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GRAPHSAGE OPTIMIZATION FOR INSURANCE RISK ASSESSMENT:
BALANCING PERFORMANCE AND EFFICIENCY

The subject of this article is the application and optimization of Graph Neural Networks, specifically the
GraphSAGE (Graph SAmple and aggreGatE) architecture, for insurance risk assessment in volatile environ-
ments. This study aims to develop a robust and efficient GraphSAGE-based framework for insurance risk as-
sessment that balances predictive performance with computational efficiency. This is achieved by systematically
exploring various GraphSAGE architectures, optimizing hyperparameters, and implementing regularization
techniques to prevent overfitting. The effectiveness of different configurations is evaluated through empirical
analysis to find the optimal balance between model performance (accuracy) and efficiency (computational speed
and memory usage). The tasks to be accomplished in this study include: designing and implementing a synthetic
graph generation process that accurately represents the complexities of insurance risk data; conducting a sys-
tematic exploration of GraphSAGE architectures, varying the number of layers (2, 3, 4) and hidden channels
(64, 128, 256); investigating the impact of different learning rates (0.1, 0.01, 0.001) on model convergence and
stability; analyzing the effectiveness of various regularization techniques, including dropout (0.1 to 0.5) and
weight decay (1e-05 to 0.0001); evaluating different training strategies, including the optimal number of epochs
(100 to 300) and the implementation of early stopping; assessing the performance of different loss functions in
handling outliers common in insurance data; and developing a comparison framework to facilitate informed
decision-making in model selection for insurance risk assessment tasks. The methods used in this study are:
employing an experimental approach, utilizing the PyTorch Geometric library for implementing GraphSAGE
models, deploying the models and testing them on the cloud infrastructure, developing a custom graph genera-
tion algorithm to create realistic insurance risk scenarios, incorporating factors such as health scores, smoking
status, and regular check-ups, and a grid search strategy for hyperparameter optimization, combined with cross-
validation, regularization techniques to prevent overfitting, and employment of early stopping mechanisms. The
quantitative results were confirmed by generating synthetic graphs that simulate realistic insurance risk sce-
narios and by conducting experiments to test different model configurations. One key finding is that a 2-layer
GraphSAGE model with 128 hidden channels achieved performance comparable to more complex architectures,
demonstrating that simpler models can be effective for insurance risk assessment tasks. Conclusions. The novelty
of the results is as follows: 1) the relatively simple GraphSAGE architectures, such as 2-layer models with 128
hidden channels, can achieve performance comparable to more complex models in insurance risk assessment
tasks. This suggests that the inherent structure of insurance risk data may not always require deep, elaborate
neural networks to capture essential patterns. 2) the research underscores the importance of tailored regulari-
zation strategies, with deeper models generally requiring stronger regularization to combat overfitting. The in-
vestigation into training dynamics reveals the role of learning rate selection and early stopping strategies, with
shallower models benefiting from higher learning rates, whereas deeper architectures require more conservative
learning rates for stable convergence. The consistent performance of the Smooth L1 loss function across various
model architectures demonstrates its suitability for insurance risk assessment tasks. 3) a foundation for the ef-
fective application of GraphSAGE models in insurance risk assessment is established, emphasizing the im-
portance of a balanced approach to model design that considers not only predictive performance but also com-
putational efficiency and practical deployment considerations.
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Ukraine, during the ongoing war. A sophisticated risk as-
sessment framework for personal belongings and health
insurance was created to address the crucial need for in-
dividuals to protect themselves against unforeseen events

1. Introduction

In the evolving landscape of risk assessment, partic-
ularly in the insurance sector, this study does its strides

in applying advanced machine learning techniques to ad-
dress critical challenges. This research aims to develop a
novel approach to risk assessment that is especially rele-
vant in regions facing heightened uncertainty, such as

and potential losses in volatile environments.

This study successfully leveraged Graph Neural
Networks (GNNs), specifically the GraphSAGE (Graph
SAmple and aggreGatE) architecture, demonstrating
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their power in analyzing interconnected data. The adap-
tation of GraphSAGE’s node embedding capabilities to
efficiently model complex relationships in insurance risk
assessment has been a key achievement. GraphSAGE can
capture intricate connections between individuals, their
behaviors, and environmental factors, providing nuanced
insights that traditional statistical methods often over-
look.

In terms of Network Architecture, the study con-
ducted a thorough investigation into the impact of net-
work depth and width on model performance. By explor-
ing configurations ranging from 2 to 4 layers and 64 to
128 hidden channels, the research has provided valuable
insights into the trade-offs between model complexity
and computational efficiency in the insurance risk assess-
ment context.

This research has contributed to the understanding
of Learning Dynamics in GraphSAGE models. Through
rigorous testing of learning rates from 0.1 to 0.01, an op-
timal balance between convergence speed and stability
has been identified, tailored specifically for insurance
risk data.

In the realm of Regularization Techniques, a nu-
anced approach was developed to prevent overfitting and
improve generalization. By exploring dropout rates from
0.1to 0.5 and weight decay values from 1e-05 to 0.0001,
we established effective regularization strategies crucial
for model performance on unseen insurance data.

This study has also made strides in optimizing the
Training Strategies. A comprehensive analysis of train-
ing duration, exploring epochs from 100 to 300, has been
conducted. Additionally, an early stopping mechanism
was implemented, ensuring optimal model performance
while minimizing computational overhead.

A significant contribution has been made in the area
of Loss Functions. This study has focused on and vali-
dated the effectiveness of Smooth L1 loss in the context
of insurance risk assessment, demonstrating its robust-
ness against common outliers in insurance data.

Through systematic exploration of these parameters
and techniques, this study has provided insights into op-
timizing GraphSAGE GNNs specifically for insurance
risk assessment. These findings are not only theoretical
but also have practical implications, particularly in high-
risk scenarios, such as the war in Ukraine. The developed
framework is a crucial decision-making tool that benefits
both insurers and policyholders in challenging environ-
ments.

