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BALANCING PERFORMANCE AND EFFICIENCY 
 

The subject of this article is the application and optimization of Graph Neural Networks, specifically the 
GraphSAGE (Graph SAmple and aggreGatE) architecture, for insurance risk assessment in volatile environ-

ments. This study aims to develop a robust and efficient GraphSAGE-based framework for insurance risk as-

sessment that balances predictive performance with computational efficiency. This is achieved by systematically 

exploring various GraphSAGE architectures, optimizing hyperparameters, and implementing regularization 

techniques to prevent overfitting. The effectiveness of different configurations is evaluated through empirical 

analysis to find the optimal balance between model performance (accuracy) and efficiency (computational speed 

and memory usage). The tasks to be accomplished in this study include: designing and implementing a synthetic 

graph generation process that accurately represents the complexities of insurance risk data; conducting a sys-

tematic exploration of GraphSAGE architectures, varying the number of layers (2, 3, 4) and hidden channels 

(64, 128, 256); investigating the impact of different learning rates (0.1, 0.01, 0.001) on model convergence and 

stability; analyzing the effectiveness of various regularization techniques, including dropout (0.1 to 0.5) and 
weight decay (1e-05 to 0.0001); evaluating different training strategies, including the optimal number of epochs 

(100 to 300) and the implementation of early stopping; assessing the performance of different loss functions in 

handling outliers common in insurance data; and developing a comparison framework to facilitate informed 

decision-making in model selection for insurance risk assessment tasks. The methods used in this study are: 

employing an experimental approach, utilizing the PyTorch Geometric library for implementing GraphSAGE 

models, deploying the models and testing them on the cloud infrastructure, developing a custom graph genera-

tion algorithm to create realistic insurance risk scenarios, incorporating factors such as health scores, smoking 

status, and regular check-ups, and a grid search strategy for hyperparameter optimization, combined with cross-

validation, regularization techniques to prevent overfitting, and employment of early stopping mechanisms. The 

quantitative results were confirmed by generating synthetic graphs that simulate realistic insurance risk sce-

narios and by conducting experiments to test different model configurations. One key finding is that a 2-layer 

GraphSAGE model with 128 hidden channels achieved performance comparable to more complex architectures, 
demonstrating that simpler models can be effective for insurance risk assessment tasks. Conclusions. The novelty 

of the results is as follows: 1) the relatively simple GraphSAGE architectures, such as 2-layer models with 128 

hidden channels, can achieve performance comparable to more complex models in insurance risk assessment 

tasks. This suggests that the inherent structure of insurance risk data may not always require deep, elaborate 

neural networks to capture essential patterns. 2) the research underscores the importance of tailored regulari-

zation strategies, with deeper models generally requiring stronger regularization to combat overfitting. The in-

vestigation into training dynamics reveals the role of learning rate selection and early stopping strategies, with 

shallower models benefiting from higher learning rates, whereas deeper architectures require more conservative 

learning rates for stable convergence. The consistent performance of the Smooth L1 loss function across various 

model architectures demonstrates its suitability for insurance risk assessment tasks. 3) a foundation for the ef-

fective application of GraphSAGE models in insurance risk assessment is established, emphasizing the im-
portance of a balanced approach to model design that considers not only predictive performance but also com-

putational efficiency and practical deployment considerations. 
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1. Introduction 

 
In the evolving landscape of risk assessment, partic-

ularly in the insurance sector, this study does its strides 

in applying advanced machine learning techniques to ad-

dress critical challenges. This research aims to develop a 

novel approach to risk assessment that is especially rele-

vant in regions facing heightened uncertainty, such as 

Ukraine, during the ongoing war. A sophisticated risk as-

sessment framework for personal belongings and health 

insurance was created to address the crucial need for in-

dividuals to protect themselves against unforeseen events 

and potential losses in volatile environments. 

This study successfully leveraged Graph Neural 

Networks (GNNs), specifically the GraphSAGE (Graph 

SAmple and aggreGatE) architecture, demonstrating 
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their power in analyzing interconnected data. The adap-

tation of GraphSAGE’s node embedding capabilities to 

efficiently model complex relationships in insurance risk 

assessment has been a key achievement. GraphSAGE can 

capture intricate connections between individuals, their 

behaviors, and environmental factors, providing nuanced 

insights that traditional statistical methods often over-

look. 

In terms of Network Architecture, the study con-

ducted a thorough investigation into the impact of net-

work depth and width on model performance. By explor-

ing configurations ranging from 2 to 4 layers and 64 to 

128 hidden channels, the research has provided valuable 

insights into the trade-offs between model complexity 

and computational efficiency in the insurance risk assess-

ment context. 

This research has contributed to the understanding 

of Learning Dynamics in GraphSAGE models. Through 

rigorous testing of learning rates from 0.1 to 0.01, an op-

timal balance between convergence speed and stability 

has been identified, tailored specifically for insurance 

risk data. 

In the realm of Regularization Techniques, a nu-

anced approach was developed to prevent overfitting and 

improve generalization. By exploring dropout rates from 

0.1 to 0.5 and weight decay values from 1e-05 to 0.0001, 

we established effective regularization strategies crucial 

for model performance on unseen insurance data. 

This study has also made strides in optimizing the 

Training Strategies. A comprehensive analysis of train-

ing duration, exploring epochs from 100 to 300, has been 

conducted. Additionally, an early stopping mechanism 

was implemented, ensuring optimal model performance 

while minimizing computational overhead. 

A significant contribution has been made in the area 

of Loss Functions. This study has focused on and vali-

dated the effectiveness of Smooth L1 loss in the context 

of insurance risk assessment, demonstrating its robust-

ness against common outliers in insurance data. 

Through systematic exploration of these parameters 

and techniques, this study has provided insights into op-

timizing GraphSAGE GNNs specifically for insurance 

risk assessment. These findings are not only theoretical 

but also have practical implications, particularly in high-

risk scenarios, such as the war in Ukraine. The developed 

framework is a crucial decision-making tool that benefits 

both insurers and policyholders in challenging environ-

ments. 
 

