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The subject of the article is the study and comparison of two approaches to modelling the battery discharge of a 

CubeSat satellite: analytical using equivalent circuit and machine learning. The article aims to make a reasoned 

choice of the approach to modelling the battery discharge of a CubeSat satellite. Modelling the battery discharge 
of a satellite will enable the prediction of the consequences of disconnecting the autonomous power system and 

ensure the fault tolerance of equipment in orbit. Therefore, the selected study is relevant and promising. This 

study focuses on the analysis of CubeSat satellite data, based explicitly on orbital data samples of the power 

system, which include data available at the time of the article’s publication. The dataset contains data on the 

voltage (mV), current (mA), and temperature (Celsius) of the battery and solar panels attached to the five sides 

of the satellite. In this context, two approaches are considered: analytical modelling based on physical laws and 

machine learning, which uses empirical data to create a predictive model. Results: A comparative analysis of 

the modeling results reveals that the equivalent circuit approach has the advantage of transparency, as it 

identifies possible parameters that facilitate understanding of the relationships. However, the model is less 

flexible to environmental changes or non-standard satellite behavior. The machine learning model demonstrated 

more accurate results, as it can account for complex dependencies and adapt to actual conditions, even when 

they deviate from theoretical assumptions. However, the model requires prior training on a large amount of data 
and is less well understood in terms of physical laws. General conclusions. The equivalent circuit approach 

provides high accuracy and reliability under known conditions, but it is limited when external parameters 

change. The machine learning approach demonstrates better overall accuracy and stability, especially under 

variable or unpredictable conditions, but requires a large amount of high-quality data and more complex 

interpretation. Thus, the most effective approach may be a hybrid one, where the analytical model serves as the 

basis and machine learning is used as a tool for refining or compensating for inaccuracies. 
 

Keywords: CubeSat; EPS; machine learning; modelling; small satellite. 
 

1. Introduction 
 

Due to its attractive cost, the availability of 

commercially ready-made solutions, and a relatively 

short implementation time, CubeSat has gained 

popularity among space researchers. It is currently used 

to solve a wide range of tasks. The general overview for 

the current state-of-the-art SmallSat technologies [1] 

states the growing popularity of small satellites in general 

and CubeSats in particular, and shows that since 2013, 

the flight heritage for small spacecraft has dramatically 

increased and has become the main primary source of 

access to space for commercial, government, private, and 

academic.  

The CubeSat project was initiated in 1999 by 

scientists from California Polytechnic State University 

and Stanford University’s Space Systems Development 

Laboratory. Specification [2] defines a 1U (U stands for 

‘Unit’) CubeSat as a small satellite of standard size and 

shape, which is a 10 cm cube with a mass of up to 2 kg. 

A CubeSat can consist of several units. The current 

version of the specification describes the design of 

CubeSats up to 12U. 

1.1. Motivation  
 

According to various estimates, the global CubeSat 

market will show a GAGR over 15% in the coming years 

(according to CubeSat Market Research Report 

https://straitsresearch.com/report/cubesat-market Straits 

research expects it to reach USD 1,305.56 million by 

2032, with GAGR of 15.1% during the forecast period 

(2024-2032) with base year 2023 while by IMARC 

Group in its report "CubeSat Market Size, Share, Trends 

and Forecast by Size, Application, End User, Subsystem, 

and Region, 2025-2033" expects the market to reach 

USD 1,608.98 Million by 2033, exhibiting a CAGR of 

16.3% during 2025-2033 with base year 2024). 

In accordance with [5], the most significant number 

of CubeSat missions were with a mass of 3U (~45.5% of 

the total and 53.3% of the successfully launched). 

CubeSats are being assigned more and more complex 

tasks, which increases the requirements for their 

capabilities. Fig. 1 shows the dynamics of the 

deployment of missions based on CubeSat over the last 

20 years. In the previous ten years, missions based on 

12U (53 missions, first in 2016), 16U (26 missions, first 
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in 2019), and the first 20U mission in 2023 (China, 

Tianzhi-2D) have been successfully launched. Although 

the development of CubeSat projects is fast and 

accessible to a wide range of researchers, providing 

opportunities for implementing both commercial and 

educational projects [3], the failure rate of such projects 

is relatively high [4]. Fig. 2 shows the success (i.e., how 

successful it was, not the current state) of such satellites 

for educational and scientific missions from 2003 to 2025 

(May). To construct the visual image, data from the 

nanosatellite and CubeSat database [5] were utilized; the 

database's last significant update was on April 30, 2025. 