1.1. Motivation

TThis study falls within the intersection of machine
learning and information science, specifically focusing
on the application of graph neural networks in the insur-
ance industry. This research addresses the need for ad-
vanced risk assessment tools in volatile environments,

particularly in regions facing heightened uncertainty,
such as Ukraine, during the ongoing war.

The increasing complexity of risk factors in modern
insurance scenarios underscores the relevance of this
problem, where traditional statistical methods often fail
to capture relationships between individuals, their behav-
iors, and environmental factors. The development of
more accurate and efficient risk assessment models is
crucial for both insurers and policyholders, especially in
high-risk situations.

Previous research has primarily focused on the gen-
eral applications of GNN approaches in insurance [1].
This study aims to bridge the gap by optimizing
GraphSAGE for insurance risk modeling, addressing the
unique challenges and the need for efficient models in
real-world scenarios.

This study aims to develop and optimize a
GraphSAGE-based framework for insurance risk assess-
ment that balances predictive accuracy with computa-
tional efficiency and deploys it to cloud infrastructure.

1.2. State of the art

The application of Graph Neural Networks (GNNSs)
to insurance risk assessment represents a cutting-edge ap-
proach in actuarial science and machine learning. Recent
studies have demonstrated the potential of GNNSs in cap-
turing complex relationships within networked data, a
crucial aspect in modern insurance risk modeling.

The Graph Convolutional Networks (GCNs) have
been introduced, laying the groundwork for applying
neural networks to graph-structured data [2].
GraphSAGE, which improved upon GCNs by enabling
inductive learning on large-scale graphs, was proposed
based on this [3]. These advancements have opened new
possibilities in various domains, including insurance.

Traditional risk assessment models in the insurance
sector often rely on statistical methods and hand-crafted
features. The application of machine learning in insur-
ance claim prediction has been demonstrated, highlight-
ing the potential for more sophisticated approaches [4].
However, these methods often fail to capture the intricate
relationships between policyholders and their environ-
ments.

More recently, the use of GNNs in fraud detection
for auto insurance was explored, showcasing the ability
of graph-based models to identify complex patterns in in-
surance data [5]. However, the work focused primarily
on fraud detection rather than comprehensive risk assess-
ment.

The specific application of GraphSAGE to insur-
ance risk assessment remains largely unexplored. While
the effectiveness of GraphSAGE in financial risk assess-
ment for credits was demonstrated, the work did not ad-
dress the unique challenges posed by insurance data, such
as outlier handling and the need for interpretable models
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in actuarial contexts [6].

Current state-of-the-art approaches in insurance risk
modeling largely rely on traditional statistical methods or
general-purpose machine learning algorithms. For in-
stance, advanced GLM techniques for insurance pricing
have been proposed [7].

The gap in the current literature lies in the lack of a
comprehensive study optimizing GraphSAGE specifi-
cally for insurance risk assessment. Existing research has
not thoroughly explored the trade-offs between model
complexity and performance in this context, nor has it
addressed the unique challenges of applying GNNs to in-
surance data, such as handling imbalanced risk categories
and ensuring model interpretability for regulatory com-
pliance.

This study aims to bridge these gaps by systemati-
cally exploring GraphSAGE architectures, hyperparame-
ters, and training strategies tailored to insurance risk as-
sessment. In doing so, it seeks to establish new bench-
marks and best practices for applying GNNs in the insur-
ance industry, potentially revolutionizing how risk is
modeled and assessed in complex, real-world scenarios.

1.3. Objective and approach

To ensure that the goal is achieved, the following
tasks must be solved:

1. Design and implement a synthetic graph gener-
ation process that accurately represents the complexities
of insurance risk data (Section 3.1).

2. To systematically explore various GraphSAGE
architectures: focus on the depth and width parameters
(Section 3.2).

3. To analyze hyperparameters for optimal perfor-
mance in insurance risk modeling: dropout and weight
decay (Section 3.3).

4. Toinvestigate the effectiveness of different reg-
ularization techniques and training strategies in prevent-
ing overfitting and improving model generalization using
early stopping strategies (Section 3.4).

5. The suitability of different loss functions for
handling outliers in insurance data is evaluated (Section
3.5).

6. To develop a framework for assessing different
GraphSAGE configurations in the context of insurance
risk assessment (section 4).

2. Materials and methods of research

2.1. The infrastructure description

Experiments with the GraphSAGE model were con-
ducted in a cloud-based environment to find the optimal
parameters for the specific risk insurance case scenario,
leveraging the capabilities of Amazon Web Services

(AWS) (Fig. 1). The AWS SageMaker service notebook
was utilized as the primary development and testing plat-
form, providing a flexible and scalable infrastructure for
machine learning experimentation [8].

The data source for the GraphSAGE model was
Amazon Neptune, a fully managed graph database ser-
vice. Neptune’s ability to efficiently store and query
graph-structured data made it an ideal choice for this risk
assessment task, where relationships between entities
play a crucial role.

S
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Fig. 1. Architecture of AWS application

The PyTorch library served as the foundation for
implementing the GraphSAGE model. PyTorch’s dy-
namic computational graph and extensive support for
deep learning architectures facilitated the development
and testing of various model configurations [9, 10].

The application flow begins with the generation of
a synthetic graph representing insurance risk data. This
graph is then processed using the GraphSAGE model,
which learns to aggregate information from a node’s
neighborhood, ultimately producing risk assessments.
The model’s performance is evaluated and fine-tuned
through systematic hyperparameter optimization and rig-
orous testing on held-out data. The flow can be repre-
sented using UML activity diagram to simplify the un-
derstanding (Fig. 2).

