Active-passive pulse noise radar of the 3mm range and the results of preliminary tests
Abstract
Keywords
Full Text:
PDFReferences
Oloumi, D., Winter, R. S. C., Kordzadeh, A., Boulanger, P., & Rambabu, K. Microwave imaging of breast tumor using time-domain UWB circular-SAR technique. IEEE transactions on medical imaging, 2020, vol. 39, no. 4, pp. 934-943. DOI: 10.1109/TMI.2019.2937762.
Schantz, H. The art and science of ultrawideband antennas. Boston, Artech House Publ., 2015. 563 p.
Oloumi, D. Ultra-wideband synthetic aperture radar imaging: Theory and applications. Edmonton, Department of Electrical and Computer Engineering University of Alberta, 2016. 179 p.
Hunziker, P., Morozov, O.V., Volosyuk, O.V., Volosyuk, V. K., & Zhyla, S. S. Improved method of optical coherence tomography imaging. 2016 IEEE International conference on mathematical methods in electromagnetic theory (IEEE MMET-2016), 2016, pp. 421-424. DOI: 10.1109/MMET.2016.7544109.
Luong, D., Balaji, B., & Rajan, S. A closed-form estimate for the correlation coefficient of noise-type radars. 2022 IEEE Radar Conference (RadarConf22), 2022, pp. 1-5. DOI: 10.1109/RadarConf2248738.2022.9764192.
Ankel, M., Jonsson, R., Bryllert, T., Ulander, L. M. H., & Delsing, P. Bistatic noise radar: Demonstration of correlation noise suppression. IET Radar, Sonar and Navigation, 2023, vol. 17, iss. 3, pp. 351-361. DOI: 10.1049/rsn2.12345.
Feghhi, R., Oloumi, D., & Rambabu, K. Design and development of an inexpensive sub-nanosecond gaussian pulse transmitter. IEEE transactions on microwave theory and techniques, 2019, vol. 67, no. 9, pp. 3773–3782. DOI: 10.1109/TMTT.2019.2918298.
Pavlikov, V., Volosyuk, V., Shmatko, O., Zhyla, S., Tserne, E., & Dyomin, A. Signal processing algorithm for noise noncoherent wideband helicopter altitude radar. 2022 IEEE 16th international conference on advanced trends in radioelectronics, telecommunications and computer engineering (TCSET-2022), 2022, pp. 457-461. DOI: 10.1109/TCSET55632.2022.9767086.
Bräunlich, N., Wagner, C. W., Sachs, J., & Galdo, G. D. Configurable Pseudo Noise. Radar Imaging System Enabling Synchronous MIMO Channel Extension. Sensors, 2023, vol. 23, iss. 5, article no. 2454. DOI: 10.3390/s23052454.
Narayanan, R. M. Noise Radar Techniques and Progress. Chapter 9 in Advanced Ultrawideband Radar: Signals, Targets, and Applications. Boca Raton: CRC Press, 2016, pp. 323–361. DOI: 10.1201/9781315374130-10.
Kim, E., Kim, I., Han, S., Lee, J., & Shin, S. A Wideband Noise Radar System Using a Phased Array with True Time Delay. Remote Sens, 2022, vol. 14, iss. 18, article no. 4489. DOI: 10.3390/rs14184489.
Chapursky, V. V., Sablin, V. N., Kalinin, V., & Vasilyev, I. A. Wideband random noise short range radar with correlation processing for detection of slow moving objects behind the obstacles. Tenth International Conference on Ground Penetrating Radar (GPR 2004), 2004, pp. 199-202. DOI: 10.1109/ICGPR.2004.179955.
Ilchenko, M. E., Kalinin, V. I., Narytnyk, T. M., & Didkovski, R. M. Potential performance of the communication systems using autocorrelation reception of shift-keyed noise signals. Telecommunications and radio engineering, 2014, vol. 73, iss. 11, pp. 955–976. DOI: 10.1615/TelecomRadEng.v73.i11.20.
Kalinin, V., Panas, A., Kolesov, V., & Lyubchenko, V. Ultrawideband wireless communication on the base of noise technology. 2006 International conference on microwaves, radar & wireless communications. (MIKON 2006), 2006, pp. 615-618. DOI: 10.1109/MIKON.2006.4345254.
Shin, H. J., Narayanan, R. M., & Rangaswamy, M. Ultrawideband noise radar imaging of impenetrable cylindrical objects using diffraction tomography. International journal of microwave science and technology, 2014, vol. 2014, pp. 1–22. DOI: 10.1155/2014/601659.
Herman, M. A., & Strohmer, T. High-Resolution radar via compressed sensing. IEEE transactions on signal processing, 2009, vol. 57, no. 6, pp. 2275–2284. DOI: 10.1109/TSP.2009.2014277.
Zhyla, S., Volosyuk, V., Pavlikov, V., Vlasenko, D., Borodavka, V., & Pidlisnyi, O. Structural diagram of an aerospace cognitive radar for the earth remote sensing. 2022 12th International conference on dependable systems, services and technologies. (DESSERT-2022), 2022, pp. 1-6. DOI: 10.1109/DESSERT58054.2022.10018767.
Bayat, S., & Daei, S. Separating radar signals from impulsive noise using atomic norm minimization. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, vol. 68, no. 6, pp. 2212-2216. DOI: 10.1109/TCSII.2020.3045226.
