Analysis of pollutants in air within the territory of Ukraine using geostatistical methods
Abstract
Keywords
Full Text:
PDFReferences
Maltare, N., & Vahora, S. Air Quality Index prediction using machine learning for Ahmedabad city. Digital Chemical Engineering, 2023, vol. 7, iss. 1, article no. 100093. DOI: 10.1016/j.dche.2023.100093.
Akinfolarin, O. M., Boisa, N., & Obunwo, C. Assessment of particulate matter based air quality index in Port Harcourt Nigeria. Journal of Environmental Analytical Chemistry, 2017, vol. 4, iss. 4, article no. 1000224. DOI: 10.4172/2380-2391.1000224.
Kurt, A., & Oktay, A. B. Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. Expert Systems with Applications, 2010, vol. 37, iss. 12, pp. 7986-7992. DOI: 10.1016/j.eswa.2010.05.093.
Kulkarni, R., Bharadwaj, R., & Sakhare, K. Machine Learning Approach to Analyze Sensor Data of Air Pollutants for Sustainable Smart Cities. European Chemical Bulletin, 2019, vol. 12, iss. 10, pp. 2537-2549. ISBN: 2063-5346.
Zhu, S., Lian, X., Liu, H., Hu, J., Wang, Y., & Che, J. Daily air quality index forecasting with hybrid models: a case in China. Environmental Pollution, 2017, vol. 231, iss. 2, pp. 1232-1244. DOI: 10.1016/j.envpol.2017.08.069.
Sowlat, M. H., Gharibi, H., Yunesian, M., Mahmoudi, M. T., & Lotfi, S. Anovel, fuzzy-based air quality index (FAQI) for air quality assessment. Atmospheric Environment, 2011, vol. 45, iss. 12, pp. 2050-2059. DOI: 10.1016/j.atmosenv.2011.01.060.
Wu, Q., & Lin, H. A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors. Science of The Total Environment, 2019, vol. 683, pp. 808–821. DOI: 10.1016/j.scitotenv.2019.05.288.
Suroshe, S., Dharpal, S. V., & Ingole, N. W. Prediction of Air Quality Index Using Regression Models. GIS science journal, 2022, vol. 9, iss. 8, pp. 576-591. Available at: https://drive.google.com/file/d/19tDn5c87f6q6BHq_n1vlnYQaaTQQhwHn/view. (accessed 3.02.2023).
Kleijnen, J. P. C. Kriging: Methods and Applications. CentER Discussion Paper Series, 2017, vol. 2017-047, pp. 1-16. DOI: 10.2139/ssrn.3075151.
Tyagi, A., & Singh, P. Applying kriging approach on pollution data using gis software. International Journal of Environmental Engineering and Management, 2013, vol. 4, iss. 3, pp. 185-190. ISSN: 2231-1319.
Sokolov, D., Merlak, V., Oryekhov, O., & Plakhteev, A. Ekolohichnyy monitorynh z vykorystannyam bezprovidnykh sensornykh merezh: rozroblennya ta eksperymenty [Environmental monitoring with wireless sensor networks application: development and experiments]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2019, vol. 3, iss. 91, pp. 40-47. DOI: 10.32620/reks.2019.3.04. (In Ukrainian).
Ponochovnyy, Yu., & Kharchenko, V. Metodolohiya zabezpechennya harantozdatnosti informatsiyno-keruyuchykh system z vykorystannyam bahatotsil'ovykh stratehiy obsluhovuvannya [Dependability assurance methodology of information and control systems using multipurpose service strategies]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2020, vol. 3, iss. 95, pp. 43-58. DOI: 10.32620/reks.2020.3.05. (In Ukrainian).
Maryushko, M., & Pashchenko, R. Fraktal'nyy analiz kosmichnykh znimkiv Sentinel-2 dlya monitorynhu sil's'kohospodars'kykh kul'tur [Fractal analysis of Sentinel-2 satellite imagery for monitoring of agricultural crops]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2020, vol. 4, iss. 96, pp. 34-47. DOI: 10.32620/reks.2020.4.03. (In Ukrainian).
Khaliq, A., Peroni, L., & Chiaberge, M. Land cover and crop classification using multitemporal Sentinel-2 images based on crops phenological cycle. IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), Salerno, Italy, 21-22 June 2018, IEEE, 2018, pp. 1-5. DOI: 10.1109/EESMS.2018.8405830.
Banerjee, T., & Srivastava, R. Assessment of the ambient air quality at the Integrated Industrial Estate-Pantnagar through the air quality index (AQI) and exceedence factor (EF). Asia-Pacific Journal of Chemical Engineering, 2011, vol. 6, iss. 1, pp. 64-70. DOI: 10.1002/apj.450.
Kumar, A., & Goyal, P. Forecasting of air quality in Delhi using principal component regression technique. Atmospheric Pollution Research, 2011, vol. 2, iss. 4, pp. 436-444. DOI: 10.5094/APR.2011.050.
Mishra, D., & Goyal, P. Analysis of ambient air quality using fuzzy air quality index: a case study of Delhi, India. International Journal of Environmental and Pollution, 2016, vol. 58, iss. 3, pp. 149-159. DOI: 10.1504/IJEP.2015.077173.
Soni, H. B., & Patel, J. Assessment of Ambient Air Quality and Air Quality Index in Golden Corridor of Gujarat, India: a case study of Dahej port. International Journal of Environment, 2017, vol. 6, iss. 4, pp. 28-41. DOI: 10.3126/ije.v6i4.18908.
