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COMPARISON OF EQUIVALENT CIRCUIT AND MACHINE LEARNING METHODS
FOR CUBESAT BATTERY DISCHARGE MODELING

The subject of the article is the study and comparison of two approaches to modelling the battery discharge of a
CubeSat satellite: analytical using equivalent circuit and machine learning. The article aims to make a reasoned
choice of the approach to modelling the battery discharge of a CubeSat satellite. Modelling the battery discharge
of a satellite will enable the prediction of the consequences of disconnecting the autonomous power system and
ensure the fault tolerance of equipment in orbit. Therefore, the selected study is relevant and promising. This
study focuses on the analysis of CubeSat satellite data, based explicitly on orbital data samples of the power
system, which include data available at the time of the article’s publication. The dataset contains data on the
voltage (mV), current (mA), and temperature (Celsius) of the battery and solar panels attached to the five sides
of the satellite. In this context, two approaches are considered: analytical modelling based on physical laws and
machine learning, which uses empirical data to create a predictive model. Results: A comparative analysis of
the modeling results reveals that the equivalent circuit approach has the advantage of transparency, as it
identifies possible parameters that facilitate understanding of the relationships. However, the model is less
flexible to environmental changes or non-standard satellite behavior. The machine learning model demonstrated
more accurate results, as it can account for complex dependencies and adapt to actual conditions, even when
they deviate from theoretical assumptions. However, the model requires prior training on a large amount of data
and is less well understood in terms of physical laws. General conclusions. The equivalent circuit approach
provides high accuracy and reliability under known conditions, but it is limited when external parameters
change. The machine learning approach demonstrates better overall accuracy and stability, especially under
variable or unpredictable conditions, but requires a large amount of high-quality data and more complex
interpretation. Thus, the most effective approach may be a hybrid one, where the analytical model serves as the
basis and machine learning is used as a tool for refining or compensating for inaccuracies.
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1. Introduction 1.1. Motivation

Due to its attractive cost, the availability of
commercially ready-made solutions, and a relatively
short implementation time, CubeSat has gained
popularity among space researchers. It is currently used
to solve a wide range of tasks. The general overview for
the current state-of-the-art SmallSat technologies [1]
states the growing popularity of small satellites in general
and CubeSats in particular, and shows that since 2013,
the flight heritage for small spacecraft has dramatically
increased and has become the main primary source of
access to space for commercial, government, private, and
academic.

The CubeSat project was initiated in 1999 by
scientists from California Polytechnic State University
and Stanford University’s Space Systems Development
Laboratory. Specification [2] defines a 1U (U stands for
‘Unit’) CubeSat as a small satellite of standard size and
shape, which isa 10 cm cube with a mass of up to 2 kg.
A CubeSat can consist of several units. The current
version of the specification describes the design of
CubeSats up to 12U.

According to various estimates, the global CubeSat
market will show a GAGR over 15% in the coming years
(according to CubeSat Market Research Report
https://straitsresearch.com/report/cubesat-market Straits
research expects it to reach USD 1,305.56 million by
2032, with GAGR of 15.1% during the forecast period
(2024-2032) with base year 2023 while by IMARC
Group in its report "CubeSat Market Size, Share, Trends
and Forecast by Size, Application, End User, Subsystem,
and Region, 2025-2033" expects the market to reach
USD 1,608.98 Million by 2033, exhibiting a CAGR of
16.3% during 2025-2033 with base year 2024).

In accordance with [5], the most significant number
of CubeSat missions were with a mass of 3U (~45.5% of
the total and 53.3% of the successfully launched).
CubeSats are being assigned more and more complex
tasks, which increases the requirements for their
capabilities. Fig. 1 shows the dynamics of the
deployment of missions based on CubeSat over the last
20 years. In the previous ten years, missions based on
12U (53 missions, first in 2016), 16U (26 missions, first
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in 2019), and the first 20U mission in 2023 (China,
Tianzhi-2D) have been successfully launched. Although
the development of CubeSat projects is fast and
accessible to a wide range of researchers, providing
opportunities for implementing both commercial and
educational projects [3], the failure rate of such projects
is relatively high [4]. Fig. 2 shows the success (i.e., how
successful it was, not the current state) of such satellites
for educational and scientific missions from 2003 to 2025
(May). To construct the visual image, data from the
nanosatellite and CubeSat database [5] were utilized; the
database's last significant update was on April 30, 2025.
The paper presents a comparative analysis of analytical
and machine learning-based approaches to modeling
CubeSat storage battery discharge.
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Fig. 1. Dynamics of the launches based on CubeSat
missions for the period from 2003 to 2025
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Fig. 2. Status of CubeSats in educational and scientific missions in the period of 2003 to 2025 (May)

1.2. State of the art

According to UNOOSA (United Nations Office for
Outer Space Affairs) records, 13,469 satellites are
orbiting the Earth as of April 2025, of which only 12,205
satellites are active (as of late April 2025), as shown by
the satellite tracking website “Orbiting Now”, that
maintains the records of the satellites in various Earth
orbits.