Ruzhentsev, N., Zhyla, S., Pavlikov, V., Volosyuk, V., Cherepnin, G., & Kosharskyi, V. UAV radio thermal contrasts in MM and CM wavelength ranges. 2022 IEEE 2nd Ukrainian microwave week. (UKRMW-2022), 2022, pp. 711-715. DOI: 10.1109/UkrMW58013.2022.10037002.
Ruzhentsev, N., et al. Radio-Heat contrasts of UAVs and their weather variability at 12 GHz, 20 GHz, 34 GHz, and 94 GHz frequencies. ECTI transactions on electrical engineering, electronics, and communications, 2022, vol. 20, no. 2, pp. 163–173. DOI: 10.37936/ecti-eec.2022202.246878.
Pavlikov, V., Volosyuk, V., Zhyla, S., Tserne, E., Shmatko, O., & Sobkolov, A. Active-Passive radar for radar imaging from aerospace carriers. 19th International conference on smart technologies (IEEE EUROCON 2021), 2021, pp. 18-24. DOI: 10.1109/EUROCON52738.2021.9535619.
Pavlikov, V., et al. Radar imaging complex with SAR and ASR for aerospace vechicle. Radioelectronic and computer systems, 2021, no. 3, pp. 63–78. DOI: 10.32620/reks.2021.3.06.
Ruzhentsev, N., et al. Block diagram of a multi-frequency radiometric complex for UAV detection in different meteorological conditions. Information and telecommunication sciences, 2021, no. 2, pp. 50–57. DOI: 10.20535/2411-2976.22021.50-57
Ruzhentsev, N., Zhyla, S., Pavlikov, V., Cherepnin, G., Tserne, E., & Kosharskyi, V. Theoretical bases of multi frequency radiometric systems development for UAV detection against the background of atmospheric radiation. 2022 IEEE 16th International conference on advanced trends in radioelectronics, telecommunications and computer engineering (TCSET-2022), 2022, pp. 20–24. DOI: 10.1109/TCSET55632.2022.9766843
Volosyuk, V. K., & Kravchenko, V. F. Statisticheskaya teoriya radiotekhnicheskikh sistem distantsionnogo zondirovaniya i radiolokatsii [Statistical Theory of Radio-Engineering Systems of Remote Sensing and Radar]. Moscow, Fizmatlit Publ., 2008. 704 p.
Liebe, H. J. MPM-An atmospheric millimeter-wave propagation model. International journal of infrared and millimeter waves, 1989, vol. 10, no. 6, pp. 631–650. DOI: 10.1007/BF01009565.
Martellucci, A., Rastburg, B.A., Poiares Baptista, J. P. V., & Blarzino, G. New reference standard atmospheres based on numerical weather products Abstracts of International Workshop (ClimDiff), 2003, clim. 1.
Riva, C., Martellucci, A., Kubista, E., Chonhuber, M., & Luini, L. ERA-15 climatological databases for propagation modeling. Proc. of International Conf. (ClimDiff '05), 2005, pp. 12.1-12.7.
Xu, X., & Narayanan, R. M. Impact of different correlation receiving techniques on the imaging performance of UWB random noise radar. 2003 IEEE international geoscience and remote sensing symposium (IGARSS 2003), 2003, pp. 4525–4527. DOI: 10.1109/IGARSS.2003.1295568.
Uss, M., et al. Image informative maps for estimating noise standard deviation and texture parameters. EURASIP journal on advances in signal processing, 2011, vol. 2011, no. 1, article no. 806516. DOI: 10.1155/2011/806516.
Lukin, V. V. Methods and automatic procedures for processing images based on blind evaluation of noise type and characteristics. Journal of applied remote sensing, 2011, vol. 5, no. 1, article no. 053502. DOI: 10.1117/1.3539768.
Ponomarenko, N. N., Lukin, V. V., Egiazarian, K. O., & Astola, J. T. A method for blind estimation of spatially correlated noise characteristics. IS&T/SPIE Electronic imaging, 2010. DOI: 10.1117/12.847986.
Ostroumov, I., et al. Modelling and simulation of DME navigation global service volume. Advances in space research, 2021, vol. 68, no. 8, pp. 3495–3507. DOI: 10.1016/j.asr.2021.06.027.
Pavlikov, V., Volosyuk, V., Tserne, E., Sydorenko, N., Prokofiev, I., & Peretiatko, M. Radar for aircraft motion vector components measurement. 2022 IEEE 2nd Ukrainian microwave week (UKRMW-2022), 2022, pp. 567-572. DOI: 10.1109/UkrMW58013.2022.10036953.
Zhyla, S., Volosyuk, V., Pavlikov, V., Vlasenko, D., Borodavka, V., & Pidlisnyi, O. Structural diagram of an aerospace cognitive radar for the earth remote sensing. 2022 12th international conference on dependable systems, services and technologies (DESSERT-2022), 2022, pp. 1-6. DOI: 10.1109/DESSERT58054.2022.10018767.
Guerci, J. R. Cognitive radar: the knowledge-aided fully adaptive approach. Boston, Artech House, 2010. 175 p.
DOI: https://doi.org/10.32620/reks.2023.3.04
Refbacks
- There are currently no refbacks.