MULTI-LAYER MODEL AND TRAINING METHOD FOR MALWARE TRAFFIC DEETECTION BASED ON DECISION TREE ENSEMBLE
Abstract
Keywords
Full Text:
PDF (Українська)References
Skrzewski, M. Flow Based Algorithm for Malware Traffic Detection. Proc. of the 18th Conference Computer Networks (Communications in Computer and Information Science), Ustroń, Poland, 2011, vol. 160, pp. 271-280. DOI: 10.1007/978-3-642-21771-5_29.
Berkay Celik, Z., Walls, R., McDaniel, P. and Swami, A. Malware traffic detection using tamper resistant features. MILCOM 2015 – 2015 IEEE Military Communications Conference, 2015, pp. 330–335. DOI: 10.1109/MILCOM.2015.7357464.
Ferreira, D. C., Vázquez F. I., Vormayr, G. A meta-Analysis approach for feature selection in network traffic research. Proceedings of the Reproducibility Workshop. ACM, 2017, pp. 17-20
Yousefi-Azar, M., Varadharajan, V., Hamey, L., Tupakula, U. Autoencoder-based feature learning for cyber security applications. Proc. of the 2017 International Joint Conference on Neural Networks (IJCNN). Anchorage, Alaska, USA, 2017, pp. 3854-3861. DOI: 10.1109/IJCNN.2017.7966342.
Wang, W. Zhu, M., Zeng, X., Ye, X., Sheng, Y. Malware traffic classification using convolutional neural network for representation learning. Proc. of the 31st International Conference on Information Networking (ICOIN 2017). Da Nang, Vietnam, 2017, pp. 712-717. DOI: 10.1109/ICOIN.2017.7899588.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. Going deeper with convolutions. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 1-9. DOI: 10.1109/CVPR.2015.7298594.
Zhao, B., Lu, H., Chen, S., Liu, J., Wu,D. Convolutional neural networks for time series classification. Journal of Systems Engineering and Electronics, 2017, vol. 28, no. 1, pp. 162-169. DOI: 10.21629/JSEE.2017.01.18.
Feng, Q. Chen, C. L. P., Chen, L. Compressed auto-encoder building block for deep learning network. Proc. of the 3rd International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS), Jinzhou, 2016, pp. 131-136. DOI: 10.1109/ICCSS.2016.7586437.
Tang, J., Wang, D., Zhang, Z., He, L., Jing, X., Xu, Y. Weed identification based on K-means feature learning combined with convolutional neural network. Computers and Electronics in Agriculture, 2017, vol. 135, pp. 63-70. DOI: 10.1016/j.compag.2017.01.001.
Labusch, K., Barth, E., Martinetz, T. Sparse coding neural gas: learning of overcomplete data representations. Neurocomputing, 2009, vol. 72, iss. 7-9, pp. 1547-1555. DOI: 10.1016/j.neucom.2008.11.027.
Mrazova, I., Kukacka, M. Image Classification with Growing Neural Networks. International Journal of Computer Theory and Engineering, 2013, vol. 5, no. 3, pp. 422-427. DOI: 10.7763/IJCTE.2013.V5.722.
Palomo, E. J., López-Rubio, E. The Growing Hierarchical Neural Gas Self-Organizing Neural Network. IEEE Transactions on Neural Networks and Learning System, 2017, vol. 28, no. 9, pp. 2000-2009. DOI: 10.1109/TNNLS.2016.2570124.
Li, H.-T., Lin, S.-C., Chen, C.-Y., Chiang, C.-K. Layer-Level Knowledge Distillation for Deep Neural Network Learning. Applied Sciences, 2019, vol. 9, pp. 1966. DOI: 10.3390/app9101966.
Zhou, Y., Zhou, Z., Hooker, G. Approximation Trees: Statistical Stability in Model Distillation. ArXiv, 2018, vol. abs/1808.07573.
Kim, S., Yu, Z., Man Kil, R., Lee, M. Deep learning of support vector machines with class probability output networks. Neural Networks, 2015, vol. 64, pp. 19-28. DOI: 10.1016/j.neunet.2014.09.007.
Moskalenko, V., Moskalenko, A., Korobov, A., Semashko, V. The model and training algorithm of compact drone autonomous visual navigation system. Data, vol. 4, iss. 1, 2019, pp. 1-14. DOI: 10.3390/data4010004.
Gwon, Y., Cha, H., Kung, H.T. Deep Sparse-coded Network (DSN). International Conference on Pattern Recognition (ICPR), 2016, pp. 2610–2615. DOI: 10.1109/ ICPR.2016.7900029.
Moskalenko, V. V., Moskalenko, A. S., Zarecz`ky`j, M. O. Model' i alhorytm navchannya detektora shkidlyvoho trafiku na osnovi modyfikatsiyi zrostayuchoho neyronnoho hazu [Model and training algorithm of malware traffic detector based on modification of growing neural gas]. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2018, no. 3(87), pp. 11-19, 2018. DOI: 10.32620/reks.2018.3.02.
DOI: https://doi.org/10.32620/reks.2020.2.08
Refbacks
- There are currently no refbacks.