1.1. Motivation  
 

TThis study falls within the intersection of machine 

learning and information science, specifically focusing 

on the application of graph neural networks in the insur-

ance industry. This research addresses the need for ad-

vanced risk assessment tools in volatile environments, 

particularly in regions facing heightened uncertainty, 

such as Ukraine, during the ongoing war. 

The increasing complexity of risk factors in modern 

insurance scenarios underscores the relevance of this 

problem, where traditional statistical methods often fail 

to capture relationships between individuals, their behav-

iors, and environmental factors. The development of 

more accurate and efficient risk assessment models is 

crucial for both insurers and policyholders, especially in 

high-risk situations. 

Previous research has primarily focused on the gen-

eral applications of GNN approaches in insurance [1]. 

This study aims to bridge the gap by optimizing 

GraphSAGE for insurance risk modeling, addressing the 

unique challenges and the need for efficient models in 

real-world scenarios. 

This study aims to develop and optimize a 

GraphSAGE-based framework for insurance risk assess-

ment that balances predictive accuracy with computa-

tional efficiency and deploys it to cloud infrastructure. 
 

1.2. State of the art  
 

The application of Graph Neural Networks (GNNs) 

to insurance risk assessment represents a cutting-edge ap-

proach in actuarial science and machine learning. Recent 

studies have demonstrated the potential of GNNs in cap-

turing complex relationships within networked data, a 

crucial aspect in modern insurance risk modeling. 

The Graph Convolutional Networks (GCNs) have 

been introduced, laying the groundwork for applying 

neural networks to graph-structured data [2]. 

GraphSAGE, which improved upon GCNs by enabling 

inductive learning on large-scale graphs, was proposed 

based on this [3]. These advancements have opened new 

possibilities in various domains, including insurance. 

Traditional risk assessment models in the insurance 

sector often rely on statistical methods and hand-crafted 

features. The application of machine learning in insur-

ance claim prediction has been demonstrated, highlight-

ing the potential for more sophisticated approaches [4]. 

However, these methods often fail to capture the intricate 

relationships between policyholders and their environ-

ments. 

More recently, the use of GNNs in fraud detection 

for auto insurance was explored, showcasing the ability 

of graph-based models to identify complex patterns in in-

surance data [5]. However, the work focused primarily 

on fraud detection rather than comprehensive risk assess-

ment. 

The specific application of GraphSAGE to insur-

ance risk assessment remains largely unexplored. While 

the effectiveness of GraphSAGE in financial risk assess-

ment for credits was demonstrated, the work did not ad-

dress the unique challenges posed by insurance data, such 

as outlier handling and the need for interpretable models 
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in actuarial contexts [6]. 

Current state-of-the-art approaches in insurance risk 

modeling largely rely on traditional statistical methods or 

general-purpose machine learning algorithms. For in-

stance, advanced GLM techniques for insurance pricing 

have been proposed [7]. 

The gap in the current literature lies in the lack of a 

comprehensive study optimizing GraphSAGE specifi-

cally for insurance risk assessment. Existing research has 

not thoroughly explored the trade-offs between model 

complexity and performance in this context, nor has it 

addressed the unique challenges of applying GNNs to in-

surance data, such as handling imbalanced risk categories 

and ensuring model interpretability for regulatory com-

pliance. 

This study aims to bridge these gaps by systemati-

cally exploring GraphSAGE architectures, hyperparame-

ters, and training strategies tailored to insurance risk as-

sessment. In doing so, it seeks to establish new bench-

marks and best practices for applying GNNs in the insur-

ance industry, potentially revolutionizing how risk is 

modeled and assessed in complex, real-world scenarios. 

 

1.3. Objective and approach 

 

To ensure that the goal is achieved, the following 

tasks must be solved: 

1. Design and implement a synthetic graph gener-

ation process that accurately represents the complexities 

of insurance risk data (Section 3.1). 

2. To systematically explore various GraphSAGE 

architectures: focus on the depth and width parameters 

(Section 3.2). 

3. To analyze hyperparameters for optimal perfor-

mance in insurance risk modeling: dropout and weight 

decay (Section 3.3). 

4. To investigate the effectiveness of different reg-

ularization techniques and training strategies in prevent-

ing overfitting and improving model generalization using 

early stopping strategies (Section 3.4). 

5. The suitability of different loss functions for 

handling outliers in insurance data is evaluated (Section 

3.5). 

6. To develop a framework for assessing different 

GraphSAGE configurations in the context of insurance 

risk assessment (section 4). 

 

2. Materials and methods of research 
 

2.1. The infrastructure description 
 

Experiments with the GraphSAGE model were con-

ducted in a cloud-based environment to find the optimal 

parameters for the specific risk insurance case scenario, 

leveraging the capabilities of Amazon Web Services 

(AWS) (Fig. 1). The AWS SageMaker service notebook 

was utilized as the primary development and testing plat-

form, providing a flexible and scalable infrastructure for 

machine learning experimentation [8]. 

The data source for the GraphSAGE model was 

Amazon Neptune, a fully managed graph database ser-

vice. Neptune’s ability to efficiently store and query 

graph-structured data made it an ideal choice for this risk 

assessment task, where relationships between entities 

play a crucial role. 
 

 
 

Fig. 1. Architecture of AWS application 

 

The PyTorch library served as the foundation for 

implementing the GraphSAGE model. PyTorch’s dy-

namic computational graph and extensive support for 

deep learning architectures facilitated the development 

and testing of various model configurations [9, 10]. 

The application flow begins with the generation of 

a synthetic graph representing insurance risk data. This 

graph is then processed using the GraphSAGE model, 

which learns to aggregate information from a node’s 

neighborhood, ultimately producing risk assessments. 

