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ANALYSIS OF PACKET LOSS PROBABILITY MODELS
IN A ROUTER BUFFER BASED ON TRAFFIC FRACTALITY

The subject of this study is various types of network traffic in modern computer networks with a complex struc-
ture and a certain degree of self-similarity. Efficient use of network resources and ensuring the quality of service
to subscribers are important tasks of computer networks. The probability of losing a message due to buffer
storage device overflow is an important parameter in determining the quality of service (QoS). The mathematical
model should be used to estimate this parameter. Recent advancements have resulted in many different models
of packet loss probability in a router buffer. However, many models do not consider the traffic characteristics
of various modern applications and protocols. The traffic in modern computer networks has a complex structure
and often has a certain degree of self-similarity. Currently, a large number of models are available for estimating
the probability of packet loss due to buffer overflow. The goal of this work is to perform a comparative analysis
of such models and provide recommendations for their use and to estimate the influence of network traffic frac-
tality on the probability of packet loss in a router due to buffer overflow. The tasks to be solved are as follows:
1) to conduct an analysis of analytical models that describe the packet loss probability in a router considering
the influence of fractality and without it; 2) to construct the dependencies of the packet loss probability in the
router on the data transmission channel load for different buffer capacity values, the Hurst exponent, and traffic
deviation; and 3) to describe the dependences of the packet loss probability on the buffer capacity for different
channel load values. Comparative analysis of various methods of fractal traffic modeling and simulation with
different storage capacity, Hurst exponent, deviation coefficients, and channel load factor values is used. The
following results were obtained: 1) The M/M/1 queuing system model gives the most optimistic estimate. This
estimate can be used as a lower bound for the message loss probability for a given buffer capacity and a channel
load factor; 2) the highest message loss probability was observed when using queuing systems with a Hurst
exponent of 0.95; 3) the packet loss probability also increased with an increasing traffic fractality and deviation
coefficient; 4) the influence of fractality decreased with an increase in the buffer capacity was found; 5) an
objective estimation of the message loss probability due to a router buffer overflow can only be made by consid-
ering the nature of the traffic. Conclusions. The main contribution of this research is that various types of net-
work traffic have a fractal nature, and the traditional methods of route service specification, such as traffic using
the M/M/1 queuing model, give more errors. Because of the research conducted to reduce the impact of traffic
fractality, increasing the capacity of buffer storage devices is necessary.
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1. Introduction The traffic in modern computer networks has a complex
structure and often has a certain degree of self-similarity.
1.1. Motivation Currently, a large number of models are available for es-

timating the probability of packet loss due to buffer over-
flow. This paper aims to conduct a comparative analysis

Computer networks are the main component of
P P of such models and recommendations for their use.

modern information systems. Efficient use of network re-
sources and ensuring the quality of service to subscribers
are important tasks of computer networks. The probabil-
ity of losing a message due to buffer storage device over-
flow is an important parameter in determining service

quality. The mathematical model should be used to esti- net traffic have different degrees of self-similarity. An-
mate this parameter. other study by Dymora et al. [2] demonstrated that self-

Recent advancements have resulted in many differ- similar traffic occurs in the Internet of Things. Millan et
al. [3] demonstrated that traffic in local networks is also
fractal.

1.2. State of the Art

Research [1] has shown that different types of Inter-

ent models of packet loss probability in a router buffer.
However, many models do not consider the traffic char-
acteristics of various modern applications and protocols.
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Analysis of real data traffic in existing and future
computer networks has shown the incorrectness of using
Poisson models to determine their probabilistic-time
characteristics [1].

In the study [4], an approach that allows one to
demonstrate that the self-similarity of networks is de-
fined by the patterns of intersection between dense net-
work communities is presented. Using this natural and
intrinsic to the network’s framework, fractal networks
can be rigorously defined and their properties linked.

The most common traffic models are described in
detail in the study [5]. Traffic models enable network de-
signers to make assumptions about the networks being
designed based on experience and enable performance
prediction for future requirements.