The report [6] analyzed the reasons for the partial
and complete failure of missions with small satellites.
According to the report, between 2000 and 2016, 41.3%
of mission launches with small satellites failed partially

or entirely. Of these, 24.2% of missions suffered
complete failure, 11% failed partially, and launch vehicle
failures accounted for another 6.1%. In work [7], based
on the analysis of failure reports from 2000 to 2012,
among the most frequent causes of mission failures are
configuration or interface issues between communication
hardware (27%), the Electrical Power System (EPS,
14%), and the flight processor (6%). Therefore, it is
crucial to predict satellite failures through modelling.
Several papers have investigated ways to improve
energy harvesting using solar panels and techniques such
as maximum power point tracking (MPPT), with a
particular focus on the benefits of implementing machine
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learning techniques to enhance the performance of EPS.
Thus, in paper [8], adeep learning-based MPPT approach
is proposed to improve CubeSat power generation; the
authors used annual data obtained from simulations of a
3U CubeSat to train the model. The authors of the study
[9] provide an overview of various types of MPPT
methods, including classical, intelligent, optimization-
based, and hybrid methods.

The study [10] provides a general overview of
approaches for estimating the state of charge and the state
of health of lithium-ion batteries, including several
machine learning (ML) techniques: neural networks,
support vector machines, fuzzy logic, genetic algorithms.
The authors of paper [10] conclude that given large data
sets, data-driven methods will outperform model-based
approaches. The paper [11] describes a mathematical
framework for the EPS design that can be useful for
evaluating key parts of a CubeSat EPS. The study [12]
presents the benefits of Physics-informed machine
learning for accurate state of health estimation of lithium-
ion batteries, taking into account aging processes. The
research [13] describes a transformer structure for
estimation of the battery’s state of charge and shows its
performance for LiNiMnCoO2 and LiFePO, datasets.
The study [14] considers storage batteries discharge
modelling in low Earth orbit satellites. However, there is
no comparative analysis of analytical and machine
learning approaches to modeling that compare results on
the same dataset.

The authors of the study [15] investigated the
statistical reliability of small satellites using empirical
failure data for the period 2010-2020 and showed a
general trend that reflects that at the beginning of the
mission the probability of failure of each subsystem is
high and constantly decreases during the first two years,
then the values gradually decrease and fluctuate around
the nominal value. In particular, in the work [15] it is
stated that the contribution of the failure of the power
subsystem to the satellite failure after a certain specific
time in orbit is determined as follows: after 30 days —
17.63%, after one year — 11.78%, after two years —
7.42%, after 10 years — 9.97%.

Study [16] (as of October 2024) states that of the
2,714 CubeSats launched, 677 have experienced
problems or failures, not all of which could have resulted
in mission loss. According to [16], most failures were
caused by launch and deployment failures. Among the
problems identified, communication failures, power
system failures, and high spin rates were noted as the
most common.

2. Objectives and approach

In this study, the primary focus is on analyzing the
EPS of 1U CubeSat satellites based on on-orbit data

samples from the TSURU satellite dataset [17], which
includes data from its deployment into orbit to the present
time.

This work investigates the possibility of using
machine learning to predict the battery discharge of a
CubeSat satellite. By the aim of the study, the following
tasks must be solved:

1. Analysis of available observational data and
handling outliers (section 3).

2. CubeSat storage battery discharge modeling
using equivalent circuit techniques. Evaluation of the
model accuracy (section 4.1).

3. CubeSat storage battery discharge modeling
based on machine learning approach (section 4.2). It
contains data preprocessing (described in section 4.2.1)
and further machine learning model training (section
4.2.2). Evaluation of the built machine learning model
performance (section 4.2.3).