2.2. Model Parameter Testing:

The GraphSAGE model was systematically tested
with various combinations of parameters using this gen-
erated data:
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Fig. 2. Activity diagram
— Number of layers: {2, 3, 4}, computational speed and memory usage, while efficiency
— Hidden channels: {64, 128} refers to predictive accuracy.
— Learning rates: {0.1, 0.01}, The objectlvg is to maximize awelgr?ted.sum.of per-
D Crates: 101 0.5 formance and efficiency, where the weighting is con-
N rqpou rates: {0.1, 0.5}, trolled by the parameter a.
— Weight decay: {1e-5, le-4}, The trade-off between performance and efficiency
— Number of epochs: {100, 200, 300}, is achieved through a linear combination of these two
— Loss function: Smooth L1 Loss. factors, allowing for a straightforward and interpretable
Each configuration was evaluated based on its test  balance between the two. Empirical analysis shows that
loss, and early stopping was implemented to prevent the relationship between o and model outcomes is gener-

overfitting. The AWS environment allowed for the par-
allel testing of multiple configurations, significantly ac-
celerating the optimization process.

The performance of the model is then estimated us-
ing the following formula:

max o -P(fy)+(1-0)-E(fy), Q

considering the following con-
straints: fo€F GraphSAGE, 8€0optimal, 0<a<la<l,
where 6: model parameters,

o: trade-off parameter between performance and effi-
ciency,

fy: GraphSAGE function parameterized by 6,

P(fy): measure of model performance (accuracy),

E(fy): measure of model efficiency (computational
speed and memory usage),

FGraphSAGE: set of all possible GraphSAGE archi-
tectures,

Ooptimal- S€L Of optimal hyperparameters identified in
the study.

This formulation encapsulates the goal of determin-
ing the optimal balance between model performance and
efficiency in the context of GraphSAGE for insurance
risk assessment. In this context, performance refers to

ally linear but with potential threshold effects at extreme
values of o (close to 0 or 1). This linear trade-off provides
a clear, controllable mechanism for balancing the dual
priorities of predictive accuracy and computational effi-
ciency in insurance risk assessment applications.

The term a-Performance(fy) represents the contri-
bution of model performance to the overall objective,
while (1-a)-Efficiency(fy) represents the contribution of
model efficiency. By adjusting o, we can prioritize per-
formance (as o approaches 1) or efficiency (as a ap-
proaches 0) based on the insurance risk assessment task’s
specific requirements. The value of a is expert specified
and can be adjusted for the specific needs of the insurance
risk assessment task, allowing for the incorporation of
business priorities.

The constraints ensure that we are operating within
the GraphSAGE architecture and using the optimal hy-
perparameters identified in the study (6€@optimal). The
condition 0 <a<1 ensures that o remains a valid
weighting factor.

The approach’s uniqueness lies in its explicit con-
sideration of both performance and efficiency within a
single optimization objective. This is particularly rele-
vant in the insurance industry, where accurate risk assess-
ment and rapid processing of large-scale data are crucial.
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This approach differs from traditional ML optimi-
zation approaches, which focus solely on optimizing ef-
ficiency metrics and ignoring the computational perfor-
mance [11].

Some studies consider hardware efficiency in neu-
ral architecture search, but they often treat it as a con-
straint rather than part of the objective function [12].

Considering this information, the proposed ap-
proach offers the following advantages:

— Flexibility: The a parameter allows for dynamic
adjustment of priorities between performance and effi-
ciency.

— Single Objective: By combining performance
and efficiency into a single objective, the optimization
process is simplified compared to multi-objective ap-
proaches.

— Practical Relevance: This formulation directly
addresses industry needs in insurance, where accuracy
and speed are crucial.

— Customizability: The Performance and Effi-
ciency functions can be tailored to specific metrics rele-
vant to insurance risk assessment.

This testing approach, combined with the cloud in-
frastructure and graph database, enabled a thorough ex-
ploration of the GraphSAGE model's performance in in-
surance risk assessment scenarios. The use of synthetic
data generated with carefully designed formulas ensured
that the model was trained and tested on realistic, yet con-
trollable, risk patterns.

3. Results

3.1. Graph Generation for Training
and Testing

Synthetic graphs were generated for training and
testing purposes. These graphs were designed to simulate
realistic insurance risk scenarios while allowing con-
trolled experimentation. The graph generation process in-
corporated several key formulas to ensure that the data
reflected relevant risk factors and relationships.

Each node in the graph represents an individual,
with features generated using the following formulas:

1. Health Score (H):
[H=clip(N(0.7,0.2),0.1,1.0)], 2

where (N(w,0)) represents a normal distribution with
mean () and standard deviation (o), and clip limits the
values between 0.1 and 1.0.

2. Smoking Status (S):

[S=Bernoulli(0.2)]. (3)
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3. Regular Check-ups (C):
[C=Bernoulli(0.6)]. 4)
Two types of edges were created:
1. 'Same Zipcode' edges:
Probability of the connection:
. 2-(H1+H]‘)
[P(connection)= —— (5)

where (Hj)and (H;) are the health scores of nodes i
and j.

2. 'Family' edges:

Randomly generated to ensure a minimum edge
count of the following:

. number_of_nodes
[min_edges=———

1. (6)

A risk label for each node in the graph used for
training was computed as follows:

[Risk=(1-H)x(140.25-0.1C)]. 7
The resulting graph can be visualized using the mat-
plotlib, networkx and gremlin Python libraries, and pre-

sented (Fig. 3).

—— Same_zipcode
........... Fﬂml ly

Fig. 3. The graph visual representation

This graph visualization offers a focused represen-
tation of a complex relational dataset, showcasing a
carefully selected subset of 116 nodes and 62 edges. The
nodes, which are uniformly depicted as circles, represent
individual entities, primarily people. The visualization
distinguishes between two critical types of relationships:
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family connections, represented by dotted edges, and ge-
ographical proximity (shared ZIP codes), depicted by
one-line edges. The criticality of the edges was defined
by conducting a survey of insurance area experts. This
strategic approach allows for a clear interpretation of the
core characteristics of the network.

This representation enables researchers and analysts
to identify key family groups, analyze the interplay be-
tween familial and spatial relationships, and detect poten-
tial community structures by limiting the visualization to
a manageable subset. The red edges highlight familial
networks, revealing clusters of related individuals, while
the black edges provide insights into the network’s spa-
tial distribution, potentially revealing neighborhood clus-
ters or shared residences. This balanced view of the net-
work’s structure facilitates pattern recognition and hy-
pothesis generation, serving as a valuable tool for the in-
itial analysis of complex social and geographical rela-
tionships within the dataset.

