A novel approach for semantic segmentation of automatic road network extractions from remote sensing images by modified UNet
Abstract
Keywords
Full Text:
PDFReferences
Liu, J., Miao, Q., Song, J., Quan, Y., Li, Y., Xu, P., Dai, J. Multiscale road centerlines extraction from high-resolution aerial imagery. Neurocomputing, 2019, vol. 329, pp. 384-396. DOI: 10.1016/j.neucom.2018.10.036.
Gao, X., Sun, X., Zhang, Y., Yan, M., Xu, G., Sun, H., Jiao, J., Fu, K. An end-to-end neural network for road extraction from remote sensing imagery by multiple feature pyramid network. IEEE Access, 2018, vol. 6, pp. 39401-39414. DOI: 10.1109/ACCESS.2018.2856088.
Wulamu, A., Shi, Z., Zhang, D., He, Z. Multiscale road extraction in remote sensing images. Computational intelligence and neuroscience, 2019, vol. 2019, article id 2373798. DOI: 10.1155/2019/2373798.
Wang, L., Qin, Q., Du, S., Chen, D., Tao, J. Road extraction from remote sensing image based on multi-resolution analysis. 31thInternational Symposium on Remote Sensing of Environment, 2005. 4 p.
Cheng, G., Wang, Y., Xu, S., Wang, H., Xiang, S., Pan, C. Automatic Road Detection And Centerline Extraction Via Cascaded End-To-End Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 2017, vol. 55, no. 6, pp. 3322-3337. DOI: 10.1109/TGRS.2017.2669341.
Hormese, J., Saravanan, C. Automated Road Extraction From High Resolution Satellite Images. Procedia Technology, 2016, vol. 24, pp. 1460-1467. DOI: 10.1016/j.protcy.2016.05.180.
Wang, W., Yang, N., Zhang, Y., Wang, F., Cao, T., Eklund, P. A Review of Road Extraction from Remote Sensing Images. J. Traffic Transp. Eng., 2016, vol. 3, iss. 3, pp. 271-282. DOI: 10.1016/j.jtte.2016.05.005.
Vincent, L., Soille, P. Watersheds In Digital spaces: An Efficient Algorithm Based On Immersion simulation. IEEE Trans. On Pattern Analysis And Machine Intelligence, 1991, vol. 13, iss. 6, pp. 583-598. DOI: 10.1109/34.87344.
Wang, D. A Multiscale Gradient Algorithm For Image Segmentation Using Watersheds. Pattern Recognition, 1997, vol. 30, iss. 12, pp. 2043-2052. DOI: 10.1016/S0031-3203(97)00015-0.
Shen, J., Lin, X., Shi, Y., Wong, C. Knowledge-Based Road Extraction From High Resolution Remotely Sensed Imagery. IEEECongress on Image and Signal Processing, 2008, pp. 608-612. DOI: 10.1109/CISP.2008.519.
Bakhtiari, H. R. R., Abdollahi, A., Rezaeian, H. Semi Automatic Road Extraction From Digital Images. The Egypt. J. Remote Sensing and Space Science, 2017, vol. 20, iss. 1, pp. 117-123. DOI: 10.1016/j.ejrs.2017.03.001.
Xu, G., Zhang, D., Li, X. Road Extraction In High Resolution Images From Google Earth.7th International Conference on Information, Communications and Signal Processing, China, 2009, pp. 1-5. DOI: 10.1109/ICICS.2009.5397470.
Anil, P.N., Natarajan, S. A Novel Approach Using Active Contour Model For Semi-Automatic Road Extraction From High Resolution Satellite Imagery. Second International Conference On Machine Learning And Computing, 2010, pp. 263-266. DOI: 10.1109/ICMLC.2010.36.
Liu, Y., Yao, J., Lu, X., Xia, M., Wang, X., Liu, Y. RoadNet: Learning To Comprehensively Analyze Road Networks In Complex Urban Scenes From High-Resolution Remotely Sensed Images. IEEE Trans. Geosci. Remote Sens., 2019, vol. 57, no. 4, pp. 2043-2056. DOI: 10.1109/TGRS.2018.2870871.
