Hybrid quantum random number generator for cryptographic algorithms
Abstract
Keywords
Full Text:
PDFReferences
Kabiri Chimeh, M., Heywood, P., Pennisi, M. et al. Parallelisation strategies for agent based simulation of immune systems. BMC Bioinformatics, 2019, vol. 20, pp. 225-235, article id: 579. DOI: 10.1186/s12859-019-3181-y.
Gagnidze, A., Iavich, M., Iashvili, G. Novel Version of Merkle Cryptosystem. Bulletin of the Georgian National Academy of Sciences, 2017, vol. 11, no. 4, pp. 28-33.
Lewis, P. A. W., Goodman, A. S. and Miller, J. M. A pseudo-random number generator for the System/360. IBM Systems Journal, 1969, vol. 8, no. 2, pp. 136-146. DOI: 10.1147/sj.82.0136.
Lambić, D., Nikolić, M. Pseudo-random number generator based on discrete-space chaotic map. Nonlinear Dyn, 2017, vol. 90, pp. 223-232. DOI: 10.1007/s11071-017-3656-1.
Mcginthy, J. M. and Michaels, A. J. Further Analysis of PRNG-Based Key Derivation Functions. IEEE Access, 2019, vol. 7, pp. 95978-95986. DOI: 10.1109/ACCESS.2019.2928768.
Wayne, Michael A., Kwiat, Paul G. Low-bias high-speed quantum random number generator via shaped optical pulses. Opt. Express, 2010, vol. 18, iss. 9, pp. 9351-9357. DOI: 10.1364/OE.18.009351.
Herrero-Collantes, Miguel., Garcia-Escartin, Carlos. Quantum Random Number Generators. Reviews of Modern Physics, 2017, vol. 87, iss. 1, article id: 015004. DOI: 10.1103/RevModPhys.89.015004.
Samsonov, E. O., Pervushin, B. E., Ivanova, A. E. et al. Vacuum-based quantum random number generator using multi-mode coherent states, Quantum Inf Process, 2020, vol. 19, pp. 356-365. DOI: 10.1007/s11128-020-02813-3.
Zhang, Y., Lo, H. P., Mink, A. et al. A simple low-latency real-time certifiable quantum random number generator. Nature Communications, 2021, vol. 12, article id: 1056. DOI: 10.1038/s41467-021-21069-8.
Acerbi, F. et al. Structures and Methods for Fully-Integrated Quantum Random Number Generators. IEEE Journal of Selected Topics in Quantum Electronics, 2020, vol. 26, iss. 3, pp. 1-8. DOI: 10.1109/JSTQE.2020.2990216.
Ma, X., Yuan, X., Cao, Z., Qi, B., & Zhang, Z. Quantum random number generation. npj Quantum Inf, 2016, vol. 2, article id: 16021, DOI: 10.1038/npjqi.2016.21.
Hu, Z., Gnatyuk, S., Okhrimenko, T., Tynymbayev, S., Iavich, M. High-speed and secure PRNG for cryptographic applications. International Journal of Computer Network and Information Security, 2020, vol. 11, iss. 3, pp. 1-10. DOI: 10.5815/ijcnis.2020.03.01.
Cang, S., Kang, Z., Wang, Z. Pseudo-random number generator based on a generalized conservative Sprott-A system. Nonlinear Dyn, 2021, vol. 104, pp. 827-844. DOI: 10.1007/s11071-021-06310-9.
Tuna, M. A novel secure chaos-based pseudo random number generator based on ANN-based chaotic and ring oscillator: design and its FPGA implementation. Analog Integr Circ Sig Process, 2020, vol. 105, pp. 167-181. DOI: 10.1007/s10470-020-01703-z.
Hanouti, I. E., Fadili, H. E., Souhail, W., Masood, F. A Lightweight Pseudo-Random Number Generator Based on a Robust Chaotic Map, Fourth International Conference On Intelligent Computing in Data Sciences (ICDS), 2020, pp. 1-6, DOI: 10.1109/ICDS50568.2020.9268715.
Shrimpton, T., Terashima, R. S. A Provable-Security Analysis of Intel’s Secure Key RNG. In: Advances in Cryptology – EUROCRYPT, 2015, vol. 9056, pp. 77-100. DOI: 10.1007/978-3-662-46800-5_4.
