Abdominal electromyograms mining: breathing patterns of asleep adults
Abstract
Keywords
Full Text:
PDFReferences
Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. Ch., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., & Stanley, H. E. PhysioBank, PhysioToolkit, and PhysioNet. Components of a New Research Resource for Complex Physiologic Signals. Circulation, 2000, vol. 101, iss. 23, pp. e215-e220. DOI: 10.1161/01.cir.101.23.e215.
PhysioNet /Computing in Cardiology Challenge 2018: Training/Test Sets. Available at: https://archive.physionet.org/physiobank/database/challenge/2018. (accessed 10.02.2023).
Ghassemi, M. M., Moody, B. E., Lehman, L. H., Song, C., Li, Q., Sun, H., Mark, R. G., Westover, M. B., & Clifford, G. D. You Snooze, You Win: The PhysioNet/Computing in Cardiology Challenge 2018. Computing in Cardiology, 2018, vol. 45. 4 p. DOI: 10.22489/cinc.2018.049.
Bhat, S., & Chokroverty, S. Sleep disorders and COVID-19. Sleep Medicine, 2022, vol. 91, pp. 253-261. DOI: 10.1016/j.sleep.2021.07.021.
Jahrami, H., BaHammam, A. S., Bragazzi, N. L., Saif, Z., Faris, M. A., & Vitiello, M. V. Sleep problems during COVID-19 pandemic by population: a systematic review and meta-analysis. Journal of Clinical Sleep Medicine, 2020, vol.17, iss. 2, pp. 299-313. DOI: 10.5664/jcsm.8930.
Chuiko, G., & Darnapuk, Ye. Fractal nature of arterial blood oxygen saturation data. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2022, no. 1, pp. 206–215. DOI: 10.32620/reks.2022.1.16.
Capodilupo, E. What is the Respiratory Rate? Available at: https://www.whoop.com/thelocker/what-is-respiratory-rate-normal/. (accessed 5.02.2023).
Lovell, K., & Liszewski, C. Normal Sleep Patterns. Available at: https://learn.chm.msu.edu/neuroed/neurobiology_disease/content/otheresources/sleepdisorders.pdf. (accessed 5.02.2023).
Chuiko, G., Dvornik, O., Darnapuk, Y., & Baganov, Y. Devising a new filtration method and proof of self-similarity of electromyograms. Eastern-European Journal of Enterprise Technologies, 2021, vol. 4, no. 9(112), pp. 15–22. DOI: 10.15587/1729-4061.2021.239165.
Rose, W. KAAP686 Mathematics and Signal Processing for Biomechanics. Electromyogram analysis. Available at: http://www1.udel.edu/biology/rosewc/kaap686/notes/EMG%20analysis.pdf. (accessed 5.02.2023).
Chuiko, G., Darnapuk, Ye., Dvornik, O., & Krainyk, Ya. Improved robust handling of electromyograms with mining of new diagnostic signs. Proceedings of the 1st International Workshop on Information Technologies: Theoretical and Applied Problems 2021, Ternopil, 16 November 2021, pp. 55–62. Available at: https://ceur-ws.org/Vol-3039/short6.pdf. (accessed 5.02.2023).
De Livera, A. M., & Hyndman, R. J. Forecasting time series with complex seasonal patterns using exponential smoothing. Monash University, Working Paper 15/09, 2009. 28 p. Available at: https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp15-09.pdf. (accessed 5.02.2023).
Bishop, C. M. Pattern Recognition and Machine Learning. Springer Publ., 2016. 758 p.
Machine learning tasks in ML.NET. Available at: https://learn.microsoft.com/en-us/dotnet/machine-learning/resources/tasks. (accessed 5.02.2023).
Publications from You Snooze, You Win: the PhysioNet/Computing in Cardiology Challenge 2018. Available at: https://archive.physionet.org/challenge/2018/papers/. (accessed 5.02.2023).
Schertel, A., Funke-Chambour, M., Geiser, T., & Brill, A.-K. P231 Respiratory breathing patterns and cough in idiopathic pulmonary fibrosis: awake, asleep and over time. Chest, 2017, vol. 151, iss. 5, article no. A131. DOI: /10.1016/j.chest.2017.04.138.
Frank, J. I., & Hanley, D. F. Abnormal Breathing Patterns. In: Hacke, W., Hanley, D. F., Einhäupl, K. M., Bleck, T. P., Diringer, M. N., Ropper, A.H. (eds) Neurocritical Care. Springer, Berlin, Heidelberg, 1994, pp. 366-373. DOI: 10.1007/978-3-642-87602-8
Massaroni, C., Lopes, D. S., Lo Presti, D., Schena, E., & Silvestri, S. Contactless Monitoring of Breathing Patterns and Respiratory Rate at the Pit of the Neck: A Single Camera Approach. Journal of Sensors, 2018, vol. 2018, article id 4567213, pp. 1–13. DOI: 10.1155/2018/4567213.
Lan, T.-H., Gao, Z.-Y., Abdalla, A. N., Cheng, B., & Wang, S. Detrended fluctuation analysis as a statistical method to study ion single channel signal. Cell Biology International, 2008, vol. 32, iss. 2, pp. 247–252. DOI: 10.1016/j.cellbi.2007.09.001.