The paper presents a comparative analysis of analytical 

and machine learning-based approaches to modeling 

CubeSat storage battery discharge. 

 

 
 

Fig. 1. Dynamics of the launches based on СubeSat 

missions for the period from 2003 to 2025 

 

 
 

Fig. 2. Status of CubeSats in educational and scientific missions in the period of 2003 to 2025 (May) 

 

1.2. State of the art 
 

According to UNOOSA (United Nations Office for 

Outer Space Affairs) records, 13,469 satellites are 

orbiting the Earth as of April 2025, of which only 12,205 

satellites are active (as of late April 2025), as shown by 

the satellite tracking website “Orbiting Now”, that 

maintains the records of the satellites in various Earth 

orbits. 

The report [6] analyzed the reasons for the partial 

and complete failure of missions with small satellites. 

According to the report, between 2000 and 2016, 41.3% 

of mission launches with small satellites failed partially 

or entirely. Of these, 24.2% of missions suffered 

complete failure, 11% failed partially, and launch vehicle 

failures accounted for another 6.1%. In work [7], based 

on the analysis of failure reports from 2000 to 2012, 

among the most frequent causes of mission failures are 

configuration or interface issues between communication 

hardware (27%), the Electrical Power System (EPS, 

14%), and the flight processor (6%). Therefore, it is 

crucial to predict satellite failures through modelling.  

Several papers have investigated ways to improve 

energy harvesting using solar panels and techniques such 

as maximum power point tracking (MPPT), with a 

particular focus on the benefits of implementing machine 
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learning techniques to enhance the performance of EPS. 

Thus, in paper [8], a deep learning-based MPPT approach 

is proposed to improve CubeSat power generation; the 

authors used annual data obtained from simulations of a 

3U CubeSat to train the model. The authors of the study 

[9] provide an overview of various types of MPPT 

methods, including classical, intelligent, optimization-

based, and hybrid methods. 

The study [10] provides a general overview of 

approaches for estimating the state of charge and the state 

of health of lithium-ion batteries, including several 

machine learning (ML) techniques: neural networks, 

support vector machines, fuzzy logic, genetic algorithms. 

The authors of paper [10] conclude that given large data 

sets, data-driven methods will outperform model-based 

approaches. The paper [11] describes a mathematical 

framework for the EPS design that can be useful for 

evaluating key parts of a CubeSat EPS. The study [12] 

presents the benefits of Physics-informed machine 

learning for accurate state of health estimation of lithium-

ion batteries, taking into account aging processes. The 

research [13] describes a transformer structure for 

estimation of the battery’s state of charge and shows its 

performance for LiNiMnCoO2 and LiFePO4 datasets. 

The study [14] considers storage batteries discharge 

modelling in low Earth orbit satellites. However, there is 

no comparative analysis of analytical and machine 

learning approaches to modeling that compare results on 

the same dataset.  

The authors of the study [15] investigated the 

statistical reliability of small satellites using empirical 

failure data for the period 2010-2020 and showed a 

general trend that reflects that at the beginning of the 

mission the probability of failure of each subsystem is 

high and constantly decreases during the first two years, 

then the values gradually decrease and fluctuate around 

the nominal value. In particular, in the work [15] it is 

stated that the contribution of the failure of the power 

subsystem to the satellite failure after a certain specific 

time in orbit is determined as follows: after 30 days – 

17.63%, after one year – 11.78%, after two years – 

7.42%, after 10 years – 9.97%. 

Study [16] (as of October 2024) states that of the 

2,714 CubeSats launched, 677 have experienced 

problems or failures, not all of which could have resulted 

in mission loss. According to [16], most failures were 

caused by launch and deployment failures. Among the 

problems identified, communication failures, power 

system failures, and high spin rates were noted as the 

most common. 
 

2. Objectives and approach 
 

In this study, the primary focus is on analyzing the 

EPS of 1U CubeSat satellites based on on-orbit data 

samples from the TSURU satellite dataset [17], which 

includes data from its deployment into orbit to the present 

time. 