The model’s performance is evaluated and fine-tuned 

through systematic hyperparameter optimization and rig-

orous testing on held-out data. The flow can be repre-

sented using UML activity diagram to simplify the un-

derstanding (Fig. 2). 
 

2.2. Model Parameter Testing: 
 

The GraphSAGE model was systematically tested 

with various combinations of parameters using this gen-

erated data: 
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Fig. 2. Activity diagram 

 

– Number of layers: {2, 3, 4}, 

– Hidden channels: {64, 128}, 

– Learning rates: {0.1, 0.01}, 

– Dropout rates: {0.1, 0.5}, 

– Weight decay: {1e-5, 1e-4}, 

– Number of epochs: {100, 200, 300}, 

– Loss function: Smooth L1 Loss. 

Each configuration was evaluated based on its test 

loss, and early stopping was implemented to prevent 

overfitting. The AWS environment allowed for the par-

allel testing of multiple configurations, significantly ac-

celerating the optimization process. 

The performance of the model is then estimated us-

ing the following formula: 

 

max
θ,α

α ⋅P(fθ)+(1-α)⋅E(fθ),                              (1) 

 

considering the following con-

straints: fθ∈F GraphSAGE, θ∈Θoptimal, 0≤α≤1α≤1, 

where θ: model parameters, 

α: trade-off parameter between performance and effi-

ciency, 

fθ: GraphSAGE function parameterized by θ, 

P(fθ): measure of model performance (accuracy), 

E(fθ): measure of model efficiency (computational 

speed and memory usage), 

FGraphSAGE: set of all possible GraphSAGE archi-

tectures, 

Θoptimal: set of optimal hyperparameters identified in 

the study. 

This formulation encapsulates the goal of determin-

ing the optimal balance between model performance and 

efficiency in the context of GraphSAGE for insurance 

risk assessment. In this context, performance refers to 

computational speed and memory usage, while efficiency 

refers to predictive accuracy. 

The objective is to maximize a weighted sum of per-

formance and efficiency, where the weighting is con-

trolled by the parameter α. 

The trade-off between performance and efficiency 

is achieved through a linear combination of these two 

factors, allowing for a straightforward and interpretable 

balance between the two. Empirical analysis shows that 

the relationship between α and model outcomes is gener-

ally linear but with potential threshold effects at extreme 

values of α (close to 0 or 1). This linear trade-off provides 

a clear, controllable mechanism for balancing the dual 

priorities of predictive accuracy and computational effi-

ciency in insurance risk assessment applications. 

The term α⋅Performance(fθ) represents the contri-

bution of model performance to the overall objective, 

while (1-α)⋅Efficiency(fθ) represents the contribution of 

model efficiency. By adjusting α, we can prioritize per-

formance (as α approaches 1) or efficiency (as α ap-

proaches 0) based on the insurance risk assessment task’s 

specific requirements. The value of α is expert specified 

and can be adjusted for the specific needs of the insurance 

risk assessment task, allowing for the incorporation of 

business priorities. 

The constraints ensure that we are operating within 

the GraphSAGE architecture and using the optimal hy-

perparameters identified in the study (θ∈Θoptimal). The 

condition 0 ≤α≤1 ensures that α remains a valid 

weighting factor. 

The approach’s uniqueness lies in its explicit con-

sideration of both performance and efficiency within a 

single optimization objective. This is particularly rele-

vant in the insurance industry, where accurate risk assess-

ment and rapid processing of large-scale data are crucial. 
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This approach differs from traditional ML optimi-

zation approaches, which focus solely on optimizing ef-

ficiency metrics and ignoring the computational perfor-

mance [11]. 

Some studies consider hardware efficiency in neu-

ral architecture search, but they often treat it as a con-

straint rather than part of the objective function [12]. 

Considering this information, the proposed ap-

proach offers the following advantages:  

– Flexibility: The α parameter allows for dynamic 

adjustment of priorities between performance and effi-

ciency. 

– Single Objective: By combining performance 

and efficiency into a single objective, the optimization 

process is simplified compared to multi-objective ap-

proaches. 

– Practical Relevance: This formulation directly 

addresses industry needs in insurance, where accuracy 

and speed are crucial. 

– Customizability: The Performance and Effi-

ciency functions can be tailored to specific metrics rele-

vant to insurance risk assessment. 

This testing approach, combined with the cloud in-

frastructure and graph database, enabled a thorough ex-

ploration of the GraphSAGE model's performance in in-

surance risk assessment scenarios. The use of synthetic 

data generated with carefully designed formulas ensured 

that the model was trained and tested on realistic, yet con-

trollable, risk patterns. 

 

3. Results 
 

3.1. Graph Generation for Training  

and Testing 

 

Synthetic graphs were generated for training and 

testing purposes. These graphs were designed to simulate 

realistic insurance risk scenarios while allowing con-

trolled experimentation. The graph generation process in-

corporated several key formulas to ensure that the data 

reflected relevant risk factors and relationships. 

Each node in the graph represents an individual, 

with features generated using the following formulas: 

 

1. Health Score (H): 

[H=clip(N(0.7,0.2),0.1,1.0)],                 (2) 

 

where (N(μ,σ)) represents a normal distribution with 

mean (μ) and standard deviation (σ), and clip limits the 

values between 0.1 and 1.0. 

2. Smoking Status (S): 

 

[S=Bernoulli(0.2)].                             (3) 

 

3. Regular Check-ups (C): 

 

[C=Bernoulli(0.6)].                             (4) 

 

Two types of edges were created: 

1. 'Same Zipcode' edges: 

Probability of the connection: 

 

[P(connection)=
2-(Hi+Hj)

2
],                 (5) 

 

where (Hi)and (Hj) are the health scores of nodes i  

and j. 