The TCP connection arrival process is asymptoti-
cally self-similar. The self-similarity of such an arrival
process implies that the use of standard models in evalu-
ating the performance of resource allocation methods can
yield misleading results. Therefore, the TCP connection
is characterized by interarrival times using heavy-tailed
distributions. Such distributions, especially the Weibull
distributions, yield a better model than exponential mod-
els for the interarrival times of the TCP connections [6].

A previous study [7] aimed to observe network traf-
fic and determine whether there are long-term dependen-
cies in all network working times and above-hour inter-
vals. The results confirmed that the traffic has a self-sim-
ilar nature to the degree of self-similarity in the range of
0.5 to 1. The parameter H is larger when network use is
higher and the self-similarity property in the network
traffic dominates the network performance.

A previous study [8] demonstrated that methods for
computing network characteristics (such as network
throughput and delivery time) based on Markov models
give unreasonably optimistic estimates. This leads to un-
derestimation of the load and, consequently, the impossi-
bility of providing the required quality of service.

This study [9] analyzed traffic flows in high-speed
computer networks using a minimum quantity of time se-
ries points that must contain estimates of the Hurst expo-
nent. An experiment using estimators applied to a time
series provides an accurate determination of the Hurst ex-
ponent.

The paper [10] provided a comprehensive overview
of approaches to Synthetic network traffic generation It
covers essential aspects, such as data types, generation
models, and evaluation methods, including traditional
statistical methods and deep learning-based techniques.
This study also addresses the issues of generating realis-
tic fractal traffic models for simulations and evaluating
new modeling methods that may better reflect real net-
work behavior than classical M/M/1 models.

In the study [11], an innovative feature selection
(FS) method was proposed to filter out Distributed Denial

of Service (DDoS) attacks in software-defined networks
(SDN) using machine learning. Traffic characteristics
(including potential fractal properties) can be used to im-
prove the reliability and efficiency of attack detection. It
considers how traffic fractal properties can be indicators
of DDoS attacks and how SDN can be used to detect and
prevent them.

The paper [12] investigated the impact of Wireless
Mesh Networks (WMNs) topology on performance met-
rics, including latency, throughput, and reliability, across
a range of fractal dimensions. This study contains com-
parative evaluations against classical random, small-
world network models. In this study, we show how the
fractality of the topology affects traffic characteristics
such as throughput, latency, jitter, and packet delivery ra-
tio. A comparative analysis is conducted against classical
random networks, small-world, and scale-free network
models.

A previous study [13] proposed a method that pre-
dicts router load by analyzing the fractal dimension of
network traffic to reduce the probability of packet loss.
This study investigates the impact of different traffic
fractal dimensions on the probability of packet loss and
the quality of service at high traffic intensity. Fractal traf-
fic analysis significantly reduces the number of lost pack-
ets compared to the existing method without prediction.

Thus, recent advancements have resulted in many
different models and methods for computing network
metrics and characteristics, which consider network traf-
fic self-similarity and fractality. However, a current task
is a comparative analysis of such models and recommen-
dations for their use, as well as estimating the influence
of network traffic fractality on the packet loss probability
in a router due to buffer overflow.

1.3. Obijectives and Approach

This study aims to estimate the influence of network
traffic fractality on the probability of packet loss in a
router due to buffer overflow. In accordance with the re-
search goal, the following tasks must be solved:

1. Analyze analytical models that describe the
packet loss probability in a router.

2. To simulate the estimation of the dependences of
the probability of packet loss on different factors, which
are described in analytical models considering the net-
work traffic fractality.

3. To develop recommendations for using different
packet loss probability models in a router.

The article is organized as follows:

Section 2 describes the problem of estimating the
influence of network traffic fractality on the packet loss
probability in a router due to buffer overflow, as well as
the assumptions and developing the methodology for
solving research tasks.
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Section 3 analyzes analytical models that describe
the packet loss probability in a router, considering the in-
fluence of fractality.

Section 4 provides experiments and illustrative ex-
amples of the dependence of the probability of packet
loss on the load factor for different buffer capacity, chan-
nel load (utility), and Hurst Exponent sizes.

Section 5 contains a discussion of the obtained re-
sults and recommendations.

Section 6 concludes the article by summarizing the
conclusions and describing further research and develop-
ment directions.