Chernov, P. S., Volkov, V. S., Surovtsev, D. A. Towards Self-testing Quantum Random Number Generators in Integrated Design. IOP Conference Series: Materials Science and Engineering, 2018, vol. 454, article id: 012087. DOI: 10.1088/1757-899X/454/1/012087.
Tommaso, L. et al. Self-testing quantum random number generator. Physical review letters, 2015, vol. 114, iss. 15, article id: 150501. DOI: 10.1103/PhysRevLett.114.150501.
Bowles, J., Quintino, M. T., Brunner, N. Certifying the dimension of classical and quantum systems in a prepare-and-measure scenario with independent devices. Physical review letters, 2014, vol. 112, article id: 140407. DOI: 10.1103/PhysRevLett.112.140407.
Vallone, G., Marangon, D. G., Tomasin, M., Villoresi, P. Quantum randomness certified by the uncertainty principle. Physical Review, 2014, vol. A 90, article id: 052327. DOI: 10.1103/PhysRevA.90.052327.
Pironio, S., Acín, A., Massar, S., de La Giroday, A. B., Matsukevich, D. N., Maunz, P., Monroe, C. Random numbers certified by Bell’s theorem. Nature, 2010, vol. 464, pp. 1021-1024. DOI: 10.1038/nature09008.
Vazirani, U. V., Vidick, T., Certifiable Quantum Dice-Or, testable exponential randomness expansion. arXiv preprint arXiv, 2011, arXiv: 1111.6054.
Kulikov, A., Jerger, M., Potočnik, A., Wallraff, A., Fedorov, A. Realization of a quantum random generator certified with the Kochen-Specker theorem. Physical Review Letters, 2017, vol. 119, article id: 240501. DOI: 10.1103/PhysRevLett.119.240501.
Sutradhar, K., Om, H. Hybrid Quantum Protocols for Secure Multiparty Summation and Multiplication. Sci Rep, 2020, vol, 10, article id: 9097. DOI: 10.1038/s41598-020-65871-8.
Zhi-Gang, G. Improvement of Quantum Protocols for Secure Multi-Party Summation. Int J Theor Phys, 2020, vol. 59, iss. 11, pp. 3086-3092. DOI: 10.1007/s10773-020-04555-5.
Ananth, P., La Placa, R. L. Secure Quantum Extraction Protocols. Theory of Cryptography. TCC 2020. Lecture Notes in Computer Science, 2020, vol. 12552, pp. 123-152. DOI: 10.1007/978-3-030-64381-2_5.
Meyer, J. J., Borregaard, J., Eisert, J. A variational toolbox for quantum multi-parameter estimation. npj Quantum Information, 2021, vol. 7, article id: 89, DOI: 10.1038/s41534-021-00425-y.
Dotsenko, S. Intelektual'ni systemy: postdekartove predstavlennya metaznan' [Intelligent systems: post-descartes representing metaknowledge]. Radioelectronic and computer systems, 2021, no. 3(95), pp. 4-19. DOI: 10.32620/reks.2020.3.01.
Gordieiev, O. Modeli ta otsinyuvannya yakosti zruchnosti vykorystannya interfeysu prohramnoho zabezpechennya dlya lyudyno-komp"yuternoyi vzayemodiyi [A models and assessment of quality of human-computer interaction software interface usability]. Radioelectronic and computer systems, 2020, no. 3(95), pp. 84-96. DOI: 10.32620/reks.2020.3.09.
Fürst, H., Weier, H., Nauerth, S., Marangon, D. G., Kurtsiefer, C, Weinfurter, H. High speed optical quantum random number generation. Opt. Express, 2010, vol. 18, iss. 12, pp. 13029-13037. DOI: 10.1364/OE.18.013029.
Massari, N. et al. 16.3 A 16×16 pixels SPAD-based 128-Mb/s quantum random number generator with −74dB light rejection ratio and −6.7ppm/°C bias sensitivity on temperature. 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, pp. 292-293, DOI: 10.1109/ISSCC.2016.7418022.
Tisa S., Villa F., Giudice A., Simmerle G. and Zappa F. High-Speed Quantum Random Number Generation Using CMOS Photon Counting Detectors. IEEE Journal of Selected Topics in Quantum Electronics, 2015, vol. 21, no. 3, pp. 23-29, article Id: 6300107. DOI: 10.1109/JSTQE.2014.2375132.
DOI: https://doi.org/10.32620/reks.2021.4.09
Refbacks
- There are currently no refbacks.