Multi-stage deep learning method with self-supervised pretraining for sewer pipe defects classification
Abstract
Keywords
Full Text:
PDF (Українська)References
Cheng, J. C. P., Wang, M. Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques. Automation in Construction, 2018, vol. 95, pp. 155-171. DOI: 10.1016/j.autcon.2018.08.006.
Moradi, S., Zayed, T., Golkhoo, F. Review on Computer Aided Sewer Pipeline Defect Detection and Condition Assessment. Infrastructures, 2019, vol 4, no. 1, article id: 10. DOI: 10.3390/infrastructures 4010010.
Haurum, J. B., Moeslund, T. B. A Survey on image-based automation of CCTV and SSET sewer inspections. Automation in Construction, 2020, vol. 111, article id: 103061. DOI: 10.1016/j.autcon.2019.103061.
Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi, M.,Roccella, S., Oddo, C. M., Dario, P. Visual-Based Defect Detection and Classification Approaches for Industrial Applications – A SURVEY. Sensors, 2020, vol. 20, article Id: 1459. DOI: 10.3390/s20051459.
Li, Dawei., Xie, Qian., Yu, Zhenghao., Wu, Qiaoyun., Zhou, Jun., Wang, Jun. Sewer pipe defect detection via deep learning with local and global feature fusion. Automation in Construction, 2021, vol. 129, article id: 103823. DOI: 10.1016/j.autcon.2021.103823.
Li, Duanshun., Cong, A., Guo, S. Sewer damage detection from imbalanced CCTV inspection data using deep convolutional neural networks with hierarchical classification. Automation in Construction, 2019, vol. 101, pp. 199-208. DOI: 10.1016/j.autcon.2019.01.017.
Kumar, S. S., Mingzhu, W., Abraham, D. M., Jahanshahi, M. R., Tom, I., Cheng, J. C. Deep Learning–Based Automated Detection of Sewer Defects in CCTV Videos. Journal of Computing in Civil Engineering, 2020, vol. 34, iss. 1, Article Id: 4019047. DOI: 10.1061/(asce)cp.1943-5487.0000866.
Haurum, J. B., Moeslund, T. B. Sewer-ML: A Multi-Label Sewer Defect Classification Dataset and Benchmark. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 13456-13467.
Zhang, B., Tondi, B., Lv, X., Barni, M. Challenging the Adversarial Robustness of DNNs Based on Error-Correcting Output Codes. Security and Communication Networks, 2020, vol. 2020, article id: 8882494. DOI: 10.1155/2020/8882494.
Kolchinsky, A., Tracey, B. D., Wolpert, D. H. Nonlinear Information Bottleneck. Entropy, 2019, vol. 21, iss. 2, article id: 1181. DOI: 10.3390/e21121181.
Yang, L., Wang, Y., Miao, Z., Wang, J., Zhang, R. Contrastive Self-Supervised Hashing With Dual Pseudo Agreement. IEEE Access, 2020, vol. 8, pp. 165034 – 165043. DOI: 10.1109/ACCESS.2020.3022672.
Moskalenko, A., Moskalenko, V., Lysyuk, V., Zaretskyi, M. Sewer Pipe Defects Classification Based on Deep Convolutional Network with Information-extreme Error-correction Decision. Communications in Computer and Information Science, 2020, vol. 1158, pp. 253-263. DOI: 10.1007/978-3-030-61656-4_16.
Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., Tang, J. Self-supervised Learning: Generative or Contrastive. IEEE Transaction on Knowledge and Data Engineering, 2021. DOI: 10.1109/TKDE.2021.3090866.
Dovbysh, A., Shelechov, I., Khibovska, Ju., Маtiash, O. Informatsiyno-analitychna systema otsinyuvannya vidpovidnosti suchasnym vymoham navchal'noho kontentu spetsial'nosti kiberbezpeka [Information and analytical system for assessing the compliance of educational content specialties ciber security with modern requirements]. Radioelectronic and computer systems, 2021, vol. 1, pp. 70-80. DOI: 10.32620/reks.2021.1.06
DOI: https://doi.org/10.32620/reks.2021.4.06
Refbacks
- There are currently no refbacks.