This work investigates the possibility of using 

machine learning to predict the battery discharge of a 

CubeSat satellite. By the aim of the study, the following 

tasks must be solved: 

1. Analysis of available observational data and 

handling outliers (section 3). 

2. CubeSat storage battery discharge modeling 

using equivalent circuit techniques. Evaluation of the 

model accuracy (section 4.1). 

3. CubeSat storage battery discharge modeling 

based on machine learning approach (section 4.2). It 

contains data preprocessing (described in section 4.2.1) 

and further machine learning model training (section 

4.2.2). Evaluation of the built machine learning model 

performance (section 4.2.3). 

4. Comparative analysis of the obtained results by 

the two approaches used (section 5). 

 

3. Data analysis 
 

The source data is based on the BIRDS open-source 

standardized bus [17]. The dataset contains voltage 

(mV), current (mA), and temperature (in degrees Celsius) 

data for the storage battery and solar panels attached to 

the five sides of the satellite. This data is collected by the 

onboard computer every 90 seconds in normal mode or 

every 10 seconds in fast sampling mode. The dataset 

contains data on solar panels and batteries from the time 

when they were launched into orbit until the end of life 

of the UGUISU, RAAVANA, and NEPALISAT 

satellites. The TSURU satellite dataset contains data 

since its launch into orbit and will continue to be 

collected throughout its lifetime. 

The sampling interval for UGUISU, RAAVANA, 

and NEPALISAT was 5 seconds, and for TSURU, it was 

10 seconds. NEPALISAT, RAAVANA, and UGUISU 

operated in orbit for more than two years before their re-

entry. TSURU was still operating in orbit when the 

dataset was released. 

Thus, if the solar panel generates too much voltage 

for the battery, it is limited by the DC/DC converter to 

4.2V, preventing overcharging. The generated energy is 

stored in a battery pack consisting of six rechargeable 

Eneloop Nickel Metal Hydride (NiMH) batteries, each 

with a minimum capacity of 1900 mAh, arranged in a 3-

series and 2-parallel configuration. A thermistor is 

installed between the batteries to measure the 

temperature. Since low temperatures negatively affect 

battery capacity, the battery is wrapped with Kapton tape 

and a polyimide heater to help maintain thermal balance. 

The Electrical diagram is shown in Fig. 3. The dataset is 
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missing the solar cell current, Isra, and the load current, 

Iraw. 

The usual practice of using a storage battery in a 

satellite is that when there are signs of approaching full 

discharge of the storage battery (SB), it is necessary to 

urgently turn off everything superfluous to preserve the 

viability of the whole satellite. Excess primarily includes 

the payload; only the life support systems remain 

switched on. This certainly reduces the beneficial effect 

of using the satellite if the load limiting mode is turned 

on early. Still, such a mode should be activated 

automatically, as waiting for a human operator to make a 

decision would result in the loss of the entire satellite. 

 

 
 

Fig. 3. BIRDS-4 satellite EPS block diagram [17]. 

 

Characteristics of the photoconverter are shown in 

Table 1. The charging and discharge characteristics 

provided by the manufacturer for each battery are shown 

in Fig. 4a and Fig. 4b, respectively. A sign of the 

exhaustion of the battery's capacity is the end of the linear 

section of the discharge characteristic of the SB. Still, this 

moment of termination depends significantly not only on 

the current used to discharge the chemical battery, but 

also on the history of its operation. It is known that 

control charge-discharge cycles, which can be carried out 

in shadowless areas of the orbit, allow not only the 

estimation of the current capacity of the SB but also the 

restoration of its characteristics. 
 

