Method for quantitative criterion based transformation of the video information alphabet

Serhii Khmelevsky, Ivan Tupitsya, Olga Khmelevska, Oleksandr Musienko, Maxim Parkhomenko, Oleksandr Pershin, Igor Nikora, Yan Borovensky, Oleksandr Yakobinchuk

Abstract


Subject of study: technologies implemented in modern video coding algorithms to ensure the appropriate level of reliability in the conditions of their compact presentation. The goal is to develop a technology for transforming the alphabet of a video information based on a quantitative criterion while ensuring the required quality in networks. Objectives: to formulate requirements to video images in dynamic video surveillance systems; to analyze the existing factors leading to an imbalance between the compression and quality characteristics of existing video coding algorithms; to develop a technology for transforming the alphabet of a video information based on a quantitative criterion (attribute) for the best presentation of the encoded data; to develop a mathematical model for the formation of a quantitativeindicator for the transformation of the video images; to analyze the effectiveness of using the developed mathematical model for the formation of a quantitative indicator to provide the required trustworthiness of data for the video information resource; to assess the effectiveness of the developed technology for transforming the original message in terms of a quantitative indicator to ensure the best presentation of the encoded data; to investigate the dynamics of the probabilistic and statistical characteristics of the original message as a result of transformation according to the quantitative criterion of the significance of the elements. The research methods: compression coding methods implemented on the basis of the JPEG algorithms. The research results: a new approach has been proposed based on the transformation of the encoded alphabet of data by use of a quantitative criterion. A mathematical model has been developed for the formation of a quantitative attributethat determines the significance of the elements of the original message. Conclusions. A technology has been developed for transforming the alphabet of the original message, which allows creating conditions for a more profitable presentation of the encoded data due to a significant increase in the dynamic range of probabilistic and statistical characteristics for the transformed message while ensuring the required level of video image quality.

Keywords


video information resource; transformation; alphabet; quantitative attribute; reliability; coding technologies

Full Text:

PDF

References


Miano, J. Compressed image file formats: JPEG, PNG, GIF, XBM, BMP. 1999. 264 p.

Pratt, W. K., Chen, W. H., Welch L. R. Slant transforms image coding. Proc. Computer Processing in communications, 1969, рр. 63 84.

Wallace, G. K. The JPEG Still Picture Compression Standard. Communication in ACM, 1991, vol. 34, no. 4, рр. 31-34.

Wallace, G. K. Overview of the JPEG (ISO/CCITT) Still image compression: image processing algorithms and techniques. Proc. of SPIE-IS&T Electronic Imaging (SPIE), 1990, vol. 1244, рp. 220-233.

Wang, S., Zhang, X., Liu, X., Zhang, J., Ma, S., Gao, W. Utility Driven Adaptive Preprocessing for Screen Content Video Compression. IEEE Transactions on Multimedia, 2017, vol. 19, no. 3, pp. 660-667.

Gonzales, R. C., Woods, R. E. Digital image processing. Prentice Inc. Upper Saddle River, 2002. 779 p.

Dong, W., Wang, J. JPEG Compression Forensics against Resizing. IEEE Trustcom/ BigDataSE/IвSPA, Tianjin, China, 2016, pp. 1001-1007. DOI: 10.1109/TrustCom.2016.0168.

Richter, T. Error Bounds for HDR Image Coding with JPEG XT. Data Compression Conference (DCC), 2017, pp. 122-130. DOI: 10.1109/DCC.2017.7.

Xiao, W., Wan, N.A., Hong and Chen, X. A Fast JPEG Image Compression Algorithm Based on DCT. IEEE International Conference on Smart Cloud (SmartCloud), 2020, pp. 106-110. DOI: 10.1109/ SmartCloud49737. 2020.00028.

Rippel, O. Learned Video Compression. IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 3453-3462. DOI: 10.1109/ICCV. 2019.00355.

Afanasiev, Y., Afanasiev, V., Chystov, V., Sitkov, O., Surhai, V., Fediuk, S. Hierarchical model of a complex of IoT devices based on the use of a wireless sensor network. IEEE International Conference on Advanced Trends in Information Theory (ATIT), 2020, pp. 168-171. DOI: 10.1109/ATIT50783.2020.9349340.

Bienik, J., Uhrina, M., Kuba, M. and Vaculik, M. Performance of H.264, H.265, VP8 and VP9 Compression Standards for High Resolutions. 19th International Conference on Network-Based Information Systems (NBiS), 2016, pp. 246-252. DOI: 10.1109/NBiS. 2016.70.