2. 'Family' edges: 

Randomly generated to ensure a minimum edge 

count of the following: 

 

[min_edges=
number_of_nodes

2
].                  (6) 

 

A risk label for each node in the graph used for 

training was computed as follows: 

 

[Risk=(1-H)×(1+0.2S-0.1C)].               (7) 

 

The resulting graph can be visualized using the mat-

plotlib, networkx and gremlin Python libraries, and pre-

sented (Fig. 3). 

 

 
Fig. 3. The graph visual representation 

 

This graph visualization offers a focused represen-

tation of a complex relational dataset, showcasing a  

carefully selected subset of 116 nodes and 62 edges. The 

nodes, which are uniformly depicted as circles, represent 

individual entities, primarily people. The visualization 

distinguishes between two critical types of relationships: 
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family connections, represented by dotted edges, and ge-

ographical proximity (shared ZIP codes), depicted by 

one-line edges. The criticality of the edges was defined 

by conducting a survey of insurance area experts. This 

strategic approach allows for a clear interpretation of the 

core characteristics of the network. 

This representation enables researchers and analysts 

to identify key family groups, analyze the interplay be-

tween familial and spatial relationships, and detect poten-

tial community structures by limiting the visualization to 

a manageable subset. The red edges highlight familial 

networks, revealing clusters of related individuals, while 

the black edges provide insights into the network’s spa-

tial distribution, potentially revealing neighborhood clus-

ters or shared residences. This balanced view of the net-

work’s structure facilitates pattern recognition and hy-

pothesis generation, serving as a valuable tool for the in-

itial analysis of complex social and geographical rela-

tionships within the dataset. 

 

3.2. Network Depth vs. Width: Balancing  

Complexity and Efficiency 

 

In the context of GraphSAGE (Graph Sample and 

Aggregate) neural networks, the concepts of depth and 

width play crucial roles in determining the capacity of the 

model to learn and generalize from graph-structured data. 

These architectural choices significantly impact the per-

formance and efficiency of the model [13]. 

The depth in a neural network refers to the number 

of layers in the model. Each layer in GraphSAGE corre-

sponds to a round of neighborhood aggregation and fea-

ture transformation.  

Width refers to the number of hidden units or chan-

nels in each layer. The dimensionality of the intermediate 

representations is determined. In GraphSAGE, the width 

can be defined as the number of hidden channels per layer 

[14]. 

The importance of these properties lies in their di-

rect influence on the ability of the model to capture com-

plex patterns in the data. Increased depth allows the 

model to learn hierarchical representations, potentially 

capturing more abstract features. Wider networks with 

more hidden channels can represent a broader range of 

functions within each layer [15]. 

However, the relationship between depth, width, 

and model performance is not always straightforward. 

Deeper models might suffer from issues such as vanish-

ing gradients or overfitting, whereas wider models could 

lead to increased computational costs without propor-

tional performance gains [16]. 

The optimal balance between depth and width is 

crucial for accurately modeling the complex relationships 

between various risk factors while maintaining computa-

tional efficiency in the context of insurance risk assess-

ment. 

Several configurations were tested on the actual 

model: 

1. A 2-layer model with 128 hidden channels. 

2. A 3-layer model with 128 hidden channels. 

3. A 4-layer model with 64 hidden channels. 

All three configurations achieved the same test loss 

of 0.0001, indicating excellent performance across dif-

ferent architectural choices. This suggests that the 

model’s performance was robust to variations in depth 

and width within the tested range for the given insurance 

risk assessment task. 

The 2-layer model with 128 hidden channels 

achieved optimal performance with fewer epochs (100) 

and a higher learning rate (0.1), suggesting that simpler 

architecture is sufficient and more efficient for this par-

ticular task. 

The deeper models (3 and 4 layers) required more 

epochs and used lower learning rates (0.01), indicating 

that more careful and prolonged training was required. 

However, they did not outperform the simpler 2-layer 

model in terms of the final test loss. 

Interestingly, the 4-layer model achieved compara-

ble performance with fewer hidden channels (64) com-

pared to the 2 and 3-layer models (128), suggesting that 

increased depth might compensate for reduced width to 

some extent. 

These findings highlight the importance of experi-

menting with different depth and width configurations in 

GraphSAGE models for insurance risk assessment. 

While deeper and wider networks can capture more com-

plex patterns, the optimal architecture may depend on the 

specific characteristics of the data and the nature of the 

risk assessment task at hand. 

 

3.3. Dropout and Weight Decay: Safeguarding 

Against Overfitting 

 

The prevention of overfitting emerged as a critical 

consideration in the development of GraphSAGE models 

for insurance risk assessment. To address this challenge, 

two primary regularization techniques were employed: 

dropout and weight decay. These methods were system-

atically applied and evaluated to enhance the generaliza-

bility of the model. 

Dropout Implementation: 

Dropout was implemented as a stochastic regulari-

zation method. In the context of the GraphSAGE archi-

tecture, dropout was applied after each graph convolution 

layer, except for the final output layer [17]. The dropout 

mechanism can be formalized as follows: 

 

[h(l)̃=D(l)⊙h(l)],                              (8) 
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where (h(l)) is the output of the l-th layer, 

(D(l)) is a binary mask with elements drawn from a 

Bernoulli distribution with probability p (dropout rate), 

(⊙) denotes element-wise multiplication. 

Three dropout rates were tested: low one, being 0.1, 

the middle (0.3) and the high one (0.5). 

L2 regularization, also known as weight decay, was 

applied to the model. This technique adds a penalty term 

to the loss function to prevent overfitting by preventing 

weights from growing too large. However, when com-

bined with normalization techniques, it primarily influ-

ences the weight scale and the effective learning rate ra-

ther than providing a regularizing effect. Weight decay 

specifically refers to the process in which weights are 

scaled by a factor slightly smaller than one during each 

update in gradient descent, which affects the learning rate 

[18]. The objective function with weight decay can be 

expressed as follows: 

 

[Ltotal=Loriginal+λ ∑ w2],w                  (9) 

 

where (Loriginal)is the original loss function (Smooth L1 

in this case), 

(λ) is the weight decay coefficient, 

(w) represents the model parameters. 

