Model and training method for water level classification in sewer pipes based on video inspection data
Abstract
Keywords
Full Text:
PDF (Українська)References
Moradi, S., Zayed, T., Golkhoo, F. Review On Computer Aided Sewer Pipeline Defect Detection And Condition Assessment. Infrastructures, 2019, vol. 4, no. 1, Article Id: 10. DOI: 10.3390/infrastructures4010010.
Haurum, J. B., Moeslund, T. B. A Survey on image-based automation of CCTV and SSET sewer inspections. Automation in Construction, 2020, vol. 111, Article Id: 10306. DOI: 10.1016/j.autcon.2019.103061.
American Society of Civil Engineers (ASCE). 2017 Infrastructure Report Card – Wastewater. Available at: https://www.infrastructurereportcard.org/wp-content/uploads/2017/01/Wastewater-Final.pdf (accessed 05.05.2021).
Cheng, G. C. P. Wang M. Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques. Automation in Construction, 2018,vol. 95, pp. 155-171. DOI: 10.1016/j.autcon.2018.08.006.
Lim, B., Zohren, S. Time-series forecasting with deep learning: a survey. Philosofical Transactions of the Royal Society A, 2021, vol. 379, no. 2194. 14 p. DOI: 10.1098/rsta.2020.0209.
Kirstein, S., Müller, K., Walecki-Mingers, M., Deserno, T. M. Robust adaptive flow line detection in sewer pipes. Automation in Construction, 2012, vol. 21, pp. 24-31. DOI: 10.1016/j.autcon.2011.05.009.
Halfawy, M. R., Hengmeechai, J. Integrated Vision-Based System for Automated Defect Detection in Sewer Closed Circuit Television Inspection Videos. Journal of Computing in Civil Engineering, 2015, vol. 29, no. 1. DOI: 10.1061/(ASCE)CP.1943-5487.0000312.
Ji, H. W., Yoo, S. S., Lee, B.-J., Koo, D. D., Kang, J.-H. Measurement of Wastewater Discharge in Sewer Pipes Using Image Analysis. Water, 2020, vol. 12, no. 6, Article Id: 1771. DOI: 10.3390/w12061771.
Zhan, H., Shi, B., Duan, L.-Y., Kot, A. C. Deepshoe: An Improved Multi-Task View-Invariant CNN For Street-To-Shop Shoe Retrieval. Computer Vision and Image Understanding, 2019, vol. 180, pp. 23-33. DOI: 10.1016/j.cviu.2019.01.001.
Zhang, B., Tondi, B., Lv, X., Barni, M. Challenging the Adversarial Robustness of DNNs Based on Error-Correcting Output Codes. Security and Communication Networks, 2020, vol. 2020, Article Id: 8882494. DOI: 10.1155/2020/8882494.
Dovbysh, A. S., Shelekhov, I. V., Khibovs'ka, Yu. O., Matyash, O. V. Informatsiyno-analitychna systema otsinyuvannya vidpovidnosti suchasnym vymoham navchal'noho kontentu spetsial'nosti kiberbezpeka [Information and analytical system for assessing the compliance of educational content specialties ciber security with modern requirements]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2021, vol. 1, pp. 70-80. DOI: 10.32620/reks.2021.1.06.
DOI: https://doi.org/10.32620/reks.2021.2.01
Refbacks
- There are currently no refbacks.