BPG-based compression analysis of Poisson-noisy medical images
Abstract
Keywords
Full Text:
PDFReferences
Ng, K. H., Faust, O., Sudarshan, V., & Chattopadhyay, S. Data Overloading in Medical Imaging: Emerging Issues, Challenges and Opportunities in Efficient Data Management. Journal of Medical Imaging and Health Informatics, 2015, vol. 5, iss. 4, pp. 755–764. DOI: 10.1166/jmihi.2015.1449.
Patidar, G., Kumar, S., & Kumar, D. A Review on Medical Image Data Compression Techniques. 2nd International Conference on Data, Engineering and Applications (IDEA), Bhopal, India, 2020, pp. 1-6. DOI: 10.1109/IDEA49133.2020.9170679.
Kumar, S., & Kumar, D. Comparative Analysis and Performance Evaluation of Medical Image Compression Method for Telemedicine. 2nd International Conference on Data, Engineering and Applications (IDEA), Bhopal, India, 2020, pp. 1-5. DOI: 10.1109/IDEA49133.2020.9170724.
Hussain, A. J., Al-Fayadh, A., & Radi, N. Image Compression Techniques: A Survey in Lossless and Lossy algorithms. Neurocomputing, 2018, vol. 300, pp. 44-49. DOI: 10.1016/j.neucom.2018.02.094.
Kryvenko, S., Lukin, V., Krylova, O., Kryvenko, L., & Egiazarian, K. A Fast Method of Visually Lossless Compression of Dental Images. Applied Sciences, 2021, vol. 11, iss. 1, article no. 135. DOI: 10.3390/app11010135.
Kumar, S. N., Haridhas, A. K., Fred, A. L., & Varghese, P. S. Analysis of Lossy and Lossless Compression Algorithms for Computed Tomography Medical Images Based on Bat and Simulated Annealing Optimization Techniques. Computational Intelligence Methods for Super-Resolution in Image Processing Applications. Springer, Cham., 2021, pp. 99-133. DOI: 10.1007/978-3-030-67921-7_6.
Moura, L., Furuie, S. S., Gutierrez, M. A., Tachinardi, U., Rebelo, M. S., Alcocer, P., & Melo, C. P. Lossy compression techniques, medical images, and the clinician. MD Computing : computers in medical practice, 1996, vol. 13, iss. 2, pp. 155-172. PMID: 8684278.
Sultana, Z., Nahar, L., Tasnim, F., Hossain, M. S., & Andersson, K. Lossy Compression Effect on Color and Texture Based Image Retrieval Performance. Intelligent Computing & Optimization. ICO 2022. Lecture Notes in Networks and Systems, Springer, Cham., 2023, vol. 569, pp. 1159-1167. DOI: 10.1007/978-3-031-19958-5_108.
European Society of Radiology (ESR). Usability of irreversible image compression in radiological imaging. A position paper by the European Society of Radiology (ESR). Insights into Imaging, 2011, vol. 2, iss. 2, pp. 103-115. DOI: 10.1007/s13244-011-0071-x.
Barannik, V., Sidchenko, S., Barannik, D., Yermachenkov, A., Savchuk, M., & Pris, G. Video images compression method based on floating positional coding with an unequal codograms length. Radioelectronic and Computer Systems, 2023, no. 1, pp. 134-146. DOI: 10.32620/reks.2023.1.11.
Liu, F., Hernandez-Cabronero, M., Sanchez, V., Marcellin, M. W., & Bilgin, A. The Current Role of Image Compression Standards in Medical Imaging. Information, 2017, vol. 8, iss. 4, article no. 131. DOI: 10.3390/info8040131.
Guidance for the content and review of 510(K) Notifications for Picture Archiving and Communications Systems (PACS) and Related Devices. Food and Drug Administration. 2023. Available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K211257. (accessed 12.06.2023).
Lukin, V., Bataeva, E., & Abramov, S. Saliency map in image visual quality assessment and processing. Radioelectronic and computer systems, 2023, no. 1, pp. 112-121. DOI: 10.32620/reks.2023.1.09.
Bondžulić, B., Pavlović, B., Stojanović, N., & Petrović, V. Picture-wise just noticeable difference prediction model for JPEG image quality assessment. Vojnotehnicki glasnik, 2022, vol. 70, iss. 1, pp. 62-86. DOI: 10.5937/vojtehg70-34739.
Gooden, D. S. Legal aspects of image compression. In Proceedings of the American Assoc. of Physicists in Medicine (AAPM). 35th Annual Meeting, Washington, DC, 1993, pp. 8-12.