Wang, X., Xiao, J., Hu, R., Wang, Z. Cruise UAV Video Compression Based on Long-Term Wide-Range Background. Data Compression Conference (DCC), 2017, pp. 466-467. DOI: 10.1109/DCC.2017.71.

Minallah, N., Gul, S., Bokhari, M. Performance Analysis of H.265/HEVC (High-Efficiency Video Coding) with Reference to Other Codecs. 13th International Conference on Frontiers of Information Technology (FIT), 2015, pp. 216-221. DOI: 10.1109/ FIT.2015.46.

Afanasiev, Y., Afanasiev, V., Chystov, V., Sitkov, O., Surhai, V., Fediuk, S. Research of access control system using wireless sensor network. IEEE Problems of Infocommunications. Science and Technology (PICS&T): proceedings of International Scientific-Practical Conference, 2020, pp. 663-668. DOI: 10.1109/PICST51311.2020.9468102.

Zemliachenko, O. N., Ivakhnenko, I. G., Chernova, G. A., Lukin, V. V. Analysis of opportunities to improve image denoising efficiency for dct-based filter. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2018, no. 2(86), pp. 4-12. DOI: 10.32620/reks.2018.2.01.

Tupitsya, I. Methodology for restructuring information resource data to improve the efficiency of statistical coding. Science-based technologies. vol. 42, no. 2 (2019), pp. 262–269. DOI: 10.18372/2310-5461.42.13801.

Djelouah, A., Campos, J., Schaub-Meyer, S., Schroers, C. Neural Inter-Frame Compression for Video Coding. IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 6420-6428. DOI: 10.1109/ICCV.2019. 00652.

Narmatha, C., Manimegalai, P., Manimurugan, S. A LS-compression scheme for grayscale images using pixel based technique. International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT), 2017, pp. 1-5, DOI: 10.1109/IGEHT.2017.8093980.

Alam, M. A., Faster Image Compression Technique Based on LZW Algorithm Using GPU Parallel Processing. Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), 2018, pp. 272-275, DOI: 10.1109/ICIEV.2018.8640956.

Poolakkachalil, T. K., Chandran, S., Muralidharan, R., Vijayalakshmi, K. Comparative analysis of lossless compression techniques in efficient DCT-based image compression system based on Laplacian Transparent Composite Model and An Innovative Lossless Compression Method for Discrete-Color Images. 3rd MEC International Conference on Big Data and Smart City (ICBDSC), 2016, pp. 1-6, DOI: 10.1109/ICBDSC.2016.7460360.

Barannik, V., Tupitsya, I., Sidchenko, S., Tarnopolov, R. The Method of Crypto-Semantic Presentation of Images Based on the Floating Scheme in the Basis of the Upper Boundaries. IEEE Problems of Infocommunications. Science and Technology (PICS&T): proceedings of International Scientific-Practical Conference, 2015, pp. 248-251. DOI: 10.1109/INFOCOMMST.2015.7357326.

Wang, Z., Liao, R., Ye, Y. Joint Learned and Traditional Video Compression for P Frame. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020, pp. 560-564. DOI: 10.1109/CVPRW50498.2020.00075.

Bui, V., Chang, L., Li, D., Hsu, L., Chen, M. Comparison of lossless video and image compression codecs for medical computed tomography datasets. IEEE International Conference on Big Data (Big Data), 2016, pp. 3960-3962. DOI: 10.1109/BigData.2016.7841075.

Akbari, M., Liang, J., Han, J., Tu, C. Learned Variable-Rate Image Compression With Residual Divisive Normalization. IEEE International Conference on Multimedia and Expo (ICME), 2020, pp. 1-6. DOI: 10.1109/ICME46284.2020.9102877.

Shinde, T. Efficient Image Set Compression. IEEE International Conference on Image Processing (ICIP), 2019, pp. 3016-3017, DOI: 10.1109/ICIP.2019.8803230.

Lin, J., Liu, D., Li, H., Wu, F. M-LVC: Multiple Frames Prediction for Learned Video Compression. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 3543-3551. DOI: 10.1109/CVPR42600. 2020.00360.

Barannik, V., Sidchenko, S., Tupitsya, I., Stasev, S. The application for internal restructuring the data in the entropy coding process to enhance the information resource security. IEEE East-West Design and Test Symposium (EWDTS), 2016, pp. 1-4. DOI: 10.1109/EWDTS.2016.7807749.

Artuğer, F., Özkaynak, F. Fractal Image Compression Method for Lossy Data Compression. International Conference on Artificial Intelligence and Data Processing (IDAP), 2018, pp. 1-6. DOI: 10.1109/IDAP.2018.8620735.

