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USING A HYBRID ATTENTION MECHANISM AS A METHOD TO IMPROVE
THE EFFICIENCY OF NETWORK INTRUSION DETECTION SYSTEMS

The subject matter of this article is a HybridAttention mechanism integrated into a deep neural architecture
for Network Intrusion Detection Systems (NIDS). This study aims to develop and study a HybridAttention
mechanism based on a combination of global (self-attention) and local (dynamic local attention) models to im-
prove the quality of traffic classification in real-time NIDS. The tasks to be solved are as follows: analyzing the
applicability of existing attention mechanisms in network intrusion detection; integrating various attention
types into a CNN-BiGRU architecture; developing a HybridAttention mechanism based on dynamic window
alignment; optimizing the model using Optuna; and experimentally evaluating its performance on benchmark
datasets using standard classification metrics. The methods used are: deep learning modeling with CNN-
BiGRU architecture, integration of various attention mechanisms, including a novel HybridAttention, hyperpa-
rameter optimization using Optuna, and performance evaluation based on standard classification metrics. The
results of this study show that the proposed HybridAttention mechanism demonstrates superiority over individ-
ual types of attention in all key metrics. The model achieved up to 99.85% accuracy on the NSL-KDD dataset
training data and demonstrated strong generalization on the UNSW-NB15 dataset, achieving up to 98.06% ac-
curacy in multi-class classification and up to 99.20% in binary classification. The proposed model also outper-
formed state-of-the-art approaches for processing unbalanced data and detecting various types of attacks.
Conclusions. The scientific novelty of the results obtained is as follows: a HybridAttention mechanism combin-
ing self-attention and dynamic local attention was developed to enhance sequential pattern recognition in net-
work traffic; the CNN-BiGRU architecture was improved by integrating multiple attention modules; systematic
hyperparameter optimization using Optuna improved generalization on imbalanced data; and the proposed
model outperformed existing approaches on benchmark datasets in detecting both known and novel cyberat-
tacks.

Keywords: deep learning; attention mechanism; network intrusion detection system; HybridAttention mecha-
nism; dynamic local attention.

both spatial and temporal characteristics of traffic data
[5]. However, these models may struggle to prioritize
important features in noisy, high-dimensional inputs,
which can hinder their detection performance.

Attention mechanisms offer a compelling solution
to this limitation by allowing the model to selectively
focus on relevant parts of the input data during pro-
cessing. Initially developed for natural language pro-

1. Introduction

1.1 Motivation

The rapid growth of cybercrime, coupled with the
increasing complexity and volume of network traffic,
presents critical challenges to the protection of infor-
mation systems. Traditional signature-based network

intrusion detection systems (NIDS) are no longer suffi-
cient to handle zero-day attacks, evolving threat pat-
terns, or the need for real-time response [1]. Conse-
quently, the cybersecurity domain is shifting toward
adaptive, intelligent detection systems that can dynami-
cally analyze traffic and recognize both known and nov-
el intrusions.

Deep learning (DL) approaches have emerged as
powerful tools in this field due to their capacity for au-
tomated feature extraction and sequence modeling. Ar-
chitectures that integrate Convolutional Neural Net-
works (CNNSs) and Bidirectional Gated Recurrent Units
(BiGRUSs) have shown particular promise in capturing

cessing tasks, attention mechanisms have since been
applied in intrusion detection to improve classification
accuracy and model interpretability. Their integration
into NIDS has shown promising results, enabling better
detection of complex attack patterns and reducing false
positives.

Nevertheless, many existing studies evaluate only
a single attention mechanism and often use a limited
number of datasets or classification types. Comparative
analysis across different attention variants (e.g., global,
local, and self-attention) and minimal exploration of
hybrid approaches are lacking. This constrains the
adaptability and robustness of the proposed models un-
der real-world network conditions.

