IDENTIFICATION OF THE DYNAMIC MODEL FOR THE ROLL CHANNEL OF THE UNMANNED AIR VEHICLE UNDER WEAK EXCITING INPUT SIGNAL

Rahman Mohammadi Farhadi, Вячеслав Иванович Кортунов

Abstract


In this article has been identified linear stationary roll dynamic model for unmanned air vehicle with the weak exciting input signal and sensor measurements noise using the two-step method, maximum likelihood method and the genetic optimization algorithm. Due to the weak frequency content of the input signal, eigenvalues of the information matrix are close to zero, and the use of the output error method often gives the wrong solutions in each cycle of the identification algorithm based on the Monte Carlo method. Ill-conditioned information matrix in the identification of dynamic model occurs due to linear relationships between variables. The two-step identification method finds the ratio of the parameters in the first stage. In the second step, the identification algorithm is conducted for the vector of parameters with reduced size. The two-stage identification method gives the right solution with the permissible errors for each execution of the identification process

Keywords


unmanned aerial vehicle; the estimation of the model parameters; aerodynamic coefficient; genetic algorithm; output error method

References


Farhadi, R. M. Kortunov, V. I., Mohammadi, A. UAV motion model and estimation of its certainties with flight test data. 22nd Saint Petersburg International Conference on Integrated Navigation Systems, 2015, pp. 131-133.

Kasyanov, V. A. Modelirovanie poleta [flight simulation]. Kiev, NAU, 2004. 400 p.

Raol, J., Girija, R. G., Singh, J. Modelling and Parameter Estimation of Dynamic Systems. Published by The Institution of Engineering and Technology, London, United Kingdom, 2004. 388 p.

Sokolov, Ju. N. Komp'juternyj analiz i proektirovanie sistem upravlenija. Ch. 6: Optimizacija celevyh funkcij [Computer analysis and design of control systems. Part 6: Optimization of objective functions]. Kharkov, KhAI, 2011. 312 p.

Klein, V. Estimation of aircraft aerodynamic parameters from flight data. Prog. Aerospace Sciences, 1989, vol. 26, pp. 1-77.

Tunik, A. A., Klipa, A. N. Identifikacija matematicheskoj modeli prodol'nogo dvizhenija letatel'nogo apparata pri nalichii shumov izmerenij i smeshhenij datchikov [Identification of mathematical model of longitudinal motion of the aircraft in the presence of noise measurement and displacement sensors biases]. Jelektronnoe modelirovanie - Electronic modeling, 2011, no. 6, pp. 3-18.

Stengel, R. F. Flight dynamics. Princeton University Press, United Kingdom, 2004. 845 p.

Montgomery, D. C., PECK, E. A. Introduction to Linear Regression Analysis. John Wiley and Sons, Inc. 2012. 672 p.

Rawlings, J. O., Sastry, G. P., Dickey, D. A. Applied regression analysis: a research tool. New York, Springer-Verlag, Inc. 1998. 658 p.

Draper, N. R., Smith, H. Applied Regression Analysis. John Wiley and Sons, Inc. 1998. 706 p. Soderstrom, T. Test of pole-zero cancellation in estimated models. Automatica, 1975, vol. 11, iss. 5, pp. 537-541.


Refbacks

  • There are currently no refbacks.