Table 1 

Dependence of photoconverter characteristics  
on equivalent radiation dose,  

source: AZUR SPACE Solar Power GmbH 
 BOL 2.5E14 5E14 1E15 

Average Open Circuit Voc [mV] 2690  2606 2554 2512 

Average Short Circuit Isc [mA] 519.6  517.9 513.4 501.3 

Voltage at max. Power Vmp [mV] 2409  2343 2288 2244 

Current at max. Power Imp [mA] 502.9  501.7 499.1 485.1 

Average Efficiency ŋbare  

(1367 W/m2) [%] 

29.3  28.4 27.6 26.3 

Average Efficiency ŋbare  

(1353 W/m2) [%] 

29.6  28.7 27.9 26.6 

Standard: CASOLBA 2005 (05-20MV1, etc);  

Spectrum: AMO WRC = 1367 W/m2; T = 28 °C 

 
 

 

 
 

Fig. 4. Charge (a) characteristics of each battery, measured in laboratory conditions, 

 provided by the manufacturer 
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Continuation of the Fig. 4. Dscharge (b) characteristics of each battery, measured in laboratory conditions, 

 provided by the manufacturer 

 

 
 

 
 

Fig. 5. The periods during which the Satellites are illuminated due to the ISS orbit 
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Continuation of the Fig. 5. The periods during which the Satellites are illuminated due to the ISS orbit 

 

When the absolute value of the Solar Beta Angle 

exceeds 69.9 °, the satellite is in a shadowless orbit (Fig. 

5 c) [18]. The satellites of this series have no orientation 

control, so the satellites rotate freely at a speed of about 

3 deg/s on each axis. Five of the six faces of the cubic-

shaped satellite provide a power supply. 

The orientation and illumination of the solar panels 

are determined by the satellite's geometry, as shown in 

Fig. 6a. When the satellite is on the illuminated part of 

the orbit, the best energy supply will be if it is deployed 

at 45 ° along two axes. The difference is about 2-2.2 

times (Fig. 6b). 
 

 
 

a) The geometry of the satellite, source [17] 

 
 

b) Satellite orientation for the worst (b1)  

and the best (b2) power harvesting 

 
Fig. 6. Appearance of the satellite 

When the device leaves the shadow area, the cooled 

PB generates maximum energy, which decreases by 50–

80% within 5–7 minutes and then changes according to 

the temperature variation of the photoconverters. 

The available data [17] covers the period from 

March 2021 to January 2022 (namely for dates: March 

28, April 20, April 27, May 13, May 21, May 28, June 

01, June 25, June 11, June 17, July 05, July 09, August 

07, August 22, September 07, September 03, September 

11, September 13, September 19, September 25, October 

03, October 15, November 02, November 16, November 

05, November 22, November 27, December 07, 

December 20, December 25 and January 24, 2022) for 

the following characteristics:  

– time stamp – the time at which the data sample 

was measured (sec); 

– temperatures of the five surfaces of the 

photovoltaic cells (°C);  

– output voltages of the five photovoltaic cells 

(mV);  

– generated current from the five photovoltaic 

cells (mA); 

– voltage (V), charge-discharge current (mA), and 

temperature (℃) of the energy storage device. 

The dataset is valuable and important because it 

includes in-orbit data collected by four different CubeSat 

satellites that share the same bus system structure: the 

NEPALISAT, RAAVANA, UGUISU, and TSURU 

satellites. This data can be used to estimate the energy 

available in orbit for a 1U CubeSat, assessing the 

feasibility of missions.  

In this research for the battery discharge modelling, 

we analysed available data and extracted the battery 

discharge periods from this dataset. Data visualization for 

20_02_2021 (complete set and selected discharge period) 

are shown in Fig. 7. 
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Fig. 7 Data visualization of the whole set and the April 20, 2021, discharge period. 

 

For a better understanding of their composition and 

range of changes, statistical information was collected, 

and the DOD was calculated (described in detail in 

subsection 4.1) and presented in Table 2. 

 

Table 2 

Data set features description (5709 measures) 

 
Vbatt (V) Ibatt (mA) 

DOD 

(mA*hour) 
Tbatt (℃) 

mean 4.0298 263.0029 65.9986 6.2552 

std 0.0575 76.0496 42.8586 2.7049 

min 3.79 5.64 0 1.07 

max 4.2 1200.42 225.3272 15.63 

 

During data analysis, a significant deviation in the 

Ibatt current values was detected in the data sets for the 

dates 01/24/2022, 07/05/2021, 07/09/2021, and 

05/21/2021, where Ibatt reached values above 1000 mA 

(Fig. 8). Also, several data points that represents negative 

Ibatt i.e., battery charge instants in the middle of the 

discharge periods, were found in the discharge data set. 