2. Methodology

Traditionally, various types of Queuing Theory
models are used to simulate router operations. The
M/M/1 system with a limited queue length is the simplest
mathematical routing model. It assumes an exponential
distribution of the packet delivery and processing times.
This model describes the simplest data flows that do not
always correspond to reality. The analytical expressions
of this model allow for obtaining specific values for the
gueue waiting time and packet loss probability.

The G/G/1 model is more general and flexible. This
model does not impose strict restrictions on packet deliv-
ery distribution and processing times. It allows consider-
ing traffic variability through deviation coefficients (CZ,
C}). Using G/G/1 allows moving from unrealistic scenar-
ios to real network conditions, where traffic does not al-
ways correspond to exponential distributions.

Modern network traffic (HTTP, video, loT, P2P)
has a self-similarity and fractal nature. Therefore, re-
cently developed models allow the fractality of traffic to
be considered against traditional models of queuing the-
ory. Some models allow the fractality of traffic to be con-
sidered using the Hurst exponent. Another approach is to
use special distribution laws of packet arrival (Pareto,
Weibull) instead of the exponential distribution. Such
distributions more accurately describe the fractal struc-
ture of the router’s input packet flow.

The influence of network traffic fractality on the
probability of packet loss due to buffer overflow in a
router is estimated. The basic estimation algorithm can
be divided into several stages.

The first stage involves the analysis of analytical
models that describe the packet loss probability in a
router using the Queuing Systems (QS) model M/M/1,
G/G/1, and additionally considering the influence of frac-
tality using the self-similarity parameter (Hurst Expo-
nent). In this stage, the most commonly used distributions
for fractal traffic modeling and their characteristics, such
as the Mathematical expectation and variance, are con-
sidered.

The second stage proposes a loss probability for-
mula for a G/M/1 system.

The next stage is to explore the dependencies of the
packet loss probability in the router on the data transmis-
sion channel load for different buffer capacity, the Hurst
exponent, and traffic deviation values. In this stage, var-
ious types of traffic in modern computer networks are in-
vestigated, and the values of the Hurst Exponent for most
applications are assumed.

In the last stage, the simulation is conducted to esti-
mate the dependence of the probability of packet loss on
storage capacity, Hurst Exponent, deviation coefficients,
and data transmission channel load factor.

The following sections present a comparative anal-
ysis of various methods of fractal traffic modeling and
simulation with different storage capacity, Hurst Expo-
nent, deviation coefficients, and channel load factor val-
ues.

3. Packet loss probability models

Currently, the main model is the Queuing Sys-
tems (QS) model M/M/1, which assumes that the time of
arrival and processing requests are exponentially distrib-
uted [14].

1_
Poss = TV\’;—}-], * PW/ 1)

where p = ?—1 < 1 — service channel load factor;

A —input flow intensity;

u — output flow intensity;

W — storage capacity measured in packets.

A general expression for the probability of packet
loss in the G/G/1 system was obtained in the study [2].

2
W(c§+cﬁ)

1_
Pioss = —pZ *p 2

212y
1_p(w+1)(c>»+cu)

where C2 = (%)2 — squared deviation coefficient of
the input flow;

Ch= (%)2 - squared deviation coefficient of
the output flow.

If the input and output flows are exponentially dis-
tributed, then C} = Cj = 1, which means that expres-

sion (2) is transformed into expression (1) for the M/M/1
system. Millan et al [3] proposed estimating the packet
loss probability using the self-similarity parameter (Hurst
Exponent). The expression for the probability of loss is
defined as follows:

_ 1-p W2(1—H)
Ploss = 1_p(w+1)2(1—1-1) * 3)
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If Hurst Exponent H=0.5, then the process doesn’t
have a fractal property. In this case, expression (3) is
transformed into expression (1). If Hurst Exponent H=1,
then the process is completely self-similar and has a frac-
tal property.

The characteristics of some distributions are shown
in Table 1. The Pareto distribution is the most commonly
used distribution for fractal traffic modeling. The ad-
vantage of this distribution is its ability to determine the
fractal traffic using its parameters. The disadvantage is
that it has infinite variance, which means that input traffic
is highly variable. Therefore, this distribution cannot be
used.

