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USING A HYBRID ATTENTION MECHANISM AS A METHOD TO IMPROVE  

THE EFFICIENCY OF NETWORK INTRUSION DETECTION SYSTEMS 
 

The subject matter of this article is a HybridAttention mechanism integrated into a deep neural architecture 
for Network Intrusion Detection Systems (NIDS). This study aims to develop and study a HybridAttention 

mechanism based on a combination of global (self-attention) and local (dynamic local attention) models to im-

prove the quality of traffic classification in real-time NIDS. The tasks to be solved are as follows: analyzing the 

applicability of existing attention mechanisms in network intrusion detection; integrating various attention 

types into a CNN-BiGRU architecture; developing a HybridAttention mechanism based on dynamic window 

alignment; optimizing the model using Optuna; and experimentally evaluating its performance on benchmark 

datasets using standard classification metrics. The methods used are: deep learning modeling with CNN-

BiGRU architecture, integration of various attention mechanisms, including a novel HybridAttention, hyperpa-

rameter optimization using Optuna, and performance evaluation based on standard classification metrics. The 

results of this study show that the proposed HybridAttention mechanism demonstrates superiority over individ-

ual types of attention in all key metrics. The model achieved up to 99.85% accuracy on the NSL-KDD dataset 
training data and demonstrated strong generalization on the UNSW-NB15 dataset, achieving up to 98.06% ac-

curacy in multi-class classification and up to 99.20% in binary classification. The proposed model also outper-

formed state-of-the-art approaches for processing unbalanced data and detecting various types of attacks. 

Conclusions. The scientific novelty of the results obtained is as follows: a HybridAttention mechanism combin-

ing self-attention and dynamic local attention was developed to enhance sequential pattern recognition in net-

work traffic; the CNN-BiGRU architecture was improved by integrating multiple attention modules; systematic 

hyperparameter optimization using Optuna improved generalization on imbalanced data; and the proposed 

model outperformed existing approaches on benchmark datasets in detecting both known and novel cyberat-

tacks. 

 

Keywords: deep learning; attention mechanism; network intrusion detection system; HybridAttention mecha-

nism; dynamic local attention. 

 

1. Introduction 

 

1.1 Motivation 
 

The rapid growth of cybercrime, coupled with the 

increasing complexity and volume of network traffic, 

presents critical challenges to the protection of infor-

mation systems. Traditional signature-based network 

intrusion detection systems (NIDS) are no longer suffi-

cient to handle zero-day attacks, evolving threat pat-

terns, or the need for real-time response [1]. Conse-

quently, the cybersecurity domain is shifting toward 

adaptive, intelligent detection systems that can dynami-

cally analyze traffic and recognize both known and nov-

el intrusions.  

Deep learning (DL) approaches have emerged as 

powerful tools in this field due to their capacity for au-

tomated feature extraction and sequence modeling. Ar-

chitectures that integrate Convolutional Neural Net-

works (CNNs) and Bidirectional Gated Recurrent Units 

(BiGRUs) have shown particular promise in capturing 

both spatial and temporal characteristics of traffic data 

[5]. However, these models may struggle to prioritize 

important features in noisy, high-dimensional inputs, 

which can hinder their detection performance.  

Attention mechanisms offer a compelling solution 

to this limitation by allowing the model to selectively 

focus on relevant parts of the input data during pro-

cessing. Initially developed for natural language pro-

cessing tasks, attention mechanisms have since been 

applied in intrusion detection to improve classification 

accuracy and model interpretability. Their integration 

into NIDS has shown promising results, enabling better 

detection of complex attack patterns and reducing false 

positives. 

Nevertheless, many existing studies evaluate only 

a single attention mechanism and often use a limited 

number of datasets or classification types. Comparative 

analysis across different attention variants (e.g., global, 

local, and self-attention) and minimal exploration of 

hybrid approaches are lacking. This constrains the 

adaptability and robustness of the proposed models un-

der real-world network conditions.  
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This study investigates a HybridAttention mecha-

nism that combines self-attention with dynamically ad-

justable local attention within a CNN-BiGRU architec-

ture to address these challenges. The proposed method 

aims to enhance the detection of sophisticated and 

emerging threats while maintaining generalizability 

across different datasets and attack classes. 

 

1.2 State of art 

 

In recent years, attention mechanisms have been 

widely used in deep learning tasks, including image 

captioning, text classification, and speech recognition, 

and they have been increasingly applied to intrusion 

detection. 

Attention is an important mechanism that can be 

used in a variety of deep learning models in different 

fields and tasks. Different attention mechanisms are 

explained using a general model of attention, a unified 

notation, and a comprehensive taxonomy of attention 

mechanisms [1]. The attention mechanism addresses 

information overload by allocating resources to process 

critical data and optimizing limited computing power. It 

is widely used in tasks such as image captioning, text 

classification, translation, action recognition, speech 

recognition, recommendations, and graph analysis [2]. 

Recently, the use of attention mechanisms along with 

DL methods to detect network intrusions has been in-

creasingly popular. 

In [3], a model for intrusion detection based on 

CNN-BiLSTM-Attention is proposed. A v2 loss func-

tion is introduced to address class imbalance by priori-

tizing minority class data during training. The model 

was tested on the NSL-KDD, UNSW-NB15, and CIC-

DDoS2019 datasets, and it achieved accuracy of 

99.79%, 88.84%, and 99.84%, recall of 99.83%, 

98.52%, and 99.99%, and FPR of 0.17%, 1.82%, and 

0.00%, respectively. However, it lacks diverse evalua-

tion metrics and comprehensive comparisons for 

UNSW-NB15. 