Lukin, V., Proskura, G., Vasilieva, I. Comparison Of Algorithms For Controlled Pixel-By-Pixel Classification OfNoisy Multichannel Images. Radioelectronic And Computer Systems, 2019, no. 4, pp. 39-46. DOI: 10.32620/reks.2019.4.04.
Ghasemloo, N., Mobasheri, M. R., Zare, A. M., Eftekhari, M. M. Road And Tunnel Extraction From SPOT Satellite Images Using Neural Networks. Journal of Geographic Information System, 2013, vol. 5, iss. 1, pp. 69-74. DOI: 10.4236/jgis.2013.51007.
Alshehhi, R., Marpu, P. R., Woon, W. L., Mura, M. D. Simultaneous Extraction Of Roads And Buildings In Remote Sensing Imagery With Convolutional Neural Networks. ISPRS Journal of Photogrammetry And Remote Sensing, 2017, vol. 130, pp. 139-149. DOI: 10.1016/j.isprsjprs.2017.05.002.
Xin, J., Zhang, X., Zhang, Z., Fang, W. Road Extraction of High-Resolution Remote Sensing Images Derived From DenseUNet. Remote Sensing, 2019, vol. 11, iss. 21, article no. 2499. DOI: 10.3390/rs11212499.
Zhang, Z., Liu, Q., Wang, Y. Road Extraction By Deep Residual UNet. IEEE Geosci. Remote Sens. Lett., 2018, vol. 15, no. 5, pp. 749-753. DOI: 10.48550/arXiv.1711.10684.
Ronneberger, O., Fischer, P., Brox, T. UNet: Convolutional networks for biomedical image segmentation. Computer Vision and Pattern Recognition, 2015, pp. 1-8. DOI: 10.48550/arXiv.1505.04597.
Massachusetts dataset. Available at: https://www.cs.toronto.edu/~vmnih/data/mass_roads/train/sat/index.html (accessed on July 2021).
Shorten, C. C., Khoshgoftaar, M. T. A Survey on Image Data Augmentation for Deep Learning. J. Big Data, 2019, vol. 6, article no. 60. DOI: 10.1186/s40537-019-0197-0.
Jiang, Y. Research on road extraction of remote sensing image based on convolutional neural network. EURASIP Journal on Image and Video Processing, 2019, article no. 31. DOI: 10.1186/s13640-019-0426-7.
Barbedo, J. G. A. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Computers and Electronics in Agriculture, 2018, vol. 153, pp. 46-53. DOI: 10.1016/j.compag.2018.08.013.
Yadav, S., Jadhav, S. M. Deep convolutional neural network based medical image classification for disease diagnosis. Journal of Big Data, 2019, vol. 6, article no. 113. DOI: 10.1186/s40537-019-0276-2.
Krizhevsky, A., Sutskever, I., Hinton, G. E. ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 2017, vol. 60, iss. 6, pp. 84-90. DOI: 10.1145/3065386.
Szegedy, C., Vanhoucke, V., Ioffe, J., Shlens, J., Wojna, Z. Rethinking the Inception Architecture for Computer Vision. Computer Vision and Pattern Recognition, 2015, pp. 1-10. DOI: 10.48550/arXiv.1512.00567.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. Going Deeper with Convolutions. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1-9. DOI: 10.1109/CVPR.2015.7298594.
Не, K., Zhang, X., Ren, S., Sun, J. Deep Residual Learning for Image Recognition. Computer Vision and Pattern Recognition, 2015, pp.1-12. DOI: 10.48550/arXiv.1409.4842.
Yaloveha, V., Podorozhniak, A., Kuchuk, H. Convolutional neural network hyperparameter optimization applied to land cover classification. Radioelectronic and computer systems, 2022, no. 1, pp. 115-128. DOI: 10.32620/reks.2022.1.09.
He, K., Sun, J. Convolutional neural networks at constrained time cost. IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5353-5360. DOI: 10.1109/CVPR.2015.7299173.
Badrinarayanan, V., Kendall, A., Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, vol. 39, iss. 12, pp. 2481-2495. DOI: 10.1109/TPAMI.2016.2644615.
Canziani, A., Paszke, A., Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications. Computer Vision and Pattern Recognition, 2016, pp. 1-7. DOI: 10.48550/arXiv.1605.07678.
DOI: https://doi.org/10.32620/reks.2022.3.12
Refbacks
- There are currently no refbacks.