Reconfigurable composite right/left-handed transmission line antenna based Hilbert/Minkowski stepped impedance resonator for wireless applications

Marwa M. Ismail, Taha A. Elwi, Ali J. Salim

Abstract


The subject matter of the article is the analysis and design of a via free metamaterial antenna based on a composite right/left-handed transmission line (CRLH-TL) structure. The goal is to design a high-gain antenna with dual-band resonance capable of changing its resonance frequency and gain adaptively. The tasks to be solved are creating an antenna with a high gain-bandwidth product along the operated band, achieving adaptive frequency reconfiguration and creating a direct antenna modulation process using active elements. The simulation methods used are: the proposed antenna is designed by integrating a CRLH-TL structure to a 1D array based on two types of unit cells: The first unit cell is realized from a Hilbert curve of the 3rd order, and the second one is based on the 1st order of Minkowski – stepped impedance resonator (SIR). The antenna parts are printed on a Taconic RF-43 substrate with thickness = 1.57 mm. The following results were obtained: The Hilbert/Minkowski–SIR antenna achieved dual-band operation with a maximum gain equal to 14 dBi and 18 dBi at 5 GHz and 5.5 GHz, respectively. Furthermore, by changing the states of the PIN diode, an amplitude shift keying direct antenna modulation process is achieved; for instance, at 5 GHz, the antenna can change its gain directly in the range from (12-14) dBi with good impedance matching. Finally, the proposed antenna shows a low profile and operates at different frequency bands within sub-6 GHz applications. Conclusions. The simulation results indicate that such antenna performance enhancement is the result of eliminating via conduction losses, ground plane capacitance losses and suppressing surface wave reflections due to the Hilbert/Minkowski SIR introduction.

Keywords


Frequency reconfiguration; Hilbert; Minkowski; Metamaterial; SIR

Full Text:

PDF

References


Ahmed, H. S., Ali, J. K. and Salim, A. J. Design of fractal-based bandstop filter for microwave radiation leakage reduction. Engineering and Technology Journal, 2017, vol. 35, iss. 1, pp. 16-23. DOI: 10.30684/etj.2017.127306.

Karimbu Vallappil, A., A. Rahim, M.K., A. Khawaja, B., Iqbal, M.N., Murad, N.A., Gajibo, M.M., O. Nur, L. and S. Nugroho, B. Complementary split-ring resonator and strip-gap based metamaterial fractal antenna with miniature size and enhanced bandwidth for 5G applications. Journal of Electromagnetic Waves and Applications, 2022, vol. 36, iss. 6, pp. 787-803. DOI: 10.1080/09205071.2021.1983878.

Singh, M., Kumar, N., Dwari, S., Parthasarathy, H. and Kala, P. A compact dual‐band zeroth‐order resonator antenna loaded with meander line inductor. International Journal of RF and Microwave Computer-Aided Engineering, 2020, vol. 30, iss. 7, article no. e22231. DOI: 10.1002/mmce.22231.

Ismail, M. M., Elwi, T. A. and Salim, A. J. A Miniaturized Printed Circuit CRLH Antenna-based Hilbert Metamaterial Array. Journal of Communications Software and Systems, 2022, vol. 18, iss. 3, pp. 236-243. DOI: 10.24138/jcomss-2022-0030.

Rasool, J. M. MIMO Antenna System Using Orthogonally Polarized Ultra Wide Band Antennas With Metamaterial. Engineering and Technology Journal, 2010, vol. 28, iss. 24, pp. 6845-6853. DOI: 10.30684/etj.28.24.2.

Ameen, M., Mishra, A. and Chaudhary, R. K. Dual‐band CRLH‐TL inspired antenna loaded with metasurface for airborne applications. Microwave and Optical Technology Letters, 2021, vol. 63, iss. 4, pp. 1249-1256. DOI: 10.1002/mop.32725.