4. Comparative analysis of the obtained results by
the two approaches used (section 5).

3. Data analysis

The source data is based on the BIRDS open-source
standardized bus [17]. The dataset contains voltage
(mV), current (mA), and temperature (in degrees Celsius)
data for the storage battery and solar panels attached to
the five sides of the satellite. This data is collected by the
onboard computer every 90 seconds in normal mode or
every 10 seconds in fast sampling mode. The dataset
contains data on solar panels and batteries from the time
when they were launched into orbit until the end of life
of the UGUISU, RAAVANA, and NEPALISAT
satellites. The TSURU satellite dataset contains data
since its launch into orbit and will continue to be
collected throughout its lifetime.

The sampling interval for UGUISU, RAAVANA,
and NEPALISAT was 5 seconds, and for TSURU, it was
10 seconds. NEPALISAT, RAAVANA, and UGUISU
operated in orbit for more than two years before their re-
entry. TSURU was still operating in orbit when the
dataset was released.

Thus, if the solar panel generates too much voltage
for the battery, it is limited by the DC/DC converter to
4.2V, preventing overcharging. The generated energy is
stored in a battery pack consisting of six rechargeable
Eneloop Nickel Metal Hydride (NiMH) batteries, each
with a minimum capacity of 1900 mAh, arranged in a 3-
series and 2-parallel configuration. A thermistor is
installed between the batteries to measure the
temperature. Since low temperatures negatively affect
battery capacity, the battery is wrapped with Kapton tape
and a polyimide heater to help maintain thermal balance.
The Electrical diagram is shown in Fig. 3. The dataset is
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missing the solar cell current, Isra, and the load current,
Iraw-

The usual practice of using a storage battery in a
satellite is that when there are signs of approaching full
discharge of the storage battery (SB), it is necessary to
urgently turn off everything superfluous to preserve the
viability of the whole satellite. Excess primarily includes

the payload; only the life support systems remain
switched on. This certainly reduces the beneficial effect
of using the satellite if the load limiting mode is turned
on early. Still, such a mode should be activated
automatically, as waiting for a human operator to make a
decision would result in the loss of the entire satellite.
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Fig. 3. BIRDS-4 satellite EPS block diagram [17].

Characteristics of the photoconverter are shown in
Table 1. The charging and discharge characteristics
provided by the manufacturer for each battery are shown
in Fig. 4a and Fig. 4b, respectively. A sign of the
exhaustion of the battery's capacity is the end of the linear
section of the discharge characteristic of the SB. Still, this
moment of termination depends significantly not only on
the current used to discharge the chemical battery, but
also on the history of its operation. It is known that
control charge-discharge cycles, which can be carried out
in shadowless areas of the orbit, allow not only the
estimation of the current capacity of the SB but also the
restoration of its characteristics.

Table 1
Dependence of photoconverter characteristics
on equivalent radiation dose,
source: AZUR SPACE Solar Power GmbH

BOL | 25E14 | 5E14 | 1E15
Average Open Circuit Vo [mMV] | 2690 2606 2554 | 2512
Average Short Circuit I.[mA]| 519.6 | 517.9 | 5134 | 501.3
Voltage at max. Power Vi, [MV]| 2409 2343 2288 | 2244
Current at max. Power Im, [MA] | 502.9 | 501.7 | 499.1 | 485.1
Average Efficiency fpare 29.3 28.4 27.6 26.3
(1367 W/m?) [%]
Average Efficiency npare 29.6 28.7 27.9 26.6
(1353 W/m?) [%]

Standard: CASOLBA 2005 (05-20MV1, etc);
Spectrum: AMO WRC = 1367 W/m?; T =28 °C

Cell Voltage (V)
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Charge : 2000mA (-dV=10mV)
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Fig. 4. Charge (a) characteristics of each battery, measured in laboratory conditions,
provided by the manufacturer
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Continuation of the Fig. 4. Dscharge (b) characteristics of each battery, measured in laboratory conditions,
provided by the manufacturer
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Continuation of the Fig. 5. The periods during which the Satellites are illuminated due to the ISS orbit

When the absolute value of the Solar Beta Angle
exceeds 69.9 °, the satellite is in a shadowless orbit (Fig.
5 ¢) [18]. The satellites of this series have no orientation
control, so the satellites rotate freely at a speed of about
3 deg/s on each axis. Five of the six faces of the cubic-
shaped satellite provide a power supply.

The orientation and illumination of the solar panels
are determined by the satellite's geometry, as shown in
Fig. 6a. When the satellite is on the illuminated part of
the orbit, the best energy supply will be if it is deployed
at 45 © along two axes. The difference is about 2-2.2
times (Fig. 6b).

antenna thickness = 0.3 mm
antenna width ~ =3.0 mm

/

a) The geometry of the satellite, source [17]

. N

bl) b2)

b) Satellite orientation for the worst (b1)
and the best (b2) power harvesting

Fig. 6. Appearance of the satellite

When the device leaves the shadow area, the cooled
PB generates maximum energy, which decreases by 50—
80% within 5-7 minutes and then changes according to
the temperature variation of the photoconverters.