3.2. Network Depth vs. Width: Balancing
Complexity and Efficiency

In the context of GraphSAGE (Graph Sample and
Aggregate) neural networks, the concepts of depth and
width play crucial roles in determining the capacity of the
model to learn and generalize from graph-structured data.
These architectural choices significantly impact the per-
formance and efficiency of the model [13].

The depth in a neural network refers to the number
of layers in the model. Each layer in GraphSAGE corre-
sponds to a round of neighborhood aggregation and fea-
ture transformation.

Width refers to the number of hidden units or chan-
nels in each layer. The dimensionality of the intermediate
representations is determined. In GraphSAGE, the width
can be defined as the number of hidden channels per layer
[14].

The importance of these properties lies in their di-
rect influence on the ability of the model to capture com-
plex patterns in the data. Increased depth allows the
model to learn hierarchical representations, potentially
capturing more abstract features. Wider networks with
more hidden channels can represent a broader range of
functions within each layer [15].

However, the relationship between depth, width,
and model performance is not always straightforward.
Deeper models might suffer from issues such as vanish-
ing gradients or overfitting, whereas wider models could
lead to increased computational costs without propor-
tional performance gains [16].

The optimal balance between depth and width is
crucial for accurately modeling the complex relationships
between various risk factors while maintaining computa-

tional efficiency in the context of insurance risk assess-
ment.

Several configurations were tested on the actual
model:

1. A 2-layer model with 128 hidden channels.

2. A 3-layer model with 128 hidden channels.

3. A 4-layer model with 64 hidden channels.

All three configurations achieved the same test loss
of 0.0001, indicating excellent performance across dif-
ferent architectural choices. This suggests that the
model’s performance was robust to variations in depth
and width within the tested range for the given insurance
risk assessment task.

The 2-layer model with 128 hidden channels
achieved optimal performance with fewer epochs (100)
and a higher learning rate (0.1), suggesting that simpler
architecture is sufficient and more efficient for this par-
ticular task.

The deeper models (3 and 4 layers) required more
epochs and used lower learning rates (0.01), indicating
that more careful and prolonged training was required.
However, they did not outperform the simpler 2-layer
model in terms of the final test loss.

Interestingly, the 4-layer model achieved compara-
ble performance with fewer hidden channels (64) com-
pared to the 2 and 3-layer models (128), suggesting that
increased depth might compensate for reduced width to
some extent.

These findings highlight the importance of experi-
menting with different depth and width configurations in
GraphSAGE models for insurance risk assessment.
While deeper and wider networks can capture more com-
plex patterns, the optimal architecture may depend on the
specific characteristics of the data and the nature of the
risk assessment task at hand.

3.3. Dropout and Weight Decay: Safeguarding
Against Overfitting

The prevention of overfitting emerged as a critical
consideration in the development of GraphSAGE models
for insurance risk assessment. To address this challenge,
two primary regularization techniques were employed:
dropout and weight decay. These methods were system-
atically applied and evaluated to enhance the generaliza-
bility of the model.

Dropout Implementation:

Dropout was implemented as a stochastic regulari-
zation method. In the context of the GraphSAGE archi-
tecture, dropout was applied after each graph convolution
layer, except for the final output layer [17]. The dropout
mechanism can be formalized as follows:

[}](T)ZD(n@h(l)L (8)
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where (h") is the output of the I-th layer,
(D®) is a binary mask with elements drawn from a
Bernoulli distribution with probability p (dropout rate),
(®) denotes element-wise multiplication.

Three dropout rates were tested: low one, being 0.1,
the middle (0.3) and the high one (0.5).

L2 regularization, also known as weight decay, was
applied to the model. This technique adds a penalty term
to the loss function to prevent overfitting by preventing
weights from growing too large. However, when com-
bined with normalization techniques, it primarily influ-
ences the weight scale and the effective learning rate ra-
ther than providing a regularizing effect. Weight decay
specifically refers to the process in which weights are
scaled by a factor slightly smaller than one during each
update in gradient descent, which affects the learning rate
[18]. The objective function with weight decay can be
expressed as follows:

[Ltotal=L0riginal+)\ Zw WZ]: (9)

where (Lorigina)is the original loss function (Smooth L1
in this case),

() is the weight decay coefficient,

(w) represents the model parameters.

Three weight decay values were examined: le-5,
le-4 and 0.

The impact of these regularization techniques was
evaluated across different model architectures was eval-
uated as follows:

1) 2-layer model (128 hidden channels):

— Best performance: dropout=0.1, weight de-
cay=1e-5;

— Test loss: 0.0001;

— Observation: Lower regularization was suffi-
cient for this simpler architecture;

2) 3-layer model (128 hidden channels):

— Best performance: dropout=0.1, weight de-
cay=1e-5;

— Test loss: 0.0001;

— Observation: Maintained low regularization
similar to the 2-layer model;

3) 4-layer model (64 hidden channels):

— Best performance: dropout=0.5, weight de-
cay=1e-4;

— Test loss: 0.0001.

— Observation: Required stronger regularization,
indicating increased risk of overfitting in deeper architec-
tures.

After conducting the analysis of the regularization
techniques, the following can be stated:

The higher dropout rate (0.5) in the 4-layer model
effectively prevented overfitting by introducing more
noise during training. This forced the model to learn more

robust features that are less dependent on any specific
neuron set.

The increase in weight decay (from 1e-5 to 1e-4) for
the 4-layer model indicates that constraining the magni-
tude of weights became more crucial in deeper networks.
This helped prevent the model from relying too heavily
on any feature or connection.

The consistent test loss (0.0001) across all configu-
rations demonstrates that appropriate regularization can
enable even deeper models to achieve performance com-
parable to simpler architectures without overfitting.

On the topic of efficiency while the 2 and 3-layer
models achieved optimal performance with minimal reg-
ularization, the additional complexity and stronger regu-
larization required for the 4-layer model suggest that sim-
pler architectures might be more efficient for this partic-
ular risk assessment task.