Ullah, S., Elfergani, I., Ahmad, I., Din, I. U., Ullah, S., Rehman Khan, W. U., Ahmad, T., Habib, U., Zebiri, C. and Rodriguez, J. A Compact Frequency and Radiation Reconfigurable Antenna for 5G and Multistandard Sub-6 GHz Wireless Applications. Wireless Communications and Mobile Computing, 2022, vol. 2022, article id: 4658082. DOI: 10.1155/2022/4658082.

Al-Saeedi, M. M., Hashim, A. A., Al-Bayati, O. H., Rasheed, A. S. and Finjan, R. H. Design of dual band slotted reconfigurable antenna using electronic switching circuit. Indonesian Journal of Electrical Engineering and Computer Science, 2021, vol. 24, iss. 1, pp. 386-393. DOI: 10.11591/ijeecs.v24.i1.pp386-393.

Ismail, M. F., Rahim, M. K. A., Hamid, M. R., Majid, H. A., Omar, A. H., Nur, L. O. and Nugroho, B. S. Dual-band pattern reconfigurable antenna using electromagnetic band-gap structure. AEU - International Journal of Electronics and Communications, 2021, vol. 130, article id: 153571. DOI: 10.1016/j.aeue.2020.153571.

Ahmad, I., Dildar, H., Khan, W. U. R., Shah, S. A. A., Ullah, S., Ullah, S., Umar, S. M., Albreem, M. A., Alsharif, M. H. and Vasudevan, K. Design and Experimental Analysis of Multiband Compound Reconfigurable 5G Antenna for Sub-6 GHz Wireless Applications. Wireless Communications and Mobile Computing, 2021, vol. 2021, article id: 5588105. DOI: 10.1155/2021/5588105.

Ayaz, M., & Ullah, I. A Phased Array Antenna with Novel Composite Right/Left-Handed (CRLH) Phase Shifters for Wi-Fi 6 Communication Systems. Applied Sciences, 2023, vol. 13, iss. 4, article id: 2085. DOI: 10.3390/app13042085.

Ayaz, M., Iftikhar, A., Braaten, B. D., Khalil, W., & Ullah, I. A Composite Right/Left-Handed Phase Shifter-Based Cylindrical Phased Array with Reinforced Particles Responsive to Magneto-Static Fields. Electronics, 2023, vol. 12, iss. 2, article id: 306. DOI: 10.3390/electronics12020306.

Volosyuk, V., Zhyla, S., Pavlikov, V., Vlasenko, D., Kosharskiy, V., Kolesnikov, D., Inkarbaeva, O. and Nezhalskaya, K. Optimal radar cross section estimation in synthetic aperture radar with planar antenna array. Radioelectronic and Computer Systems, 2021, no. 1, pp. 50-59. DOI: 10.32620/reks.2021.1.04.

Pandya, P. R., Saradadevi, M. and Langhnoja, N. Empirical analysis of microstrip patch antenna for different substrate materials and shapes using aperture coupled technique. Radioelectronic and Computer Systems, 2022, no. 1, pp. 170-177. DOI: 10.32620/reks.2022.1.13.

de Dieu Ntawangaheza, J., Sun, L., Li, Y. and Xie, Z. Improving Bandwidth, Gain and Aperture Efficiency of Patch Antenna Using Hybrid AMC Ground Plane. Progress In Electromagnetics Research C, 2020, vol. 103, pp. 71-82. DOI: 10.2528/PIERC20030903.

Dash, S. K. K., Khan, T., Kanaujia, B. K. and Antar, Y. M. Gain improvement of cylindrical dielectric resonator antenna using flat reflector plane: a new approach. IET Microwaves, Antennas & Propagation, 2017, vol. 11, iss. 11, pp. 1622-1628. DOI: 10.1049/iet-map.2017.0284.

Kaur, H., Singh, H. S. and Upadhyay, R. A compact dual-polarized co-radiator MIMO antenna for UWB applications. International Journal of Microwave and Wireless Technologies, 2022, vol. 14, iss. 2, pp. 225-238. DOI: 10.1017/S1759078721000349.

Ali, J.K., Abdul-Baki, E.M. and Hammed, M. H. A multiband fractal dipole antenna for wireless communication applications. Engineering and Technology Journal, 2010, vol. 28, iss. 10, pp. 2043-2053. DOI: 10.30684/etj.28.10.15.