Fig. 8 shows the distribution of both typical and untypical 

(i.e. “too low” – negative Ibatt values and “too high” – Ibatt 

> 500 mA) Ibatt data. 

 

 
 

Fig. 8. Ibatt values distribution visualization for the 
whole discharge data set. 

 

4. CubeSat storage battery discharge 

modeling 
 

In this study, CubeSat battery discharge modeling is 

performed using two approaches: equivalent circuit and 

machine learning, and the obtained results are analyzed. 

 

4.1. Equivalent circuit based model of the  

CubeSat storage battery discharge 
 

To build the model, the efficiency of energy transfer 

from solar batteries to a chemical battery was first 

determined according to the criterion of the minimum 

variance of dependency. Based on the block diagram 

(Fig. 3) and assuming that the losses on the five blocking 

diodes are the same, we obtain the following formula:  

 

       
i i

5

Load SB p p
1

N N V I             (1) 

 

At large intervals of operation time in stationary 

mode, the energy balance between energy storage and 

energy consumption must be maintained, this allows 

applying formula (1) to calculate the efficiency of energy 

transfer from the photovoltaic battery to the load: η 

=92.6 %. To confirm the correctness of the calculations, 

the graph shown in Fig. 9. 

The satellite design information has been released 

as a standardized, open-source BIRDS bus system for the 

fast and easy development of satellites for educational 

and research purposes. The data can be used as a standard 

data set to verify the on-orbit performance of a satellite 

power system developed using the BIRDS bus. 

Typically, the discharge characteristics of the 

storage battery are of decisive importance when 

designing a satellite power supply system. The 
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manufacturer in its own specifications indicates the 

dependence of the discharge voltage on the depth of 

discharge at fixed values of ambient temperature and 

discharge current. In practice, this is not enough, since 

the operating parameters are constantly changing. To 

overcome this problem, approximate solutions are used, 

the most common of which is the use of an equivalent 

circuit of the storage battery (Fig.10). 

 
Fig. 9. Confirmation the correctness of the calculations 

 

 
 

Fig. 10. The equivalent circuit of the storage battery 

 

In Figure 10: 

– Rp, Lp – resistance and inductance of external 

connections, electrodes, and electrolyte;  

– Rp, VDp formalize the nonlinear polarization 

effect as a function of the charge level, discharge current, 

and battery temperature;  

– Rch, VDch are similar to Rp, VDp for the 

charge mode;  

– Cd is the capacitance of the double layer;  

– Cekh is the battery capacity as an 

electrochemical storage; -  

– Ru – a non-linear resistor that simulates the 

processes associated with self-discharge and the 

occurrence of side chemical reactions. 

A simplified mathematical model of discharge 

characteristics contains the dependence of the depth of 

discharge as an integral on the discharge current and the 

battery voltage, which depends on the current, 

temperature, and depth of discharge: 

 

   

         

 
 

 

d0

0 DOD d

p
kp

DOD I t dt,

U U K T DOD R T I

DOD
U T exp .

DOD T


 

        

 
  

 
 


   (2) 

 

Formula (2) contains 2 equations: the dependence 

of the depth of discharge on time and discharge current 

and the approximation of the battery discharge voltage on 

the depth of discharge. 

Identification of the parameters of the discharge 

characteristic model is the determination of the structure 

and parameters of the temperature: 

 DODK T  – the angle of inclination of the linear 

section of the discharge characteristic; 

 R T  – internal resistance; 

 pU T  – change in voltage on the initial non-linear 

section of the discharge characteristic; 

 kpDOD T  – the duration of the initial nonlinear 

section of the discharge characteristic. 

To analyze the obtained results, the accuracy of the 

model was calculated using the complete sets; the results 

are presented in Fig. 11. Limited and insufficient 

accuracy of the original data leads to unexpected results: 

42% of the model calculations in discrete form coincide 

with the results of the measurements (what is obtained 

from the ADC), and the deviation of almost 97 model 

calculations does not exceed the two least significant bits 

(LSB) from ADC.
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Fig. 11. Accuracy of the model on the complete data set  

(31-bit characteristics) 

 

4.2. Machine learning based model of the 

CubeSat storage battery discharge 
 

Based on the results of the data analysis described 

in Section 3, a dataset was created for further training of 

the model, containing data corresponding to battery 

discharge periods. The training data set comprises data 

on battery discharge periods collected from all available 

sets (March 2021 to January 2022) for both typical and 

atypical Ibatt values. The data set features description for 

the whole set and for the typical Ibatt values is represented 

in Table 2 and Table. 3. 

