Impact of war on COVID-19 pandemic in Ukraine: the simulation study
Abstract
Keywords
Full Text:
PDFReferences
Kumar, A., Singh, R., Kaur, J., Pandey, S., Sharma, V., Thakur, L., Sati, S., Mani, S., Asthana, S., Sharma, T.K., Chaudhuri, S., Bhattacharyya, S., Kumar, N. Wuhan to world: the COVID-19 pandemic. Frontiers in cellular and infection microbiology, 2021, vol. 11, article no. 596201. DOI: 10.3389/fcimb.2021.596201.
Cucinotta, D., Vanelli, V. WHO declares COVID-19 a pandemic. Acta biomedica: Atenei Parmensis, 2020, vol. 91, iss. 1, pp. 157-160. DOI: 10.23750/abm.v91i1.9397.
Parasher, A. COVID-19: current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgraduate medical journal, 2021, vol. 97, iss. 1147, pp. 312-320. DOI: 10.1136/postgradmedj-2020-138577.
Yuce, M., Filiztekin, E., Ozkaya, K.Z. COVID-19 diagnosis – a review of current methods. Biosensors & Bioelectronics, 2021, vol. 172, article no. 112752. DOI: 10.1016/j.bios.2020.112752.
Erdinc, B., Sahni, S., Gotlieb, V. Hematological manifestations and complications of COVID-19. Advances in clinical and experimental medicine: official organ Wroclaw Medical University, 2021, vol. 30, iss. 1, pp. 101-107. DOI: 10.17219/acem/130604.
Fedushko, S., Ustyianovych, T. E-commerce customers behavior research using cohort analysis: a case study of COVID-19. Journal of Open Innovation: Technology, Market, and Complexity, vol. 8, iss. 1, article no. 12. DOI: 10.3390/joitmc8010012.
Misiuk, T., Kondratenko, Y., Sidenko, I., Kondratenko, G. Computer vision mobile system for education using augmented reality technology. Journal of Mobile Multimedia, 2021, vol. 17, iss. 4, pp. 555-576. DOI: 10.13052/jmm1550-4646.1744.
Davidich, N., Galkin, A., Iwan, S., Kijewska, K., Chumachenko, I., Davidich, Y. Monitoring of urban freight flows distribution considering the human factor. Sustainable Cities and Society, 2021, vol. 75, article no. 103168. DOI: 10.1016/j.scs.2021.103168.
Izonin, I., Tkachenko, R., Dronyuk, I., Tkachenko, P., Gregus, M., Rashkevych, M. Predictive modeling based on small data in clinical medicine: RBF-based additive input-doubling method. Mathematical Biosciences and Engineering, 2021, vol. 18, iss. 3, pp. 2599-2613. DOI: 10.3934/mbe.2021132.
Saadi, N., Chi, Y.L., Ghosh, S., Eggo, R.M., McCarthy, C.V., Quaife, M., Dawa, J., Jit, M., Vassall, A. Models of COVID-19 vaccine prioritization: a systematic literature search and narrative review. BMC Medicine, 2021, vol. 19, article no. 318. DOI: 10.1186/s12916-021-02190-3.
Strilets, V., Donets, V., Ugryumov, M., Artiuch, S., Zelenskyi, R., Goncharova, T. Agent-oriented data clustering for medical monitoring. Radioelectronic and Computer Systems, 2022, no. 1 (101), pp. 103-114. DOI: 10.32620/reks.2022.1.08.
Kern, C., Schoning, V., Chaccour, C., Hammann, F. Modeling of SARS-CoV-2 treatment effects for informed drug repurposing. Frontiers in Pharmacology, 2021, vol. 12, article no. 625678. DOI: 10.3389/fphar.2021.625678.
Shakeel, S. M., Kumar, N. S., Madalli, P. P., Srinivasaiah, R., Swamy, D. R. COVID-19 prediction models: a systematic literature review. Osong Public Health and Research Perspectives, 2021, vol. 12, iss. 4, pp. 215-229. DOI: 10.24171/j.phrp.2021.0100.
Cimini, C., Pezzotta, G., Lagorio, A., Pirola, F., Cavalieri, S. How can hybrid simulation support organizations in assessing COVID-19 containment measures. Healthcare, 2021, vol. 9, article no. 1412. DOI: 10.3390/healthcare9111412.
Yakovlev, S., Bazilevych, K., Chumachen¬ko, D., Chumachenko, T., Hulianytskyi, L., Meniailov, I., Tkachenko. A. The concept of developing a decision support system for the epidemic morbidity control. CEUR Workshop Proceedings, 2020, vol. 2753, pp. 265–274.
