Modeling of electrostimulation characteristics to determine the optimal amplitude of current stimuli
Abstract
Keywords
Full Text:
PDFReferences
Luca, De C. J. The use of surface electromyography in biomechanics. Journal of Applied Biomechanics, 1997, vol. 13, iss. 2, pp. 135-163.
Kim, J., Wichmann, T., Inan, O. T., DeWeerth, S. P. Analyzing the Effects of Parameters for Tremor Modulation via Phase-Locked Electrical Stimulation on a Peripheral Nerve. Journal of Personalized Medicine, 2022, vol. 12, iss. 1, pp. 76-91. DOI: 10.3390/jpm12010076.
Kosti´c, M., Koji´c, V., Iˇcagi´c, S., Andersson Ersman, P., Mulla, M. Y., Strandberg, J., Herlogsson, L., Keller, T., Štrbac, M. Design and Development of OECT Logic Circuits for Electrical Stimulation Applications. Applied Sciences, 2022, vol. 12, pp. 3985-4002. DOI: 10.3390/ app12083985.
Chuiko, G., Darnapuk, Y. Fractal nature of arterial blood oxygen saturation data. Radioelectronic and Computer Systems, 2022, no. 1(101), pp. 206-215. DOI: 10.32620/reks.2022.1.16.
Yeroshenko, O., Prasol, I., Datsok, O. Simulation of an electromyographic signal converter for adaptive electrical stimulation tasks. Innovative Technologies and Scientific Solutions for Industries, 2021, no. 1 (15), pp. 113-119. DOI: 10.30837/ITSSI.2021.15.113.
Datsok, O. M., Prasol, I. V., Yeroshenko, O. A. Construction of biotechnical system of muscular electrical stimulation [Pobudova biotekhnichnoyi systemy myazovoyi elektrostymulyatsiyi]. Bulletin of NTU "KhPI". Series: Informatics and modeling - isnyk NTU "KHPI". Seriya: Informatyka ta modelyuvannya, 2019, no. 13 (1338), pp. 165-175. DOI: 10.20998/2411-0558.2019.13.15. (In Ukrainian).
Carvalho, S., Correia, A., Figueiredo, J., Martins, J. M., Santos, C. P. Functional Electrical Stimulation System for Drop Foot Correction Using a Dynamic NARX Neural Network. Machines, 2021, vol. 9, pp. 253-271. DOI: 10.3390/ machines9110253.
Álvarez, D. M.-C., Serrano‐Muñoz, D., Fernández-Pérez, J. J., Gómez-Soriano, J., Avendaño-Coy, J. Effect of Percutaneous Electric Stimulation with High‐Frequency Alternating Currents on the Sensory‐Motor System of Healthy Volunteers: A Double‐Blind Randomized Controlled Study. Journal of Clinical Medicine, 2022, vol. 11, pp. 1832-1846. DOI: 10.3390/jcm11071832.
Pano-Rodriguez, A., Beltran-Garrido, J. V., Hernández-González, V. Effects of whole-body electromyostimulation on health and performance: a systematic review. BMC Complement Altern Med, 2019, vol. 87, pp. 1-14. DOI: 10.1186/s12906-019-2485-9.
Bersch, I., Friden, J. Electrical stimulation alters muscle morphological properties in denervated upper limb muscles. EBioMedicine, 2021, vol. 74, pp. 1397-1407. DOI: 10.1016/j.ebiom.2021.103737.
Gobbo, M., Maffiuletti, N. A., Orizio, C., Minetto, M. A. Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. Journal of neuroengineering and rehabilitation, 2012, vol. 26, iss. 9, pp. 2600-2614. DOI: 10.1519/JSC.0b013e31823f2cd1.
Bekhet, A. H., Bochkezanian, V., Saab, I. M., Gorgey, A. S. The effects of electrical stimulation parameters in managing spasticity after spinal cord injury: a systematic review. American Journal of Physical Medicine and Rehabilitationthis link is disabled, 2019, vol. 98, iss. 6, pp. 484-499. DOI: 10.1097/phm.0000000000001064.
Bochkezanian, V., Newton, R. U., Trajano, G. S., Blazevich, A. J. Effects of Neuromuscular Electrical Stimulation in People with Spinal Cord Injury. Medicine and Science in Sports and Exercisethis link is disabled, 2018, vol. 50, iss. 9, pp. 1733-1739. DOI: 10.1249/MSS.0000000000001637.