Arnob, P., Tanvir, Z.; Prajoy, P., Rafi, A., Muktadir Rahman, M., Mamdudul Haque, Kh., Iris image compression using wavelets transform coding. 2nd International Conference on Signal Processing and Integrated Networks (SPIN), 2015, pp. 544-548, DOI: 10.1109/SPIN.2015.7095407.

Zhu, X., Liu, L., Jin, Na Ai, P. Morphological component decomposition combined with compressed sensing for image compression. IEEE International Conference on Information and Automation (ICIA), DOI: 10.1109/ICInfA.2016.7832096.

Wang, S., Kim, S. M., Yin, Z., & He, T. Encode when necessary: Correlated network coding under unreliable wireless links. ACM Transactions on Sensor Networks, 2017, vol. 13, no. 1. DOI: 10.1145/3023953.

Barannik, V., Tupitsya, I., Barannik, V., Shulgin, S., Musienko, A., Kochan, R., Veselska, O. The Application of the Internal Restructuring Method of the Information Resource Data According to the Sign of the Number of Series of Units to Improve the Statistical Coding Efficiency. 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 2019, pp.65-69. DOI: 10.1109/IDAACS.2019.8924460.

Phatak, A. A Non-format Compliant Scalable RSA-based JPEG Encryption Algorithm. International Journal of Image. Graphics and Signal Processing, 2016, vol. 8, no. 6, pp 64-71. DOI: 10.5815/ijigsp.2016.06.08.

Wu, H., Sun, X., Yang, J., Zeng, W., Wu, F. Lossless Compression of JPEG Coded Photo Collections. IEEE Transactions on Image Processing, 2016, vol. 25, no. 6, pp. 2684-2696. DOI: 10.1109/TIP.2016.2551366.

Lee, J., Cho, S., Beack, S.-K. Context-adaptive entropy model for end-to-end optimized image compression, 2018. arXiv: 1809.10452.

Chen, C., Zhuo, Y. A research on anti-jamming method based on compressive sensing for OFDM analogous system. IEEE 17th International Conference on Communication Technology (ICCT), 2017, pp. 655-659, DOI: 10.1109/ICCT.2017. 8359718.

Wang, S., Kim, S., Yin, Z., He, T. Encode when necessary: Correlated network coding under unreliable wireless links. ACM Transactions on Sensor Networks, 2017, vol. 13, no.1, pp. 24-29, DOI: 10.1145/3023953.

Han, S., Mao, H., Dally, W. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, 2015. arXiv: 1510.00149.

Zhurakovskyi, B., Boiko, J., Druzhynin, V., Zeniv, I., & Eromenko, O. Increasing the efficiency of information transmission in communication channels. Indonesian Journal of Electrical Engineering and Computer Science, 2020, vol. 19, no. 3, pp. 1306-1315. DOI: 10.11591/ijeecs.v19.i3.

Barannik, V., Tupitsya, I., Dodukh, O., Barannik, V., Parkhomenko, M. The Method of Clustering Information Resource Data on the Sign of the Number of Series of Units as a Tool to improve the Statistical Coding Efficiency. IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), 2019, pp. 32-35. DOI: 10.1109/CADSM.2019.8779243.

Barannik, V., Tupitsya, I., Gurzhii, I., Barannik, V., Sidchenko, S., Kulitsa, O., Two-Hierarchical Scheme of Statistical Coding of Information Resource Data with Quantitative Clustering. IEEE International Conference on Advanced Trends in Information Theory (ATIT), 2019, pp. 89-92. DOI: 10.1109/ATIT49449.2019.9030451.

Barannik, V., Tupitsya, I., Kovalenko, O., Sidchenko, Y., Yroshenko, V., Stepanko, O. The analysis of the internal restructuring method efficiency used for a more compact representation of the encoded data. Advanced Trends in Information Theory (ATIT’2020): proceedings of the Intern. Conf., 2020, pp. 48-51. DOI: 10.1109/ATIT50783.2020.9349307.

Khmelevskiy, S., Tupitsya, I., Mahdi, Q. A., Musienko, О., Parkhomenko, M., Borovensky, Y. Development of the external restructuring method to increase the efficiency of information resource data encoding. Information Processing Systems, 2021, vol. 3, no. 166, pp. 52-61. DOI: 10.30748/soi.2021. 166.06.




DOI: https://doi.org/10.32620/reks.2022.2.16

Refbacks

  • There are currently no refbacks.