Neural network model of heteroassociative memory for the classification task
Abstract
Keywords
Full Text:
PDFReferences
Haykin, S. Neural Networks, A Comprehensive Foundation. Second ed. Prentice Hall, Upper Saddle River, New Jersey, 1999. 842 p.
Callan, R. The Essence of Neural Networks. Prentice Hall Europe, 1999. 232 p.
Jankowski, S., Lozowski, A., Zurada, J. M. Complex-valued multistate neural associative memory. IEEE Transactions on Neural Networks, 1996, vol. 7, no. 6, pp. 1491-1496. DOI: 10.1109/72.548176.
Wang, Jin-Hui. Associative Memory Cells: Basic Units of Memory Trace. Edition: 1. St. Publisher: Springer Nature, 2019. 484 p. DOI: 10.1007/978-981-13-9501-7.
Kryzhanovsky, B. V., Litinskii, L. B., Mikaelian, A. L. Vector-neuron models of associative memory. 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541). Budapest, 2004. DOI: 10.1109/IJCNN.2004.1380051.
Shoba, Rani1., Rao, D. Nagendra., Vatsal, Srinivasan. Review on neural networks associative memory models. International Journal of Pure and Applied Mathematics, 2018, vol. 120, no. 6, pp. 3143-3154.
Tyulmankov, Danil., Fang, Ching., Vadaparty, Annapurna., Yang, Guangyu Robert. Biological learning in key-value memory networks. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), 2021. 12 p.
Alhadi, Nisreen Abd., Kareem, Emad Abdul. Novel Hetero-Associative Memory: A Modified Bidirectional Associative Memory. International Journal of Engineering Research and Advanced Technology, 2016, vol. 2, no. 2. 15 p.
Souza, A. C., Valle, M. E. Generalized Exponential Bidirectional Fuzzy Associative Memory with Fuzzy Cardinality-Based Similarity Measures Applied to Face Recognition. Sociedade Brasileira de Matematica Aplicada e Computacional, 2018, vol. 18, no. 2, pp. 221-223. DOI: 10.5540/tema.2018.019.02.0221.
Moskalenko, V. V., Zarets'kyy, M. O., Koval's'kyy, Ya. Yu., Martynenko, S. S. Model' i metod navchannya klasyfikatora kontekstiv sposterezhennya na zobrazhennyakh videoinspektsiyi stichnykh trub [Model and method of training the classifier of observation contexts on video inspection images of sewer pipes]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2020, no. 3, pp. 59-66. DOI: 10.32620/reks.2020.3.06.
Moskalenko, V. V., Zarets'kyy, M. O., Moskalenko, A. S., Korobov, A. G., Koval's'kyy, Ya. Yu. Bahatoetapnyy metod hlybynnoho navchannya z poperednim samonavchannyam dlya klasyfikatsiynoho analizu defektiv stichnykh trub [Multi-stage deep learning method with self-supervised pretraining for sewer pipe defects classification]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2021, no. 4, pp. 71-81. DOI: 10.32620/reks.2021.4.06.
Martyniuk, T. B., Kozhemiako, A. V., Kupershtein, L. M., Homyuk, V. V., Mohamed Salem Nasser Mohamed, Smolarz, Andrzej, Kozbakova, Ainur. Neural network approach to numeric array sorting. Proceedings of SPIE: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (6 November 2019), 2019, vol. 11176, article no. 111761N. DOI: 10.1117/12.2535916.
Martyniuk, T. B. Structure of Associative Processor with Bitwise Serial Processing of Data. Engineering Simulation, 1997, no. 14, pp. 383-389.
Karp, V. P. Intellektual'nyi analiz dannykh v probleme postroeniya reshayushchikh pravil klassifikatsii (na primere meditsinskoi diagnostiki) [Data mining in the problem of constructing decisive classification rules (on the example of medical diagnostics)]. Novosti iskusstvennogo intellekta, 2006, no. 2, pp. 57-75.
Martyniuk, T. B., Kupershtein, L. M. Medvid, A. V., Kozhemiako, A. V., Wojcik, W., Yuchshenko, O. Applications of Discriminant Analysis Methods in Medical Diagnostics. Proceedings of SPIE, Optical Fibers and Their Applications, 2012, vol. 8698, article no. 86980G. DOI: 10.1117/12.2019733.
Rangayyan, Rangaraj M. Biomedical Signal Analysis. Second ed. Wiley-IEEE Press, 2015. 720 p.
Yunkerov, V. I, Grigor'ev, S. G. Matematiko – statisticheskaya obrabotka dannykh meditsinskikh issledovanii [Mathematical and statistical processing of medical research data]. SPb., VMedA Publ., 2002. 266 p.
Shepelev, I. E., Vladimirskii, B. M. Postroenie neirosetevogo klassifikatora dlya interfeisa «mozg-komp'yuter» [Building a neural network classifier for the «brain-computer interface»]. Neirokomp'yutery: razrabotka, primenenie, 2010, no. 9, pp. 4-10.
Kupershtein, L., Martyniuk, T., Voitovych, O., Krentsin, M. Neural network approach in the stroke diagnosis. Proceedings of the 2016 IEEE 1st International Conference on Data Mining and Processing, DSMP 2016, 23-27 Aug., 2016. DOI: 10.1109/DSMP.2016.7583525.
Kupershtein, L., Martyniuk, T., Krentsin, M., Kozhemiako, A., Bezsmertna, H., Bezsmertnyi, Y., Smolarz, A., Kolimoldayev, M., Uvaysova, S., Weryńska-Bieniasz, R. Neural expert decision support system for stroke diagnosis. Proceedings of Conference: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Aug., 2017, vol. 10445, article no. 104453I. DOI: 10.1117/12.2280956.
Aldape-Pérez, M., Yáñez-Márquez, C., Camacho-Nieto, O., Argüelles-Cruza, A. J. An associative memory approach to medical decision support systems. Computer Methods and Programs in Biomedicine, 2012, vol. 106, no. 3, pp. 287-307. DOI: 10.1016/j.cmpb.2011.05.002.
Yang, Xiaozhou. Linear Discriminant Analysis, Explained. Available at: https://towardsdatascience.com/linear-discriminant-analysis-explained-f88be6c1e00b (аccessed 5.10.2020).
Brownlee, Jason. Linear Discriminant Analysis for Machine Learning. Available at: https://machinelearningmastery.com/linear-discriminant-analysis-for-machine-learning/ (accessed 15.11.2020).
Semeriakova, E. G., Berestneva, O. G., Makarova, L. S. Matematicheskie metody v zadachakh meditsinskoi diagnostiki [Mathematical methods in problems of medical diagnostics]. Modern problems of science and education, 2012, no. 6, pp. 29.
DOI: https://doi.org/10.32620/reks.2022.2.09
Refbacks
- There are currently no refbacks.