Kermack, W.O., McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proceedings of the royal society A: Mathematical, physical and engineering sciences, 1927, vol. 115, iss. 772, pp. 700-721. DOI: 10.1098/rspa.1927.0118.
Liu, J., Xie, W., Wang, Y., Xiong, Y., Chen, S., Han, J., Wu, Q. A comparative overview of COVID-19, MERS and SARS: review article. International journal of surgery, 2020, vol. 81, pp. 1-8. DOI: 10.1016/j.ijsu.2020.07.032.
Zhou, Y., Ma, Z., Brauer, F. A discrete epidemic model for SARS transmission and control in China. Mathematical and Computer Modelling, 2004, vol. 40, iss. 13, pp. 1491-1506. DOI: 10.1016/j.mcm.2005.01.007.
Ng, T.W., Turinici, G., Danchin, A. A double epidemic model for the SARS propagation. BMC Infectious Diseases, 2003, vol. 3, article no. 19. DOI: 10.1186/1471-2334-3-19.
Bauch, C.T., Lloyd-Smith, J.O., Coffee, M.P., Galvani, A.P. Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present and future. Epidemiology, 2005, vol. 16, iss. 6, pp. 791-801. DOI: 10.1097/01.ede.0000181633.80269.4c.
Yong, B., Owen, L. Dynamical transmission model of MERS-CoV in two areas. AIP Conference Proceedings, 2016, vol. 1716, iss. 1, article no. 020010. DOI: 10.1063/1.4942993.
Tang, S., Ma, W., Bai, P. A novel dynamic model describing the spread of the MERS-CoV and the expression of dipeptidyl peptidase 4. Computational and Mathematical Methods in Medicine, 2017, vol. 2017, article no. 5285810. DOI: 10.1155/2017/5285810.
Chang, H.J. Estimation of basic reproduction number of the Middle East respiratory syndrome coronavirus (MERS-CoV) during the outbreak in South Korea, 2015. BioMedical Engineering Online, 2017, vol. 16, article no. 79. DOI: 10.1186/s12938-017-0370-7.
Cooper, I., Mondal, A., Antonopoulos, C. G. A SIR model assumption for the spread of COVID-19 in different communities. Chaos, Solutions & Fractals, 2020, vol. 139, article no. 110057. DOI: 10.1016/j.chaos.2020.110057.
Ajbar, A., Abdelhamis, A., Alqahtani, R.T., Boumaza, M. Dynamics of an SIR-based COVID-19 model with linear incidence rate, nonlinear removal rate, and public awareness. Frontiers in Physics, 2021, vol. 9, article no. 634251. DOI: 10.3389/fphy.2021.634251.
Talukder, H., Debnath, K., Raquib, A., Uddin, M.M., Hussain, S. Estimation of basic reproduction number (R0) of novel coronavirus (COVID-19) from SEIR model in perspective of Bangladesh. Journal of Infectious Diseases and Epidemiology, 2020, vol. 6, article no. 144. DOI: 10.23937/2474-3658/1510144.
Ghostine, R., Gharamti, M., Hassrouny, S., Hoteit, I. An extended SEIR model with vaccination for forecasting the COVID-19 pandemic in Saudi Arabia using an ensemble Kalman filter. Mathematics, 2021, vol. 9, article no. 636. DOI: 10.3390/ math9060636.
Leontitsis, A., Senok, A., Alsheikh-Ali, A., Al Nasser, Y., Loney, T., Alshamsi, A. SEAHIR: a specialized compartmental model for COVID-19. International Journal of Environmental Research and Public Health, 2021, vol. 18, iss. 5, article no. 2667. DOI: 10.3390/ijerph18052667.
Moein, S., Nickaeen, N., Roointan, A., Borhani, N., Heidary, Z., Javanmard, S. H., Ghaisairi, J., Gheisari, Y. Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of Isfahan. Scientific reports, 2021, vol. 11, article no. 4725. DOI: 10.1038/s41598-021-84055-6.
Kerr, C. C., Stuart, R. M., Mistry, D., Abeysuriya, R. G., Rosenfeld, K., Hart, G. R., Nunez, R. C., Cohen, J. A., Selvaraj, P., Hagedorn, B., George, L., Jastrzebski, M., Izzo, A. S., Fowler, G., Palmer, A., Delport, D., Scott, N., Kelly, S.L., Bennette, C. S., Wagner, B. G., Chang, S. T., Oron, A. P., Wenger, E. A., Panovska-Griffiths, J., Famulare, M., Klein, D. J. Covasim: an agent-based model of COVID-19 dynamics and interventions. PLOS Computational Biology, 2021, vol. 17, iss. 7, article no. e1009149. DOI: 10.1371/journal.pcbi.1009149.