The available data [17] covers the period from
March 2021 to January 2022 (namely for dates: March
28, April 20, April 27, May 13, May 21, May 28, June
01, June 25, June 11, June 17, July 05, July 09, August
07, August 22, September 07, September 03, September
11, September 13, September 19, September 25, October
03, October 15, November 02, November 16, November
05, November 22, November 27, December 07,
December 20, December 25 and January 24, 2022) for
the following characteristics:

— time stamp — the time at which the data sample
was measured (sec);

— temperatures of the five surfaces of the
photovoltaic cells (°C);

— output voltages of the five photovoltaic cells
(mV);

— generated current from the five photovoltaic
cells (mA);

— voltage (V), charge-discharge current (mA), and
temperature (°C) of the energy storage device.

The dataset is valuable and important because it
includes in-orbit data collected by four different CubeSat
satellites that share the same bus system structure: the
NEPALISAT, RAAVANA, UGUISU, and TSURU
satellites. This data can be used to estimate the energy
available in orbit for a 1U CubeSat, assessing the
feasibility of missions.

In this research for the battery discharge modelling,
we analysed available data and extracted the battery
discharge periods from this dataset. Data visualization for
20_02_2021 (complete set and selected discharge period)
are shown in Fig. 7.



Hardware and software of computer systems and infrastructures 237
Ipatt VS Vpate for data as of April 20, 2021
| I -4.20
i L 1|

2007 L -4.15

< ! 4.10
< 0- 1 -4.10 =
E I 2
& 405 &
=~ —200 - I >

! - 4.00

—400 - |
[«<— Discharge period —» r3.95
0 100 200 300 400 500 600
data points
Ipatt (MA)  —— Vpate (V)

Fig. 7 Data visualization of the whole set and the April 20, 2021, discharge period.

For a better understanding of their composition and
range of changes, statistical information was collected,
and the DOD was calculated (described in detail in
subsection 4.1) and presented in Table 2.

4. CubeSat storage battery discharge
modeling

In this study, CubeSat battery discharge modeling is
performed using two approaches: equivalent circuit and

o Table 2 machine learning, and the obtained results are analyzed.
Data set features description (5709 measures)
Vbatt (V) | loart (MA) (mE*(?rgur) Toate (°C) 4.1. Equivalent circuit based model of the
mean | 40298 | 263.0029 | 650986 | 6.2552 CubeSat storage battery discharge
std 00575 | 76.0496 | 42.8586 | 2.7049 To build the model, the efficiency of energy transfer
min 3.79 5.64 0 1.07 from solar batteries to a chemical battery was first
max 4.2 120042 | 2253272 | 15.63 determined according to the criterion of the minimum

During data analysis, a significant deviation in the
Inar CUrrent values was detected in the data sets for the
dates 01/24/2022, 07/05/2021, 07/09/2021, and
05/21/2021, where lpa: reached values above 1000 mA
(Fig. 8). Also, several data points that represents negative
loat i.€., battery charge instants in the middle of the
discharge periods, were found in the discharge data set.
Fig. 8 shows the distribution of both typical and untypical
(i.e. “too low” — negative lpat values and “too high” — lpar
> 500 mA) lpa data.

values

variance of dependency. Based on the block diagram
(Fig. 3) and assuming that the losses on the five blocking
diodes are the same, we obtain the following formula:

Nyows (1) = NSB<r>+n§vpi CINCIE

At large intervals of operation time in stationary
mode, the energy balance between energy storage and
energy consumption must be maintained, this allows
applying formula (1) to calculate the efficiency of energy
transfer from the photovoltaic battery to the load: n
=92.6 %. To confirm the correctness of the calculations,

too low . .
Em typical the graph shown in Fig. 9.
-"'""—II—‘— == too high The satellite design information has been released

i}

1 1
1000 1200

1 1 1 1 1
=200 0 400 600 800

Ipatr (MA)

1
200

Fig. 8. lvar values distribution visualization for the
whole discharge data set.

as a standardized, open-source BIRDS bus system for the
fast and easy development of satellites for educational
and research purposes. The data can be used as a standard
data set to verify the on-orbit performance of a satellite
power system developed using the BIRDS bus.
Typically, the discharge characteristics of the
storage battery are of decisive importance when
designing a satellite power supply system. The
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manufacturer in its own specifications indicates the
dependence of the discharge voltage on the depth of
discharge at fixed values of ambient temperature and
discharge current. In practice, this is not enough, since