Creative Commons Attribution
NonCommercial 4.0 International



https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

178

Radioelectronic and Computer Systems , 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

This study investigates a HybridAttention mecha-
nism that combines self-attention with dynamically ad-
justable local attention within a CNN-BiGRU architec-
ture to address these challenges. The proposed method
aims to enhance the detection of sophisticated and
emerging threats while maintaining generalizability
across different datasets and attack classes.

1.2 State of art

In recent years, attention mechanisms have been
widely used in deep learning tasks, including image
captioning, text classification, and speech recognition,
and they have been increasingly applied to intrusion
detection.

Attention is an important mechanism that can be
used in a variety of deep learning models in different
fields and tasks. Different attention mechanisms are
explained using a general model of attention, a unified
notation, and a comprehensive taxonomy of attention
mechanisms [1]. The attention mechanism addresses
information overload by allocating resources to process
critical data and optimizing limited computing power. It
is widely used in tasks such as image captioning, text
classification, translation, action recognition, speech
recognition, recommendations, and graph analysis [2].
Recently, the use of attention mechanisms along with
DL methods to detect network intrusions has been in-
creasingly popular.

In [3], a model for intrusion detection based on
CNN-BILSTM-Attention is proposed. A v2 loss func-
tion is introduced to address class imbalance by priori-
tizing minority class data during training. The model
was tested on the NSL-KDD, UNSW-NB15, and CIC-
DD0S2019 datasets, and it achieved accuracy of
99.79%, 88.84%, and 99.84%, recall of 99.83%,
98.52%, and 99.99%, and FPR of 0.17%, 1.82%, and
0.00%, respectively. However, it lacks diverse evalua-
tion metrics and comprehensive comparisons for
UNSW-NBL15.

In [4], an intrusion detection model based on a
combination of bidirectional long-short-term memory
(BiLSTM) and an attention mechanism based on a dis-
tributed ensemble architecture for 10T network security
for traffic data classification is proposed and tested on
the UNSW-NB15 test dataset. The model is evaluated
using the metrics of accuracy 99.05%, precision
98.96%, recall 99.36%, and F1-score 99.15%. The dis-
advantage of this study is the lack of results of multi-
class classification and testing the model on only one
dataset.

Paper [5] proposes the SSAE-BiGRU-ALt intrusion
model based on a combination of a stacked sparse auto-
encoder (SSAE), BiGRU, and an attention mechanism
for traffic classification was proposed in the study [5].

Experiments were conducted on the UNSW-NB15 da-
taset, with results in terms of accuracy 98.68 %, preci-
sion 99 %, recall 99 %, and FPR 0.0132 %. The disad-
vantage, as in the previous work, is the lack of demon-
stration of the model’s multi-class classification and the
availability of only one dataset.

A new hierarchical CNN-Attention network
(CANET) is proposed in [6]. The model combines CNN
and Attention into a CA unit for spatio-temporal feature
extraction, with a v2 loss function for balanced training.
Tested on NSL-KDD and UNSW-NB15 for multi-class
and binary classification, it achieves 99.77% accuracy,
99.72% recall, and 0.18% FPR on NSL-KDD and
89.39% accuracy, 98.93% recall, and 0.87% FPR on
UNSW-NB15. However, it lacks precision and F1-score
metrics for a more detailed evaluation.

In [7], a hierarchical attention mechanism called
HAGRU (Hierarchical Attention Gated Recurrent Unit)
is proposed. The model enhances detection by leverag-
ing features from three hierarchies and optimizing re-
source use by using attention to focus on malicious data
flows. Tested on NSL-KDD, CIC-IDS2017, and CES-
CIC-IDS2018, it evaluates individual classes but lacks a
comparative analysis with the HAGRU model.

In [8], an Enhanced Hybrid Intrusion Detection
System (EHID-SCA) that integrates channel and spatial
attention within a CNN-based deep learning framework
is proposed. The model targets intrusion detection in
wireless sensor networks (WSNs), aiming to extract
spatial-temporal features efficiently while improving
detection accuracy and interpretability. The comparison
was performed on the UNWS-NB15, NSL-KDD, and
KDDcup99 datasets. The results show an increase in
accuracy for all datasets. However, the proposed meth-
od focuses primarily on WSNs and may not be well
suited to diverse NIDS scenarios, especially those in-
volving high-speed or heterogeneous network environ-
ments.