Latkowski, R., Dunin-Keplicz, B. An agent-based COVID-19 simulator: extending Covasim to the Polish context. Procedia Computer Science, 2021, vol. 192, pp. 3607-3616. DOI: 10.1016/j.procs.2021.09.134.
Pham, Q. D., Stuart, R. M., Nguyen, T. V., Luong, Q. C., Tran, Q. D., Pham, T. Q., Phan, L. T., Dang, T. Q., Tran, D. N., Do, H. T., Mistry, D., Klein, D. J., Abeysuriya, R. G., Oron, A. P., Kerr, C. C. Estimating and mitigating the risk of COVID-19 epidemic rebound associated with reopening of international borders in Vietnam: a modelling study. The Lancet Global Health, 2021, vol. 9, iss. 7, pp. e916-e924. DOI: 10.1016/S2214-109X(21)00103-0.
Cuevas, E. An agent-based model to evaluate the COVID-19 transmission risks in facilities. Computer in Biology and Medicine, 2020, vol. 121, article no. 103827. DOI: 10.1016/j.compbiomed.2020.103827.
Datta, A. Winkelstein, P., Sen, S. An agent-based model of spread of a pandemic with validation using COVID-19 data from New York State. Physica A, 2022, vol. 585, article no. 126401. DOI: 10.1016/j.physa.2021.126401.
Alali, Y., Harrou, F., Sun, Y. A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models. Scientific Reports, 2022, vol. 12, article no. 2467. DOI: 10.1038/s41598-022-06218-3.
Mojjada, R. K., Yadav, A., Prabhu, A. V., Natarajan, Y. Machine learning models for COVID-19 future forecasting. Materialstoday: proceedings, 2020. DOI: 10.1016/j.matpr.2020.10.962.
Moulaei, K., Shanbehzadeh, M., Mohammadi-Taghiabad, Z., Kazemi-Arpanahi, H. Comparing machine learning algorithms for predicting COVID-19 mortality. BMC Medical Informatics and Decision Making, 2022, vol. 22, article no. 2. DOI: 10.1186/s12911-021-01742-0.
Alballa, N., Al-Turaiki, I. Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: a review. Informatics in medicine unlocked, 2021, vol. 24, article no. 100564. DOI: 10.1016/j.imu.2021.100564.
Kushwaha, S., Bahl, S., Bagha, A. K., Parmar, K. S., Javaid, M., Haleem, A., Singh, R. P. Significant applications of machine learning for COVID-19 pandemic. Journal of Industrial Integration and Management, 2020, vol. 5, no. 4, pp. 453-479. DOI: 10.1142/S2424862220500268.
Chumachenko, D., Meniailov, I., Bazile¬vych, K., Chub, O. On COVID-19 epidemic process simulation: three regression approaches investigation. Radioelectronic and Computer Systems, 2022, no. 1 (101), pp. 6-22. DOI: 10.32620/reks.2022.1.01.
Gankin, Y., Nemira, A., Koniukhovskii, V., Chowell, G., Weppelmann, T. A., Skums, P., Kirpich, A. Investigating the first stage of the COVID-19 pandemic in Ukraine using epidemiological and genomic data. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases, 2021, vol. 95, article no. 105087. DOI: 10.1016/j.meegid.2021.105087.
Ivats-Chabina, A. R., Korolchuk, O. L., Kachur, A. Yu., Smiianov, V. A. Healthcare in Ukraine during the epidemic: difficulties, challenges and solutions. Wiadomosci lekarskie, 2021, vol. 74, iss. 5, pp. 1256-1261. DOI: 10.36740/WLek202105139.
Matiashova, L., Isayeva, G., Shanker, A., Tsagkaris, C., Aborode, A. T., Essar, M. Y., Ahmad, S. COVID-19 vaccination in Ukraine: an update on the status of vaccination and the challenges at hand. Journal of medical virology, 2021, vol. 93, iss. 9, pp. 5252-5253. DOI: 10.1002/jmv.27091.
WHO COVID-19 Dashboard. Geneva: World Health Organization, 2020. Available at: https://covid19.who.int/ (accessed 25.03.2022).
Surveillance system for attacks on health care (SSA). World Health Organization, 2022. Available at: https://extranet.who.int/ssa/Index.aspx (accessed 25.03.2022).
Coronavirus Resource Center. Johns Hopkins University & Medicine, 2020. Available at: https://coronavirus.jhu.edu/ (accessed 25.03.2022).