In [4], an intrusion detection model based on a 

combination of bidirectional long-short-term memory 

(BiLSTM) and an attention mechanism based on a dis-

tributed ensemble architecture for IoT network security 

for traffic data classification is proposed and tested on 

the UNSW-NB15 test dataset. The model is evaluated 

using the metrics of accuracy 99.05%, precision 

98.96%, recall 99.36%, and F1-score 99.15%. The dis-

advantage of this study is the lack of results of multi-

class classification and testing the model on only one 

dataset. 

Paper [5] proposes the SSAE-BiGRU-Att intrusion 

model based on a combination of a stacked sparse auto-

encoder (SSAE), BiGRU, and an attention mechanism 

for traffic classification was proposed in the study [5]. 

Experiments were conducted on the UNSW-NB15 da-

taset, with results in terms of accuracy 98.68 %, preci-

sion 99 %, recall 99 %, and FPR 0.0132 %. The disad-

vantage, as in the previous work, is the lack of demon-

stration of the model’s multi-class classification and the 

availability of only one dataset. 

A new hierarchical CNN-Attention network 

(CANET) is proposed in [6]. The model combines CNN 

and Attention into a CA unit for spatio-temporal feature 

extraction, with a v2 loss function for balanced training. 

Tested on NSL-KDD and UNSW-NB15 for multi-class 

and binary classification, it achieves 99.77% accuracy, 

99.72% recall, and 0.18% FPR on NSL-KDD and 

89.39% accuracy, 98.93% recall, and 0.87% FPR on 

UNSW-NB15. However, it lacks precision and F1-score 

metrics for a more detailed evaluation. 

In [7], a hierarchical attention mechanism called 

HAGRU (Hierarchical Attention Gated Recurrent Unit) 

is proposed. The model enhances detection by leverag-

ing features from three hierarchies and optimizing re-

source use by using attention to focus on malicious data 

flows. Tested on NSL-KDD, CIC-IDS2017, and CES-

CIC-IDS2018, it evaluates individual classes but lacks a 

comparative analysis with the HAGRU model. 

In [8], an Enhanced Hybrid Intrusion Detection 

System (EHID-SCA) that integrates channel and spatial 

attention within a CNN-based deep learning framework 

is proposed. The model targets intrusion detection in 

wireless sensor networks (WSNs), aiming to extract 

spatial-temporal features efficiently while improving 

detection accuracy and interpretability.  The comparison 

was performed on the UNWS-NB15, NSL-KDD, and 

KDDcup99 datasets. The results show an increase in 

accuracy for all datasets. However, the proposed meth-

od focuses primarily on WSNs and may not be well 

suited to diverse NIDS scenarios, especially those in-

volving high-speed or heterogeneous network environ-

ments. 

In [9], an improved BiGRU-Inception-CNN model 

(NIDS-BAI) is proposed for IIoT intrusion detection. It 

incorporates an attention mechanism, BiGRU for bidi-

rectional temporal feature learning, and Inception-CNN 

for multi-scale spatial features. This study addresses 

class imbalance using a hybrid sampling strategy 

(ADASYN + RENN + LOF) and applies Pearson corre-

lation with Random Forests for feature selection. A 

comparison of the model’s performance was made using 

the CIC-IDS0217, CIC IoT 2023, and Edge-IIoTset 

datasets, which showed that the model performed better 

on the CIC IoT 2023 and Edge-IIoTset datasets. Alt-

hough the model shows strong performance across mul-

tiple datasets, its complexity and high computational 

overhead may hinder real-time deployment in resource-

constrained IIoT environments. 

In [10], the SA-DCNN model combines self-
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attention with deep convolutional neural networks to 

detect intrusions in IIoT networks. The model empha-

sizes the significance of individual features and reduces 

redundancy via two-step data cleaning and feature filter-

ing based on mutual information. Despite achieving 

superior results on IoTID20 and Edge-IIoTset datasets, 

heavy preprocessing and the absence of recurrent com-

ponents might limit the model’s ability to model long-

term dependencies in network traffic. 

In [11], an optimized intrusion detection system 

called AIMHCNN-IDS-VANET is proposed, which 

integrates a multi-head convolutional neural network 

enhanced with attention mechanisms for detecting vari-

ous types of cyberattacks in Vehicular Ad Hoc Net-

works (VANETs). The proposed approach uses the 

CAN_HCRL_OTIDS dataset and applies tanh-based 

normalization before classification into DoS, fuzzy, 

impersonation, and normal classes. The Capuchin 

Search Optimization Algorithm is employed to fine-tune 

the model’s weights to improve classification accuracy. 

Although the method achieves improved accuracy, pre-

cision, and specificity over existing techniques, it lacks 

in-depth comparative analysis with alternative optimiza-

tion algorithms and does not explore the model’s adapt-

ability to real-time or resource-constrained VANET 

environments. 

Thus, the reviewed publications focus on combin-

ing architectures with attention mechanism variations to 

improve the efficiency of network intrusion detection. 

Some papers [4], [5] do not provide results of multi-

class classification, and studies [3], [4] use only one 

dataset to test the model. It should be noted that there is 

an urgent need to find new solutions to improve the ef-

fectiveness of network intrusion detection, particularly 

with the help of attention mechanisms, which makes 

this topic relevant for further research. 

 

1.3. Objectives and the methodology 

 
This study aims to improve the performance of 

NIDS by developing and evaluating a HybridAttention 
mechanism that combines dynamic local attention and 

self-attention within a CNN-BiGRU architecture. The 

objectives of this study are as follows: 

1. To review existing attention mechanisms and 

justify their application in the field of network intrusion 

detection systems; 

2. To enhance a previously proposed CNN-

BiGRU-Attention [12] model by integrating various 

attention mechanisms (global, local, and self-attention) 

and compare their performance using the NSL-KDD 

and UNSW-NB15 datasets; 

3. To evaluate the proposed HybridAttention 
mechanism and compare its effectiveness with modern 

state-of-the-art approaches in terms of classification 

accuracy, precision, recall, and F1-score. 

