & Andryani, N. A. C. Application of Convolutional Neural Network (CNN) Method in Fluctuations Pattern. Green Intelligent Systems and Applications, 2023, vol. 3, no. 2, pp. 56–68. DOI: 10.53623/gisa.v3i2.270.
Awaji, B., Senan, E. M., Olayah, F., Alshari, E. A., Alsulami, M., Abosaq, H. A., Alqahtani, J., & Janrao, P. Hybrid Techniques of Facial Feature Image Analysis for Early Detection of Autism Spectrum Disorder Based on Combined CNN Features. Diagnostics, 2023, vol. 13, iss. 18, article no. 2948. DOI: 10.3390/diagnostics13182948.
Kohli, M., Kar, A. K., & Sinha, S. The Role of Intelligent Technologies in Early Detection of Autism Spectrum Disorder (ASD): A Scoping Review. IEEE Access, 2022, vol. 10, pp. 104887–104913. DOI: 10.1109/ACCESS.2022.3208587.
Melinda, M., Juwono, F. H., Enriko, I. K. A., Oktiana, M., Mulyani, S., & Saddami, K. Application of Continuous Wavelet Transform and Support Vector Machine for Autism Spectrum Disorder Electroencephalography Signal Classification. Radioelectronic and Computer Systems, 2023, no. 3(107), pp. 73–90. DOI: 10.32620/reks.2023.3.07.
Elshoky, B. R. G., Younis, E. M. G., Ali, A. A., & Ibrahim, O. A. S. Comparing automated and non-automated Machine Learning for autism spectrum disorders classification using facial images. ETRI Journal, 2022, vol. 44, iss. 4, pp. 613–623. DOI: 10.4218/etrij.2021-0097.
Hazra, S. K., Ema, R. R., Galib, S. M., Kabir, S., & Adnan, N. Emotion Recognition of Human Speech Using Deep Learning Method and MFCC Features. Radioelectronic and Computer Systems, 2022, no. 4(104), pp. 161–172. DOI: 10.32620/reks.2022.4.13.
Fasterholdt, I., Naghavi-Behzad, M., Rasmussen, B. S. B., Kjølhede, T., Skjøth, M. M., Hildebrandt, M. G., & Kidholm, K. Value assessment of artificial intelligence in medical imaging: a scoping review. BMC Medical Imaging, 2022, vol. 22, article no. 187, pp. 1–11. DOI: 10.1186/s12880-022-00918-y.
Diego, I. M. D., Redondo, A. R., Fernández, R. R., Navarro, J., & Moguerza, J. M. General Performance Score for classification problems. Applied Intelligence, 2022, vol. 52, pp. 12049–12063. DOI: 10.1007/s10489-021-03041-7.
Mouatasim, A. E., & Ikermane, M. Control learning rate for autism facial detection via deep transfer learning. Signal, Image and Video Processing, 2023, vol. 17, pp. 3713–3720. DOI: 10.1007/s11760-023-02598-9.
Alkahtani, H., Aldhyani, T. H. H., & Alzahrani, M. Y. Deep Learning Algorithms to Identify Autism Spectrum Disorder in Children-Based Facial Landmarks. Applied Sciences, 2023, vol. 13, iss. 8, article no. 4855. DOI: 10.3390/app13084855.
Nosrati, H., & Nosrati, M. Artificial Intelligence in Regenerative Medicine: Applications and Implications. Biomimetics, 2023, vol. 8, no. 5, article no. 442. DOI: 10.3390/biomimetics8050442.
Nahas, L. D., Datta, A., Alsamman, A. M., Adly, M. H., Al-Dewik, N., Sekaran, K., Sasikumar, K., Verma, K., Doss, G. P. C., & Zayed, H. Genomic insights and advanced Machine Learning: characterizing autism spectrum disorder biomarkers and genetic interactions. Metabolic Brain Disease, 2024, vol. 39, pp. 29–42. DOI: 10.1007/s11011-023-01322-3.
Sundas, A., Badotra, S., Rani, S., & Gyaang, R. Evaluation of Autism Spectrum Disorder Based on the Healthcare by Using Artificial Intelligence Strategies. Journal of Sensors, 2023, vol. 2023, article no. 5382375. 12 p. DOI: 10.1155/2023/5382375.
Paolucci, C., Giorgini, F., Scheda, R., Alessi, F. V., & Diciotti, S. Early prediction of Autism Spectrum Disorders through interaction analysis in home videos and explainable artificial intelligence. Computers in Human Behavior, 2023, vol. 148, article no. 107877. DOI: 10.1016/j.chb.2023.107877.