Table 1
Characteristics of some distributions
Distribu- Mathematical Variance
tion expectation
Pareto ax*f3 o * B2
a—1 (a—1) * (a—2)
for « <1, | for a < 2 variance
doesn’t exist | doesn’t exist
Weibull <a+2) a+2
r 2 r( )
Bxr(— B2« [P (—
a+1
— FZ ( )]
(04
Log- a+§ eB?t2ra y (eB” — 1)
normal €
Gamma ax*B o x B2

Alongside the Pareto distribution, the Weibull dis-
tribution is most often used in fractal traffic modeling.
The probability distribution for the Weibull distribution
is defined as follows:

Fx)=1- e_(%)a, 4)

where a,  — scale parameter and the shape parameter of
the distribution.

The study [6] demonstrated that traffic models with
long-term dependence (in particular, models based on
fractal Brownian motion) lead to an asymptotic distribu-
tion of Weibull-type tail probabilities:

P(x < B)~e-(B* 7" (5)

where y — constant value;

P(x < b) —the probability that the parameter x (for
example, the queue length) is greater than the parameter
B;

H — is the Hurst Exponent (self-similarity parame-
ter). The Hurst Exponent H represents a measure of the
statistical phenomenon stability or the long-term depend-
ence over time. The value H = 5.0 indicates that there
isn't long-term dependence. The closer the value of H is
to 1, the higher the degree of stability of the long-term
dependence. Research on the various types of traffic in
modern computer networks assumes values of the Hurst
Exponent for most applications between 0.5and 1 (0.5 <
H < 1.0) [14].

Based on expression (2) the parameter o of the
Weibull distribution can be expressed through the Hurst
Exponent as follows:

a=2-2H (6)

Therefore, during the investigation of a queuing
system (G/G/1) with priorities and fractal input traffic,
the parameter o of the Weibull distribution will be in the
interval 0 < a < 1.

The following formula can be used to calculate the
probability of loss when using ATM technology.

d —
Boss = 5oy * AP Qe x D HWIE (@)

where [3 — parameter related to the Hurst Exponent by the
following way 3 = 3 — 2H;

T — average transmission time from one source;

A — flow intensity of one source;

As —cumulative flow intensity from several sources;

d —normalizing coefficient.

This formula is empirical, and its application is lim-
ited to ATM technology. For G/M/1 type QS models with
the input flow described by the Gamma with the distribu-
tion parameter 0.5, the following loss probability formula
is proposed for such a system [6]:

o [P0 a W+1
(1 (G 2>> *<2+ (s—6+§)) (®)

loss — - Wtz
_(2 pz.p
1 <4+ (16+2>>

4. Simulation results

To conduct the research, the dependencies
Poss = f(p) were constructed (using formulas (1), (2),
(3)) for different values of W = {5,10,15,20} taking into
account different values of the Hurst Exponent
H = {0.6,0.8,0.95} and for different deviation coeffi-
cients C = {4,20} (shown in Fig. 1). The dependencies
Poss = f(W) were also constructed for different values of
p ={0.2,0.4,0.5,0.6} (shown in Fig. 2).
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Fig. 1. Dependences of the probability of packet loss on the load factor P, = f(p)
for different sizes of the buffer capacity

A program in Python was written to obtain depend-
ency graphs. The NumPy and Matplotlib libraries were
used for numerical computation and chart visualization.

The most optimistic estimation is given by for-
mula (1) for the QS model M/M/1, which follows from
the above dependencies. This evaluation can be used as a
lower bound for the message loss probability for a given
buffer capacity W and channel load factor p. The highest
message loss probability is observed when using QS with
a Hurst parameter of 0.95. Increasing the traffic fractality
and deviation coefficient increases the packet loss prob-
ability B,¢. The influence of fractality decreases as the
buffer capacity increases.

The given graphs show that an objective evaluation
of the packet loss probability due to buffer storage over-
flow can only be made by considering the nature of the
traffic. Otherwise, this probability can be determined
with a large degree of error. Based on the type of traffic
and its fractality in accordance with Table 2 and Formula
2, the range of packet loss probability can be determined.