Choi, G., Heo, S., & Lee, J-T. Assessment of environmental injustice in Korea using synthetic air quality index and multiple indicators of socioeconomic status: a cross-sectional study. Journal of the Air & Waste Management Association, 2015, vol. 66, iss. 1, pp. 28-37. DOI: 10.1080/10962247.2015.1107657.
Shelestov, A., Kolotii, A., Lavreniuk, M., Yailymov, B., Shumilo, L., & Korsunska, Y. tsyfrovizatsiya rozvytku mist: urban atlas na osnovi vidkrytykh danykh dlya mist Ukrayiny [Digitalization of city development: urban atlas on the basis of open data for cities of Ukraine]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2021, vol. 3, iss. 99, pp. 19-28. DOI: 10.32620/reks.2021.3.02. (In Ukrainian).
Dominici, F., Peng, R. D., Barr, C. D., & Bell, M. L. Protecting human health from air pollution: shifting from a single-pollutant to a multi-pollutant approach. Epidemiology, 2010, vol. 21, iss. 2, pp. 187-194. DOI: 10.1097/EDE.0b013e3181cc86e8.
Zhu, S., Qiu, X., Yin, Y., Fang, M., Liu, X., Zhao, X., & Shi, Y. Two-step hybrid model based on data preprocessing and intelligent optimization algorithms (CS and GWO) for NO2 and SO2 forecasting. Atmospheric Pollution Research, 2019, vol. 10, iss. 4, pp. 1326-1335. DOI: 10.1016/j.apr.2019.03.004.
Mahendra, H. N., Mallikarjunaswamy, S., Mahesh Kumar, D., Kumari, S., & Kashyap, S. Assessment and Prediction of Air Quality Level Using ARIMA Model: A Case Study of Surat City, Gujarat State, India. Nature Environment and Pollution Technology, 2023, vol. 22, iss. 1, pp. 199-210. DOI: 10.46488/NEPT.2023.v22i01.018.
Angelin, J., & Sasi Kumar, A. PM2.5 prediction using machine learning hybrid model for smart health. International Journal of Engineering and Advanced Technology (IJEAT), 2019, vol. 9, iss. 1, pp. 6500-6504. DOI: 10.35940/ijeat.A1187.109119.
Zhu, D., Changjie, C., Tianbao, Y., & Xun, Z. A machine learning approach for air quality prediction: model regularization and optimization. Big Data and Cognitive Computing, 2018, vol. 2, iss. 1, article no. 5. DOI: 10.3390/bdcc2010005.
Qingping, Z., Haiyan, J., Jianzhou, W., & Jianling, Z. A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Science of The Total Environment, 2014, vol. 496, pp. 264-274. DOI: 10.1016/j.scitotenv.2014.07.051.
Kumar, K., & Pande, B.P. Air pollution prediction with machine learning: A case study of Indian Cities. International Journal of Environmental Science and Technology, 2022, vol. 20, pp. 5333-5348. DOI: 10.1007/s13762-022-04241-5.
Cosma, A., & Simha, R. Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions. Building and Environment, 2019, vol. 148, pp. 372-383. DOI: 10.1016/j.buildenv.2018.11.017.
Samal, K. K., Babu, K. S., Das, S. K., & Acharaya, A. Time Series-Based Air Pollution Forecasting using SARIMA and Prophet Model. IEEE International Conference on Information Technology and Computer Communications, Singapore, 2019, pp. 124-129. DOI: 10.1145/3355402.3355417.
Li, Y., & He, J. Design of an intelligent indoor air quality monitoring and purification device. IEEE Information Technology and Mechatronics Engineering Conference (ITOEC), 3-5 October 2017, Chongqing, China, 2017, pp. 1147-1150. DOI: 10.1109/ITOEC.2017.8122535.
Santos, J. A., Jiménez, M., & Espinosa, F. Effect of event-based sensing on IoT node power efficiency: Case study: Air quality monitoring in smart cities. IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), 2017. DOI: 10.1109/ACCESS.2019.2941371.
Amado, T. M., & Dela Cruz, J. C. Development of Machine Learning- based Predictive Models for Air Quality Monitoring and Characterization. TENCON IEEE Region Conference, 16-19 Nov 2018, Osaka, Japan, 2018, pp. 0668-0672. DOI: 10.1109/TENCON.2018.8650518.
Bhalgat, P., Bhoite, S., & Pitare, S. Air quality prediction using machine learning algorithms. International Journal of Computer Applications Technology and Research, 2019, vol. 8, iss. 9, pp. 367-370. DOI: 10.7753/IJCATR0809.1006.
Dastoorpoor, M., Idani, E., Goudarzi, G., & Khanjani, N. Acute effects of air pollution on spontaneous abortion, premature delivery, and stillbirth in Ahvaz, Iran: a time-series study. Environmental Science and Pollution Research, 2018, vol. 25, iss. 4, pp. 5447–5458. DOI: 10.1007/s11356-017-0692-9.
Taylan, O. Modeling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality. Atmospheric Environment, 2017, vol. 150, pp. 356–365. DOI: 10.1016/j.atmosenv.2016.11.030.
DOI: https://doi.org/10.32620/reks.2023.3.18
Refbacks
- There are currently no refbacks.