 
Table 3 

Data set features description for the typical Ibatt values 

(5024 measures) 

 
Vbatt (V) Ibatt(mA) 

DOD 

(mA*hour) 
Tbatt(℃) 

mean 4.0305 258.6566 64.9712 6.1894 

std 0.0547 42.7227 40.8895 2.7484 

min 3.87 5.64 0 1.07 

max 4.2 474.18 181.4189 15.63 

 

Handling Outliers. Data outliers (data points 

where a short-term increase of Ibatt was observed in the 

middle of the discharge period) were excluded from the 

set. 

Feature Extraction. Taking into account the 

correlation of the accessible data, the following features 

were selected: Ibatt – the current value of the battery in 

calibrated format (mA), and Tbatt – the temperature value 

of the battery in calibrated format (°C), and extracted 

from the full data set for periods of satellite battery 

discharge. The data series for all selected features has no 

missing values. 

4.2.1. Feature engineering 

 

Feature Creation. The feature DOD (discharge 

characteristic, mA*hour) was created using the equation 

from (2). The selected features correlation study was 

performed on the whole set for the battery discharge 

period, the results are shown in Fig. 12. 

 

 
 

Fig. 12. Visualization of the correlation of dataset 
features. 

 

As can be seen from the figure, the input 

characteristics are correlated with the target feature and 

are not overcorrelated. New feature matrix consisting of 

all polynomial combinations of the both selected and 

created features with degree less than or equal to the 8 

was generated. 

Scaling. Each selected feature was scaled and 

transformed individually according to the equation (3). 

 

min
scaled

max min

X X
X

X X





  (3) 

 

The target feature (label) is Vbatt – Voltage value of 

the battery in calibrated format (V). 
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4.2.2. Machine learning model creation and training 

 

For CubeSat storage battery discharge prediction, 

the cross-validated Lasso regressor model 

(LassoLarsCV), which is based on the least-angle 

regression (LARS) algorithm [19] and can overcome 

multicollinearity, was chosen. A cross-validation 

estimator was selected due to its ability to support warm-

starting by reusing precomputed results from previous 

steps of the cross-validation process, as well as to provide 

the advantage of the best training/development data set 

split. The metric used for the model performance 

evaluation – R2 Score, defined as  

 

 

 

2N
Ni ii 12

i2N
i 1ii 1

y y 1
R 1 , y y

N
y y







  







       (4) 

 

where: iy  is the predicted value of Vbatt for the i-th 

sample and 𝑦𝑖 - the corresponding actual value of Vbatt. 

To chain multiple estimators into one, a pipeline 

(Python, Scikit-learn) was developed. The pipeline 

consists of the following steps: 

1) data normalization using MinMaxScaler with 

default feature range [0,1]; 

2) generation a new feature matrix consisting of all 

polynomial combinations of the features with degree less 

than or equal to 8-degree using PolynomialFeatures; 

3) regressor LassoLarsCV, cv=6. 

Before using cross-validation to ensure unbiased 

model performance estimation, the dataset was split into 

training and test sets at a ratio of 80:20 %.  

A characteristic feature of LARS is its 

computational efficiency; the algorithm requires the 

same order of calculations as the ordinary least squares 

(OLS) method [20]. The LassoLarsCV finds the relevant 

regularization parameter (alpha) values itself, which can 

help prevent the model from overfitting. The model's 

performance (cross-validation R² score) on the training 

set is 0.924, and on the test set, it is also 0.924. 

 

4.2.3. Model results analysis 

 

To analyze the model's performance on the entire 

dataset, ensuring that the model generalizes appropriately 

and does not exhibit signs of overfitting, a graph is used. 

(Fig. 13, 14) of the model's predicted values on the full 

range of values for Ibatt at T=5°C and DOD in the range 

of 0-200 mA*hour with a step of 40 for Fig. 13 and step 

20 for Fig. 14 were built. 