Bochkezanian, V., Newton, R. U., Trajano, G. S., Vieira, A., Pulverenti, T. S., Blazevich, A. J. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on muscle force production in people with spinal cord injury (SCI). BMC Neurologythis link is disabled, 2018, vol. 18, iss. 1, pp. 1-10. DOI: 10.1186/s12883-017-0862-x.
Solberg, P. A., Kvamme, N. H., Raastad, T., Ommundsen, Y., Tomten, S. E., Halvari, H. Effects of different types of exercise on muscle mass, strength, function and well-being in elderly. Eur J Sport Sci, 2013, vol. 13, iss. 1, pp. 112-125.
Griffin, L., Decker, M. J., Hwang, J. Y., Wang, B., Kitchen, K., Ding, Z. Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. Electromyogr Kinesiol, 2009, vol. 19, iss. 4, pp. 614-622.
Bersch, I., Tesini, S., Bersch, U., Frotzler, A. Functional electrical stimulation in spinal cord injury: clinical evidence versus daily practice. Artif Organs, 2015, vol. 39, iss. 10, pp. 849-54.
Allen, K., Goodman, C. Using electrical stimulation: A guideline for allied health professionals. Sydney, Sydney Local Health District and Royal Rehabilitation Center Publ., 2014. 11 p.
Dolbow, D. R., Gorgey, A. S., Sutor, T. W., Bochkezanian, V., Musselman, K. Invasive and non-invasive approaches of electrical stimulation to improve physical functioning after spinal cord injury. Journal of Clinical Medicinethis link is disabled, 2021, vol. 10, iss. 22, article no. 5356. DOI: 10.3390/jcm10225356.
Gorgey, A. S., Mahoney, E., Kendall, T., Dudley, G. A. Effects of neuromuscular electrical stimulation parameters on specific tension. Eur J Appl Physiol, 2006, vol. 97, iss. 6, pp. 737-744. DOI: 10.1007/s00421-006-0232-7.
Lopez-Rosado, R., Kimalat, A., Bednarczyk, M. Sullivan, J. E. Sensory Amplitude Electrical Stimulation via Sock Combined With Standing and Mobility Activities Improves Walking Speed in Individuals With Chronic Stroke: A Pilot Study. Front. Neurosci, 2019, vol. 13, article no. 337. DOI: 10.3389/fnins.2019.00337.
Bernstein, V. M., Farber, B. S. Involvement of Noise Immunity Systems of Myoelectric Control of Prostheses. Proceedings of Myo-Electrlc Control Symposium. Institute of Biomedical Engineering, UNB, Frederiction, New Brunswick, 1993, pp.42-43.
Bernstein, V. M., Slavutsky, J. L., Farber, B. S. Myoelectric Control of the Muscle Electrostimulation. Proceedings of Myo-Electric Control Symposium. Institute of Biomedical Engineering, UNB, Frederiction, New Brunswick, 1993, pp. 79-80.
Selivanova, K. G., Avrunin, O. G., Geletka, O. O. Mathematical modeling of electromyographic signal [Matematycheskoe modelyrovanye élektromyohrafycheskoho syhnala]. Bulletin of NTU "KhPI" Series "New solutions in modern technologies" - «Visnyk NTU «KHPI» Seriya «Novi rishennya v suchasnykh tekhnolohiyakh», 2014, no. 36 (1079), pp. 31-39. (In Russian).
Patrick Reilly, J. Survey of numerical electrostimulation models. Institute of Physics and Engineering in Medicine Physics in Medicine & Biology, 2016, vol. 61, iss. 12, pp. 4346–4363. DOI: 10.1088/0031-9155/61/12/4346.
Yeroshenko, O., Prasol, I. Simulation of the electrical signal of the muscles to obtain the electromiosignal spectrum. Technology Audit and Production Reserves, 2022, vol. 2, iss. 2(64), pp. 38–43. DOI: 10.15587/2706-5448.2022.254566.
Jung, J., Lee, D.-W., Son, Y. K., Kim, B. S., Shin, H. C. Volitional EMG Estimation Method during Functional Electrical Stimulation by Dual-Channel Surface EMGs. Sensors, 2021, vol. 21, pp. 8015-8032. DOI: 10.3390/s21238015.
Korn, G., Korn, T. Handbook of mathematics for scientists and engineers [Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov]. Moscow, Nauka Publ., 2003. 832 p. (In Russian).
DOI: https://doi.org/10.32620/reks.2022.2.15
Refbacks
- There are currently no refbacks.