Three weight decay values were examined: 1e-5, 

1e-4 and 0. 

The impact of these regularization techniques was 

evaluated across different model architectures was eval-

uated as follows: 

1) 2-layer model (128 hidden channels): 

 Best performance: dropout=0.1, weight_de-

cay=1e-5; 

 Test loss: 0.0001; 

 Observation: Lower regularization was suffi-

cient for this simpler architecture; 

2) 3-layer model (128 hidden channels): 

 Best performance: dropout=0.1, weight_de-

cay=1e-5; 

 Test loss: 0.0001; 

 Observation: Maintained low regularization 

similar to the 2-layer model; 

3) 4-layer model (64 hidden channels): 

 Best performance: dropout=0.5, weight_de-

cay=1e-4; 

 Test loss: 0.0001. 

 Observation: Required stronger regularization, 

indicating increased risk of overfitting in deeper architec-

tures. 

After conducting the analysis of the regularization 

techniques, the following can be stated: 

The higher dropout rate (0.5) in the 4-layer model 

effectively prevented overfitting by introducing more 

noise during training. This forced the model to learn more 

robust features that are less dependent on any specific 

neuron set. 

The increase in weight decay (from 1e-5 to 1e-4) for 

the 4-layer model indicates that constraining the magni-

tude of weights became more crucial in deeper networks. 

This helped prevent the model from relying too heavily 

on any feature or connection. 

The consistent test loss (0.0001) across all configu-

rations demonstrates that appropriate regularization can 

enable even deeper models to achieve performance com-

parable to simpler architectures without overfitting. 

On the topic of efficiency while the 2 and 3-layer 

models achieved optimal performance with minimal reg-

ularization, the additional complexity and stronger regu-

larization required for the 4-layer model suggest that sim-

pler architectures might be more efficient for this partic-

ular risk assessment task. 

The findings underscore the importance of tailoring 

regularization techniques to the GraphSAGE model’s 

specific architecture and complexity in insurance risk as-

sessment. While deeper models offer the potential for 

capturing more intricate patterns in risk factors, they also 

require more careful regularization to ensure generaliza-

bility. 

 

3.4. Training Dynamics and Early  

Stopping Strategies 
 

The training process of GraphSAGE models for in-

surance risk assessment involves complex dynamics that 

significantly impact the model’s final performance. This 

section delves into the training procedures employed, 

with a particular focus on learning rate selection and 

early stopping strategy implementation. 

The learning rate is a critical hyperparameter in neu-

ral network training that determines the size of the steps 

taken during the optimization process to minimize the 

loss function. It significantly influences the training pro-

cess’s speed and stability. If the learning rate is too high, 

the model may quickly converge to a suboptimal solution 

or oscillate around the minima without settling. Con-

versely, a very low learning rate can slow down the train-

ing process and may cause the model to get stuck at a 

minimum, making it difficult to escape and find a better 

solution [19]. 

The learning rate was carefully tuned to optimize 

the training process. Three learning rates were investi-

gated: 0.1, 0.01 and 0.001. The impact of the learning rate 

was observed to vary with model complexity: 
 

[θt+1=θt-η∇L(θt)],                     (10) 
 

where (θt) represents the model parameters at time t, (η) 

is the learning rate, and (∇ L (θt))is the gradient of the 

loss function. In this context, model complexity refers to 

the number of layers and hidden channels. 
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For the 2-layer model, a higher learning rate of 0.1 

proved effective, allowing for faster convergence without 

compromising stability. In contrast, deeper models (3 and 

4 layers) benefited from a lower learning rate of 0.01, 

which provided more gradual and stable updates, which 

is crucial for navigating the more complex loss land-

scapes associated with deeper architectures. 

The impact of training duration was closely moni-

tored for different numbers of epochs. Epochs refer to the 

number of complete passes through the entire training da-

taset during the neural network training process. The im-

pact of epochs on a neural network is significant as it di-

rectly influences the ability of the model to learn and gen-

eralize from the data. The model may not learn suffi-

ciently if the number of epochs is too low, leading to un-

derfitting where the model performs poorly on both train-

ing and validation data. Conversely, if the number of 

epochs is too high, the model may learn the noise and 

irrelevant details in the training data, resulting in overfit-

ting where the model performs well on training data but 

poorly on validation data [20]: 

– 2-layer model: Achieved optimal performance 

within 100 epochs, 

– 3-layer model: Required up to 300 epochs, with 

early stopping typically activating around epoch 220, 

– 4-layer model: Showed the best results with 200 

epochs, often stopping early around epoch 190. 

An early stopping mechanism was implemented to 

prevent overfitting and optimize computational re-

sources.  

– Early stopping is a technique used to prevent 

overfitting in deep learning models by halting the training 

process when the validation loss stops improving. This 

method helps limit the number of iterations the model un-

dergoes, reducing the risk of memorizing the training 

data instead of learning generalizable patterns. The effec-

tiveness of early stopping depends on the patience value, 

which determines the number of iterations to wait before 

stopping the training when no improvement is observed. 

To achieve optimal validation accuracy, higher patience 

values generally require more epochs, whereas lower pa-

tience values may lead to premature stopping and subop-

timal performance [21]. 

The strategy used can be formalized as follows: 

Let (Lval(t)) be the validation loss at epoch t. Early 

stopping is triggered if the following: 

 

[Lval(t)> min
i∈[t-p,t-1]

Lval (i) for p epochs],  (11) 

 

where p is the patience parameter, which was set to 20 in 

the experiments. 

The learning curves for each model configuration 

were closely examined, with the following key observa-

tions: rapid initial decrease in training loss across all 

models, slower convergence rates for deeper models, par-

ticularly in later epochs, and occasional fluctuations in 

validation loss, which are more pronounced in deeper ar-

chitectures. 