Shown in the visual, ΔU was calculated according 

to equation (5): 

 

   f I I,DOD,T f I,DOD,TU

I I

 


 
  (5)  

 
U for the visual was calculated using equation (6) 

for the whole range of values for Ibatt, i.e.,  0,1200 mA: 

 

 U f I,DOD,T   (6) 

 

where the temperature setpoint T 5 C   and DOD varies 

as   DOD mA*hour, step 200,200  . 

The constant temperature test was chosen to 

accurately analyze the model's predictions for battery 

behaviour under different orbital conditions. 

 

 
 

Fig. 13. Dependency graph for 
∆𝑈

∆𝐼
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Fig. 14. Dependency graph for Vbatt 

 

To analyze the model prediction error, a histogram 

was built as shown in Fig. 15.  

The histograms show the error of the model in LSB. 

The data predicted by the model with an accuracy of the 

fifth sign were used to construct the histograms. 

 

 
 

Fig. 15. Model prediction error histogram 

 

The maximum absolute error is 2.7488 LSB. The 

percentage of the model prediction error above 2 LSB is 

0.44%. 

 

5. Comparative analysis of the results  

of analytical modeling and modeling based 

on machine learning 
 

The comparative evaluation shows that both models 

achieve high predictive accuracy, but they differ 

fundamentally in methodology, interpretability, and 

adaptability. The analytical model’s strength lies in its 

strict adherence to physical laws, which ensures 

interpretability and robustness under well-defined 

conditions. In contrast, the ML model captures nonlinear 

dependencies in the data, offering superior accuracy in 

dynamic or atypical operating conditions. Importantly, 

the ML approach achieves this without requiring explicit 

knowledge of system physics, instead learning from 

empirical data. 

The error distribution analysis demonstrates that the 

analytical model already achieves a high degree of 

precision (96.7% of predictions within 2 LSB), which 

validates the relevance of equivalent circuit–based 

approaches in satellite energy system design. However, 

the ML model surpasses this performance, with 99.56% 

of predictions within 2 LSB and almost 70% of 

predictions deviating by less than 0.5 LSB. This suggests 

that ML models not only match but also refine the 

predictive capabilities of analytical approaches. 

From a systems engineering perspective, the key 

advantage of the ML approach is its adaptability to real 

mission data, making it suitable for onboard 

implementation in future satellites as part of an adaptive 

energy management system.  
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On the other hand, the analytical model remains 

indispensable for mission design, component 

specification, and cases where computational simplicity 

and physical interpretability are required. 

Thus, these models are not competitors but 

complementary tools: the analytical approach provides 

the theoretical foundation, while ML enhances predictive 

accuracy under real operating conditions.  

 

6. Discussion 
 

This study highlights several important insights for 

the design and operation of CubeSat power systems. 

First, the availability of long-term in-orbit datasets 

(NEPALISAT, RAAVANA, UGUISU, TSURU) enables 

systematic evaluation of both physics-based and data-

driven models. The demonstrated modeling framework 

confirms that satellite battery discharge behavior can be 

predicted with high fidelity using either approach. 

The novelty of this work lies in directly comparing 

analytical and ML models on real CubeSat flight data, 

quantifying their respective advantages, and showing that 

ML can achieve higher accuracy while analytical models 

provide interpretability. Unlike earlier studies that focus 

solely on one modeling technique, this work establishes 

a benchmark for combining them. 

Practical implications include the potential 

integration of ML-based predictors into satellite onboard 

software for real-time state-of-charge estimation and 

fault detection. Analytical models, meanwhile, remain 

valuable for mission planning and performance 

verification. Together, they can form a hybrid predictive 

framework for next-generation small satellite platforms. 

Limitations of this study include the reliance on one 

satellite bus type (BIRDS series) and the relatively 

narrow range of mission profiles. Broader validation 

across different CubeSat platforms and longer 

operational lifetimes will be necessary to generalize the 

results. Additionally, the ML model depends heavily on 

the quality and representativeness of the training dataset, 

which may not always be available in early mission 

phases. 