Each type of traffic has its own degree of fractality
(Table 2).

The main types of network traffic have a Hurst Ex-
ponent greater than 0.6 (Table 2). For such traffic, the
probability of message loss should be determined using
formula (3).
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Fig. 2. Dependence of the probability of packet loss on the buffer capacity P,. = f(W)
for different channel loads (utility)
Table 2 5. Case study
Fractality of different traffic types
Types of traffic Degree of traffic fractality (H) To verify the optained results, a simulation model
Ethternet 06-09 was devgloped that s-lmulat-es a three-way computer n(.at—
Industry Ethernet 0608 work (Fig. 3). The simulation used a topology compris-
loT 0' 5_0'7 ing three parallel paths, each with routers of the same per-

formance and data transmission channels of equal band-

HTTP 0.75-092 width. The same amount of RAM is allocated to all flows
Video 0.6-0.9 . . .

Audi 0609 in all routers. This model is used for the parallel trans-
F:]2Fl>o 0l6_0.9 mission of three data flows. An input flow is transmitted

along each path with the same intensity but with different
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Fig. 3. Computer network scheme

fractality (traffic burstiness). The first input flow simu-
lates the non-phractal traffic and is described by the ap-
plication receipt exponential law. The second and third
flows simulate fractal traffic with varying degrees of
fractals.

The simulation results are as follows. With a buffer
size of 3 on each router equal to 3 (shown in Fig.4), the

percentage of packet losses for normal traffic increases
slightly with increasing inbound traffic intensity. With a
small fractality (C=2.14), the percentage of transmission
losses along a route consisting of three routers increases
much faster. For high fractal traffic (C=5.1), the percent-
age of losses grows much faster.

Figure 5 shows that the loss percentage is signifi-
cantly lower for all types of traffic with a router buffer

I iho exponential flow
. the arbitrary flow with a cosfficient C=2.14
s the arbitrary flow with a coefficient C=5.1

Percentage of loss

Load factor = 0.2

Load factor = 0.4

28.64

Lead factor = 0.6

Fig. 4. The dependency of the percentage loss on the load factor at buffer size equal to 3
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size equal to 5. Figure 6 shows that with a buffer size of  in the case of transmission of non-fractal traffic to reduce

7, the loss rate increases more slowly than with a buffer  the percentage of losses during fractal traffic transfer.

size of 5 and significantly less than with a buffer size of 3. This confirms the theoretical results obtained above.
From the graphs shown, it can be concluded that a

significantly larger buffer volume must be allocated than

. the exponential flow 17.65

m the arbitrary flow with a coefficient C=2.14
i the arbitrary low with a coefficient C=5.1

17.5 1

15.0

K

5
[ ]

1.5 1

Percentage of loss

5.0 1

2.5 1

0.0 -

Load factor = 0.2 Load factor = 0.4 Load factor = (0.6

Fig. 5. The dependency of the percentage loss on the load factor at buffer size equal to 5

11.1%

. the exponantial flow

. the srbitrary flow with & coefficient C=2.14
I the arbitrary flow with a coafficient C=5.1
10

Percentage of loss
=1}

0.0 011

Load facter = 0.2 Load factor = 0.4 Load factor = 0.6

Fig. 6. The dependency of the percentage loss on the load factor at buffer size equal to 7
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6. Discussion

According to the experimental results, when com-
paring the packet loss probability models in a router
based on traffic fractality and the dependences of the
packet loss probability on the load factor for different
buffer capacity, channel load (utility), and Hurst Expo-
nent sizes, we can conclude that:

- the most optimistic estimate is given by the M/M/1
queuing system model. This estimate can be used as a
lower bound for the probability of message loss.

- the highest message loss probability was observed
when queuing systems with a Hurst exponent of 0.95
were used. This can be explained by the fact that increas-
ing traffic fractality also increases the packet loss proba-
bility.

- the influence of fractality decreases with an in-
crease in the buffer capacity.

To determine the probability of packet loss on the
router depending on the volume of the storage device and
the load factor of the transmission channel, using the
fractality values for different types of traffic and formula
(3) is recommended.