The research methodology comprises the follow-

ing steps: 

Dataset selection and preparation. The research 

uses two public datasets—NSL-KDD and UNSW-

NB15—chosen for their relevance in NIDS performance 

benchmarking. Data preprocessing includes the normal-

ization of continuous features and categorical variable 

label encoding. Stratified train-test splits were applied to 

ensure class balance for binary and multiclass classifica-

tion tasks. 
Model configuration and design of the attention 

mechanism The baseline model architecture combines 

convolutional layers for spatial feature extraction and 

BiGRU for temporal sequence learning. Four types of 

attention mechanisms — global, local with monotonic 

and predictive alignment, and self-attention—were im-

plemented. Additionally, a HybridAttention mechanism 

was proposed, combining MorphingLocalAttention with 

self-attention, enabling dynamic adjustment of the atten-

tion window during training. 
The experimental procedure and evaluation. 

The experiments were conducted in the Google Colab 

Pro environment using Python 3.10.12, TensorFlow 

2.15.0, and Keras 2.15.0. Hyperparameter optimization 

was performed using the Optuna framework. Each mod-

el was evaluated under identical conditions using the 

following standard metrics: accuracy, precision, recall, 

and F1-score. Performance was compared across train-

ing and testing datasets for both classification modes. 
Analysis and interpretation of data The results 

were organized into tables and figures that highlight the 

performance of each attention mechanism. The general-

ization ability of the models and their robustness across 

datasets were given special attention. A comparative 

analysis with recent models was performed to demon-

strate the practical relevance of the proposed hybrid 

approach. 
The article is structured as follows. Section 2 

presents the materials and methods, including the design 

of the attention mechanisms and model configuration. 

Section 3 presents the results and their comparative 

analysis. Section 4 presents a case study demonstrating 

the practical deployment of the proposed approach. Sec-

tion 5 concludes the study, summarizing key contribu-

tions and outlining directions for future research. 

 

2. Materials and methods of research 
 

The mechanisms of deep attention can be divided 

into soft attention (global attention), hard attention (lo-

cal attention) and self-attention [13].
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Fig. 1. Types of attention mechanisms 

 

Self-attention. Self-attention, also known as 

scaled dot-product attention [14], is a fundamental con-

cept in DL and natural language processing. It plays a 

key role in tasks such as machine translation, text sum-

marization, and sentiment analysis.  

The basic idea of self-attention is to calculate simi-

larity scores between each input sequence element and 

all other elements. These scores are then used as 

weights to be applied to the input sequence representa-

tion. This allows the model to automatically focus on 

the most relevant elements of the input sequence and 

consider their relationship when learning the representa-

tion. 

Self-attention acts as a conductor, providing con-

textual insight to the model, allowing it to understand 

individual elements in a sequence and adjust their influ-

ence on the final outcome. This type of organization is 

invaluable in language processing tasks, where the 

meaning of a word depends on its counterparts in a sen-

tence or document. Self-attention is based on the quartet 

of queries Q, keys K, values V and self-attention itself. 

Mathematically, self-attention can be expressed as vec-

tor ]x2,...,x,[xX n1 , where ix  – is a vector repre-

senting the i-th element in the sequence. The output of 

self-attention is calculated as follows: 

 

V,
d

QK
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k
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where Q, K, V – query, key, and value matrices, respec-

tively. The similarity function calculates the dot product 

between the query and each key to obtain the weight, 

which is much faster and more compact in practice [14], 

i.e., fewer training parameters are needed. Finally, the 

softmax function is applied to normalize and assign 

these weights along with the corresponding values to 

obtain the final attention score. 

Self-attention can improve the interpretability of 

detected features and reduce the semantic gap between 

artificial intelligence detectors and security analysts. In 

addition, this mechanism can help security analysts ob-

tain attention scores to select important features for cor-

relation analysis, thus filtering out false alarms to effec-

tively identify and respond to genuine attacks on time. It 

should also be noted that by utilizing the self-attention 

mechanism, the model can offer better capabilities to 

remember long-term dependencies existing in the record 

to mitigate the problem of gradient vanishing and per-

formance degradation, thereby achieving higher accura-

cy [15]. 

Soft (global) attention. Soft attention is a com-

mon technique in machine learning, particularly in 

computer vision and natural language processing, to 

focus on relevant parts of the input data. First intro-

duced in [16], it uses the weighted average of all keys to 

construct a context vector. For soft attention, the atten-

tion module is differentiated with respect to the inputs, 

so that the entire system can be trained using standard 

backpropagation methods. 

Soft attention works in both spatial and temporal 

contexts. Spatially, it highlights or weights relevant fea-

tures, whereas temporally, it adjusts sample weights in 

rolling time windows based on their varying contribu-

tions. Despite being deterministic and differentiable, 

soft mechanisms have a high computational cost for 

large input data [13]. 