Koff, D., Bak, P., Brownrigg, P. et al. Pan-Canadian evaluation of irreversible compression ratios (“lossy” compression) for development of national guidelines. Journal of digital imaging, 2009, vol. 22, pp. 569-578. DOI: 10.1007/s10278-008-9139-7.
Prasath, V. B. S. Quantum Noise Removal in XRay Images with Adaptive Total Variation Regularization, Informatica, 2017, vol. 28, iss. 3, pp. 505-515. DOI: 10.15388/Informatica.2017.141.
Le, T., Chartrand, R., & Asaki, T. J. A Variational Approach to Reconstructing Images Corrupted by Poisson Noise. Journal of Mathematical Imaging and Vision, 2007, vol. 3, pp. 257-263. DOI: 10.1007/s10851-007-0652-y.
Li, B., Yang, R., & Jiang, H. Remote-Sensing Image Compression Using Two-Dimensional Oriented Wavelet Transform. IEEE Transactions on Geoscience and Remote Sensing, 2011, vol. 49, iss. 1, pp. 236-250. DOI: 10.1109/TGRS.2010.2056691.
Al-Chaykh, O. K., & Mersereau, R. M. Lossy compression of noisy images. IEEE Transactions on Image Processing, 1998, vol. 7, iss. 12, pp. 1641-1652. DOI: 10.1109/83.730376.
Shahnaz, R., Walkup, J. F., & Krile T. F. Image Compression in Signal-Dependent Noise. Applied Optics, 1999, vol. 38, iss. 26, pp. 5560-5567. DOI: 10.1364/AO.38.005560.
Chang, S. G., Yu, B., & Vetterli, M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. on Image Processing, 2000, vol. 9, iss. 9, pp. 1532-1546. DOI: 10.1109/83.862633.
Lim, S. H. Characterization of Noise in Digital Photographs for Image Processing. Proceedings of Digital Photography II, 2006, vol. 60690O, pp. 219-228. DOI: 10.1117/12.655915.
Lukin, V., Kovalenko, B., Kryvenko, S., Naumenko, V., & Vozel, B. Prediction of Optimal Operation Point Existence and Its Parameters in BPG-Based Automatic Lossy Compression of Noisy Images. Current Overview on Science and Technology Research, 2022, vol. 9, pp. 1-36. DOI: 10.9734/bpi/costr/v9/4316A.
Kovalenko, B., Lukin, V., Kryvenko, S., Naumenko, V., & Vozel, B. BPG-Based Automatic Lossy Compression of Noisy Images with the Prediction of an Optimal Operation Existence and Its Parameters. Applied Sciences, 2022, vol. 12, iss. 15, article no. 7555. DOI: 10.3390/app12157555.
Naumenko, V., Lukin, V., & Krivenko, S. Analysis of Noisy Image Lossy Compression by BPG. Integrated Computer Technologies in Mechanical Engineering – 2021. ICTM 2021. Lecture Notes in Networks and Systems, Springer, Cham, 2022, vol. 367, pp. 911-923. DOI: 10.1007/978-3-030-94259-5_71.
Makarichev, V., Lukin, V., & Brysina, I. Progressive DCT-based coder and its comparison to atomic function based image lossy compression. IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2022, pp. 01-06, DOI: 10.1109/TCSET55632.2022.9766871.
Li, F., Krivenko, S., & Lukin, V. A Two-step Procedure for Image Lossy Compression by ADCTC with a Desired Quality. IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT), Kyiv, Ukraine, 2020, pp. 307-312. DOI: 10.1109/DESSERT50317.2020.9125000.
Wang, Z., Simoncelli, E. P., & Bovik, A. C. Multiscale structural similarity for image quality assessment. The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, Pacific Grove, CA, USA, 2003, pp. 1398-1402. DOI: 10.1109/ACSSC.2003.1292216.
Lukin, V. V., Krivenko, S. S., Zriakhov, M. S., Ponomarenko, N. N., Abramov, S. K., Kaarna, A., & Egiazarian, K. Lossy compression of images corrupted by mixed Poisson and additive Gaussian noise. 2009 International Workshop on Local and Non-Local Approximation in Image Processing, Tuusula, Finland, 2009, pp. 33-40. DOI: 10.1109/LNLA.2009.5278407.
Azzari, L., Borges, L. R., & Foi, A. Modeling and Estimation of Signal-Dependent and Correlated Noise. Denoising of Photographic Images and Video. Advances in Computer Vision and Pattern Recognition. Springer, Cham, 2018, pp. 1-36. DOI: 10.1007/978-3-319-96029-6_1.
DOI: https://doi.org/10.32620/reks.2023.3.08
Refbacks
- There are currently no refbacks.