The proposed model can also be used to solve the
inverse problem to calculate the minimum required ca-
pacity of the storage device based on the channel load
factor and the requirements for the probability of packet
loss. In the case that the measurement of traffic fractality
is not possible, formula (2) is recommended to calculate
the capacity of the storage device for the router.

7. Conclusions and Further Research

A comparative analysis of packet loss probability
models in a router based on traffic fractality is presented.

The dependencies of the probability of packet loss
Pioss=f(p) and Pioss=f(W) were constructed, and recom-
mendations for these mathematical models were devel-
oped.

The present work has shown that various types of
network traffic have a fractal nature. This study high-
lights that the traditional methods of route service speci-
fication, such as traffic using the M/M/1 queuing model,
give more errors.

Increasing traffic fractality and deviation coeffi-
cient increases the probability of message loss. The influ-
ence of fractality decreases as the buffer capacity in-
creases.

The given Pioss=f(p) and Pioss=f(W) graphs show that
an objective evaluation of the packet loss probability due
to buffer storage overflow can only be made by consid-
ering the traffic type and its fractality. Otherwise, this
probability can be determined with a large degree of er-
ror. To reduce the impact of traffic fractality, it is neces-
sary to increase the capacity of buffer storage devices.

The proposed models and dependencies enable the
selection of the router buffer size to achieve the required
packet loss probability, considering the intensity and traf-
fic fractality. To achieve this, the traffic intensity and its
fractal nature must be estimated. The traffic fractality can
be obtained based on the type of traffic (see Table 2) or
by special measurements of the Hurst exponent.

The main scientific novelty and special scientific
contribution of this study are as follows:

1. Evidence and quantification of the fractal nature
of modern network traffic. This study empirically and an-
alytically demonstrates that various types of network
traffic in modern computer networks (e.g., Ethernet, In-
dustrialEthernet, 10T, HTTP, Video, Audio, and P2P)
have a fractal nature and a significant degree of self-sim-
ilarity, which is confirmed by the values of the Hurst ex-
ponent (H> 0.6 for most types of traffic). This is a funda-
mental difference from the traditional assumptions about
the Poisson traffic.

2. Identification of inaccuracies of traditional Queu-
ing System models. This study shows that using the clas-
sical M/M/1 Queuing Model to estimate the probability
of packet loss in a router buffer leads to significantly un-
derestimated (too "optimistic") and therefore erroneous
results under fractal traffic conditions. This emphasizes
the need to rethink traditional approaches to network de-
sign and management.

3. The impact of fractality and the deviation coeffi-
cient are quantified. In this paper, we constructed graph-
ical dependencies based on the proposed models. These
dependencies clearly demonstrate that the probability of
packet loss increases significantly with an increase in
traffic fractality (when the Hurst exponent tends to 1) and
the deviation coefficient. These results allow for a quan-
titative estimation of packet loss probability and waiting
time for different types of traffic.

4. Influence of fractality on the buffer capacity. The
main practical result is that the impact of traffic fractality
on the probability of packet loss decreases with increas-
ing buffer storage capacity. This provides a straightfor-
ward engineering solution for minimizing the negative
effects of fractality.

5. Rationale for the need to consider the nature of
network traffic for an objective assessment. The paper
emphasizes that an objective assessment of the probabil-
ity of packet loss due to a router buffer overflow is pos-
sible only if the nature of the traffic (i.e., its type and de-
gree of fractality) is considered. Failure to consider these
characteristics leads to high calculation errors.

6. Specification of the practical recommendations.
Based on the analysis and simulations, the authors offer
specific recommendations on the use of formula (3) to
determine the probability of packet loss, considering
fractality. They also highlight the need to increase buffer
capacity to reduce the impact of traffic fractality.
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In addition, a methodology is proposed for solving the
inverse problem, i.e., calculating the minimum required
buffer capacity based on the requirements for the packet
loss probability and the channel load factor.

Thus, the novelty and contribution of the paper are
the comprehensive approach to the packet loss problem.
Unlike many previous works, the proposed approach not
only recognizes the existence of fractal traffic but also
quantitatively studies its impact on the performance of
router buffers, while offering practical recommendations
for designing more reliable and efficient networks.