In [9], an improved BiGRU-Inception-CNN model
(NIDS-BAI) is proposed for I10T intrusion detection. It
incorporates an attention mechanism, BiGRU for bidi-
rectional temporal feature learning, and Inception-CNN
for multi-scale spatial features. This study addresses
class imbalance using a hybrid sampling strategy
(ADASYN + RENN + LOF) and applies Pearson corre-
lation with Random Forests for feature selection. A
comparison of the model’s performance was made using
the CIC-IDS0217, CIC loT 2023, and Edge-lloTset
datasets, which showed that the model performed better
on the CIC loT 2023 and Edge-lloTset datasets. Alt-
hough the model shows strong performance across mul-
tiple datasets, its complexity and high computational
overhead may hinder real-time deployment in resource-
constrained 10T environments.

In [10], the SA-DCNN model combines self-
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attention with deep convolutional neural networks to
detect intrusions in 1loT networks. The model empha-
sizes the significance of individual features and reduces
redundancy via two-step data cleaning and feature filter-
ing based on mutual information. Despite achieving
superior results on 10TID20 and Edge-lloTset datasets,
heavy preprocessing and the absence of recurrent com-
ponents might limit the model’s ability to model long-
term dependencies in network traffic.

In [11], an optimized intrusion detection system
called AIMHCNN-IDS-VANET is proposed, which
integrates a multi-head convolutional neural network
enhanced with attention mechanisms for detecting vari-
ous types of cyberattacks in Vehicular Ad Hoc Net-
works (VANETS). The proposed approach uses the
CAN_HCRL_OTIDS dataset and applies tanh-based
normalization before classification into DoS, fuzzy,
impersonation, and normal classes. The Capuchin
Search Optimization Algorithm is employed to fine-tune
the model’s weights to improve classification accuracy.
Although the method achieves improved accuracy, pre-
cision, and specificity over existing techniques, it lacks
in-depth comparative analysis with alternative optimiza-
tion algorithms and does not explore the model’s adapt-
ability to real-time or resource-constrained VANET
environments.

Thus, the reviewed publications focus on combin-
ing architectures with attention mechanism variations to
improve the efficiency of network intrusion detection.
Some papers [4], [5] do not provide results of multi-
class classification, and studies [3], [4] use only one
dataset to test the model. It should be noted that there is
an urgent need to find new solutions to improve the ef-
fectiveness of network intrusion detection, particularly
with the help of attention mechanisms, which makes
this topic relevant for further research.

1.3. Objectives and the methodology

This study aims to improve the performance of
NIDS by developing and evaluating a HybridAttention
mechanism that combines dynamic local attention and
self-attention within a CNN-BIGRU architecture. The
objectives of this study are as follows:

1. To review existing attention mechanisms and
justify their application in the field of network intrusion
detection systems;

2. To enhance a previously proposed CNN-
BiGRU-Attention [12] model by integrating various
attention mechanisms (global, local, and self-attention)
and compare their performance using the NSL-KDD
and UNSW-NB15 datasets;

3. To evaluate the proposed HybridAttention
mechanism and compare its effectiveness with modern

state-of-the-art approaches in terms of classification
accuracy, precision, recall, and F1-score.

The research methodology comprises the follow-
ing steps:

Dataset selection and preparation. The research
uses two public datasets—NSL-KDD and UNSW-
NB15—chosen for their relevance in NIDS performance
benchmarking. Data preprocessing includes the normal-
ization of continuous features and categorical variable
label encoding. Stratified train-test splits were applied to
ensure class balance for binary and multiclass classifica-
tion tasks.

Model configuration and design of the attention
mechanism The baseline model architecture combines
convolutional layers for spatial feature extraction and
BiGRU for temporal sequence learning. Four types of
attention mechanisms — global, local with monotonic
and predictive alignment, and self-attention—were im-
plemented. Additionally, a HybridAttention mechanism
was proposed, combining MorphingLocal Attention with
self-attention, enabling dynamic adjustment of the atten-
tion window during training.