Simultaneously, [17] proposed a global attention 

identical to the soft attention, with the differences only 

in the simplification of the calculations. The main idea 

of global attention is to consider all the encoder’s hid-

den states when deriving the context vector tc . In this 

type of model, the alignment vector is of variable length 

ta , whose size is equal to the number of time steps on 

the source side. The alignment vector is derived by 

comparing the current hidden state of the target th    

with each hidden state of the source sh :  

 


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where score – a content-based function for which four 

different alternatives can be considered: 
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The score function is an important part of the at-

tention model because it determines the matching or 

combination of keys and queries. In (1), some common 

score functions are listed, the most common of which 

are the additive (concat) score function (as an alignment 

model in recurrent neural network search) [17] and the 

less computationally expensive multiplicative (dot 

product) score function [17]. In [18], an empirical com-

parison between these two evaluation functions was 

made and it was found that the parameterized additive 

attention mechanism slightly but consistently outper-

forms the multiplicative one. Moreover, in [14], a vari-

ant of the multiplicative evaluation function was pro-

posed by adding a scaling factor
H

1
, where H – the 

dimensionality of the hidden state of the source, moti-

vated by the fear that the softmax function may have a 

very small gradient with large input data, which pre-

vents effective learning. Also, in [17], a general score 

function was presented. The general score function ex-

tends the concept of multiplicative attention by intro-

ducing a matrix parameter W, a learnable system that 

can be applied to keys and queries with different repre-

sentations.  

Early attempts to build attention-based models 

used a location-based function [17], in which alignment 

estimates are computed only based on the hidden state 

of the target th , as shown below: 

 

))(locationhsoftmax(Wa tat  ,  (2) 

 

Given the alignment vector as a weight, the con-

text vector tc  is calculated as a weighted average over 

all hidden source states. 

However, a previous study [12], in which a net-

work intrusion detection system based on the attention 

mechanism was created, used soft attention [7]: 
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where th  – hidden state, wW – matrix of attention 

weights  wb  – attention bias, ta – weighting matrix, V 

– attention vector weighted by the attention mechanism. 

The differences between the two approaches de-

scribed above are as follows: 

1. In formula (3) to calculate tu  the hidden state 

vector is calculated using the weighting matrix wW in-

put hidden state th  and the added bias wb . This is sim-

ilar to the preprocessing step to obtain an intermediate 

hidden state, but the abovementioned score function 

depends on two hidden states, not just one th ; 

2. In formula (4), the alignment vector ta is cal-

culated using the softmax function of the vector w
T
t uu . 

This is similar to the attention alignment calculation, at 

the same time the article above describes the alignment 

calculation ta  by comparing the current hidden state 

th  with each hidden state sh using leveling weights ta

. 

3. In formula (5), the global context vector is cal-

culated V as a weighted sum of all hidden states  th  

using leveling weights ta , This is similar to how the 

article describes the calculation of the global context 

vector tc , which is also calculated as a weighted sum of 

all hidden states sh  з using leveling scales ta . 

Hard (local) attention. Unlike widespread soft at-

tention, which considers all elements of an input se-

quence, hard attention [19] selects only a certain part of 

the elements and discards the rest. Hard attention focus-

es the model on key elements, making it effective for 

tasks with limited sequences. However, it is inefficient 

in sampling and optimization due to its combinatorial 

nature, which often necessitates reinforcement learning 

methods. While reducing computational costs, these 

approaches rely on stochastic processes due to the lack 

of a clear selection policy. 

The local attention discussed in [17] is inspired by 

a compromise between the soft and hard attention mod-

els proposed in [18], where soft attention refers to a 

global attention approach in which weights are “softly” 

placed over all regions of the original image. Although 

the hard attention model is less expensive in terms of 

inference time, it is not differentiated and requires more 

sophisticated training methods, such as variance reduc-

tion or reinforcement learning. 

The local attention concept eliminates the cost of 

global attention by focusing on a small subset of tokens 

in the hidden state set obtained from the input sequence. 

This window is proposed as D]pD,[p tt  , where D – 
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empirically selected window width, which ignores posi-

tions that cross the sequence boundaries [19]. Aligned 

position tp , is determined by: 

a) Monotonic alignment – assumes that the source 

and target sequences are approximately aligned in a 

monotonic manner. Monotonic alignment is identical to 

global attention, except that the vector  ta has a fixed 

length and is shorter: 

 

tp t  ; 

 

b) Predictive alignment – instead of assuming 

monotonic alignment, the proposed model predicts the 

aligned position. It is similar to monotonic alignment 

except that it dynamically computes tp  and a truncated 

Gaussian distribution of alignment weights is used: 

 

))htanh(Wsigmoid(vSp tp
T
pt  , 

 

where pW and pv  are the model parameters that will be 

studied to predict positions. S – is the length of the orig-

inal sentence. Because of the sigmoid, S][0,pt  . To 

promote alignment points in the vicinity 𝑝𝑡, is a Gaussi-

an distribution centered around tp . The alignment 

weights are defined as follows: 


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The same alignment function is used as in equation 

(1), and the standard deviation is empirically defined as  

2

D
σ  . It should be noted [17], that tp  is a real num-

ber, while 𝑠 is an integer within the window centered at 

the point tp . 

We propose a HybridAttentionmechanism (Fig. 2) 

that combines two different approaches: modified local 

attention and self-attention.  

Modified (dynamic) local attention. The window 

width D is treated as a hyperparameter that is optimized 

throughout the model training process using Morph-

ingLocalAttention. This means that the window width 

changes dynamically after each epoch, allowing the 

model to better adapt to the specific task requirements. 

This approach differs from traditional methods in which 

the window width is empirically chosen. The model 

determines the best value during training instead of 

manually selecting the optimal window width, which 

leads to better generalization and simplifies the model 

training process.  

 

 
 

Fig. 2. HybridAttention mechanism 
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This is accomplished using a sigmoid activation 

function that limits the output values to a range of 0 to 

1. Subsequently, the value is scaled by adding a mini-

mum and maximum window width to ensure that the 

window width stays within the desired range, and the 

absolute value of the integer of this result is taken. This 

ensures that the window width is always a positive inte-

ger. 