4

1 ’AA‘M#’M

‘ [ﬁ FAARIA A AN W‘\/»-f“’,v]

the operating parameters are constantly changing. To
overcome this problem, approximate solutions are used,
the most common of which is the use of an equivalent
circuit of the storage battery (Fig.10).
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Fig. 9. Confirmation the correctness of the calculations

Fig. 10. The equivalent circuit of the storage battery

In Figure 10:

— Rp, Lp — resistance and inductance of external
connections, electrodes, and electrolyte;

— Rp, VDp formalize the nonlinear polarization
effect as a function of the charge level, discharge current,
and battery temperature;

— Rch, VDch are similar to Rp, VDp for the
charge mode;

— Cd is the capacitance of the double layer;

— Cekh is the battery capacity as an
electrochemical storage; -

— Ru — a non-linear resistor that simulates the
processes associated with self-discharge and the
occurrence of side chemical reactions.

A simplified mathematical model of discharge
characteristics contains the dependence of the depth of
discharge as an integral on the discharge current and the
battery voltage, which depends on the current,
temperature, and depth of discharge:

DOD(1) = [, 14 (t)t,
U(t) = Ug - Kpop (T)-DOD(7)-R(T)-Ig(x)- ()

DOD(<) j

UP(T)'GXP[—WP(T)

Formula (2) contains 2 equations: the dependence
of the depth of discharge on time and discharge current
and the approximation of the battery discharge voltage on
the depth of discharge.

Identification of the parameters of the discharge
characteristic model is the determination of the structure
and parameters of the temperature:

Kpop (T) — the angle of inclination of the linear

section of the discharge characteristic;
R(T) —internal resistance;

Up (T) — change in voltage on the initial non-linear
section of the discharge characteristic;
DODy, (T) - the duration of the initial nonlinear

section of the discharge characteristic.

To analyze the obtained results, the accuracy of the
model was calculated using the complete sets; the results
are presented in Fig. 11. Limited and insufficient
accuracy of the original data leads to unexpected results:
42% of the model calculations in discrete form coincide
with the results of the measurements (what is obtained
from the ADC), and the deviation of almost 97 model
calculations does not exceed the two least significant bits
(LSB) from ADC.
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Distribution histogram of the number of model deviations in LSB units
relative to the original data
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4.2. Machine learning based model of the
CubeSat storage battery discharge

Based on the results of the data analysis described
in Section 3, a dataset was created for further training of
the model, containing data corresponding to battery
discharge periods. The training data set comprises data
on battery discharge periods collected from all available
sets (March 2021 to January 2022) for both typical and
atypical lpar Values. The data set features description for
the whole set and for the typical Ipa: Values is represented
in Table 2 and Table. 3.

Table 3
Data set features description for the typical lpat values
(5024 measures)

DOD

Vatt (V) lpart(MA) (mA*hour) Tpare(°C)
mean 4.0305 258.6566 | 64.9712 6.1894
std 0.0547 42.7227 40.8895 2.7484
min 3.87 5.64 0 1.07
max 4.2 474.18 181.4189 15.63

Handling Outliers. Data outliers (data points
where a short-term increase of Ipa: Was observed in the
middle of the discharge period) were excluded from the
set.

Feature Extraction. Taking into account the
correlation of the accessible data, the following features
were selected: lpat — the current value of the battery in
calibrated format (mA), and Tyar — the temperature value
of the battery in calibrated format (°C), and extracted
from the full data set for periods of satellite battery
discharge. The data series for all selected features has no
missing values.

The model error does not
exceed 1 LSB: 89.2% of
the total number of
measurements

LSB
Fig. 11. Accuracy of the model on the complete data set
(31-bit characteristics)

4.2.1. Feature engineering

Feature Creation. The feature DOD (discharge
characteristic, mA*hour) was created using the equation
from (2). The selected features correlation study was
performed on the whole set for the battery discharge
period, the results are shown in Fig. 12.

|
=
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» - 0.0

§ 0.44 023 -0.91
- --0.5
g - -0.43 -0.91
>

Tbatt ’bart DOD Vbatt

Fig. 12. Visualization of the correlation of dataset
features.

As can be seen from the figure, the input
characteristics are correlated with the target feature and
are not overcorrelated. New feature matrix consisting of
all polynomial combinations of the both selected and
created features with degree less than or equal to the 8
was generated.