Ostertagova, E. Modelling using polynomial regression. Procedia Engineering, 2012, vol. 48, pp. 500-506. DOI: 10.1016/j.proeng.2012.09.545.
Linka, K., Peirlinck, M., Costabal, F. S., Kuhl, E. Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions. Computer methods in biomechanics and biomedical engineering, 2020, vol. 23, iss. 11, pp. 710-717. DOI: 10.1080/10255842.2020.1759560.
Hamid, M. A., Aditama, D., Permata, E., Kholifah, N., Nurtanto, M., Majid, N. W. A. Simulating the COVID-19 epidemic event and its prevention measures using Python programming. Indonesian journal of electrical engineering and computer science, 2022, vol. 26, no. 1, pp. 278-288. DOI: 10.11591/ijeecs.v26.i1.pp278-288.
Yu, X. Modeling return of the epidemic: impact of population structure, asymptomatic infection, case importation and personal contacts. Travel medicine and infectious disease, 2020, vol. 37, 101858. DOI: 10.1016/j.tmaid.2020.101858.
Dhamodharavadhani, S., Rathipriya, R., Chatterjee, G. M. COVID-19 mortality rate prediction for India using statistical neural network models. Frontiers in Public Health, 2020, vol. 8, article no. 441. DOI: 10.3389/fpubh.2020.00441.
Hong, W. H., Yap, J. H., Selvachandran, G., Thong, P. H., Son, L. H. Forecasting mortality ratesusing hybrid Lee-Carter model, artificial neural network and random forest. Complex and intelligent systems, 2021, vol. 7, pp. 163-189. DOI: 10.1007/s40747-020-00185-w.
Ebubeogu, A. F., Ozigbu, C. E., Maswadi, K., Seixas, A., Ofem, P., Conserve, D. F. Predicting the number of COVID-19 infections and deaths in USA. Globalization and health, 2022, vol. 18, article no. 37. DOI: 10.1186/s12992-022-00827-3.
Rauf, A., Abu-Izneid, T., Olatunde, A., Khalil, A. A., Alhumaydhi, F. A., Tufail, T., Shariati, M. A., Rebezov, M., Almarhoon, Z. M., Mabkhot, Y. N., Alsayari, A., Rengasamy, K. R. R. COVID-19 pandemic: epidemiology, etiology, conventional and non-conventional therapies. International journal of environmental research and public health, 2020, vol. 17, iss. 21, 8155. DOI: 10.3390/ijerph17218155.
Ge, H., Wang, X., Yuan, X., Xiao, G., Wang, C., Deng, T., Yuan, Q., Xiao, X. The epidemiology and clinical information about COVID-19. European journal of clinical microbiology and infectious diseases, 2020, vol. 39, pp. 1011-1019. DOI: 10.1007/s10096-020-03874-z.
Nishiura, H., Kobayashi, T., Miyama, T., Suzuki, A., Jung, S. M., Hayashi, K., Kinoshita, R., Yang, Y., Yuan, B., Akhmetzhanov, A. R., Linton, N.M. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). International journal of infectious diseases, 2020, vol. 94, pp. 154-155. DOI: 10.1016/j.ijid.2020.03.020.
Gandhi, M., Yokoe, D. S., Havlir, D. V. Asymptomatic transmission, the Achilles’ Heel of current strategies to control COVID-19. The New England journal of medicine, 2020, vol. 382, pp. 2158-2160. DOI: 10.1056/NEJMe2009758.
Buitrago-Garcia, D., Egli-Gany, D., Counotte, M.J., Hossmann, S., Imeri, H., Ipekci, A. M., Salanti, G., Low, N. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: a living systematic review and meta-analysis. PLOS Medicine, 2020, vol. 17, iss. 9, article no. e1003346. DOI: 10.1371/journal.pmed.1003346.
Arora, S., Grover, V., Saluja, P., Algarni, Y. A., Saquib, S. A., Asif, S. M., Batra, K., Alshahrani, M. Y., Das, G., Jain, R., Ohri, A. Literature review of Omicron: a grim reality amidst COVID-19. Microorganisms, 2022, vol. 10, iss. 2, article no. 451. DOI: 10.3390/microorganisms10020451.
Kannan, S., Ali, P. S. S., Sheeza, A. Omicron (B.1.1.529) – variant of concern – molecular profile and epidemiology: a mini review. European review for medical and pharmacological sciences, 2021, vol. 25, iss. 24, pp. 8019-8022. DOI: 10.26355/eurrev_202112_27653.
DOI: https://doi.org/10.32620/reks.2022.2.01
Refbacks
- There are currently no refbacks.