Bhavarthe, P. P., Rathod, S. S. and Reddy, K. T. A compact two via slot-type electromagnetic bandgap structure. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, iss. 5, pp. 446-448. DOI: 10.1109/LMWC.2017.2690822.

Maximo-Gutierrez, C., Hinojosa, J., Martínez-Viviente, F.L. and Alvarez-Melcon, A. Design of high-performance microstrip and coplanar low-pass filters based on electromagnetic bandgap (EBG) structures. AEU - International Journal of Electronics and Communications, 2020, vol. 123, article id: 153311. DOI: 10.1016/j.aeue.2020.153311.

Ziboon, H. T. and Ali, J. K. Compact quad-band BPF design with fractal stepped-impedance ring resonator. ARPN Journal of Engineering and Applied Sciences, 2017, vol. 12, iss. 24, pp. 7352-7363.

Zhang, R., Hao, W., Sun, G. and Yang, S. Hybrid precoding design for wideband THz massive MIMO-OFDM systems with beam squint. IEEE Systems Journal, 2020, vol. 15, iss. 3, pp. 3925-3928. DOI: 10.1109/JSYST.2020.3003908.

Pavlikov, V., Belousov, K., Zhyla, S., Tserne, E., Shmatko, O., Sobkolov, A., Vlasenko, D., Kosharskyi, V., Odokiienko, O. and Ruzhentsev, M. Radar imaging complex with sar and asr for aerospace vechicle. Radioelectronic and Computer Systems, 2021, no. 3, pp. 63-78. DOI: 10.32620/reks.2021.3.06.

Volosyuk, V., Zhyla, S., Pavlikov, V., Tserne, E., Sobkolov, A., Shmatko, O. and Belousov, K. Mathematical description of imaging processes in ultra-wideband active aperture synthesis systems using stochastic sounding signals. Radioelectronic and Computer Systems, 2021, no. 4, pp. 166-182. DOI: 10.32620/reks.2021.4.14.

Reji, V. and Manimegalai, C. T. V-shaped long wire frequency reconfigurable antenna for WLAN and ISM band applications. AEU - International Journal of Electronics and Communications, 2021, vol. 140, article id: 153937. DOI: 10.1016/j.aeue.2021.153937.

Prakash, T., Chaudhary, R. K. and Gangwar, R. K. Quad-Beam Octa Cross-Slotted Pattern Reconfigurable Antenna for 5.8 GHz Band Application. 2020 50th European Microwave Conference (EuMC), IEEE, Utrecht, Netherlands, 2021, pp. 710-713. DOI: 10.23919/EuMC48046.2021.9338028.

Roseli, W. I., Ali, M. T., Abd Rahman, N. H., Aris, M. A. and Yon, H. Performance Enhancement of Polarization Reconfigurable Antenna for Wireless Communication Applications. 2019 International Symposium on Antennas and Propagation (ISAP), IEEE, China, 2019, pp. 1-4.

Anantha, B., Merugu, L. and Rao, S. P. V. D. Polarization reconfigurable corner truncated square microstrip array antenna. IETE Journal of Research, 2021, vol. 67, iss. 4, pp. 491-498. DOI: 10.1080/03772063.2018.1557084.

Tran, H. H., Bui, C. D., Nguyen-Trong, N. and Nguyen, T. K. A Wideband Non-Uniform Metasurface-Based Circularly Polarized Reconfigurable Antenna. IEEE Access, 2021, vol. 9, pp. 42325-42332. DOI: 10.1109/ACCESS.2021.3066182.

Gunamony, S. L., Bala, G. J., Raj, S. M. G. and Pratap, C. B. Asymmetric coplanar strip-fed electrically small reconfigurable 5G mid-band antenna. International Journal of Communication Systems, 2021, vol. 34, iss. 15, article id: e4953. DOI: 10.1002/dac.4935.




DOI: https://doi.org/10.32620/reks.2023.1.06

Refbacks

  • There are currently no refbacks.