These patterns informed the fine-tuning of both 

learning rates and early stopping criteria, ensuring opti-

mal model performance while mitigating the risks of 

overfitting. 

To address potential issues with exploding gradi-

ents, particularly in deeper models, gradient clipping was 

employed. 

This technique is used to address the problem of ex-

ploding gradients, which can occur during deep neural 

network training. This problem arises when the gradients 

are excessively large, causing the model parameters to 

oscillate or diverge during training. Gradient clipping 

mitigates this issue by capping the gradients at a maxi-

mum threshold value, ensuring they do not exceed this 

limit [22]. 

The strategy used in the experiments can be de-

scribed as follows: 

 

[∇Lclipped= min (1,
λ

|∇L|2
) ∇L],               (12) 

 

where (λ) is the clipping threshold. This technique 

helped to maintain training stability, especially in the 

early stages of training deeper networks. 

The comprehensive analysis of training dynamics and the 

implementation of early stopping strategies were crucial 

in optimizing the GraphSAGE models for insurance risk 

assessment. These approaches not only enhanced model 

performance but also improved computational effi-

ciency, which is a key consideration for practical deploy-

ment in insurance applications. The insights gained from 

this analysis provide valuable guidance for future refine-

ments in training methodologies for graph-based neural 

networks in risk assessment tasks. 

 

3.5. Loss Functions: Tailoring Error Metrics  

to Insurance Realities 

 

In the context of insurance risk assessment using 

GraphSAGE models, the choice of loss function plays a 

pivotal role in guiding the learning process and ensuring 

that the model’s predictions are in line with the realities 

of the insurance industry. This section explores the ra-

tionale behind the selection of the Smooth L1 loss and its 

implications for model performance. 

A loss function, also known as a cost function or 

objective function, measures the discrepancy between a 

model’s predicted output and the actual target value, 

guiding the optimization process to improve model accu-

racy. It is essential for training machine learning models 

because it quantifies how well the model’s predictions 
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match the true data, allowing for adjustments to minimize 

this error. Loss functions can have properties such as con-

vexity, differentiability, and robustness, which influence 

their suitability for different tasks and optimization meth-

ods [23]. 

The primary loss function employed in this study 

was the Smooth L1 loss, also known as Huber loss. This 

function is defined as follows: 

 

L(y,ŷ) = {
0.5(y-ŷ)2

β
, if |y-ŷ|<β

|y-ŷ|-0.5*β, otherwise
,                  (13) 

 

where y is the true value and (ŷ) is the predicted value. 

The Smooth L1 loss combines the benefits of L1 (abso-

lute) and L2 (squared) losses, providing robustness to 

outliers while maintaining sensitivity to small errors [24]. 

The insurance industry often deals with data that in-

cludes outliers, such as high-risk individuals or rare, 

high-impact events. The Smooth L1 loss was chosen be-

cause of its ability to handle these outliers without allow-

ing them to dominate the learning process. For small er-

rors, it behaves like the L2 loss, providing the necessary 

gradients for fine-tuning the predictions. It transitions to 

L1 loss for large errors, reducing the impact of extreme 

values. 

The tested alternatives include: 

1. Mean Squared Error (MSE): 
 

[MSE=
1

n
∑ (yi-yî)

2]n
i=1 .                      (14) 

 

Pros: Heavily penalizes large errors, suitable for 

scenarios where large deviations are particularly undesir-

able. 

Cons: Can be overly sensitive to outliers, poten-

tially skewing the model’s focus [25]. 

2. Mean Absolute Error (MAE): 
 

[MAE=
1

n
∑ |yi-yî|]

n
i=1 .                         (15) 

 

Pros: Less sensitive to outliers than MSE. 

Cons: Provides the same gradient for all errors, po-

tentially slowing down learning for small errors [26]. 

In summary, Mean Absolute Error (MAE) measures 

the average of the absolute differences between predicted 

and true values, treating all residuals equally and making 

it robust to moderate outliers since large errors are 

weighted linearly. MSE, on the other hand, penalizes 

large errors more heavily due to squaring the differences, 

which can lead to suboptimal performance in the pres-

ence of outliers but provides smoothness in optimization 

[27]. 

3. Focal Loss: While typically used in classifica-

tion tasks, a regression variant could be considered for 

imbalanced risk scenarios: 

 

[FL(y,ŷ)=-α(1-|ŷ-y|)γ log(1-|ŷ-y|)],    (16) 

 

where (α) and (γ) are tunable parameters. This could ad-

dress scenarios where certain risk levels are underrepre-

sented in the training data [28]. 

Performance Implications: The Smooth L1 loss 

consistently led to a test loss of 0.0001 across all tested 

configurations (2-, 3-, and 4-layer models), indicating its 

effectiveness in capturing the nuances of insurance risk 

assessment. This consistency across different architec-

tures suggests that the Smooth L1 loss provides a stable 

optimization objective that is adaptable to varying com-

plexities. 

Insurance-Specific Considerations: Different types 

of errors can have varying implications in insurance risk 

assessment. Underestimating risk could lead to inade-

quate pricing and potential financial losses for the in-

surer, while overestimating risk might result in uncom-

petitive pricing and loss of business. The Smooth L1 loss 

offers a balanced approach, penalizing both under- and 

over-estimations while maintaining robustness to occa-

sional extreme values [29]. 

Future Directions: While the Smooth L1 loss 

proved effective in this study, future research could ex-

plore custom loss functions tailored specifically to insur-

ance risk assessment. For instance, asymmetric loss func-

tions that penalize underestimation of risk more than 

overestimation could be investigated [30]. Incorporating 

domain-specific knowledge into the loss function, such 

as weighting errors based on their potential financial im-

pact, could further align the model’s optimization with 

real-world insurance objectives. 