The disadvantage of this modification is that it can 

only be used with predictive alignment operations be-

cause the window width is treated as a tensor, which 

cannot be used in monotonic alignment operations. 

Self-attention. Using self-attention, the model fo-

cuses on different parts of the input data and calculates 

weights for each element based on the relationships be-

tween queries, keys, and values, which significantly 

increases the efficiency of detecting complex patterns in 

the data. 

 

3. Results and Discussion 
 

AA series of experiments were conducted on the 

NSL-KDD [20] and UNSW-NB15 [21] datasets to test 

the effectiveness of different attention mechanisms in 

the CNN-BiGRU-Attention model proposed earlier 

[12].  

The choice of NSL-KDD and UNSW-NB15 were 

chosen as benchmark datasets because of their comple-

mentary strengths in terms of representativeness and 

quality. NSL-KDD, an improved version of KDD Cup 

1999, removes redundant records and balances class 

distribution, thereby reducing bias toward majority clas-

ses. It provides training (KDDTrain+) and testing 

(KDDTest+) subsets covering normal traffic and four 

attack types (DoS, Probe, R2L, U2R). Although it is 

widely adopted due to its structure and accessibility, its 

attack scenarios are outdated and less representative of 

modern threats. Conversely, UNSW-NB15 was created 

in the Cyber Range Lab at UNSW Canberra using IXIA 

PerfectStorm to emulate contemporary user activity and 

synthetic attacks. It contains 49 attributes and nine at-

tack categories (e.g., Fuzzers, DoS, Exploits, Recon-

naissance, Shellcode) captured with tcpdump and pro-

cessed with Argus, Bro-IDS, and feature extraction al-

gorithms. While based on controlled experiments and 

not fully reflective of real-world variability, UNSW-

NB15 offers richer feature diversity and improved bal-

ance. Together, the two datasets provide a comprehen-

sive basis for evaluating the proposed model’s accuracy 

and generalization. 

Experimental environment. The Google Colab 

Pro cloud environment was used to conduct the experi-

ments as part of the study. This environment provides 

access to powerful computing resources, making it ideal 

for performing resource-intensive tasks. Python version 

3.10.12, Tensorflow version 2.15.0, and Keras version 

2.15.0 were used in all experiments. The Optuna library 

was chosen to optimize the hyperparameters. This open-

source library, written in Python, uses Bayesian optimi-

zation algorithms to find the best hyperparameter sets 

for machine learning. The other basic parameters of the 

model are as follows: dropout 0.5, number of epochs 50, 

and Adam as the optimizer for parameter training. The 

model uses the loss function categorical_crossentropy 

for multiclass classification and binary_crossentropy for 

binary classification. Table 1 shows the hyperparame-

ters selected for the model. 

 

Table 1  

Ranges for optimizing the hyperparameters  

of the CNN-BiGRU-Attention model 

Parameter Value 

Cnn_layer_filters [16,128] 

Cnn_layer_kernel_size [2,5] 

Gru_layer_units [8,128] 

Dense_layer_units [16,256] 

Activation_dense_layer [‘tanh’, ‘relu’] 

Activation_cnn_layer [‘tanh’, ‘relu’] 

Pool_size [2,6] 

Batch_size [32,512] 

Learning_rate [0.0001, 0.001, 0.01] 

Sequence_length [1,10] 

Self_attention_units [32,256] 

Window_width [1,4] 

 

Evaluation metrics. Attention mechanisms are 

evaluated using the accuracy, reliability, recall, and F1-

score metrics [22]. Accuracy determines the proportion 

of items correctly identified in the total amount of data. 

Reliability measures the accuracy of the model’s posi-

tive predictions and is calculated as the ratio of the 

number of correctly predicted positive observations to 

the total number of predicted positive outcomes. Recall 

measures the ability of the model to capture all positive 

outcomes by calculating the ratio of correctly predicted 

positive observations to actual positive observations. 

The F-measure expresses the harmonic mean of accura-

cy and reproducibility, which is a balanced measure that 

considers both FPs and FNs. 

First, we consider the performance of the model 

using attention mechanisms on the NSL-KDD and 

UNSW-NB15 datasets for multiclass classification (Ta-

bles 2-5) and binary classification (Tables 6-9). Experi-

ments were conducted for 21 variants of attention 

mechanisms and score functions. In each table, only the 

top 5 options are shown, including global attention, lo-

cal attention with monotonic alignment, predictive 

alignment, and a HybridAttention mechanism with the 

scaled_dot function, as it showed the best results among 

the other alignment functions. 
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Table 2 

Comparison of attention mechanisms by training  

accuracy, precision, recall and f1-score metrics based on 

the NSL-KDD dataset (multiclass classification) 

Attention 
Accura-

cy 
Precision Recall F1-score 

Global (location) 99.79 99.79 99.79 99.79 

Local (Monoton-

ic + dot) 
99.82 99.82 99.82 99.82 

Local (Predictive 

+ scaled_dot) 
99.81 99.81 99.81 99.81 

Self-attention 99.83 99.83 99.83 99.83 

HybridAttention 99.85 99.85 99.85 99.85 

 

Table 3 

Comparison of attention mechanisms by testing  

accuracy, precision, recall and f1-score metrics based on 

the NSL-KDD dataset (multiclass classification) 

Attention 
Accura-

cy 
Precision Recall F1-score 

Global (location) 78.83 81.68 78.84 78.84 

Local (Monotonic 

+ dot) 
80.50 84.21 79.83 79.83 

Local (Predictive + 

scaled_dot) 
81.48 82.80 81.48 81.48 

Self-attention 78.86 81.90 78.86 78.86 

HybridAttention 81.91 85.12 81.91 81.91 

 