Scaling. Each selected feature was scaled and
transformed individually according to the equation (3).

X_Xmin

_Xmin (3)

Xscaled =
Xmax

The target feature (label) is Vpat — Voltage value of
the battery in calibrated format (V).
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4.2.2. Machine learning model creation and training

For CubeSat storage battery discharge prediction,
the  cross-validated  Lasso  regressor — model
(LassoLarsCV), which is based on the least-angle
regression (LARS) algorithm [19] and can overcome
multicollinearity, was chosen. A cross-validation
estimator was selected due to its ability to support warm-
starting by reusing precomputed results from previous
steps of the cross-validation process, as well as to provide
the advantage of the best training/development data set
split. The metric used for the model performance
evaluation — R2 Score, defined as

Zi’il<yi —Yi )2
zi,il(yi _;')2

R?=1-

Z|r

_ N
Cy==2y @
i=1

where: Y; is the predicted value of Vi for the i-th

sample and y; - the corresponding actual value of Vpar.

To chain multiple estimators into one, a pipeline
(Python, Scikit-learn) was developed. The pipeline
consists of the following steps:

1) data normalization using MinMaxScaler with
default feature range [0,1];

2) generation a new feature matrix consisting of all
polynomial combinations of the features with degree less
than or equal to 8-degree using PolynomialFeatures;

3) regressor LassoLarsCV, cv=6.

Before using cross-validation to ensure unbiased
model performance estimation, the dataset was split into
training and test sets at a ratio of 80:20 %.

A characteristic feature of LARS s its

computational efficiency; the algorithm requires the
same order of calculations as the ordinary least squares
(OLS) method [20]. The LassoLarsCV finds the relevant
regularization parameter (alpha) values itself, which can
help prevent the model from overfitting. The model's
performance (cross-validation R? score) on the training
set is 0.924, and on the test set, it is also 0.924.

4.2.3. Model results analysis

To analyze the model's performance on the entire
dataset, ensuring that the model generalizes appropriately
and does not exhibit signs of overfitting, a graph is used.
(Fig. 13, 14) of the model's predicted values on the full
range of values for lya: at T=5°C and DOD in the range
of 0-200 mA*hour with a step of 40 for Fig. 13 and step
20 for Fig. 14 were built.

Shown in the visual, AU was calculated according
to equation (5):

AU _f(1+AI,DOD, T)—f(1,DOD,T) )
Al Al

U for the visual was calculated using equation (6)
for the whole range of values for lpay, i.e., (0,1200) mA:

U=f(1,00D,T) (6)

where the temperature setpoint T =5°C and DOD varies
aspDOD = {(O 200) mA*hour, step = 20} .
The constant temperature test was chosen to

accurately analyze the model's predictions for battery
behaviour under different orbital conditions.

Model prediction: AU for Tpz+=5°C

-0.00014 | S
-0.00016
= -0.00018
3 NN
~0.00020 ngzio !
DOD=80 NN
DOD=120
-0.00022 et
DOD=200
0 200 400 600 800 1000 1200

Current value of the battery in calibrated format, /54 (MA)

Fig. 13. Dependency graph for AA—lI}
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Model performance for Tpa= 5°C
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Fig. 14. Dependency graph for Vpax

To analyze the model prediction error, a histogram
was built as shown in Fig. 15.

The histograms show the error of the model in LSB.
The data predicted by the model with an accuracy of the
fifth sign were used to construct the histograms.

Model prediction error

max ABS error: 2.7488 LSB
ABS error < 0.5 LSB: 68.77%
ABS error < 1 LSB: 89.86%
ABS error < 2 LSB: 99.56%

4000

3000

Count

2000

1000

Fig. 15. Model prediction error histogram

The maximum absolute error is 2.7488 LSB. The
percentage of the model prediction error above 2 LSB is
0.44%.

5. Comparative analysis of the results
of analytical modeling and modeling based
on machine learning

The comparative evaluation shows that both models
achieve high predictive accuracy, but they differ
fundamentally in methodology, interpretability, and
adaptability. The analytical model’s strength lies in its
strict adherence to physical laws, which ensures
interpretability and robustness under well-defined
conditions. In contrast, the ML model captures nonlinear
dependencies in the data, offering superior accuracy in
dynamic or atypical operating conditions. Importantly,
the ML approach achieves this without requiring explicit
knowledge of system physics, instead learning from
empirical data.