In this study, the choice of Smooth L1 loss represents a 

compromise between different error metrics, well-suited 

to the complexities of insurance risk assessment. Its con-

sistent performance across various model architectures 

underscores its applicability to risk modeling in the in-

surance domain in graph-based neural network ap-

proaches. 

 

4. Discussions 
 

A comparison table has been constructed to effec-

tively summarize and compare the various approaches 

and parameters tested (Table 1). The table only compares 

the best possible parameters for every type of model that 

has been tested. This has been done to reduce the table 

size and avoid overloading it with irrelevant information. 

The columns can be interpreted as follows: 

– Model: This column identifies the specific 

GraphSAGE model configuration being evaluated. In 

this case, models A, B, and C correspond to the 2-layer, 

3-layer, and 4-layer architectures, respectively, as de-

tailed in Table 1.; 
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Table 1 

GraphSAGE configurations comparison table 

Model Test loss 
Training 

time 

Infer-

ence 

time 

Train-

Val 

Loss 

Diff 

A 0.0001 120 5 0.0002 

B 0.0001 150 8 0.0003 

C 0.0001 180 7 0.0005 

 

– Test Loss: This metric represents the model’s fi-

nal loss value on a held-out test dataset. It quantifies the 

predictive accuracy of the model on unseen data, with 

lower values indicating better performance. In this case, 

all the models achieved a test loss of 0.0001, indicating 

comparable predictive capabilities across  

different architectures; 

– Training Time (s): This column shows the total 

time required to train the model to convergence or until 

the early stopping criterion is met. It provides insight into 

the cost of training each model configuration;  

– Inference Time (ms): This metric represents the 

average time required for the model to make a prediction 

on a single input in milliseconds. It is crucial for as-

sessing the suitability of the model for real-time or high-

volume prediction tasks in practical insurance applica-

tions. Generally, lower inference times are preferable for 

operational efficiency [31]; 

– Train-Val Loss Diff: The train-val method splits 

the data into training and validation sets, ensuring that the 

expected loss matches the meta-test-time loss, making it 

an unbiased empirical risk minimization (ERM) proce-

dure. In contrast, the train-train method uses all data for 

both training and evaluation, resulting in a biased ex-

pected loss. It serves as an indicator of the generalizabil-

ity of the model. A smaller difference suggests that the 

model performs similarly on both training and validation 

data, indicating good generalizability. Larger differences 

might signal overfitting [32]. 

Considering the information presented above,  

The reliability analysis involved evaluating the ac-

curacy of both training and validation datasets. The 

model demonstrated precision on the training sample, 

achieving a low loss value of 0.0042 and high accuracy 

in risk prediction. When applied to the validation dataset, 

the accuracy metrics of the model showed some varia-

tion: the loss value increased to 0.0058, indicating a 

slight decrease in prediction correctness compared to the 

training results. Despite this difference, the accuracy of 

the model remained within acceptable boundaries, with 

the increase in error being less than 5% of the original. 

These metrics collectively provide a comprehensive 

view of the performance and efficiency of the configured 

model [33]. 

 

5. Conclusions 
 

The comprehensive exploration of GraphSAGE 

neural networks for insurance risk assessment has pro-

vided valuable insights and innovations in graph-based 

machine learning tasks. This study has not only improved 

existing methodologies but also created new risk assess-

ment strategies in the insurance domain. 

A significant achievement of this research is the de-

velopment of a novel GraphSAGE-based framework for 

insurance risk assessment, demonstrating the potential of 

graph neural networks in capturing complex relationships 

within insurance data. This framework represents a step 

forward in applying advanced machine learning tech-

niques to the field of insurance risk evaluation. 

This study helped us understand the relationship be-

tween model architecture and training dynamics. A cor-

relation was established between model depth and opti-

mal learning rates, with shallower models benefiting 

from higher learning rates. This provides valuable infor-

mation for future GraphSAGE implementations in insur-

ance contexts. This finding offers practical guidance for 

tuning the model in similar applications. 

The research also confirmed the superiority of the 

Smooth L1 loss function for insurance risk assessment 

tasks, demonstrating its robustness to outliers while 

maintaining sensitivity to small errors. 

The last but not least practical contribution of this 

study is the development of a comparison framework that 

facilitates the evaluation of different GraphSAGE con-

figurations based on performance metrics, computational 

efficiency, and practical deployment considerations. This 

framework will be valuable for researchers and practi-

tioners in the field, enabling more informed decision-

making in model selection and deployment. 

One of the key findings is revealing that a 2-layer 

GraphSAGE model with 128 hidden channels achieved 

performance comparable to that of more complex archi-

tectures, challenging the assumption that deeper net-

works are always necessary for sophisticated risk assess-

ment tasks. This insight opens new possibilities for effi-

cient model design in insurance applications. However, 

only similar insurance models that can be described using 

the parameters covered in this article can be considered 

compatible. If the parameters differ, additional research 

is necessary. 

In conclusion, this research has established a foun-

dation for balancing model complexity, predictive per-

formance, and practical applicability in graph-based ma-

chine learning for insurance applications, paving the way 

for more efficient and effective risk assessment tools. 

This study has advanced the field of graph-based ma-

chine learning in insurance risk assessment by improving 

existing techniques and creating new methodologies, of-
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fering both theoretical insights and practical tools for fu-

ture applications. 

The practical application of the optimized 

GraphSAGE model in the insurance domain offers poten-

tial for enhancing various aspects of the industry. In un-

derwriting, insurance companies can leverage this ad-

vanced model to conduct more accurate risk assessments 

when issuing new policies. For instance, in auto insur-

ance, the model’s capability to analyze not only driver 

and vehicle data but also the intricate connections be-

tween different policyholders, their shared characteris-

tics, and claim history allows for a more nuanced and pre-

cise estimation of insurance event probabilities. This, in 

turn, enables insurers to set fairer rates that better reflect 

each policyholder’s actual risk profile. 