Table 4 

Comparison of attention mechanisms by training  

accuracy, precision, recall and f1-score metrics based on 

the UNSW-NB15 dataset (multiclass classification) 

Attention Accuracy Precision Recall 
F1-

score 

Global 

(scaled_dot) 
97.91 97.66 97.91 97.78 

Local (Monotonic 

+ concat) 
97.98 97.93 97.98 97.95 

Local (Predictive 

+ concat) 
98.02 98.03 98.02 98.02 

Self-attention 97.86 97.75 97.86 97.77 

HybridAttention 98.06 98.08 98.05 98.06 

 

Table 5 

Comparison of attention mechanisms by testing  

accuracy, precision, recall and f1-score metrics based on 

the UNSW-NB15 dataset (multiclass classification) 

Attention Accuracy Precision Recall 
F1-

score 

Global (scaled_dot) 97.87 97.58 97.87 97.72 

Local (Monotonic + 

concat) 
97.94 97.87 97.94 97.90 

Local (Predictive + 

concat) 
97.92 97.95 97.67 97.80 

Self-attention 97.82 97.55 97.82 97.68 

HybridAttention 98.05 98.09 98.05 98.07 

 

Analyzing the data in tables 2-5 shows that the 

HybridAttention mechanism outperforms others on the 

NSL-KDD dataset, with better results on both training 

and test datasets, particularly with local attention and 

the scaled_dot function. Similarly, on the UNSW-NB15 

dataset, the hybrid mechanism outperformed all alterna-

tives on both datasets. 

Table 6 

Comparison of attention mechanisms by training  

accuracy, precision, recall and f1-score metrics based on 

the NSL-KDD dataset (binary classification) 

Attention Accuracy Precision Recall 
F1-

score 

Global (scaled_dot) 99.79 99.79 99.79 99.79 

Local (Monotonic 

+ location) 
99.79 99.79 99.79 99.79 

Local (Predictive + 

concat) 
99.81 99.81 99.81 99.81 

Self-attention 99.79 99.79 99.79 99.79 

HybridAttention 99.85 99.85 99.85 99.85 

 

Table 7 

Comparison of attention mechanisms by testing  

accuracy, precision, recall and f1-score metrics based on 

the NSL-KDD dataset (binary classification) 

Attention Accuracy 
Preci-

sion 
Recall F1-score 

Global 

(scaled_dot) 
80.47 83.40 80.47 81.90 

Local (Monotonic 

+ concat) 
84.12 85.84 84.13 84.97 

Local (Predictive 

+ concat) 
86.21 82.38 82.34 82.36 

Self-attention 82.01 84.37 82.02 83.17 

HybridAttention 83.47 86.96 83.65 85.27 

 

Table 8 

Comparison of attention mechanisms by accuracy,  

precision, recall and f1-score metrics based on the 

UNSW-NB15 dataset (binary classification) 

Attention Accuracy 
Preci-

sion 
Recall F1-score 

Global 

(scaled_dot) 
98.98 98.98 98.98 98.98 

Local (Mono-

tonic + general) 
99.18 99.18 99.18 99.18 

Local (Predic-

tive + 

scaled_dot) 

99.18 99.18 99.18 99.18 

Self-attention 99.15 99.15 99.15 99.15 

HybridAttention 99.20 99.20 99.20 99.20 

 

Table 9 

Comparison of attention mechanisms by testing  

accuracy, precision, recall and f1-score metrics based on 

the UNSW-NB15 dataset (binary classification) 

Attention Accuracy Precision 
Re-

call 
F1-score 

Global 

(scaled_dot) 
98.98 98.98 98.98 98.98 

Local (Mono-

tonic + general) 
99.17 99.18 99.17 99.17 

Local (Predic-

tive + 

scaled_dot) 

99.17 99.17 99.17 99.17 

Self-attention 99.14 99.14 99.14 99.14 

HybridAttention 99.19 99.19 99.19 99.19 

 
Tables 4-9 show that the HybridAttention mecha-

nism was the best for all metrics and datasets for the 

UNSW-NB15 dataset. For the NSL-KDD dataset, the 

HybridAttention mechanism is the best option for the 

training dataset. However, for the test dataset, the local 
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attention mechanism with predictive alignment and con-

cat alignment function showed the best accuracy of 

86.21%, and the local attention mechanism with mono-

tonic alignment with concat alignment function showed 

the best recall of 84.02%. Similarly, the global attention 

mechanism showed worse results for all the previous 

tables. 

Tables 10 and 11 present the results of comparing 

the HybridAttention mechanism with modern develop-

ments. Note that the tables contain the value “N/A”, 

which indicates the absence of data on these metrics in 

the work. 

 

Table 10 

Comparison of the model with a HybridAttention  

mechanism with modern developments (NSL-KDD) 

Model name 
Dataset Accura-

cy 

Preci-

sion 

Re-

call 

F1-

score 

CNN-BiLSTM-

Attention [3] 

NSL-KDD 

(multi-class) 
99.79 N/A 99.83 N/A 

CANET [6] 
NSL-KDD 

(multi-class) 
99.77 N/A 99.72 N/A 

CANET [6] 
NSL-KDD 

(binary) 
99.79 N/A 99.72 N/A 

CNN-BiGRU-

Attention[12] 

NSL-KDD 

(multi-class) 
99.81 99.81 99.81 99.81 

CNN-BiGRU-
Attention [12] 

NSL-KDD 
(binary) 

99.83 99.83 99.83 99.83 

The proposed 

model 

NSL-KDD 

(multi-class) 
99.84 99.84 99.84 99.84 

The proposed 

model 

NSL-KDD 

(binary) 
99.85 99.85 99.85 99.85 

 