Future research directions:

- the formation of a model of packet loss probability
in a router buffer for different internetworking technolo-
gies other than ATM and analysis of the impact of differ-
ent network technologies (e.g., software-defined net-
working (SDN), network function virtualization (NFV))
on the management of fractal traffic and packet loss;

- research on the consequences of fractal traffic for
Quality of Service (QoS) guarantees - affect delay, jitter,
and other QoS metrics;

- research on the potential connection between frac-
tal traffic characteristics and Distributed Denial of Ser-
vice (DDoS) attacks;

- research on network topology's influence on the
propagation of fractal traffic characteristics and its im-
pact on packet loss at individual routers.

Contribution of the authors: Conceptualization,
methodology, packet loss probability models — Kyrylo
Rukkas; simulation of the dependencies of packet loss
on the load factor Pi.ss=f(p) for different sizes of the
buffer capacity — Anastasiia Morozova; simulation of
the dependencies of packet loss on the buffer capacity
Piss=f(W) for different channel load (utility) — levgen
Meniailov; formation of different values (of the Hurst
Exponent, deviation coefficients, buffer capacity, load
factor) for simulation — Myroslav Momot.
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AHAJII3 MOJIEJIEM HUMOBIPHOCTI BTPATHU ITAKETIB Y BY®EPI MAPIIPYTU3ATOPA
3 YPAXYBAHHSAM ®PAKTAJIBHOCTI TPA®IKY