The experimental procedure and evaluation.
The experiments were conducted in the Google Colab
Pro environment using Python 3.10.12, TensorFlow
2.15.0, and Keras 2.15.0. Hyperparameter optimization
was performed using the Optuna framework. Each mod-
el was evaluated under identical conditions using the
following standard metrics: accuracy, precision, recall,
and F1-score. Performance was compared across train-
ing and testing datasets for both classification modes.

Analysis and interpretation of data The results
were organized into tables and figures that highlight the
performance of each attention mechanism. The general-
ization ability of the models and their robustness across
datasets were given special attention. A comparative
analysis with recent models was performed to demon-
strate the practical relevance of the proposed hybrid
approach.

The article is structured as follows. Section 2
presents the materials and methods, including the design
of the attention mechanisms and model configuration.
Section 3 presents the results and their comparative
analysis. Section 4 presents a case study demonstrating
the practical deployment of the proposed approach. Sec-
tion 5 concludes the study, summarizing key contribu-
tions and outlining directions for future research.

2. Materials and methods of research
The mechanisms of deep attention can be divided

into soft attention (global attention), hard attention (lo-
cal attention) and self-attention [13].



180

Radioelectronic and Computer Systems , 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Hard (Local) attention

Predictive

Gttention mechanisms

Self-attention )

Soft (Global) attentiorD

Fig. 1. Types of attention mechanisms

Self-attention. Self-attention, also known as
scaled dot-product attention [14], is a fundamental con-
cept in DL and natural language processing. It plays a
key role in tasks such as machine translation, text sum-
marization, and sentiment analysis.

The basic idea of self-attention is to calculate simi-
larity scores between each input sequence element and
all other elements. These scores are then used as
weights to be applied to the input sequence representa-
tion. This allows the model to automatically focus on
the most relevant elements of the input sequence and
consider their relationship when learning the representa-
tion.

Self-attention acts as a conductor, providing con-
textual insight to the model, allowing it to understand
individual elements in a sequence and adjust their influ-
ence on the final outcome. This type of organization is
invaluable in language processing tasks, where the
meaning of a word depends on its counterparts in a sen-
tence or document. Self-attention is based on the quartet
of queries Q, keys K, values V and self-attention itself.
Mathematically, self-attention can be expressed as vec-
tor X=[xq,X2,...X,], where x; — is a vector repre-

senting the i-th element in the sequence. The output of
self-attention is calculated as follows:

-
Attention(Q,K,V) = soﬁmax{%JV,

i

where Q, K, V — query, key, and value matrices, respec-
tively. The similarity function calculates the dot product
between the query and each key to obtain the weight,
which is much faster and more compact in practice [14],
i.e., fewer training parameters are needed. Finally, the
softmax function is applied to normalize and assign
these weights along with the corresponding values to
obtain the final attention score.

Self-attention can improve the interpretability of
detected features and reduce the semantic gap between
artificial intelligence detectors and security analysts. In

addition, this mechanism can help security analysts ob-
tain attention scores to select important features for cor-
relation analysis, thus filtering out false alarms to effec-
tively identify and respond to genuine attacks on time. It
should also be noted that by utilizing the self-attention
mechanism, the model can offer better capabilities to
remember long-term dependencies existing in the record
to mitigate the problem of gradient vanishing and per-
formance degradation, thereby achieving higher accura-
cy [15].

Soft (global) attention. Soft attention is a com-
mon technique in machine learning, particularly in
computer vision and natural language processing, to
focus on relevant parts of the input data. First intro-
duced in [16], it uses the weighted average of all keys to
construct a context vector. For soft attention, the atten-
tion module is differentiated with respect to the inputs,
so that the entire system can be trained using standard
backpropagation methods.