Table 11 

Comparison of the model with a HybridAttention  

mechanism with modern developments (UNSW-NB15) 
Model name Dataset Accuracy Precision Recall F1-score 

SSAE-BiGRU-Att 

[5] 

UNSW_NB15 

(binary) 
98.68 99 99 N/A 

SSAE-BiGRU-Att 

[5] 

UNSW_NB15 

(binary) 
98.68 99 99 N/A 

CANET [6] 
UNSW-NB15 

(multi-class) 
89.39 N/A 98.93 N/A 

CANET [6] 
UNSW-NB15 

(binary) 
96.43 N/A 96.97 N/A 

CNN-BiGRU-

Attention[12] 

UNSW-NB15 

(multi-class) 
97.80 97.61 97.81 97.71 

CNN-BiGRU-
Attention[12] 

UNSW-NB15 
(binary) 

99.18 99.17 99.17 99.17 

CNN-BiLSTM-

Attention [3] 

UNSW-NB15 

(multi-class) 
88.83 N/A 98.51 N/A 

Bi-LSTM [22] 
UNSW_NB15 

(binary) 
99.05 98.96 99.36 99.15 

The proposed model 
UNSW-NB15 

(multi-class) 
98.06 98.08 98.05 98.06 

The proposed model 
UNSW-NB15 

(binary) 
99.20 99.20 99.20 99.20 

 
The data presented in Tables 10 and 11 demon-

strate that the proposed approach with a HybridAtten-

tion mechanism outperforms the results of known stud-

ies. In a previous study [12], only one attention mecha-

nism was considered, whereas alternative options were 

evaluated in this study. The results of the training da-

tasets were selected for comparison. The CNN-

BiLSTM-Attention [3] and SSAE-BiGRU-Att [5] archi-

tectures have shown competitive results, but their effec-

tiveness often depends on the specific dataset. Com-

pared with these, the proposed HybridAttention mecha-

nism demonstrates more stable accuracy and generaliza-

tion ability on different NSL-KDD and UNSW-NB15 

datasets. More complex models, such as CANET [6] 

and HAGRU [7], use hierarchical attention mechanisms 

to account for multi-level dependencies, but this in-

creases computational costs and does not guarantee sta-

ble generalization. Hybrid approaches, such as EHID-

SCA [8], which combine spatial and channel attention, 

have shown improvements in wireless sensor networks, 

but remain domain-specific. The Bi-LSTM model [22], 

which combines multidimensional feature processing 

with long-term dependency learning, has shown high 

performance on the UNSW-NB15, NSL-KDD, and 

CIC-IDS2017 datasets, but its effectiveness also de-

pends on data sampling and preprocessing. In contrast, 

the proposed HybridAttention mechanism, which com-

bines self-attention and dynamic local attention, demon-

strates greater versatility, high accuracy, and generaliza-

tion ability on the NSL-KDD and UNSW-NB15 da-

tasets. 
Although the proposed HybridAttention mecha-

nism demonstrates clear advantages over individual 

attention variants, certain limitations should be 

acknowledged. First, the proposed approach increases 

computational requirements during training and infer-

ence, which may pose challenges for deployment in 

highly resource-constrained environments, such as IoT 

or edge devices. Nevertheless, this limitation is partly 

mitigated by the increasing availability of hardware 

accelerators and optimization frameworks. Second, 

while dynamic local attention enhances adaptability, the 

model’s interpretability remains limited, which is a 

common issue for deep learning–based NIDS. Third, the 

system’s performance is inherently dependent on the 

quality and diversity of the training data, as insufficient 

representation of novel attacks could reduce robustness; 

however, the hybrid design improves generalization 

compared to single-mechanism baselines. Finally, the 

model’s scalability to high-throughput backbone net-

works requires further evaluation because additional 

latency may occur under heavy traffic. Despite these 

considerations, the proposed HybridAttention mecha-

nism is a promising solution that balances detection 

accuracy and adaptability. 

 

4. Practical Implementation Scenario  

for Critical or Corporate Networks 
 

While the experimental evaluation presented in 

Section 3 was conducted in the Google Colab Pro cloud 

environment, this section focuses on how the trained 

model can be practically deployed within critical or cor-

porate network infrastructures. The proposed architec-

ture can be implemented in both critical networks, 

where real-time detection and high availability are es-

sential (e.g., industrial control systems, healthcare, or 

energy infrastructures), and corporate environments, 
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which emphasize scalability, interoperability, and inte-

gration with existing SOC/SIEM systems. In critical 

networks, stringent latency and reliability requirements 

require lightweight deployment on dedicated nodes, 

whereas in corporate infrastructures, multi-layer securi-

ty and centralized monitoring are prioritized. 

As illustrated in Fig. 3, the proposed approach 

based on a HybridAttention mechanism can be effec-

tively integrated into the security infrastructure of cor-

porate or critical networks.  

In this context, network traffic is duplicated at key 

points within the network, including core switches and 

aggregation routers, using standard mirroring tech-

niques. The mirrored traffic is transmitted to a dedicated 

analysis node or an isolated containerized environment, 

where real-time inspection and classification are per-

formed. 

 

 
 

Fig. 3. HybridAttention-Based NIDS Architecture 

 

The system can operate in near real-time and clas-

sify observed network flows into benign or potentially 

malicious categories. The attention mechanism imple-

mented in the classification module allows the system to 

dynamically focus on significant features and structural 

patterns of traffic, thereby enabling the detection of both 

known and previously unseen threats. This adaptability 

enhances the resilience of the system in changing opera-

tional environments. 