K. M. Pykkac, A. I. Moposoea, €. C. Mensaiinoe, M. O. Momom

[TpenmMeroM AOCTIKEHHS € PI3HOMAaHITHI BUAN MEPEKEBOro Tpadiky B CydaCHUX KOMIT FOTEPHHX MEpEexKax,
SIKMH Ma€ CKIIQJIHY CTPYKTYPY 1 4acTo Ma€ MeBHHUH CTyHiHb camononioHocti. EdekTuBHE BUKOPHCTaHHS pecypciB
Mepexi Ta 3a0e3IeUeHHsl IKOCTI 00CIyroByBaHHs A00OHEHTIB € Ba)KIIMBUMH 3aBJIAHHSIMH KOMIT'IOTEPHUX Mepex. IMo-
BipHICTh BTPATH MOBIIOMJICHHSI Uepe3 IepernoBHeHHst Oydepa 3amam'sIToByIoUrX IPUCTPOIB € BKIMBUM MapaMeTpOM
y BU3HAUEHHI SIKOCTI 00CIyroByBaHHs. J[jist OLIHKK [IbOTO MapaMeTpa CiIiji BAKOPUCTOBYBATH MaTEMATHYHY MOJICIIb.
OcraHHi IOCATHEHHS MICTATh 0arato pi3HUX Mojeneil HMOBIPHOCTI BTpaTH nakeTiB y 0ydepi mapuipyruzaropa. On-
Hak 0araTo Mojielieil He BpaXOBYIOTh XapaKTePUCTHKU TpadiKy pi3HMX CydacHHX mporpam i nporokoiniB. Tpadik B
CY4aCHHUX KOMIT'IOTEPHHX MEpEexax Mae CKIaJHy CTPYKTYpY 1 4acTo Mae MeBHY CTYIiHb caMonoaiOHocTi. B nanmii
Yac iCHye BeJIMKa KUIbKICTh MOJIeJIel JUIsl OL[IHKK MMOBIPHOCTI BTPATH MAKETiB uepe3 nepernoBHeHHs Oydepa. Meroro
JIaHOi pOOOTH € TIOPIBHSUILHHUI aHAIIi3 TAKUX MOJIENeil Ta peKOMeH ANl oA0 iX BUKOPUCTAHHS Ta OI[IHKA BILUTUBY
(dpakranpHOCTI MepekeBoro Tpadiky Ha WMOBIPHICTh BTPATH MAKETIB y MapIIpyTH3aTOpPi Yepe3 MeperoBHEHHs Oy-
¢epa. 3aBaaHHs, SKi BUPILIYIOThCS: 1) MPOBECTH aHAI3 aHAITHYHUX MOJIEINEH, [0 OMUCYIOTh HMOBIPHICTh BTPaTH
MaKeTiB y MapUIPYTU3aTopi K 3 ypaxyBaHHSAM BIUTUBY (PPaKTaJIbHOCTI, Tak 1 0e3 Hei; 2) moOyayBaTu 3ajexHOCTI
WMOBIPHOCTI BTpaTH MAaKETiB y MapIIpyTU3aTOpl BiJl 3aBAHTAXKEHOCTI KaHAJy Nepenadi JaHUX Uil PI3HUX 3HAYEHb
emHOCTI Oydepa, mokazHuka Xepcra Ta BiIXwieHHs Tpadiky; 3) omucaTH 3aJIe)KHOCTI KMOBIPHOCTI BTPATH MAKETIB
BiJl eMHOCTI Oydepa s pi3HUX 3HAUCHDb 3aBaHTAXKEHHS KaHaly. BHKOpUCTaHI METOAH MOPIBHIBHOIO aHAII3y pi3-
HHUX METOJIIB (PpaKTaTHHOIO MOJIEIIOBAHHS TpadiKy Ta CUMYJISILIT 3 pI3HUMU 3HAUYEHHSIMH €MHOCTI 30epiraHHs, Moka-
3HMKa Xepcra, Koe]ilieHTiB BIIXWICHHS Ta Koe(il[ieHTa 3aBaHTaXXEHHS KaHaly. byinu oTpuMaHi HACTYIHI pe3ylib-
Tatu: 1) HAWOIIBII ONITUMICTHYHY OIIIHKY Ja€ MOJIENb CHCTEMH MacoBOro o0cyroByBanus M/M/1; 110 OIiHKY MO-
JKHa BUKOPHCTOBYBATH K HIDKYY MEXY UL HMOBIPHOCTI BTpATH IIOBIAOMIICHHS [UIA 3aJaHO0i eMHOCTI Oydepa ta
KoeQillieHTa 3aBaHTaKEHHS KaHATY; 2) HaiBUIlla HMOBIPHICTS BTPATH MOBIIOMIICHHSI CIIOCTEpiragacs pyu BUKOPHC-
TaHHI CHCTEM MacOBOT'0 00CITYTrOBYBaHHS 3 MokazHukoM Xepcera 0,95; 3) y crarti 6ys10 OKa3aHo, 110 3i 3GiIbIIEHHM
¢bpaxransHOCTI TpadiKy Ta KoedilmieHTa BiIXWICHHS HMOBIPHICTS BTPATH MAKETIB TAKOXK 3pocTae; 4) BHSBICHO, 110
BIUTHB (DPaKTAITBEHOCTI 3MEHIIYETHCS 31 301bIIeHHsIM Oy(hepHOi eMHOCTI; 5) 06’ €KTHBHA OIliHKa HMOBIPHOCTI BTpaTH
TIOB1IOMJICHHS Yepe3 MepenoBHEHHs Oydepa MapmipyTu3aTopa MoXke OyTH 3po0JIeHa JTUIIIE 3 ypaXyBaHHAM XapaKTepy
mokaszaHoro Tpadiky. BucHoBku. OCHOBHUIA BHECOK ITHOT'O TOCTIKEHHS MOJISATA€ B TOMY, IO Pi3HI THITH MEPEKEBOTO
Tpadiky MaroTh PppaKTaIBHY MPUPOTY, & TPAAUIIIIHI METOIHN CrerudiKaIlii MApIIPYTHAX IMOCTYT TaKui Tpadik 3 BU-
KOPUCTaHHSAM MOJIENl MacoBOro obciyroByBanHs M/M/1 nae Ginmbire moMmiok. B pe3ympTaTi mpoBEeOEHUX TOCITi-
JUKEHB 3 METOI0 3MEHIICHHS BIUIMBY (paKTaIbHOCTI TpadiKy HEOOXiTHO 30UIBIIATH EMHICTE Oy(epHUX HAKOIHYY-
BaviB.
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Karouosi ciioBa: Mepexa; maker; IMOBIpHICTh BTpaTH MakeTa; Mapuipyru3saiis; Oydep; ¢ppakTaabHICTh Tpa-
¢iky, moka3zHUK XepcrTa.
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