The findings underscore the importance of tailoring
regularization techniques to the GraphSAGE model’s
specific architecture and complexity in insurance risk as-
sessment. While deeper models offer the potential for
capturing more intricate patterns in risk factors, they also
require more careful regularization to ensure generaliza-
bility.

3.4. Training Dynamics and Early
Stopping Strategies

The training process of GraphSAGE models for in-
surance risk assessment involves complex dynamics that
significantly impact the model’s final performance. This
section delves into the training procedures employed,
with a particular focus on learning rate selection and
early stopping strategy implementation.

The learning rate isa critical hyperparameter in neu-
ral network training that determines the size of the steps
taken during the optimization process to minimize the
loss function. It significantly influences the training pro-
cess’s speed and stability. If the learning rate is too high,
the model may quickly converge to a suboptimal solution
or oscillate around the minima without settling. Con-
versely, a very low learning rate can slow down the train-
ing process and may cause the model to get stuck at a
minimum, making it difficult to escape and find a better
solution [19].

The learning rate was carefully tuned to optimize
the training process. Three learning rates were investi-
gated: 0.1, 0.01 and 0.001. The impact of the learning rate
was observed to vary with model complexity:

[0+1=6,MVL(8))],

where (0,) represents the model parameters at time t, (1)
is the learning rate, and (V L (8,))is the gradient of the
loss function. In this context, model complexity refers to
the number of layers and hidden channels.

(10)
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For the 2-layer model, a higher learning rate of 0.1
proved effective, allowing for faster convergence without
compromising stability. In contrast, deeper models (3 and
4 layers) benefited from a lower learning rate of 0.01,
which provided more gradual and stable updates, which
is crucial for navigating the more complex loss land-
scapes associated with deeper architectures.

The impact of training duration was closely moni-
tored for different numbers of epochs. Epochs refer to the
number of complete passes through the entire training da-
taset during the neural network training process. The im-
pact of epochs on a neural network is significant as it di-
rectly influences the ability of the model to learn and gen-
eralize from the data. The model may not learn suffi-
ciently if the number of epochs is too low, leading to un-
derfitting where the model performs poorly on both train-
ing and validation data. Conversely, if the number of
epochs is too high, the model may learn the noise and
irrelevant details in the training data, resulting in overfit-
ting where the model performs well on training data but
poorly on validation data [20]:

— 2-layer model: Achieved optimal performance
within 100 epochs,

— 3-layer model: Required up to 300 epochs, with
early stopping typically activating around epoch 220,

— 4-layer model: Showed the best results with 200
epochs, often stopping early around epoch 190.

An early stopping mechanism was implemented to
prevent overfitting and optimize computational re-
Sources.

— Early stopping is a technique used to prevent
overfitting in deep learning models by halting the training
process when the validation loss stops improving. This
method helps limit the number of iterations the model un-
dergoes, reducing the risk of memorizing the training
data instead of learning generalizable patterns. The effec-
tiveness of early stopping depends on the patience value,
which determines the number of iterations to wait before
stopping the training when no improvement is observed.
To achieve optimal validation accuracy, higher patience
values generally require more epochs, whereas lower pa-
tience values may lead to premature stopping and subop-
timal performance [21].

The strategy used can be formalized as follows:

Let (L, (t)) be the validation loss at epoch t. Early
stopping is triggered if the following:

[Lya (> min L, (i) for p epochs], (11)
i€[t-p,t-1]

where p is the patience parameter, which was set to 20 in
the experiments.

The learning curves for each model configuration
were closely examined, with the following key observa-
tions: rapid initial decrease in training loss across all

models, slower convergence rates for deeper models, par-
ticularly in later epochs, and occasional fluctuations in
validation loss, which are more pronounced in deeper ar-
chitectures.

These patterns informed the fine-tuning of both
learning rates and early stopping criteria, ensuring opti-
mal model performance while mitigating the risks of
overfitting.

To address potential issues with exploding gradi-
ents, particularly in deeper models, gradient clipping was
employed.

This technique is used to address the problem of ex-
ploding gradients, which can occur during deep neural
network training. This problem arises when the gradients
are excessively large, causing the model parameters to
oscillate or diverge during training. Gradient clipping
mitigates this issue by capping the gradients at a maxi-
mum threshold value, ensuring they do not exceed this
limit [22].

The strategy used in the experiments can be de-
scribed as follows:

. A
[VLajppea=min (1, m) VL],

(12)
where (A) is the clipping threshold. This technique
helped to maintain training stability, especially in the
early stages of training deeper networks.

The comprehensive analysis of training dynamics and the
implementation of early stopping strategies were crucial
in optimizing the GraphSAGE models for insurance risk
assessment. These approaches not only enhanced model
performance but also improved computational effi-
ciency, which is a key consideration for practical deploy-
ment in insurance applications. The insights gained from
this analysis provide valuable guidance for future refine-
ments in training methodologies for graph-based neural
networks in risk assessment tasks.

3.5. Loss Functions: Tailoring Error Metrics
to Insurance Realities

In the context of insurance risk assessment using
GraphSAGE models, the choice of loss function plays a
pivotal role in guiding the learning process and ensuring
that the model’s predictions are in line with the realities
of the insurance industry. This section explores the ra-
tionale behind the selection of the Smooth L1 loss and its
implications for model performance.

A loss function, also known as a cost function or
objective function, measures the discrepancy between a
model’s predicted output and the actual target value,
guiding the optimization process to improve model accu-
racy. It is essential for training machine learning models
because it quantifies how well the model’s predictions



Information security and functional safety

197

match the true data, allowing for adjustments to minimize
this error. Loss functions can have properties such as con-
vexity, differentiability, and robustness, which influence
their suitability for different tasks and optimization meth-
ods [23].

The primary loss function employed in this study
was the Smooth L1 loss, also known as Huber loss. This
function is defined as follows:

05092 r1 o
O :lf - <
Ly =] ¢ TWII<B
|y-9]-0.5*B, otherwise

(13)

where y is the true value and (¥) is the predicted value.
The Smooth L1 loss combines the benefits of L1 (abso-
lute) and L2 (squared) losses, providing robustness to
outliers while maintaining sensitivity to small errors [24].

