Algorithm for the synthesis of dual non-parametric control of "black box" type dynamic object with use state matrix diagonalization method
Abstract
Keywords
Full Text:
PDFReferences
Kulik, A., Dergachov, K., Pasichnik, S., Yashyn, S. Motions models of a two-wheeled experimental sample. Radioelectronic and Computer Systems, 2021, no. 1, pp. 40-49. DOI: 10.32620/reks.2021.1.03.
Ashby, W. Ross. An Introduction to Cybernetics. London, Chapman & Hall Publ., 1957. 295 p.
Fel'dbaum, A. A. Teoriya dual'nogo upravleniya I, II [Dual control theory I, II]. Avtomatika i Telemekhanika – Automation and telemechanics, 1960, no. 21 (9, 11), pp. 1240-1249, 1453-1464.
Fel'dbaum, A. A. Teoriya dual'nogo upravleniya III, IV [Dual control theory III, IV]. Avtomatika i Telemekhanika – Automation and telemechanics, 1961, no. 22 (1, 2), pp. 3-16, 129-142.
Jafarov, S. M., Aliyeva, A. S Synthesis of intelligent control system with coordinate and parametric feedback. Procedia Computer Science, 2017, vol. 120, pp. 554-560. DOI: 10.1016/j.procs.2017.11.278.
Iantovics, L. B. Black-Box-Based Mathematical Modelling of Machine Intelligence Measuring. Mathematics, 2021, vol. 9(6), article no. 681. DOI: 10.3390/math9060681.
Medvedev, A. V. Teoriya neparametricheskikh sistem. Obshchii podkhod [Theory of nonparametric systems. General approach]. Vestn. CibGAU im. ak. M. F. Reshetneva – Bullet. of SibGAU them. ac. M. F. Reshetnev, Krasnoyarsk, 2008, vol. 3(20), pp. 65-69.
Medvedev, A. V. Identification and control for linear dynamic system of unknown order. Optimization Techniques IFIP Technical Conference, Berlin – New York, Springer-Verlag Publ., 1975, pp. 48–56.
Matthew, C., Bogdanski, K. Extending the Kalman filter for structured identification of linear and nonlinear systems. J. Modelling, Identification and Control, 2017, vol. 2(27), pp. 114-124. DOI: 10.1504/IJMIC.2017.082952.
Shoukat, H., Tahir, H., Ali, K. Approximate GP Inference for Nonlinear Dynamical System Identification Using Data-Driven Basis Set. IEEE Access, 2020, vol. 8, pp. 90665-90675, DOI: 10.1109/ACCESS.2020.2994089.
Zhosan, A. A. The method of synthesizing a nonparametric discrete model of a black box - type dynamic object with the scalar input and output. Visnyk Kryvoriz'koho natsional'noho universytetu – Bulletin of Kryvyi Rih National University, 2020, vol. 50, pp. 118-121. DOI: 10.31721/2306-5451-2020-1-50-118-122.
Efroimovich, S. Yu. Nonparametric curve estimation. Methods, theory and application, Berlin – New-York, Springer-Verlag Publ., 1999. 134 p.
Bayard, D., Schumitzky, A. Implicit dual control based on particle filtering and forward dynamic programming. J. Adapt Control Signal Process, 2010, vol. 3(24), pp. 155-177. DOI: 10.1002/acs.1094.
Zhang, Z., Ren, J. Locally Weighted Non-Parametric Modeling of Ship Maneuvering Motion Based on Sparse Gaussian Process. Journal of Marine Science and Engineering, 2021, vol. 9(6), article no. 606. DOI: 10.3390/jmse9060606.
Medvedev, A. V., Raskina, A. V. The dual control algorithm of nonlinear dynamic processes in the conditions of incomplete a priori information. IOP Conf. Series: Materials Science and Engineering, 2020, vol. 865, article no. 012006, pp. 1-7. DOI: 10.1088/1757-899X/865/1/012006.
Wittenmark, B., Elevitch, C. An adaptive control algorithm with dual features. 7th IFAC/IFORS Symp. on Identification and Systems Parameter Estimation, York, U.K., 1985, pp. 587-592.
Zhosan, A. A., Fedorenko, O. L. Dualne upravlinnya perevernutim mayatnikom yak «chornim yaschikom» [Dual control of the inverted pendulum as a "black box"]. Visnyk Kryvoriz'koho natsional'noho universytetu – Bulletin of Kryvyi Rih National University, 2017, vol. 44, pp. 24-29.
Zhosan, A., Lipanchikov, S. Numerical modeling of disintegration process dual control. Metallurgical and Mining Industry, 2015, no. 3, pp. 74-77.
Medvedeva, N. A. Nonparametrically Estimation of Statistical Characteristics in Problem of Modelling. Proceedings of the International Conference «Computer Data Analysis and Modeling». Minsk, BSU, 1995, pp. 89-93.
Lindof, B., Holst, J. Suboptimal dual control of stochastic systems with time-varying parameters. Technical report TFMS-3152, Department of Mathematical Statistics, Lund Institute of Technology, Lund, Sweden, 1997. 25 p.
DOI: https://doi.org/10.32620/reks.2022.2.02
Refbacks
- There are currently no refbacks.