New method for video stream brightness stabilization: algorithms and performance evaluation
Abstract
Keywords
Full Text:
PDFReferences
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 1998, vol. 86, no. 11, pp. 2278–2324. DOI: 10.1109/5.726791.
Information about the ImageNet library [Electronic resource]. Available at: https://en.wiki-pedia.org/wiki/ImageNet (аccessed 17.04.2023).
Krizhevsky, A., Sutskever, I., & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Advances in neural information processing systems, 2012, vol. 25, pp. 1097–1105.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, vol. 60, no. 6, pp. 84–90. DOI:10.1145/3065386.
Software Caffe [Electronic resource]. Available at: http://caffe.berkeleyvision.org (аccessed 17.04.2023).
TensorFlow library [Electronic resource]. Available at: https://www.tensorflow.org (аccessed 17.04.2023).
Scientific computing platform Torch [Electronic resource]. Available at: http://torch.ch (аccessed 17.04.2023).
Keras library [Electronic resource]. Available at: https://keras.io (аccessed 17.04.2023).
OpenCV DNN library [Electronic resource]. Available at: https://github.com/opencv/opencv/tree/master/samples/dnn (аccessed 17.04.2023).
Skadins, A., Ivanovs, M., Rava, R., & Nesenbergs, K. Edge pre-processing of traffic surveillance video for bandwidth and privacy optimization in smart cities. 2020 17th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 2020, pp. 1-6. DOI: 10.1109/BEC49624.2020.9276799.
Zaharia, P., Bigioi, P., & Corcoran, P. M. Hybrid video-frame pre-processing architecture for HD-video. 2011 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 2011, pp. 89-90. DOI: 10.1109/ICCE.2011.5722927.
Guilluy, W., Oudre, L., & Beghdadi A. Video stabilization: overview, challenges and perspectives. Signal Processing: Image Communication, 2021, vol. 90, article no. 116015. DOI: 10.1016/j.image.2020.116015.
Egiazarian, K., Ponomarenko, M., Lukin, V., & Ieremeiev, O. Statistical Evaluation of Visual Quality Metrics for Image Denoising. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 2018, pp. 6752-6756. DOI: 10.1109/ICASSP.2018.8462294.
Lukin, V. V., Zriakhov, M. S., Ponomarenko, N. N., Krivenko, S. S., & Zhenjiang, M. Lossy compression of images without visible distortions and its application. IEEE 10th international conference on signal processing proceedings, Beijing, China, 2010, pp. 698-701. DOI: 10.1109/ICOSP.2010.5655751.
Dergachov, K., Krasnov, L., Bilozerskyi, V., & Zymovin, A. Data pre-processing to increase the quality of optical text recognition systems. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2021, no. 4, pp. 183-198. DOI: 10.32620/reks.2021.4.15.
Bilozerskyi, V., Dergachov, K., & Кrasnov, L. Analiz i poperednya obrobka videodanykh dlya pidvyshchennya yakosti roboty system tekhnichnoho zoru [Analysis and pre-processing of video data to improve the quality of computer vision systems]. Problemy keruvannya ta informatyky – Problems of control and informatics, 2023, vol. 68, no. 2, pp. 50–66. DOI: 10.34229/1028-0979-2023-2-4. (In Ukrainian).
Perek, P., Mielczarek, A., & Makowski, D. High-Performance Image Acquisition and Processing for Stereoscopic Diagnostic Systems with the Application of Graphical Processing Units. Sensors, 2022, vol. 22(2), article no. 471. DOI: 10.3390/s22020471.
Wang, T-s., Kim, G. T., Kim, M., & Jang, J. Contrast Enhancement-Based Preprocessing Process to Improve Deep Learning Object Task Performance and Results. Applied Sciences, 2023, vol. 13(19), article no. 10760. DOI: 10.3390/app131910760.
Cho, S-Y., Kim, D.-Y., Oh, S-Y., & Sohn, C-B. Reducing System Load of Effective Video Using a Network Model. Applied Sciences, 2021, vol. 11(20), article no. 9665. DOI: 10.3390/app11209665.
Guo, H., Tian, B., Yang, Z., Chen, B., Zhou, Q., Liu, S., Nahrstedt, K., & Danilov, C. DeepStream: Bandwidth Efficient Multi-Camera Video Streaming for Deep Learning Analytics. arXiv − CS − Networking and Internet Architecture, 2023. DOI: 10.48550/arXiv.2306.15129.
DOI: https://doi.org/10.32620/reks.2023.3.10
Refbacks
- There are currently no refbacks.