The insurance industry often deals with data that in-
cludes outliers, such as high-risk individuals or rare,
high-impact events. The Smooth L1 loss was chosen be-
cause of its ability to handle these outliers without allow-
ing them to dominate the learning process. For small er-
rors, it behaves like the L2 loss, providing the necessary
gradients for fine-tuning the predictions. It transitions to
L1 loss for large errors, reducing the impact of extreme
values.

The tested alternatives include:

1. Mean Squared Error (MSE):

[MSE==31_, (v,-5)2]. (14)

Pros: Heavily penalizes large errors, suitable for
scenarios where large deviations are particularly undesir-
able.

Cons: Can be overly sensitive to outliers, poten-
tially skewing the model’s focus [25].

2. Mean Absolute Error (MAE):

[MAE=-3L,lyi-%i 1] (15)

Pros: Less sensitive to outliers than MSE.

Cons: Provides the same gradient for all errors, po-
tentially slowing down learning for small errors [26].

In summary, Mean Absolute Error (MAE) measures
the average of the absolute differences between predicted
and true values, treating all residuals equally and making
it robust to moderate outliers since large errors are
weighted linearly. MSE, on the other hand, penalizes
large errors more heavily due to squaring the differences,
which can lead to suboptimal performance in the pres-
ence of outliers but provides smoothness in optimization
[27].

3. Focal Loss: While typically used in classifica-
tion tasks, a regression variant could be considered for
imbalanced risk scenarios:

[FL(y,9)=-a(1-|§-y|)" log(1-I9-yD)], (16)
where () and (y) are tunable parameters. This could ad-
dress scenarios where certain risk levels are underrepre-
sented in the training data [28].

Performance Implications: The Smooth L1 loss
consistently led to a test loss of 0.0001 across all tested
configurations (2-, 3-, and 4-layer models), indicating its
effectiveness in capturing the nuances of insurance risk
assessment. This consistency across different architec-
tures suggests that the Smooth L1 loss provides a stable
optimization objective that is adaptable to varying com-
plexities.

Insurance-Specific Considerations: Different types
of errors can have varying implications in insurance risk
assessment. Underestimating risk could lead to inade-
quate pricing and potential financial losses for the in-
surer, while overestimating risk might result in uncom-
petitive pricing and loss of business. The Smooth L1 loss
offers a balanced approach, penalizing both under- and
over-estimations while maintaining robustness to occa-
sional extreme values [29].

Future Directions: While the Smooth L1 loss

proved effective in this study, future research could ex-
plore custom loss functions tailored specifically to insur-
ance risk assessment. For instance, asymmetric loss func-
tions that penalize underestimation of risk more than
overestimation could be investigated [30]. Incorporating
domain-specific knowledge into the loss function, such
as weighting errors based on their potential financial im-
pact, could further align the model’s optimization with
real-world insurance objectives.
In this study, the choice of Smooth L1 loss represents a
compromise between different error metrics, well-suited
to the complexities of insurance risk assessment. Its con-
sistent performance across various model architectures
underscores its applicability to risk modeling in the in-
surance domain in graph-based neural network ap-
proaches.

4. Discussions

A comparison table has been constructed to effec-
tively summarize and compare the various approaches
and parameters tested (Table 1). The table only compares
the best possible parameters for every type of model that
has been tested. This has been done to reduce the table
size and avoid overloading it with irrelevant information.

The columns can be interpreted as follows:

— Model: This column identifies the specific
GraphSAGE model configuration being evaluated. In
this case, models A, B, and C correspond to the 2-layer,
3-layer, and 4-layer architectures, respectively, as de-
tailed in Table 1.;
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o Infer- Train- The comprehensive exploration of GraphSAGE
Model | Test loss Trta_unlng ence IYaI neural networks for insurance risk assessment has pro-
ime time D(ﬁ-fs vided valuable insights and innovations in graph-based
machine learning tasks. This study has not only improved
g 88881 1;8 g 8888; existing methodologies but also created new risk assess-

C 0'0001 180 7 0'0005 ment strategies in the insurance domain.

— Test Loss: This metric represents the model’s fi-
nal loss value on a held-out test dataset. It quantifies the
predictive accuracy of the model on unseen data, with
lower values indicating better performance. In this case,
all the models achieved a test loss of 0.0001, indicating
comparable predictive capabilities across
different architectures;

— Training Time (s): This column shows the total
time required to train the model to convergence or until
the early stopping criterion is met. It provides insight into
the cost of training each model configuration;

— Inference Time (ms): This metric represents the
average time required for the model to make a prediction
on a single input in milliseconds. It is crucial for as-
sessing the suitability of the model for real-time or high-
volume prediction tasks in practical insurance applica-
tions. Generally, lower inference times are preferable for
operational efficiency [31];

— Train-Val Loss Diff: The train-val method splits
the data into training and validation sets, ensuring that the
expected loss matches the meta-test-time loss, making it
an unbiased empirical risk minimization (ERM) proce-
dure. In contrast, the train-train method uses all data for
both training and evaluation, resulting in a biased ex-
pected loss. It serves as an indicator of the generalizabil-
ity of the model. A smaller difference suggests that the
model performs similarly on both training and validation
data, indicating good generalizability. Larger differences
might signal overfitting [32].

Considering the information presented above,

The reliability analysis involved evaluating the ac-
curacy of both training and validation datasets. The
model demonstrated precision on the training sample,
achieving a low loss value of 0.0042 and high accuracy
in risk prediction. When applied to the validation dataset,
the accuracy metrics of the model showed some varia-
tion: the loss value increased to 0.0058, indicating a
slight decrease in prediction correctness compared to the
training results. Despite this difference, the accuracy of
the model remained within acceptable boundaries, with
the increase in error being less than 5% of the original.

These metrics collectively provide a comprehensive
view of the performance and efficiency of the configured
model [33].

