Mathematical model of antenna with nonlinear characteristics for calculating the electromagnetic field in the Fresnel zone

Дмитро Вячеславович Грецьких, Василь Олександрович Алєксєєв, Андрій Володимирович Гомозов, Віктор Олександрович Катрич, Михайло Васильович Нестеренко

Abstract


The paper presents a mathematical model of radio-electronic systems (RES), which include antennas and their excitation paths with nonlinear characteristics. The model provides acceptable accuracy of RES quality indicator analysis and electromagnetic compatibility (EMC) for further practical design. General purpose: the development of a mathematical model of a transmitting multi-input radiating structure with nonlinear characteristics under the Fresnel zone. Objective: choice justification of a structural schema of a radiating multi-input system with a radiator that has a distributed nonlinear surface impedance; obtaining the nonlinear integral equations (NIE) related to the current density for radiators with distributed nonlinearity, excited by an arbitrary field distribution for solving the general analysis problem; obtaining a ratio for calculating focused electromagnetic fields (EMF) created by multi-input radiating structures with nonlinear characteristics in the Fresnel zone. The methods used in the paper are mathematical methods of electrodynamics and antennas theory with nonlinear elements (ANE), theory of microwave circuits, and multipoles. The following results were obtained. An electrodynamics approach is proposed to analyze the entire set of nonlinear effects arising in transmitting multi-input radiating structures with nonlinear characteristics. It allows considering the mutual influence of the transmitting and receiving antennas with nonlinear characteristics in the system itself and the electrodynamics interaction of the transmitting antenna with nonlinear characteristics with RES for other purposes. Component equations (NIE) of multi-input radiating structures that establish the relationship of amplitude-phase distribution at the inputs of radiators with distributed nonlinearity and amplitude-phase distribution on their surfaces are obtained. A mathematical model of multi-input radiator structures with nonlinear characteristics in the Fresnel zone for analysis purposes has been produced. Conclusions. The scientific novelty of the obtained results is as follows: a generalized theory of transmitting antennas of arbitrary configuration with nonlinear characteristics in the Fresnel zone, which makes it possible to analyze the characteristics of these antennas considering the positive and negative (beneficial and adverse) nonlinear effects that arise in them.

Keywords


multi-input radiating structure; antennas with nonlinear elements; nonlinear boundary conditions; nonlinear integral equations; multimode excitation; focusing of electromagnetic radiation

References


Shinohara, N. History and Innovation of Wireless Power Transfer via Microwaves. IEEE Journal of Microwaves, 2021, vol. 1, no. 1, pp. 218–228.

Li, N., et al. Majeed Focused transmitting array antenna at 5.8GHz for wireless power transmission. IEEE Wireless Power Transfer Conference (WPTC), 2020, pp. 94–97.

Geyi, W. The Method of Maximum Power Transmission Efficiency for the Design of Antenna Arrays. IEEE Open Journal of Antennas and Propagation, 2021, vol. 2, pp. 412–430.

Gomozov, A. V., Gretskih, D. V., Katrich, V. A., Nesterenko, M. V. Functional Neutralization of Small-size UAVs by Focused Electromagnetic Radiation. XXII International seminar / workshop on direct and inverse problems of electromagnetic and acoustic wave theory (DIPED–2017), 2017, pp. 187–189.

Makarenko, S. Y. Protyvodeystvye bespylotnыm letatel'nыm apparatam [Counteraction to unmanned aerial vehicles]. SPb, Naukoemkye tekhnolohyy Publ., 2020. 204 p.

Yasechko, M. M., Dokhov, A. I., Ivanets, M. G., Teslenko, O. V. Metody formirovaniya i fokusirovki elektromagnitnogo izlucheniya dlya vozdeistviya na radioelektronnye sredstva [Methods of formation and focusing of electromagnetic radiation for influencing radio-electronic means]. Kharkiv, KhUPS Publ., 2015. 220 p.

Bakhrakh, L. D., Beninson, L. S., Zelkin, E. G. Spravochnik po antennoi tekhnike [Antenna Technique Handbook]. Мoscow, 1997, Gl. 10, pp. 207–235.

Loyka, S. L. The influence of electromagnetic environment on operation of active array antennas: analysis and simulation techniques. IEEE Antennas and Propagation Magazine, 1999, vol. 7, no. 6, pp. 23–39.

Hausmair, K., Gustafsson, S., Sánchez-Pérez, C., Landin, P. N., Gustavsson, U., Eriksson, T., Fager, C. Prediction of Nonlinear Distortion in Wideband Active Antenna Arrays. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 11, pp. 4550–4563.

Luchaninov, A. I., Gavva, D. S., Krikun, E. V. Sovremennoe sostoyanie teorii i tekhniki elektrodinamicheskikh ustroistv s nelineinymi kharakteristikami poverkhnostnogo impedansa [The current state of the theory and technology of electrodynamic devices with non-linear characteristics of surface impedance]. Problemy telekommunikatsii – Problems of telecommunications, 2011, no. 1 (3), pp. 62–83.

Luchaninov, A. I., Gavva, D. S., Wide, S. R. Uvelichenie effektivnosti generatsii garmonik nelineinymi rasseivatelyami [Increasing the efficiency of harmonic generation by nonlinear scatterers]. Vostochno-Evropeiskii zhurnal peredovykh tekhnologii – Eastern European Journal of Advanced Technologies, 2014, vol. 4, no. 9(70), pp. 51–58. DOI: 10.15587/1729-4061.2014.26282.

