Adaptation of FPGA architecture for accelerated image preprocessing
Abstract
Keywords
Full Text:
PDFReferences
Barkovskaya, O. & Axak, N. Contrastive Analysis of the Parallel Version of the Binary Image Skeletonization Algorithms on Basis of Binary Matrix and Structural Elements. 9th International Conference - The Experience of Designing and Applications of CAD Systems in Microelectronics, Lviv, Ukraine, 2007, pp. 435-436. DOI: 10.1109/CADSM.2007.4297609.
Gonzalez, C. & Woods, R. E. Digital Image Processing. Instructor's Manual. 3rd Edition. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2007. 976 p.
Barkovska, O., Axak, N., Rosinskiy, D. & Liashenko, S. Application of mydriasis identification methods in parental control systems. IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT), Kyiv, Ukraine, 2018, pp. 459-463. DOI: 10.1109/DESSERT.2018.8409177.
Barkovska, O., Movsesian., I., Yeromina, N., Liashenko, O. & Tkachenko, D. System of individual multidimensional biometric authentication. International Journal of Emerging Trends in Engineering Research, 2019, vol. 7, iss. 12, pр. 812–817. DOI: 10.30534/ijeter/2019/147122019.
Dagum, L. & Menon, R. OpenMP: an industry standard API for shared-memory programming. IEEE Computational Science and Engineering, vol. 5, iss. 1, pp. 46-55, Jan.-March 1998. DOI: 10.1109/99.660313.
Oden, L. Lessons learned from comparing C-CUDA and Python-Numba for GPU-Computing. 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Västerås, Sweden, 2020, pp. 216-223. DOI: 10.1109/PDP50117.2020.00041.
Monmasson, E., Idkhajine, L. & Naouar, M. W. FPGA-based Controllers. IEEE Industrial Electronics Magazine, vol. 5, no. 1, pp. 14-26, March 2011. DOI: 10.1109/MIE.2011.940250.
Z-turn Board V2 (with Zynq-7020). MYIR Tech Limited. Available at: https://www.xilinx.com/products/boards-and-kits/1-571ww1.html (accessed 12.12.2022).
Taylor, A. The Zynq PS/PL, Part One: Adam Taylor’s MicroZed Chronicles Part 21. Available at: https://support.xilinx.com/s/article/418935?language=en_US (accessed 12.12.2022).
Flynn, M. J. Some computer organizations and their effectiveness. IEEE Transactions on Computers, Sept. 1972, vol. C-21, iss. 9, pp. 948-960. DOI: 10.1109/TC.1972.5009071.
Park, I. K., Singhal, N., Lee, M. H., Cho, S. & Kim, C. Design and Performance Evaluation of Image Processing Algorithms on GPUs. IEEE Transactions on Parallel and Distributed Systems, Jan. 2011, vol. 22, no. 1, pp. 91-104. DOI: 10.1109/TPDS.2010.115.
Usha, R., Pandey, P. & Mangala, N. A Comprehensive Comparison and Analysis of OpenACC and OpenMP 4.5 for NVIDIA GPUs. IEEE High Performance Extreme Computing Conference (HPEC), 2020, pp. 1-6. DOI: 10.1109/HPEC43674.2020.9286203.
Miroshnikov, A. S., Berko, I. A. & Berko, A. A. Optimization Method for Parallel Algorithm for Face Recognition in Graphic Images. International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2021, pp. 729-735. DOI: 10.1109/ICIEAM51226.2021.9446397.
Rakhimov, M., Mamadjanov, D. & Mukhiddinov, A. A High-Performance Parallel Approach to Image Processing in Distributed Computing. IEEE 14th International Conference on Application of Information and Communication Technologies (AICT), 2020, pp. 1-5. DOI: 10.1109/AICT50176.2020.9368840.
Idzenga, T., Gaburov, E., Vermin, W., Menssen, J. & De Korte, C. L. Fast 2-D ultrasound strain imaging: the benefits of using a GPU. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 61, no. 1, pp. 207-213, January 2014. DOI: 10.1109/TUFFC.2014.2893.
Yokota, T., Nagafuchi, M., Mekada, Y., Yoshinaga, T., Ootsu, K. & Baba, T. A scalable FPGA-based custom computing machine for a medical image processing. 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, Napa, CA, USA, 2002, pp. 307-308. DOI: 10.1109/FPGA.2002.1106695.
Mamatha, G., Sumalatha, V. & Lakshmaiah, M. V. FPGA implementation of satellite image fusion using wavelet substitution method. Science and Information Conference (SAI), London, UK, 2015, pp. 1155-1159. DOI: 10.1109/SAI.2015.7237290.
Shandilya, R. & Sharma, R. K. FPGA implementation of image enhancement technique for Automatic Vehicles Number Plate detection. International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, India, 2017, pp. 1010-1017. DOI: 10.1109/ICOEI.2017.8300860.
Dhaussy, P., Filloque, J., Pottier, B. & Rubini, S. Global control synthesis for an MIMD/FPGA machine. Proceedings of IEEE Workshop on FPGA's for Custom Computing Machines, Napa Valley, CA, USA, 1994, pp. 72-81. DOI: 10.1109/FPGA.1994.315603.
Fan, R. & Yamaguchi, Y. A study of FPGA-based cluster computing by high-speed serial-link communication. Eighth International Symposium on Computing and Networking Workshops (CANDARW), 2020, pp. 401-405. DOI: 10.1109/CANDARW51189.2020.00082.
Li, B., Chen, J., Zhang, X., Xu, X., Wei, Y. & Kong, D. A design of zynq-based medical image edge detection accelerator. 6th international conference on biomedical signal and image processing (ICBIP '21), August 20 - 22, 2021, Suzhou China, New York, NY, USA: ACM, pp. 59-64. DOI: 10.1145/3484424.3484434.
Liu, J. & Feng, J. Design of embedded digital image processing system based on ZYNQ. Microprocessors and microsystems, 2021, vol. 83, article no. 104005. DOI: 10.1016/j.micpro.2021.104005
Zhang, C., Bi, S., Jiang, T., Wang, J. & Mao, W. Implementation of ZYNQ for image defogging. IEEE 9th joint international information technology and artificial intelligence conference (ITAIC), 11-13 December 2020, Chongqing, China, 2020, pp. 1971-1977. DOI: 10.1109/itaic49862.2020.9339196.
Perepelitsyn, A., Kulanov, V. & Zarizenko, I. Method of QoS evaluation of FPGA as a service. Radioelectronic and Computer Systems, 2022, no. 4, pp. 153-160. DOI: 10.32620/reks.2022.4.12.
Babeshko, E., Kharchenko, V., Leontiiev, K. & Ruchkov, E. Practical aspects of operating and analytical reliability assessment of FPGA-based I&C systems. Radioelectronic and computer systems, 2020, no. 3, pp. 75-83. DOI: 10.32620/reks.2020.3.08.
DOI: https://doi.org/10.32620/reks.2023.2.08
Refbacks
- There are currently no refbacks.