System of license plate recognition considering large camera shooting angles
Abstract
Keywords
Full Text:
PDFReferences
Warren, Ian, Lippert, Randy, Walby, Kevin, Palmer, Darren. When the profile becomes the population: examining privacy governance and road traffic surveillance in Canada and Australia. Current issues in criminal justice, 2013, vol. 25, no. 2, pp. 565–584.
Imran, S., Imtiaz, H.,·Jamil, A., Pyoung, W. K., Gyu, S. C., Imran, A., Sadia, D. License plate identification and recognition in a non-standard environment using neural pattern matching. Complex & Intelligent Systems, 2021. DOI: 10.1007/s40747-021-00419-5.
Selmi, Z., Halima, M. B., Pal, U., Alimi, M. A. DELP-DAR system for license plate detection and recognition. Pattern Recognition Letters, 2020, vol. 129, pp. 213–223. DOI: 10.1016/j.patrec.2019.11.007.
Lubna, Mufti, N., Shah, S. A. A. Automatic Number Plate Recognition: A Detailed Survey of Relevant Algorithms. Sensors, 2021, vol. 21, iss. 9, article no. 3028. DOI: 10.3390/s21093028.
Li, H., Wang, P. and Shen, C. Toward end-to-end car license plate detection and recognition with deep neural networks. IEEE Transactions on Intelligent Transportation Systems, 2019, vol. 20, no. 3, pp. 2351–2363. DOI: 10.1109/TITS.2016.2639020.
Makarichev, V. O., Lukin, V. V., Brysina, I. V. On estimates of coefficients of generalized atomic wavelets expansions and their application to data processing. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2020, no. 1 (93), pp. 44–57. DOI: 10.32620/reks.2020.1.05.
Li, F., Krivenko, S., Lukin, V. Two-step providing of desired quality in lossy image compression by SPIHT. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2020, no. 2(94), pp. 22–32. DOI: 10.32620/reks.2020.2.02.
Psyllos, A., Anagnostopoulos, C. N., Kayafas, E. Vehicle model recognition from frontal view image measurements. Comput. Standards Interfaces, 2011, vol. 33, no. 2, pp. 142–151.
Kranthi S., Pranathi K., Srisaila, A. Automatic number plate recognition. International Journal of Advancements in Technology, 2011, vol. 2, no. 3, pp. 408–422.
Slimani, I., Zaarane, A., Okaishi, W. A., Atouf, I., Hamdoun, A. An automated license plate detection and recognition system based on wavelet decomposition and CNN. Array, 2020, vol. 8, 100040. DOI: 10.1016/j.array.2020.100040.
Alam, N. A., Ahsan, M., Based, M. A., Haider, J. Intelligent System for Vehicles Number Plate Detection and Recognition Using Convolutional Neural Networks. Technologies, 2021, vol. 9, iss. 1. 9 p. DOI: 10.3390/technologies9010009.
Liubchenko, N., Nakonechnyi, O., Podorozhniak, A., Siulieva, H. Automation of vehicle plate numbers identification on one-aspect images. Advanced Information Systems, 2018, vol. 2, no. 1, pp. 52-55. DOI: 10.20998/2522-9052.2018.1.10.
Podorozhniak, A., Liubchenko, N., Heiko, H. Neyromerezheva systema rozpiznavannya avtonomera [Neural network system for license plates recognizing]. Control, Navigation and Communication Systems, 2020, vol. 4, no. 62, pp. 88-91. DOI: 10.26906/SUNZ.2020.4.088.
Lukin, V. V., Proskura, G. A., Vasilyeva, I. K. Comparison of algorithms for controlled pixel-by-pixel classification of noisy multichannel images. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2019, no. 4 (92), pp. 39–46. DOI: 10.32620/reks.2019.4.04.
Podorozhniak, A., Lubchenko N., Balenko, O., Zhuikov, D. Neural network approach for multispectral image processing. Proceeding of the 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, February 20-24, 2018, pp. 978–981. DOI: 10.1109/TCSET.2018.8336357.
Yaloveha, V., Hlavcheva, D., Podorozhniak, A., Kuchuk, H. Fire Hazard Research of Forest Areas based on the use of Convolutional and Capsule Neural Networks. 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON-2019), Lviv, July 2-6, 2019, pp. 828-832. – DOI: 10.1109/UKRCON.2019.8879867.
Podorozhniak, A., Liubchenko, N., Kvochka, M., Suarez, I. Usage of intelligent methods for multispectral data processing in the field of environmental monitoring. Advanced Information systems, 2021, vol. 5, no. 3, pp. 97–102. DOI: 10.20998/2522-9052.2021.3.13.
Pavlikov, V., Belousov, K., Zhyla, S., Tserne, E., Shmatko, O., Sobkolov, A., Vlasenko, D., Kosharskyi, V., Odokiienko, O., Ruzhentsev, M. Radar imaging complex with SAR and ASR for aerospace vechicle. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2021, no. 3 (99), pp. 63–78. DOI: 10.32620/reks.2021.3.06.
Tymochko, O., Larin, V., Kolmykov, M., Timochko, O., Pavlenko, V. Research of images filtration methods in computer systems. Advanced Information systems, 2021, vol. 5, no. 1, pp. 93–99. DOI: 10.20998/2522-9052.2021.1.13.
Cristianini, N., Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000. DOI: 10.1017/CBO9780511801389.
He, K., Gkioxari, G., Dollár, P., Girshick, R. Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, October 22-29, 2017, pp. 2980-2988, DOI: 10.1109/ICCV.2017.322.
Kuchuk, N., Merlak, V. On estimates of coefficients of generalized atomic wavelets expansions and their application to data processing. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2021, no. 1 (97), pp. 31–39. DOI: 10.32620/reks.2021.1.02.
Khan, A., Sohail, A., Zahoora, U., Qureshi, A. S. A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 2020, vol. 53, pp. 5455–5516. DOI: 10.1007/s10462-020-09825-6.
Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A. W. M. Selective Search for Object Recognition. International Journal of Computer Vision, 2013, vol. 104, pp. 154–171. DOI: 10.1007/s11263-013-0620-5.
Gavrylenko, S., Sheverdin, I., Kazarinov, M. The ensemble method development of classification of the computer system state based on decisions trees. Advanced Information systems, 2020, vol. 4, no. 3, pp. 5–10. DOI: 10.20998/2522-9052.2020.3.01.
SeeAuto. FF_GROUP. Available at: https://play.google.com/store/apps/details?id=usa.ff.seeauto&hl=uk&gl=US (accessed 30.08.2021).
NomeroffNet. Available at: https://nomeroff.net.ua (accessed 30.08.2021).
Du, Shan, Ibrahim, Mahmoud, Shehata, Mohamed, Badawy, Wael. Automatic License Plate Recognition (ALPR): A State-of-the-Art Review. IEEE Transactions on Circuits and Systems for Video Technology, 2013, vol. 23, no. 2, pp. 311–325.
DOI: https://doi.org/10.32620/reks.2021.4.07
Refbacks
- There are currently no refbacks.