A significant achievement of this research is the de-
velopment of a novel GraphSAGE-based framework for
insurance risk assessment, demonstrating the potential of
graph neural networks in capturing complex relationships
within insurance data. This framework represents a step
forward in applying advanced machine learning tech-
niques to the field of insurance risk evaluation.

This study helped us understand the relationship be-
tween model architecture and training dynamics. A cor-
relation was established between model depth and opti-
mal learning rates, with shallower models benefiting
from higher learning rates. This provides valuable infor-
mation for future GraphSAGE implementations in insur-
ance contexts. This finding offers practical guidance for
tuning the model in similar applications.

The research also confirmed the superiority of the
Smooth L1 loss function for insurance risk assessment
tasks, demonstrating its robustness to outliers while
maintaining sensitivity to small errors.

The last but not least practical contribution of this
study is the development of a comparison framework that
facilitates the evaluation of different GraphSAGE con-
figurations based on performance metrics, computational
efficiency, and practical deployment considerations. This
framework will be valuable for researchers and practi-
tioners in the field, enabling more informed decision-
making in model selection and deployment.

One of the key findings is revealing that a 2-layer
GraphSAGE model with 128 hidden channels achieved
performance comparable to that of more complex archi-
tectures, challenging the assumption that deeper net-
works are always necessary for sophisticated risk assess-
ment tasks. This insight opens new possibilities for effi-
cient model design in insurance applications. However,
only similar insurance models that can be described using
the parameters covered in this article can be considered
compatible. If the parameters differ, additional research
is necessary.

In conclusion, this research has established a foun-
dation for balancing model complexity, predictive per-
formance, and practical applicability in graph-based ma-
chine learning for insurance applications, paving the way
for more efficient and effective risk assessment tools.
This study has advanced the field of graph-based ma-
chine learning in insurance risk assessment by improving
existing techniques and creating new methodologies, of-
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fering both theoretical insights and practical tools for fu-
ture applications.

The practical application of the optimized
GraphSAGE model in the insurance domain offers poten-
tial for enhancing various aspects of the industry. In un-
derwriting, insurance companies can leverage this ad-
vanced model to conduct more accurate risk assessments
when issuing new policies. For instance, in auto insur-
ance, the model’s capability to analyze not only driver
and vehicle data but also the intricate connections be-
tween different policyholders, their shared characteris-
tics, and claim history allows for a more nuanced and pre-
cise estimation of insurance event probabilities. This, in
turn, enables insurers to set fairer rates that better reflect
each policyholder’s actual risk profile.

Fraud detection is another critical area in which the
GraphSAGE model can make an impact. The model can
identify suspicious patterns that may indicate fraudulent
activities by analyzing the complex web of connections
between policyholders, medical institutions, and other
participants in the insurance process. This is particularly
valuable in health insurance, where the model can un-
cover potentially fraudulent schemes by detecting unu-
sual interactions between patients and healthcare provid-
ers.

The ability of the model to analyze graph structures
of customer data also opens up new possibilities for prod-
uct personalization. Insurance companies can develop
more tailored products by considering not only individual
client characteristics but also social connections and fam-
ily history. This level of personalization is especially
beneficial in life insurance, where factors beyond an in-
dividual’s immediate health status can significantly in-
fluence risk assessment.

Portfolio optimization is another area where the
GraphSAGE model can provide valuable insights. By
identifying clusters of high-risk clients or geographic re-
gions, insurers can effectively allocate their resources
and manage capital. This data-driven approach to portfo-
lio management can improve overall risk distribution and
potentially increase profitability.

The predictive capabilities of the model extend to
forecasting insurance claims. By leveraging historical
data and understanding the complex relationships be-
tween various risk factors, insurers can more accurately
predict the likelihood and magnitude of future claims.
This predictive power is particularly useful in property
and casualty insurance, where claim patterns can be in-
fluenced by a wide array of interconnected factors.

Future studies could explore the integration of tem-
poral dynamics into the GraphSAGE model. This would
involve developing methods to handle time-varying
graphs, allowing the model to capture over time evolving
risk factors and policyholder behaviors.

The potential of GraphSAGE for real-time or near-

real-time risk assessment may be another topic for future
study as it could open up new possibilities in dynamic
pricing and immediate policy adjustments.
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OIITUMI3ZALIIA GRAPHSAGE MOJEJII IJIs1 OIIHKA CTPAXOBUX PU3UKIB:
BAJTAHCYBAHHA ITPOAYKTUBHOCTI TA EOFEKTUBHOCTI