Veenstra, J. Q. Persistence and Anti-persistence: Theory and Software. Electronic Thesis and Dissertation Repository. Western University, 2013. 131 p. Available at: https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=2414&context=etd. (accessed 5.02.2023).
Wiener-Khinchin Theorem - from Wolfram MathWorld. Available at: https://mathworld.wolfram.com/Wiener-KhinchinTheorem.html. – Title from screen. (accessed 27.11.2022).
Bernardin, L., Chin, P., DeMarco, P., Geddes, K. O., Hare, D. E. G., Heal, K. M., Labahn, G., May, J. P., McCarron, J., Monagan, M. B., Ohashi, D., & Vorkoetter, S. M. Maple Programming Guide. Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2011. 678 p. Available at: https://www.maplesoft.com/view.aspx?SF=103828/337201/ProgrammingGuide.pdf. (accessed 27.11.2022).
Perlich, C. Learning Curves in Machine Learning. In: Sammut, C., Webb, G. I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA., 2011, pp. 577-580. DOI: 10.1007/978-0-387-30164-8_452.
Exponential Smoothing for Time Series Forecasting. Statistics By Jim. Available at: https://statisticsbyjim.com/time-series/exponential-smoothing-time-series-forecasting/. (accessed 5.02.2023).
Shastri, S., Sharma, A., Mansotra, V., Sharma, A., Bhadwal, A. S., & Kumari, M. A Study on Exponential Smoothing Method for Forecasting. International Journal of Computer Sciences and Engineering, 2018, vol. 6, iss. 4, pp. 482–485. DOI: 10.26438/ijcse/v6i4.482485.
Wilcox, R. Chapter 1 – Introduction. In Statistical Modeling and Decision Science, Introduction to Robust Estimation and Hypothesis Testing (Third Edition). Academic Press, 2012, pp. 1–22. DOI: 10.1016/b978-0-12-386983-8.00001-9
Scott, D. W. Averaged shifted histogram. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, vol. 2, iss. 2, pp. 160–164. DOI: 10.1002/wics.54.
Węglarczyk, S. Kernel density estimation and its application. ITM Web of Conferences, 2018, vol. 23, article no. 00037. DOI: 10.1051/itmconf/20182300037.
Vathy-Fogarassy, Á., & Abonyi, J. Graph-Based Clustering Algorithms. In: Graph-Based Clustering and Data Visualization Algorithms. Springer Briefs in Computer Science. Springer, London, 2013, pp. 17–41. DOI: 10.1007/978-1-4471-5158-6_2.
Murphy, A., & Feger, J. Signal-to-noise ratio (radiography). Radiopaedia.org, 2020. DOI: 10.53347/rID-75580.
Movahed, M. S., Jafari, G. R., Ghasemi, F., Rahvar, S., & Tabar, M. R. R. Multifractal detrended fluctuation analysis of sunspot time series. Journal of Statistical Mechanics: Theory and Experiment, 2006, vol. 2006, no. 02, article no. P02003. DOI: 10.1088/1742-5468/2006/02/P02003.
Chapter 152. Box Plots. NCSS Statistical Software. 10 p. Available at: https://www.ncss.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Box_Plots.pdf. (accessed 5.02.2023).
Rousseeuw, P. J., & Hubert, M. Robust statistics for outlier detection. WIREs Data Mining and Knowledge Discovery, 2011, vol. 1, iss. 1, pp. 73–79. DOI: 10.1002/widm.2.
Kamble, B., & Doke, K. Outlier Detection Approaches in Data Mining. International Research Journal of Engineering and Technology, 2017, vol. 04, iss. 3, pp. 634-638. Available at: https://www.irjet.net/archives/V4/i3/IRJET-V4I3171.pdf. (accessed 5.02.2023).
Seo, S. A Review and Comparison of Methods for Detecting Outliers in Univariate Data Sets. Univariate Data Sets. Master's Thesis, University of Pittsburgh, 2006. 53 p. Available at: http://d-scholarship.pitt.edu/7948/1/Seo.pdf. (accessed 5.02.2023).
Hansen, D. L., Shneiderman, B., Smith, M. A., & Himelboim, I. Chapter 6 - Calculating and visualizing network metrics. Calculating and visualizing network metrics. Analyzing Social Media Networks with NodeXL (Second Edition), 2020, pp. 79–94. DOI: 10.1016/b978-0-12-817756-3.00006-6.
Weka - Machine Learning Software in Java. WEKA Manual for Version 3-9-5, 2020. Available at: https://osdn.net/projects/sfnet_weka/downloads/documentation/3.9.x/WekaManual-3-9-5.pdf. (accessed 5.02.2023).
Grant, M. J., Button, C. M., & Snook, B. An Evaluation of Interrater Reliability Measures on Binary Tasks Using d-Prime. Applied Psychological Measurement, 2016, vol. 41, iss. 4, pp. 264–276. DOI: 10.1177/0146621616684584.
Yang, X., Fan, D., Ren, A., Zhao, N., & Alam, M. 5G-Based User-Centric Sensing at C-Band. IEEE Transactions on Industrial Informatics, 2019, vol. 15, iss. 5, pp. 3040–3047. DOI: 10.1109/tii.2019.2891738.
DOI: https://doi.org/10.32620/reks.2023.3.06
Refbacks
- There are currently no refbacks.