Soft attention works in both spatial and temporal
contexts. Spatially, it highlights or weights relevant fea-
tures, whereas temporally, it adjusts sample weights in
rolling time windows based on their varying contribu-
tions. Despite being deterministic and differentiable,
soft mechanisms have a high computational cost for
large input data [13].

Simultaneously, [17] proposed a global attention
identical to the soft attention, with the differences only
in the simplification of the calculations. The main idea
of global attention is to consider all the encoder’s hid-
den states when deriving the context vector c;. In this

type of model, the alignment vector is of variable length
at, whose size is equal to the number of time steps on

the source side. The alignment vector is derived by
comparing the current hidden state of the target h;

with each hidden state of the source hs :

_ —  exp(score(hy hs))
=align(h; hy) = h
at(s) al |gn( t 5) Zs' exp(SCOI’e(ht hS))
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where score — a content-based function for which four
different alternatives can be considered:

h{ hs(dot)

h{ hg

H
htTWa hs (general)

vJ tanh(W, [h; hs])(concat)

score(h E) _ (scaled — dot)

» (D

The score function is an important part of the at-
tention model because it determines the matching or
combination of keys and queries. In (1), some common
score functions are listed, the most common of which
are the additive (concat) score function (as an alignment
model in recurrent neural network search) [17] and the
less computationally expensive multiplicative (dot
product) score function [17]. In [18], an empirical com-
parison between these two evaluation functions was
made and it was found that the parameterized additive
attention mechanism slightly but consistently outper-
forms the multiplicative one. Moreover, in [14], a vari-
ant of the multiplicative evaluation function was pro-

posed by adding a scaling factori, where H — the

N

dimensionality of the hidden state of the source, moti-
vated by the fear that the softmax function may have a
very small gradient with large input data, which pre-
vents effective learning. Also, in [17], a general score
function was presented. The general score function ex-
tends the concept of multiplicative attention by intro-
ducing a matrix parameter W, a learnable system that
can be applied to keys and queries with different repre-
sentations.

Early attempts to build attention-based models
used a location-based function [17], in which alignment
estimates are computed only based on the hidden state
of the targeth; , as shown below:

a; =softmax(W,h)(location), (2)

Given the alignment vector as a weight, the con-
text vector c, is calculated as a weighted average over
all hidden source states.

However, a previous study [12], in which a net-
work intrusion detection system based on the attention
mechanism was created, used soft attention [7]:

ug = tanh(Wy,he +by) | 3)
a = exp(ngrw) | @
2. &xp(ug uy)

V=2 ah, ®)

where h; — hidden state, W,, — matrix of attention
weights b,, — attention bias, a;— weighting matrix, V
— attention vector weighted by the attention mechanism.
The differences between the two approaches de-
scribed above are as follows:
1. In formula (3) to calculate u; the hidden state

vector is calculated using the weighting matrix W, in-
put hidden state h; and the added bias by, . This is sim-

ilar to the preprocessing step to obtain an intermediate
hidden state, but the abovementioned score function
depends on two hidden states, not just one hy ;

2. In formula (4), the alignment vector a.is cal-

culated using the softmax function of the vector uj u,, .

This is similar to the attention alignment calculation, at
the same time the article above describes the alignment
calculation a; by comparing the current hidden state

h; with each hidden state E using leveling weights a;

3. In formula (5), the global context vector is cal-
culated V as a weighted sum of all hidden states h;

using leveling weightsa;, This is similar to how the

article describes the calculation of the global context
vector ¢, which is also calculated as a weighted sum of

all hidden states hs 3 using leveling scales a; .

Hard (local) attention. Unlike widespread soft at-
tention, which considers all elements of an input se-
guence, hard attention [19] selects only a certain part of
the elements and discards the rest. Hard attention focus-
es the model on key elements, making it effective for
tasks with limited sequences. However, it is inefficient
in sampling and optimization due to its combinatorial
nature, which often necessitates reinforcement learning
methods. While reducing computational costs, these
approaches rely on stochastic processes due to the lack
of a clear selection policy.