Alam, M. S., Rashid, M. M., Faizabadi, A. R., Zaki, H. F. M., Alam, T. E., Ali, S., Gupta, K. D., & Ahsan, M. Efficient Deep Learning-Based Data-Centric Approach for Autism Spectrum Disorder Diagnosis from Facial Images Using Explainable AI. Technologies. 2023, vol. 11, no. 15, article no. 115. DOI: 10.3390/technologies11050115.
Gaspar, A., Oliva, D., Hinojosa, S., Aranguren, I., & Zaldivar, D. An optimized Kernel Extreme Learning Machine for the classification of the autism spectrum disorder by using gaze tracking images. Applied Soft Computing, 2022, vol. 120, article no. 108654. DOI: 10.1016/j.asoc.2022.108654.
Zhang, S., Wang, S., Liu, R., Dong, H., Zhang, X., & Tai, X. A bibliometric analysis of research trends of artificial intelligence in the treatment of autistic spectrum disorders. Frontiers in Psychiatry, 2022, vol. 13, pp. 1-15. DOI: 10.3389/fpsyt.2022.967074.
Song, C., Jiang, Z. Q., Liu, D., & Wu, L. L. Application and research progress of Machine Learning in the diagnosis and treatment of neurodevelopmental disorders in children. Frontiers in Psychiatry, 2022, vol. 13, pp. 1-9. DOI: 10.3389/fpsyt.2022.960672.
Gombolay. G. Y., Gopalan, N., Bernasconi, A., Nabbout, R., Megerian, J. T., Siegel, B., Hallman-Cooper, J., Bhalla, S., & Gombolay, M. C. Review of Machine Learning and Artificial Intelligence (ML/AI) for the Pediatric Neurologist. Pediatric Neurology, 2023, vol. 141, pp. 42–51. DOI: 10.1016/j.pediatrneurol.2023.01.004.
Kumar, P., Chauhan, S., & Awasthi, L. K. Artificial Intelligence in Healthcare: Review, Ethics, Trust Challenges & Future Research Directions. Engineering Applications of Artificial Intelligence, 2023, vol. 120, article no. 105894. DOI: 10.1016/j.engappai.2023.105894.
Liao, M., Duan, H., & Wang, G. Application of Machine Learning Techniques to Detect the Children with Autism Spectrum Disorder. Journal of Healthcare Engineering, 2022, vol. 2022, article no. 9340027. DOI: 10.1155/2022/9340027.
Senol, C. Autism Image Data. Available at: https://www.kaggle.com/datasets/cihan063/autism-image-data (accessed November 5, 2023).
Khan, S. H., Iqbal, R., & Naz, S. A Recent Survey of the Advancements in Deep Learning Techniques for Monkeypox Disease Detection. 2023, arXiv preprint arXiv:2311.10754. 53 p. DOI: 10.48550/arXiv.2311.10754.
Huynh, N., & Deshpande, G. A review of the applications of generative adversarial networks to structural and functional MRI based diagnostic classification of brain disorders. Frontiers in Neuroscience, 2024, vol. 18, article no. 1333712. DOI: 10.3389/fnins.2024.1333712.
Al-Khater, W., & Al-Madeed, S. Using 3D-VGG-16 and 3D-Resnet-18 deep learning models and FABEMD techniques in the detection of malware. Alexandria Engineering Journal, 2024, vol. 89, pp. 39–52. DOI: 10.1016/j.aej.2023.12.061.
Ahmad, I., Rashid, J., Faheem, M., Akram, A., Khan, N. A., & Amin, R. U. Autism spectrum disorder detection using facial images: A performance comparison of pretrained convolutional neural networks. Healthcare Technology Letters, 2024, pp. 1–13. DOI: 10.1049/htl2.12073.
Wiala, A., Ranjan, R., Schnidar, H., Rappersberger, K., & Posch, C. Automated classification of hidradenitis suppurativa disease severity by convolutional neural network analyses using calibrated clinical images. Journal of the European Academy Dermatology and Venereology, 2023, vol. 38, iss. 3, pp. 576–582. DOI: 10.1111/jdv.19639.
Chow, L. S., Tang, G. S., Solihin, M. I., Gowdh, N. M., Ramli, N., & Rahmat, K. Quantitative and Qualitative Analysis of 18 Deep Convolutional Neural Network (CNN) Models with Transfer Learning to Diagnose COVID‑19 on Chest X‑Ray (CXR) Images. SN Computer Science, 2023, vol. 4, article no. 141, pp. 1-17. DOI: 10.1007/s42979-022-01545-8.
DOI: https://doi.org/10.32620/reks.2024.2.03
Refbacks
- There are currently no refbacks.