The error distribution analysis demonstrates that the
analytical model already achieves a high degree of
precision (96.7% of predictions within 2 LSB), which
validates the relevance of equivalent circuit—based
approaches in satellite energy system design. However,
the ML model surpasses this performance, with 99.56%
of predictions within 2 LSB and almost 70% of
predictions deviating by less than 0.5 LSB. This suggests
that ML models not only match but also refine the
predictive capabilities of analytical approaches.

From a systems engineering perspective, the key
advantage of the ML approach is its adaptability to real
mission data, making it suitable for onboard
implementation in future satellites as part of an adaptive
energy management system.



242

Radioelectronic and Computer Systems, 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

On the other hand, the analytical model remains
indispensable  for  mission  design, component
specification, and cases where computational simplicity
and physical interpretability are required.

Thus, these models are not competitors but
complementary tools: the analytical approach provides
the theoretical foundation, while ML enhances predictive
accuracy under real operating conditions.

6. Discussion

This study highlights several important insights for
the design and operation of CubeSat power systems.
First, the availability of long-term in-orbit datasets
(NEPALISAT, RAAVANA, UGUISU, TSURU) enables
systematic evaluation of both physics-based and data-
driven models. The demonstrated modeling framework
confirms that satellite battery discharge behavior can be
predicted with high fidelity using either approach.

The novelty of this work lies in directly comparing
analytical and ML models on real CubeSat flight data,
quantifying their respective advantages, and showing that
ML can achieve higher accuracy while analytical models
provide interpretability. Unlike earlier studies that focus
solely on one modeling technique, this work establishes
a benchmark for combining them.

Practical implications include the potential
integration of ML-based predictors into satellite onboard
software for real-time state-of-charge estimation and
fault detection. Analytical models, meanwhile, remain
valuable for mission planning and performance
verification. Together, they can form a hybrid predictive
framework for next-generation small satellite platforms.

Limitations of this study include the reliance on one
satellite bus type (BIRDS series) and the relatively
narrow range of mission profiles. Broader validation
across different CubeSat platforms and longer
operational lifetimes will be necessary to generalize the
results. Additionally, the ML model depends heavily on
the quality and representativeness of the training dataset,
which may not always be available in early mission
phases.

7. Conclusions

This work contributes to the field of satellite power
system modeling by developing and validating two
complementary approaches—an analytical equivalent
circuit model and a machine learning—based model—
using real in-orbit data from multiple CubeSats. The
developed methodology can be used in related areas, if
there is a need for automatic determination of the state of
a storage battery, and its malfunction leads to the failure
of the entire facility.

Main contributions:

— Developed and validated an equivalent circuit
model of CubeSat battery discharge, demonstrating that
96.7% of predictions deviate by no more than 2 LSB;

— Developed a machine learning model
(LassoLarsCV with polynomial features), achieving
99.56% accuracy within 2 LSB and significantly
improving prediction sensitivity (68.77% of results
within 0.5 LSB);

— Provided the first direct comparison of
analytical and ML approaches using real CubeSat
telemetry, highlighting their complementary advantages.

Theoretical significance: The results confirm that
battery discharge processes can be effectively modeled
both from first principles and from data-driven
perspectives, establishing a dual-framework
methodology for power system research.

Practical significance: The proposed models can
be applied in mission design, onboard energy
management, and anomaly detection, increasing
reliability of CubeSat operations.

Future research directions:

— Development of hybrid models that combine
analytical interpretability with ML adaptability;

— Validation on CubeSats with different bus
systems and mission profiles;

— Investigation of onboard implementation of ML
predictors for real-time state-of-charge and state-of-
health estimation;

— Extension of models to account for aging
effects, thermal cycles, and radiation degradation.
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MOPIBHSIHHSI METOIIB EKBIBAJIEHTHOI CXEMHU TA MAIIMHHOI'O HABYAHHSA
JJISI MOJEJIOBAHHSA PO3PSTY AKYMYJISAITOPHOI BATAPEI CUBESAT