Prudius, I. N., Golinskii, V. D., Storozh, V. G. Tranzistornye antenny-avtogeneratory SVCh-diapazona [Transistor self-oscillating antennas of the microwave range] Tekhnologiya i konstruirovanie v elektronnoi apparature – Technology and design in electronic equipment, 2007, no. 2, pp. 13 – 16.

Gretskih, D. V., Gomozov, A. V., Tsikalovskiy, N. M., Sharapova, E. V. Wireless radio power supply system for pilotless aircrafts. 10th International Conference on Antenna Theory and Techniques (ICATT-2015), 2015, pp. 202–204.

Gretskih, D. V., Luchaninov, A. I., Vishniakova, J. V., Katrich, V. A., Nesterenko, M. V. Electrodynamic Model of a Wireless Power Transmission System. XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-2018), 2018, pp. 80–85.

Gretskih, D. V., Luchaninov, A. I., Katrich, V. A., Nesterenko, M. V. Electrodynamic Approach to Designing Wireless Power Transfer Systems (Internal System Processes). 4th International Conference on Information and Telecommunication Technologiesand Radio Electronics (UkrMiCo-2019), 2019, pp. 1–6.

Luchaninov, A. I., Gretskih, D. V., Gomozov, A. V., Katrich, V. A., Nesterenko, M. V. Electrodynamic Approach to Designing WPT Systems with Accounting for Non-system Interactions. 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON-2019), 2019, pp. 107–111.

Gretskih, D., Luchaninov, A., Katrich, V., Nesterenko, M., Gomozov, A. Extemal Parameters of Wireless Power Transmission Systems. XXIVth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-2019), 2019, pp. 117–121.

Alieksieiev, V., Gretskih, D., Luchaninov, A., Lykhograi, V., Shcherbina, A. Applying the Electrodynamic Approach to Modeling Wireless Power Transmission Systems. XXVIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-2021), 2021, pp. 111–115.

Hrets'kykh, D. V. Rozvytok teoriyi system bezprovidnoyi peredachi enerhiyi. Avtoref. dys. … d-ra tekhn. nauk : 05.12.07 [Development of the theory of systems for wireless transmission of energy. author. dis. ... Dr. Tech. Sciences: 05.12.07]. Kharkiv, KhNURE Publ. 2021. 42 p.

Shifrin, Ya. S., Luchaninov, A. I., Omarov, M. A. Analiz antenn s raspredelennoi nelineinost'yu [Analysis of antennas with distributed nonlinearity]. Antenny – Antennas, 2000, no. 1, pp. 70–83.

Glisson, A. W. Equivalent Current Excitation for an Aperture Antenna Embedded in an Arbitrarily Shaped Impedance Surface. IEEE Trans., 2002, vol. AP-50, no. 7, pp. 966–969.

Stalzer, H. J., Fathy, A., Hessel, A., Shmoys, J. Effect of lossy Ground on Performance of Planar and Cylindrical Arrays. Radio Sci., 1990, vol. 25, no. 3–4, pp. 133–147.

Yoshitomi, K. Equivalent Currents for an Aperture in an Impedance Surface. IEEE Trans., 1994, vol. AP-42, no. 11, pp. 1554–1556.

Luchaninov, A. I., Gavva, D. S., Omarov, M. A., Krikun, E. V. Analiz antenn s raspredelennymi nelineinymi svoistvami. Chast' 1. Ispol'zovanie printsipa ekvivalentnosti [The antennas analysis with the distributed non-linear properties. Part 1. Usage of the equivalence principle]. Vostochno-evropeiskii zhurnal peredovykh tekhnologii – Eastern-European Journal of Enterprise Technologies, 2010, vol. 2, no. 3 (44), pp. 4–7. DOI: 10.15587/1729-4061.2010.2629.

Katsenelenbaum, B. Z. Vysokochastotnaya elektrodinamika [High-frequency electrodynamics]. Moscow, Science Publ., 1966. 240 p.

Omarov, M. A. Mnogomodovoe vozbuzhdenie antenn [Multimode excitation of antennas]. Radiotekhnika – Radio engineering, 2000, no. 116, pp. 44–49.

Luchaninov, A. I., Gavva, D. S., Sharapova, E. V. Nelineinye effekty v elementakh elektrodina¬micheskikh mikropoloskovykh ustroistv na osnove vysokotemperaturnykh sverkhprovodnikov [Nonlinear effects in the elements of electrodynamic microstrip devices based on high-temperature superconductors]. Kharkov, Collegium Publ., 2015. 159 p.

Chaplin, A. F. Analiz i sintez antennykh reshetok [Analysis and synthesis of antenna arrays]. Lviv, Vishcha school. Lviv State University Publ., 1987. 180 p.

Fel'd, Ya. N., Benenson, L. S. Osnovy teorii antenn: uchebnoe posobie dlya vuzov [Fundamentals of antenna theory: a textbook for universities]. Moscow, Drofa Publ., 2007. 491 p.

Sazonov, D. M. Antenny i ustroistva SVCh [Antennas and microwave devices]. Moscow, Higher school Publ., 1988. 432 p.

Hansen, R. C, Bailin, L. L. A new method of near field analysis. IRE Trans. Antennas Propagat, 1959, vol. 7, pp. 458–467.

Hansen, R. C. Apertures. New York, London, Academic Press Publ., 2014. 462 p. Analytical Techniques: Microwave Scanning Antennas, New York, Academic Press Publ., 1964. vol. 1. 442 p.

Walter, C. H. Traveling Wave Antennas. New York, McGraw-Hill Publ., 1965. 429 p.




DOI: https://doi.org/10.32620/reks.2021.4.04

Refbacks

  • There are currently no refbacks.