0. B. Jlyyenxo, C. C. llepoax

IIpenMeToM BHBYEHHS y CTATTi € 3aCTOCYBAHHS Ta ONMTUMI3allisi rpad)OBUX HEHPOHHUX MEPEXK, 30KpemMa apxite-
ktypu GraphSAGE (Graph SAmple ta aggreGatE), /s oLliHKH CTpaxOBHX PU3HKIB Y HECTAOIIbHUX CEpeIOBUIIIAX.
MeTo10 11IKOTO TOCIIIKEHHS € po3poOKa HaliiiHOi Ta edekTuBHOI mnathopmu Ha ocHOBI GraphSAGE st ouinku
CTPaxOBUX PHU3HUKIB, sika O 30amaHCyBajia MPOrHOCTHYHY MPOAYKTHUBHICTh 3 OOYHMCIIIOBAJIHHOI e(EeKTUBHICTIO. 3a-
BIAHHS BKJIIOYAI0Th: PO3pOOKY Ta BIPOBAKEHHS MPOIIECY T'eHepallii CHHTeTHYHHX TpadiB, IKUil TOUHO BizoOpakae
CKIIaJTHICTh JAaHHUX MPO CTPAXOBI PU3UKH; IPOBEJCHHS CUCTEMATHYHOTO JOCTiKeHHs apxitektyp GraphSAGE, 3mi-
HIOFOYH KiJIbKICTh mapiB (2, 3, 4) Ta npuxoBaHuX KaHaiB (64, 128, 256); mocnipkeHHs BILIMBY Pi3HUX HIBHIKOCTEH
HapuanHs (0,1, 0,01, 0,001) Ha 301KHICTh Ta CTAOUIBHICTh MOZIET; aHaNi3 €(EKTUBHOCTI PI3HUX METOJIB PEryJspH-
3arii, Brmoyarouu Bifcie (Bix 0,1 no 0,5) Ta cmazg Baru (Big 1e-05 mo 0,0001); Ominka pi3sHUX cTpaTeriii HABYaHHS,
BKJIFOUAIOYU ONTUMAaIIBHY KiIbKICTh enox (Bix 100 no 300) Ta peanizarnito paHHbOi 3ynuHKy; OliHKa e(peKTUBHOCTI
pi3HUX (QYHKILINA 30UTKIB Tpu 00pOOII BUKHJIIB, MOUIMPEHUX y CTPAXOBUX JaHHX; Po3poOka CTPyKTypH MOpiBHIHHS
JUISl CHPUSIHHS IPUIHHSTTIO OOTPYHTOBAHUX pillieHb NPH BUOOPI MOJIENi JUTs 3aB/IaHb OL[IHKK CTPaXxOBHX pU3UKiB. Me-
TO/H, 1110 BUKOPUCTOBYIOTHCSI B IIbOMY JIOCIII/PKEHHI: BUKOPUCTaHHS €KCIIEPUMEHTAIBHOTO MiIX0/y, BUKOPUCTaHHS
reomerpuyHoi 6i0miorexu PyTorch ms peanizauii mopeneit GraphSAGE, po3ropranns Monenei Ta X TecTyBaHHS
Ha XMapHiil iHppacTpyKTypi, po3podKa BIACHOI0 AITOPUTMY T'eHepallii rpadikiB st CTBOPEHHSI PEaliCTUYHHX Clie-
HapiiB CTPaXOBOr0 PU3HKY, BKIIOUAIOYHN TaKi ()aKTOPH, sIK TTOKa3HUKH 3JI0POB's, CTATYC KypiHHS Ta PEryJIsipHi OTJISLIH,
a TaKOX CTpaTerisi MOIIYKY B CITHI JUIs ONTUMI3alil rinepnapamerpiB, y NOEIHAHHI 3 MEPEXPECHOI0 MEPEBIPKOIO,
METOJIAMH PEryJIsipu3allii /Uit 3aro0iraHHs epeHaBUYaHHIO Ta BUKOPUCTAHHSM MeXaHi3MiB PaHHbOI 3ynuHKU. Pe-
3yJbTAaTH BKIIIOYAIOTh: CTBOPEHHS CHMHTETHYHOIO PeasliCTHYHOrO rpadika Ajsi ONMcy 3acTpaxoBaHHX OcCid, CTBO-
pennst ontumizoBanoi Mozaeni GraphSAGE, ananToBaHol [yis 3aBJaHHs OLIIHKY PU3UKIB Y CTPaxyBaHHI, TECTYBaHH:I
Ta IHTerpalist MozeNi Ha XMapHii iHppacTpykTypi. BucHoBkH. HoBH3HA pe3ynbTatiB Noysirae B HACTYMHOMY: 1) j10-
CJIIJPKEHHS IEMOHCTPYE, 10 BiTHOCHO TpocTi apxitekTypu GraphSAGE, taki sik aBomaposi Mozernti 3i 128 mpuxoa-
HUMH KaHaJaMH, MOXKYTb JJOCATaTH IPOAYKTUBHOCTI, TIOPIBHAHHOI 3 OUIBII CKJIQAHUMH MOJEIISIMHU B 3aBAAHHSX OLi-
HKH CTPaxOBHX PHU3HKiB. Lle CBiIUUTH PO Te, 10 BIACTHBA CTPYKTYpa JAAHHUX CTPAXOBHX PH3HKIB HE 3aBXKIU MOXKE
BUMAaraTy INIMOOKUX, CKJIaJHUX HEHPOHHHX MEpex I 3aXOIUIEHHS OCHOBHHMX 3aKOHOMIPHOCTEH. 2) HOCIHimKEHHS
MIKPECITIOE BAXKJIMBICTD aJaliTOBAHUX CTPATETIH peryispu3alii, pruYoMy MO MOJieNi 3a3BUYail BUMaraloTh CH-
JIBHILIOT perynspu3anii st 60poTh0u 3 nepeHaBuaHHsIM. J{OCHIiPKEHHS IMHAMIKK HABYaHHS PO3KPUBAE POJIb BUOOPY
LIBUJKOCTI HABYAHHS Ta CTPATEriii PaHHBOI 3YITUHKH, IPUUOMY OLIBII OBEPXHEBI MOJIEIl OTPUMYIOTh BHIIY IIIBUJI-
KiCTh HAaBYaHHS, TOAI K MIMOIII apXiTEKTYpH BUMAratoTh OLIbII KOHCEPBATHBHUX IIBUIKOCTEH HaBYaHHS [yisi cTali-
npHOT KoHBepreHuii. [TocnizoBHa nmponykTUBHICTh QyHKIIT BTpaT Smooth L1 Ha pi3HUX apXiTeKTypax Mojeneit jie-
MOHCTpYE ii IPUAATHICTH IS 3aBIAHb OIIIHKH CTPAXOBUX PH3HKIB. 3) 3aKJIaIEHO OCHOBY /IS €(DEKTUBHOIO 3aCTOCY-
BanHs Mozenerr GraphSAGE B omiHIl CTpaxoBHX pU3HKIB, MAKPECITIOIOYH BaYKIUBICTh 30aJJAHCOBAHOTO TiAXOIY A0
NPOSKTYBAaHHS MOJEJIEH, K BpaXxOBye He JIMILE MPOrHOCTHYHY NPOAYKTUBHICTB, ajle i 00YHCIIIOBaIbHY e(heKTHB-
HICTH Ta MPAKTUYHI MipKYBaHHS PO3TOPTaHHS.

Karwuosi cioBa: GNN; GraphSAGE; ¢yHkiist BTpat; OlLliHKa PU3KKIB; XMapHa iHppacTpyKTypa.
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