L b. Typkin, JI. O. Bonodyeesa, A. I. Uyxpaii, O. B. J/Ttobimos

[IpeameroM craTTi € AOCTIKEHHSI Ta MOPIBHSHHS JIBOX IIiJIXOAIB 10 MOJETIOBAHHS PO3PSLy aKyMyJsTopa
cynyrHrka CubeSat: aHa iTHYHOTO 3 BUKOPHCTaHHIM EKBIBaJICHTHOI CXEMH Ta MAIIMHHOT'O HaBYaHHA. MeToro cTarTi
€ OOrpyHTOBaHMH BUOIp MiIXOLy A0 MOJEIIOBAHHSA PO3pALy akymyisitopa cymyTHuka CubeSat. MonenroBaHHS
PO3psily akyMyJssiTopa CYIyTHHKA J03BOJIMTH NepeadaunuTy HACIAKN BiJKIIIOYEHHS aBTOHOMHOI €HEPrOCHCTEMH Ta
3a0e3MeunTH BiIMOBOCTIHKICTh 00naHaHHs Ha opOiTi. Tomy oOpaHe HOCHiDKEHHS € aKTYaJIbHAM Ta IEePCIIeKTHBHUM.
Le mocmimkeHHs 30cepeKeHo Ha aHawi3i gaHux cymytHuka CubeSat, 1m0 6a3yeThbcst SBHO Ha 3pa3Kax opOiTaibHUX
JIAaHUX €HEPrOCUCTEMH, SIKI BKIIFOUAIOTh JIaHi, IOCTYITHI HA MOMEHT myOutikanii crarti. Habip qaHux MicTHTh JaHi mpo
Hanpyry (MB), ctpym (MA) Ta Temnepatypy (3a Llenbciem) akymyssiTopa Ta COHSYHUX MaHeIeH, NPUKPITUIEHUX 10
'sTH OOKIB CYIyTHHKA. Y IIbOMY KOHTEKCTI PO3IIISAAIOThCS B MIIXOMM: aHAJTITUYHE MOJIEIIOBAHHS Ha OCHOBI
(I3MYHUX 3aKOHIB Ta MallMHHE HABYAHHSI, SIKE BUKOPUCTOBYE EMITIpUYHI JaHi JJIsi CTBOPEHHS MPOTHO3HOI MOJIEII.
Pesynpratu. IlopiBHSUIBHMI aHaNi3 pe3yNbTATiB MOJAENIOBAHHS IMOKA3ye, 10 aHANITHYHUI MiOXiJ Mae repeBary
NPO30POCTIi, OCKIJIBKH BiH BU3HAYA€ MOXIIMBI MapaMeTpH, 10 CIPUSIOTh PO3YyMIHHIO B3a€eMO3B's13KiB. OIHAK MOJIENb
MEHIII THY4YKa JI0 3MiH HAaBKOJMIIIHBOI'O CepeIOBHUINA a00 HECTAHAAPTHOI MOBEIHKY CYITyTHHKA. MoJIeib MalllMHHOT O
HaBYaHHS MPOJEMOHCTPYBalla TOYHIII PE3yJAbTaTH, OCKIJIbKM BOHAa MOXKE BpPaXOBYBAaTH CKJIQJHI 3aJIeKHOCTI Ta
ajiantyBatcs 10 paKTUYHUX YMOB, HAaBITh KOJIIM BOHH BIIXMIISIOTHCS BiJl TEOPETUUHHX MpHIyHieHb. OIHAK MOJENb
BUMarae IMonepeJHbOro HaB4aHHs Ha BEJMKIM KITBKOCTI AaHUX 1 MEHII 3p03yMiJia 3 TOUYKH 30pY (i3UYHHUX 3aKOHIB.
3arajbHi BUCHOBKHM. AHAMITHYHMH MHinxin 3a0e3medye BUCOKY TOYHICTH 1 HAAIHHICTH 3a BIIOMHMX yMOB, aje BiH
00OMeXEeHUH TP 3MiHi 30BHIIIHIX MapameTpiB. [1ixi MalIMHHOTO HaBYaHHS IEMOHCTPYE Kpallly 3arajbHy TOYHICTh
1 cTaOlIBHICT, 0COOIMBO 3a 3MIHHUX a00 Hemepea0auyBaHUX YMOB, ajle BUMAra€e BEJIUKOI KIIBKOCTI BUCOKOSIKICHHX
JIAHUX Ta OLIbLI CKIaJHOI iHTeprpeTauii. TakuM 4MHOM, HaWeQEKTUBHILIMM MiJIXOI0M MOXKe OyTH TiOpUIHHM, /e
aHaJITHYHA MOJIETb CIY)KUTh OCHOBOIO, a MAIlIMHHE HABYaHHA BUKOPUCTOBYETHCS SIK IHCTPYMEHT U1l YTOYHEHHs a00
KOMIIeHCALli{ HETOYHOCTEH.

Kawuosi cioBa: mammii cynyrHuk; CubeSat; EnexTpoeHeprernuHa cucTeMa; MOJAECNIOBAHHS; MallMHHE
HaBYaHHSL.
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