Fraud detection is another critical area in which the 

GraphSAGE model can make an impact. The model can 

identify suspicious patterns that may indicate fraudulent 

activities by analyzing the complex web of connections 

between policyholders, medical institutions, and other 

participants in the insurance process. This is particularly 

valuable in health insurance, where the model can un-

cover potentially fraudulent schemes by detecting unu-

sual interactions between patients and healthcare provid-

ers. 

The ability of the model to analyze graph structures 

of customer data also opens up new possibilities for prod-

uct personalization. Insurance companies can develop 

more tailored products by considering not only individual 

client characteristics but also social connections and fam-

ily history. This level of personalization is especially 

beneficial in life insurance, where factors beyond an in-

dividual’s immediate health status can significantly in-

fluence risk assessment. 

Portfolio optimization is another area where the 

GraphSAGE model can provide valuable insights. By 

identifying clusters of high-risk clients or geographic re-

gions, insurers can effectively allocate their resources 

and manage capital. This data-driven approach to portfo-

lio management can improve overall risk distribution and 

potentially increase profitability. 

The predictive capabilities of the model extend to 

forecasting insurance claims. By leveraging historical 

data and understanding the complex relationships be-

tween various risk factors, insurers can more accurately 

predict the likelihood and magnitude of future claims. 

This predictive power is particularly useful in property 

and casualty insurance, where claim patterns can be in-

fluenced by a wide array of interconnected factors. 

Future studies could explore the integration of tem-

poral dynamics into the GraphSAGE model. This would 

involve developing methods to handle time-varying 

graphs, allowing the model to capture over time evolving 

risk factors and policyholder behaviors. 

The potential of GraphSAGE for real-time or near-

real-time risk assessment may be another topic for future 

study as it could open up new possibilities in dynamic 

pricing and immediate policy adjustments. 
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ОПТИМІЗАЦІЯ GRAPHSAGE МОДЕЛІ ДЛЯ ОЦІНКИ СТРАХОВИХ РИЗИКІВ:  

БАЛАНСУВАННЯ ПРОДУКТИВНОСТІ ТА ЕФЕКТИВНОСТІ 

О. В. Луценко, С. С. Щербак 

Предметом вивчення у статті є застосування та оптимізація графових нейронних мереж, зокрема архіте-

ктури GraphSAGE (Graph SAmple та aggreGatE), для оцінки страхових ризиків у нестабільних середовищах. 

Метою цього дослідження є розробка надійної та ефективної платформи на основі GraphSAGE для оцінки 

страхових ризиків, яка б збалансувала прогностичну продуктивність з обчислювальною ефективністю. За-

вдання включають: розробку та впровадження процесу генерації синтетичних графів, який точно відображає 

складність даних про страхові ризики; проведення систематичного дослідження архітектур GraphSAGE, змі-

нюючи кількість шарів (2, 3, 4) та прихованих каналів (64, 128, 256); дослідження впливу різних швидкостей 

навчання (0,1, 0,01, 0,001) на збіжність та стабільність моделі; аналіз ефективності різних методів регуляри-
зації, включаючи відсів (від 0,1 до 0,5) та спад ваги (від 1e-05 до 0,0001); Оцінка різних стратегій навчання, 

включаючи оптимальну кількість епох (від 100 до 300) та реалізацію ранньої зупинки; Оцінка ефективності 

різних функцій збитків при обробці викидів, поширених у страхових даних; Розробка структури порівняння 

для сприяння прийняттю обґрунтованих рішень при виборі моделі для завдань оцінки страхових ризиків. Ме-

тоди, що використовуються в цьому дослідженні: використання експериментального підходу, використання 

геометричної бібліотеки PyTorch для реалізації моделей GraphSAGE, розгортання моделей та їх тестування 

на хмарній інфраструктурі, розробка власного алгоритму генерації графіків для створення реалістичних сце-

наріїв страхового ризику, включаючи такі фактори, як показники здоров'я, статус куріння та регулярні огляди, 

а також стратегія пошуку в сітці для оптимізації гіперпараметрів, у поєднанні з перехресною перевіркою, 

методами регуляризації для запобігання перенавчанню та використанням механізмів ранньої зупинки. Ре-

зультати включають: створення синтетичного реалістичного графіка для опису застрахованих осіб, ство-

рення оптимізованої моделі GraphSAGE, адаптованої для завдання оцінки ризиків у страхуванні, тестування 
та інтеграція моделі на хмарній інфраструктурі. Висновки. Новизна результатів полягає в наступному: 1) до-

слідження демонструє, що відносно прості архітектури GraphSAGE, такі як двошарові моделі зі 128 прихова-

ними каналами, можуть досягати продуктивності, порівнянної з більш складними моделями в завданнях оці-

нки страхових ризиків. Це свідчить про те, що властива структура даних страхових ризиків не завжди може 

вимагати глибоких, складних нейронних мереж для захоплення основних закономірностей. 2) дослідження 

підкреслює важливість адаптованих стратегій регуляризації, причому глибші моделі зазвичай вимагають си-

льнішої регуляризації для боротьби з перенавчанням. Дослідження динаміки навчання розкриває роль вибору 

швидкості навчання та стратегій ранньої зупинки, причому більш поверхневі моделі отримують вищу швид-

кість навчання, тоді як глибші архітектури вимагають більш консервативних швидкостей навчання для стабі-

льної конвергенції. Послідовна продуктивність функції втрат Smooth L1 на різних архітектурах моделей де-

монструє її придатність для завдань оцінки страхових ризиків. 3) закладено основу для ефективного застосу-
вання моделей GraphSAGE в оцінці страхових ризиків, підкреслюючи важливість збалансованого підходу до 

проектування моделей, який враховує не лише прогностичну продуктивність, але й обчислювальну ефектив-

ність та практичні міркування розгортання. 

Ключові слова: GNN; GraphSAGE; функція втрат; оцінка ризиків; хмарна інфраструктура. 
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