For practical deployment, the solution may be in-

tegrated as a detection module within a Security Opera-

tions Center (SOC). Detected anomalies are converted 

into structured alerts and transmitted centralized moni-

toring systems, such as Security Information and Event 

Management (SIEM) platforms. These alerts can initiate 

automated incident response procedures based on prede-

fined policies, including dynamic modification of fire-

wall rules, traffic redirection, or initiation of in-depth 

forensic investigation. 

The scalability and reliability of the system can be 

ensured using container orchestration platforms (e.g., 

Docker and Kubernetes), which allow for horizontal 

scaling and load balancing depending on the traffic vol-

ume and infrastructure constraints. The modular design 

of the solution supports flexible integration into existing 

cybersecurity architectures, regardless of the size or 

technical stack of the organization. 

Thus, the proposed method is not limited to theo-

retical evaluation but demonstrates its applicability in 

operational conditions. It ensures timely detection of 

complex threats while maintaining adaptability, trans-

parency, and compatibility with modern infrastructure 

management practices. 

 

5. Conclusions 
 

1. Based on the analyzed studies, a review of the 

existing attention mechanisms is carried out. The use of 

attention mechanisms in NIDS can significantly im-

prove their effectiveness in recognizing and tracking 

anomalies or attacks in network traffic. Local attention 

can focus on the key characteristics of network traffic, 

thereby reducing computational complexity. Global 

attention can consider the overall context and detect 

complex anomalies. Self-attention can dynamically de-

termine the importance of different parts of the input 

data, adapting to different types of traffic and attacks. 

2. Different attention mechanisms, such as local, 

global, and self-attention, are added to the previously 

developed CNN-BiGRU-Attention model instead of the 

Attention layer. Their effectiveness in intrusion detec-

tion is compared using traditional evaluation metrics. 

The experimental results show that local and self-

attention work better than global attention in the net-

work intrusion detection context. 

3. Comparison of the use of a HybridAttention 
mechanism that includes dynamic local attention and 

self-attention with the results of known studies. In com-

bination with the HybridAttention mechanism, the 

CNN-BiGRU model demonstrated better results for 

both multiclass and binary classification. 

These results confirm that the HybridAttention 

mechanism effectively enhances both spatial and tem-

poral feature extraction within network flows. The mod-
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el efficiently prioritizes relevant traffic patterns by 

combining self-attention with dynamic local attention, 

thereby improving detection accuracy for both known 

and emerging threats. In addition, the adaptive window 

mechanism contributes to better generalization across 

datasets and reduces false-positive rates, further 

strengthening the model’s robustness. 

Despite these promising findings, several limita-

tions remain. The interpretability of the model’s deci-

sions is limited, which may hinder human understanding 

and results’ reproducibility in practical applications. 

Furthermore, the data preprocessing procedure and the 

evaluation metrics range require further refinement. 

Future research will focus on addressing these short-

comings and optimizing the model through dimension-

ality reduction and metaheuristic algorithms, such as the 

genetic algorithm, to improve both efficiency and trans-

parency. 
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ВИКОРИСТАННЯ ГІБРИДНОГО МЕХАНІЗМУ УВАГИ ЯК МЕТОДУ ПІДВИЩЕННЯ 

ЕФЕКТИВНОСТІ СИСТЕМ ВИЯВЛЕННЯ МЕРЕЖЕВИХ ВТОРГНЕНЬ 

А. О. Нікітенко, Є. О. Башков 

Предметом дослідження є гібридний механізм уваги, інтегрований у глибоку нейронну архітектуру для 

мережевих систем виявлення вторгнень (NIDS). Метою роботи є розробка та дослідження гібридного меха-

нізму уваги на основі комбінації глобальної (самоуваги) та локальної (динамічної локальної уваги) моделей 

для підвищення якості класифікації трафіку в NIDS, що працюють в режимі реального часу. Завдання: ана-

ліз існуючих механізмів уваги на предмет їх застосовності для виявлення мережевих вторгнень; інтеграція 

різних типів уваги в архітектуру CNN-BiGRU; розробка гібридного механізму уваги на основі динамічного 

вирівнювання вікон; оптимізація моделі за допомогою Optuna; експериментальна оцінка її продуктивності 

на тестових наборах даних з використанням стандартних метрик класифікації. Використані методи: моде-
лювання глибокого навчання з архітектурою CNN-BiGRU, інтеграція різних механізмів уваги, включаючи 

нову гібридну увагу, оптимізація гіперпараметрів за допомогою Optuna та оцінка продуктивності на основі 

стандартних метрик класифікації. Результати роботи показують, що запропонований механізм гібридної 

уваги демонструє перевагу над окремими типами уваги за всіма ключовими метриками. Модель досягла 

точності до 99,85% на навчальних даних набору даних NSL-KDD і продемонструвала сильне узагальнення 

на наборі даних UNSW-NB15, досягнувши точності до 98,06% в багатокласовій класифікації і до 99,20% в 

бінарній класифікації. Модель також перевершила сучасні аналогічні підходи для обробки незбалансованих 

даних та виявлення різних типів атак. Висновки. Наукова новизна отриманих результатів полягає в наступ-

ному: розроблено гібридний механізм уваги, що поєднує самоувагу та динамічну локальну увагу для покра-

щення послідовного розпізнавання образів у мережевому трафіку; покращено архітектуру CNN-BiGRU за 

рахунок інтеграції декількох модулів уваги; систематична гіперпараметрична оптимізація з використанням 
Optuna покращила узагальнення на незбалансованих даних; запропонована модель перевершила існуючі 

підходи на тестових наборах даних при виявленні як відомих, так і нових кібератак. 

Ключові слова: глибоке навчання; механізм уваги; система виявлення мережевих вторгнень; гібрид-

ний  механізм уваги; динамічна локальна увага. 
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