 

7. Conclusions 

 
This work contributes to the field of satellite power 

system modeling by developing and validating two 

complementary approaches—an analytical equivalent 

circuit model and a machine learning–based model—

using real in-orbit data from multiple CubeSats. The 

developed methodology can be used in related areas, if 

there is a need for automatic determination of the state of 

a storage battery, and its malfunction leads to the failure 

of the entire facility. 

Main contributions: 

 Developed and validated an equivalent circuit 

model of CubeSat battery discharge, demonstrating that 

96.7% of predictions deviate by no more than 2 LSB; 

 Developed a machine learning model 

(LassoLarsCV with polynomial features), achieving 

99.56% accuracy within 2 LSB and significantly 

improving prediction sensitivity (68.77% of results 

within 0.5 LSB); 

 Provided the first direct comparison of 

analytical and ML approaches using real CubeSat 

telemetry, highlighting their complementary advantages. 

Theoretical significance: The results confirm that 

battery discharge processes can be effectively modeled 

both from first principles and from data-driven 

perspectives, establishing a dual-framework 

methodology for power system research. 

Practical significance: The proposed models can 

be applied in mission design, onboard energy 

management, and anomaly detection, increasing 

reliability of CubeSat operations. 

Future research directions: 

 Development of hybrid models that combine 

analytical interpretability with ML adaptability; 

 Validation on CubeSats with different bus 

systems and mission profiles; 

 Investigation of onboard implementation of ML 

predictors for real-time state-of-charge and state-of-

health estimation; 

 Extension of models to account for aging 

effects, thermal cycles, and radiation degradation. 
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ПОРІВНЯННЯ МЕТОДІВ ЕКВІВАЛЕНТНОЇ СХЕМИ ТА МАШИННОГО НАВЧАННЯ  

ДЛЯ МОДЕЛЮВАННЯ РОЗРЯДУ АКУМУЛЯТОРНОЇ БАТАРЕЇ CUBESAT 

І. Б. Туркін, Л. О. Волобуєва, А. Г. Чухрай, О. В. Любімов 

Предметом статті є дослідження та порівняння двох підходів до моделювання розряду акумулятора 

супутника CubeSat: аналітичного з використанням еквівалентної схеми та машинного навчання. Метою статті 
є обґрунтований вибір підходу до моделювання розряду акумулятора супутника CubeSat. Моделювання 

розряду акумулятора супутника дозволить передбачити наслідки відключення автономної енергосистеми та 

забезпечити відмовостійкість обладнання на орбіті. Тому обране дослідження є актуальним та перспективним. 

Це дослідження зосереджено на аналізі даних супутника CubeSat, що базується явно на зразках орбітальних 

даних енергосистеми, які включають дані, доступні на момент публікації статті. Набір даних містить дані про 

напругу (мВ), струм (мА) та температуру (за Цельсієм) акумулятора та сонячних панелей, прикріплених до 

п'яти боків супутника. У цьому контексті розглядаються два підходи: аналітичне моделювання на основі 

фізичних законів та машинне навчання, яке використовує емпіричні дані для створення прогнозної моделі. 

Результати. Порівняльний аналіз результатів моделювання показує, що аналітичний підхід має перевагу 

прозорості, оскільки він визначає можливі параметри, що сприяють розумінню взаємозв'язків. Однак модель 

менш гнучка до змін навколишнього середовища або нестандартної поведінки супутника. Модель машинного 
навчання продемонструвала точніші результати, оскільки вона може враховувати складні залежності та 

адаптуватися до фактичних умов, навіть коли вони відхиляються від теоретичних припущень. Однак модель 

вимагає попереднього навчання на великій кількості даних і менш зрозуміла з точки зору фізичних законів. 

Загальні висновки. Аналітичний підхід забезпечує високу точність і надійність за відомих умов, але він 

обмежений при зміні зовнішніх параметрів. Підхід машинного навчання демонструє кращу загальну точність 

і стабільність, особливо за змінних або непередбачуваних умов, але вимагає великої кількості високоякісних 

даних та більш складної інтерпретації. Таким чином, найефективнішим підходом може бути гібридний, де 

аналітична модель служить основою, а машинне навчання використовується як інструмент для уточнення або 

компенсації неточностей. 

Ключові слова: малий супутник; CubeSat; Електроенергетична система; моделювання; машинне 

навчання. 
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