Influence of the number system in residual classes on the fault tolerance of the computer system
Abstract
Keywords
Full Text:
PDFReferences
Medero, A., & Puig, V. LPV Control and Virtual-Sensor-Based Fault Tolerant Strategies for a Three-Axis Gimbal System. Sensors, 2022, vol. 22, iss. 17, article no. 6664, pp. 1-25. DOI: 10.3390/s22176664.
Omondi, A. R. Cryptography Arithmetic: Algorithms and Hardware Architectures. Springer, Cham, 2020. 336 p. DOI: 10.1007/978-3-030-34142-8.
Krasnobayev, V., Kuznetsov, A., Yanko, A., & Kuznetsova, T. The Procedure for Implementing the Operation of Multiplying Two Matrices Using the Residual Number System. 2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 2020, pp. 353-357. DOI: 10.1109/PICST51311.2020.9468076.
Hiasat, A. General Frameworks for Designing Arithmetic Components for Residue Number Systems. Intelligent Methods in Computing, Communications and Control (Advances in Intelligent Systems and Computing), 2021, vol. 1243, pp. 82-92. DOI: 10.1007/978-3-030-53651-0_7.
Koshman, S. O. Metody ta zasoby operatyvnoho kontrolyu ta diahnostyky danykh komponentiv komp"yuternoyi systemy u zalyshkovykh klasakh. Diss. d. t. n. [Methods and tools for operative data verification and diagnosis of computer system components in residue classes. Doctor of Technical Science diss.]. Kharkiv, 2018. 340 p. (In Ukrainian).
Pradhan, D. K. Fault-Tolerant Computer System Design. 1st ed. Prentice Hall, Upper Saddle River, N.J, 1996. 550 p.
Castaldi, P., Mimmo, N., & Simani, S. Fault diagnosis and fault-tolerant control techniques for aircraft systems. Fault Diagnosis and Fault-tolerant Control of Robotic and Autonomous Systems. London, 2020, pp. 197-212. DOI: 10.1049/PBCE126E_ch9.
Hajiyev, Ch., & Soken, H. E. Active Fault Tolerant Attitude Estimation. Fault Tolerant Attitude Estimation for Small Satellites. 1st ed. CRC Press, 2020, pp. 175-198. DOI: 10.1201/9781351248839.
Selianinau, M. An efficient implementation of the CRT algorithm based on an interval-index characteristic and minimum-redundancy residue code. International Journal of Computational Methods, 2020, vol. 17, no. 10. DOI: 10.1142/S0219876220500048.
Selianinau, M. An efficient implementation of the Chinese Remainder Theorem in minimally redundant Residue Number System. Computer Science, 2020, vol. 21, no. 2, pp. 237-252. DOI: 10.7494/csci.2020.21.2.3616.
Phalakarn, K., & Surarerks, A. Alternative Redundant Residue Number System Construction with Redundant Residue Representations. 2018 3rd International Conference on Computer and Communication Systems (ICCCS), Nagoya, Japan, 2018, pp. 457-461, DOI: 10.1109/CCOMS.2018.8463305.
Molahosseini, A., Sousa, L., & Chang, C. Embedded Systems Design with Special Arithmetic and Number Systems. Springer, Cham, Switzerland, 2017. DOI: 10.1007/978-3-319-49742-6.
Babeshko, E., Kharchenko, V., Leontiiev, K., & Ruchkov E. Practical aspects of operating and analytical reliability assessment of FPGA-based I&C systems. Radioelectronic and Computer Systems, 2020, no. 3, pp. 75-83. DOI: 10.32620/reks.2020.3.08.
Kharchenko, V., Fesenko, H., & Illiashenko, O. Basic model of non-functional characteristics for assessment of artificial intelligence quality. Radioelectronic and Computer Systems, 2022, no. 3, pp. 131-144. DOI: 10.32620/reks.2022.2.11.
Makarichev, V., & Kharchenko, V. Application of dynamic programming approach to computation of atomic functions. Radioelectronic and Computer Systems, 2021, no. 4, pp. 48-62. DOI: 10.32620/reks.2021.4.03.
Osamy, W., Khedr, A. M., Salim, A., El-Sawy, A. A., Alreshoodi, M., & Alsukayti, I. Recent Advances and Future Prospects of Using AI Solutions for Security, Fault Tolerance, and QoS Challenges in WSNs. Electronics, 2022, vol. 11, no. 24, article no. 4122. DOI: 10.3390/electronics11244122.
Wu, Y., Jiang, B., & Wang, Y. Incipient winding fault detection and diagnosis for squirrel-cage induction motors equipped on CRH trains. ISA Transactions, 2020, vol. 99, pp. 488-495. DOI: 10.1016/j.isatra.2019.09.020.
Barbirotta, M., Cheikh, A., Mastrandrea, A., Menichelli, F., Ottavi, M., & Olivieri, M. Evaluation of Dynamic Triple Modular Redundancy in an Interleaved-Multi-Threading RISC-V Core. Journal of Low Power Electronics and Applications, 2023, vol. 13, no. 1. DOI: 10.3390/jlpea13010002.
Al-Zuriqat, T., ChillónGeck, C., Dragos, K., & Smarsly, K. Adaptive Fault Diagnosis for Simultaneous Sensor Faults in Structural Health Monitoring Systems. Infrastructures, 2023, vol. 8, no. 3. DOI: 10.3390/infrastructures8030039.
Fu, H.-W., Chen, T.-Y., Shen, M.-W., & Huang, T.-C. AN-Coded Redundant Residue Number System for Reliable Neural Networks. 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Taiwan, 2021, pp. 1–2. DOI: 10.1109/ICCE-TW52618.2021.9603049.
Krasnobayev, V. A., Yanko, A. S., & Kovalchuk, D. M. Control, Diagnostics and Error Correction in the Modular Number System. Proceedings of The Sixth International Workshop on Computer Modeling and Intelligent Systems (CMIS 2023), Zaporizhzhia, Ukraine, 2023, pp. 199-213. DOI: 10.32782/cmis/3392-17.
Taghizadeghankalantari, M., & TaghipourEivazi, S. Design of efficient reverse converters for Residue Number System. Journal of Circuits, Systems and Computers, 2021, vol. 30, no. 8. DOI: 10.1142/S0218126621501413.
Barannik, V., Krasnorutsky, A., Kolesnyk, V., Barannik, V., Pchelnikov, S., & Zeleny, P. Method of compression and ensuring the fidelity of video images in infocommunication networks. Radioelectronic and Computer Systems, 2022, no. 4, pp. 129-142. DOI: 10.32620/reks.2022.4.10.
Krasnobayev, V. A., Zamula, O. A., Rassomakhin, S. H., Styervoyedov, M. H., & Kurchanov, V. M. Vidmovostiykyy obchyslyuvalʹnyy prystriy, shcho funktsionuye u systemi zalyshkovykh klasiv [A fault-tolerant computing device operating in a system of residual classes]. Patent UA, no. 122286, 2020.
DOI: https://doi.org/10.32620/reks.2023.3.13
Refbacks
- There are currently no refbacks.