Sentiment analysis and prediction of polarity vaccines based on Twitter data using deep NLP techniques
Abstract
Keywords
Full Text:
PDFReferences
Shahriar, K. T., Islam, M. N., Anwar, M. M. and Sarker, I. H. COVID-19 analytics: Towards the effect of vaccine brands through analyzing public sentiment of tweets. Informatics in Medicine Unlocked, 2022, vol. 31, article no. 100969. DOI: 10.1016/j.imu.2022.100969.
Bibi, M., Abbasi, W. A., Aziz, W., Khalil, S., Uddin, M., Iwendi, C., Gadekallu, T. R. A novel unsupervised ensemble framework using concept-based linguistic methods and machine learning for twitter sentiment analysis. Pattern Recognition Letters, 2022, vol. 158, pp. 80-86. DOI: 10.1016/j.patrec.2022.04.004.
Agarwal, A., Xie, B., Vovsha, I., Rambow, O. and Passonneau, R. Sentiment Analysis of Twitter Data. Proceedings of the Workshop on Language in Social Media (LSM 2011), 2011, pp. 30-38. Available at: https://aclanthology.org/W11-0705. (accessed March 20, 2022)
Sunitha, D., Patra, R. K., Babu, N. V., Suresh, A. and Gupta, S. C. Twitter sentiment analysis using ensemble based deep learning model towards COVID-19 in India and European countries. Pattern Recognition Letters, 2022, vol. 158, pp. 164-170. DOI: 10.1016/j.patrec.2022.04.027.
Joshi, M., Prajapati, P., Shaikh, A. and Vala, V. A Survey on Sentiment Analysis. International Journal of Computer Applications, 2017, vol. 163, no. 6, pp. 34-38. DOI: 10.5120/ijca2017913552.
Chumachenko, D., Pyrohov, P., Meniailov, I. and Chumachenko, T. Impact of war on COVID-19 pandemic in Ukraine: the simulation study. Radioelectronic and Computer Systems, 2022, no. 2, pp. 6-23. DOI: 10.32620/reks.2022.2.01.
About Worldometer. Available at: https://www.worldometers.info/about/ (accessed March 28, 2022).
Zhang, H., Zang, Z., Zhu, H., Uddin, M. I. and Amin, M. A. Big data-assisted social media analytics for business model for business decision making system competitive analysis. Information Processing & Management, 2022, vol. 59, iss. 1, article no. 102762. DOI: 10.1016/j.ipm.2021.102762.
Chen, Y.-J. and Chen, Y.-M. Forecasting corporate credit ratings using big data from social media. Expert Systems with Applications, 2022, vol. 207, article no. 118042. DOI: 10.1016/j.eswa.2022.118042.
Chumachenko, D., Chumachenko, T., Kirinovych, N., Meniailov, I., Muradyan, O. and Salun, O. Barriers of COVID-19 vaccination in Ukraine during the war: the simulation study using ARIMA model. Radioelectronic and Computer Systems, 2022, no. 3, pp. 20-35. DOI: 10.32620/reks.2022.3.02.
Wongkoblap, A., Vadillo, M. A. and Curcin, V. 6 - Social media big data analysis for mental health research. Mental Health in a Digital World, Academic Press Publ., 2022, pp. 109-143. DOI: 10.1016/B978-0-12-822201-0.00018-6.
Afifi, R. A. et al. ’Most at risk’ for COVID19? The imperative to expand the definition from biological to social factors for equity. Preventive Medicine, 2020, vol. 139, article no. 106229. DOI: 10.1016/j.ypmed.2020.106229.
Chinnasamy, P., Suresh, V. et al. COVID-19 vaccine sentiment analysis using public opinions on Twitter. Materials Today: Proceedings, 2022, vol. 64, Part 1, pp. 448-451. DOI: 10.1016/j.matpr.2022.04.809.
Nezhad, Z. B. and Deihimi, M. A. Twitter sentiment analysis from Iran about COVID 19 vaccine. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2022, vol. 16, no. 1, article no. 102367. DOI: 10.1016/j.dsx.2021.102367.
Paul, S. Analyzing the attitude of Indian citizens during the second wave of COVID-19: A text analytics study. International Journal of Disaster Risk Reduction, 2022, vol. 79, article no. 103161. DOI: 10.1016/j.ijdrr.2022.103161.
Anastasiou, D., Ballis, A. and Drakos, K. Constructing a positive sentiment index for COVID-19: Evidence from G20 stock markets. Social Science Research Network, 2021, 38 p. DOI: 10.2139/ssrn.3895548.
Huynh, T. L. D., Foglia, M., Nasir, M. A. and Angelini, E. Feverish sentiment and global equity markets during the COVID-19 pandemic. Journal of Economic Behavior & Organization, 2021, vol. 188, pp. 1088-1108. DOI: 10.1016/j.jebo.2021.06.016.
Sv, P., Tandon, J., Vikas, and Hinduja, H. Indian citizen’s perspective about side effects of COVID-19 vaccine – A machine learning study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2021, vol. 15, iss. 4, article no. 102172. DOI: 10.1016/j.dsx.2021.06.009.
Hosgurmath, S., Petli, V. and Jalihal, V. K. An Omicron Variant Tweeter Sentiment Analysis Using NLP Technique. Global Transitions Proceedings, 2022, vol. 3, iss. 1, pp. 215-219. DOI: 10.1016/j.gltp. 2022.03.025.
Zulfiker, M. S., Kabir, N., Biswas, A. A., Zulfiker, S. and Uddin, M. S. Analyzing the public sentiment on COVID-19 vaccination in social media: Bangladesh context. Array, 2022, vol. 15, article no. 100204. DOI: 10.1016/j.array.2022.100204.
Kudo, M., Toyama, J. and Shimbo, M. Multidimensional curve classification using passing-through regions. Pattern Recognition Letters, 1999, vol. 20, no. 11-13, pp. 1103-1111. DOI: 10.1016/S0167-8655(99)00077-X.
Baytas, I. M., Xiao, C., Zhang, X. S., Wang, F., Jain, A. K. and Zhou, J. Patient Subtyping via Time-Aware LSTM Networks. KDD '17: The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 65-74. DOI: 10.1145/3097983.3097997.
Voelker, A. R., Kajić, I. and Eliasmith, C. Legendre Memory Units: Continuous-Time Representation in Recurrent Neural Networks. NIPS'19: Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canad, 2019, article no. 1395, pp. 15570-15579.
Kingma, D. P.and Ba, J. Adam: A Method for Stochastic Optimization. arXiv, 2014. 15 p. DOI: 10.48550/ARXIV.1412.6980.
Hamzah, F. A. et al. CoronaTracker: World-wide COVID-19 Outbreak Data Analysis and Prediction. 2020. Available at: https://www.researchgate.net/ publication/340032869_CoronaTracker_World-wide_COVID-19_Outbreak_Data_Analysis _and_Prediction. (accessed March 28, 2022).
DOI: https://doi.org/10.32620/reks.2022.4.02
Refbacks
- There are currently no refbacks.