The local attention discussed in [17] is inspired by
a compromise between the soft and hard attention mod-
els proposed in [18], where soft attention refers to a
global attention approach in which weights are “softly”
placed over all regions of the original image. Although
the hard attention model is less expensive in terms of
inference time, it is not differentiated and requires more
sophisticated training methods, such as variance reduc-
tion or reinforcement learning.

The local attention concept eliminates the cost of
global attention by focusing on a small subset of tokens
in the hidden state set obtained from the input sequence.
This window is proposed as [p;—D,p;+ D], where D —



182

Radioelectronic and Computer Systems , 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

empirically selected window width, which ignores posi-
tions that cross the sequence boundaries [19]. Aligned
position py, is determined by:

a) Monotonic alignment — assumes that the source
and target sequences are approximately aligned in a
monotonic manner. Monotonic alignment is identical to
global attention, except that the vector a;has a fixed

length and is shorter:

pty =t;

b) Predictive alignment — instead of assuming
monotonic alignment, the proposed model predicts the
aligned position. It is similar to monotonic alignment
except that it dynamically computes p; and a truncated

Gaussian distribution of alignment weights is used:
p¢ =S sigmoid(vy tanh(Wphy)) ,

where Wyand v, are the model parameters that will be
studied to predict positions. S — is the length of the orig-
inal sentence. Because of the sigmoid, p; €[0,S]. To

promote alignment points in the vicinity p,, is a Gaussi-
an distribution centered aroundp;. The alignment

weights are defined as follows:

(s-py)?
2

o

a;(s) = align(h E)exp[— ] ,
The same alignment function is used as in equation
(1), and the standard deviation is empirically defined as

o} =%. It should be noted [17], that p; is a real num-

ber, while s is an integer within the window centered at
the point p;.

We propose a HybridAttentionmechanism (Fig. 2)
that combines two different approaches: modified local
attention and self-attention.

Modified (dynamic) local attention. The window
width D is treated as a hyperparameter that is optimized
throughout the model training process using Morph-
ingLocalAttention. This means that the window width
changes dynamically after each epoch, allowing the
model to better adapt to the specific task requirements.
This approach differs from traditional methods in which
the window width is empirically chosen. The model
determines the best value during training instead of
manually selecting the optimal window width, which
leads to better generalization and simplifies the model
training process.

HybridAttention layer

The red colored lines indicate
the dynamically selected

Concat

window width for the local
attention mechanism

T R N N e RS

Context vector

P Aligned
" Local weights

Self-attention layer (Scaled Dot-
Product Attention)

MatMul

A

_—

Mask (opt.)

+
MatMul

t

Linear|

T

Linear Linear

Q K v

Input data

Fig. 2. HybridAttention mechanism
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This is accomplished using a sigmoid activation
function that limits the output values to a range of 0 to
1. Subsequently, the value is scaled by adding a mini-
mum and maximum window width to ensure that the
window width stays within the desired range, and the
absolute value of the integer of this result is taken. This
ensures that the window width is always a positive inte-
ger.

The disadvantage of this modification is that it can
only be used with predictive alignment operations be-
cause the window width is treated as a tensor, which
cannot be used in monotonic alignment operations.

Self-attention. Using self-attention, the model fo-
cuses on different parts of the input data and calculates
weights for each element based on the relationships be-
tween queries, keys, and values, which significantly
increases the efficiency of detecting complex patterns in
the data.

3. Results and Discussion

AA series of experiments were conducted on the
NSL-KDD [20] and UNSW-NB15 [21] datasets to test
the effectiveness of different attention mechanisms in
the CNN-BiGRU-Attention model proposed earlier
[12].

The choice of NSL-KDD and UNSW-NB15 were
chosen as benchmark datasets because of their comple-
mentary strengths in terms of representativeness and
quality. NSL-KDD, an improved version of KDD Cup
1999, removes redundant records and balances class
distribution, thereby reducing bias toward majority clas-
ses. It provides training (KDDTrain+) and testing
(KDDTest+) subsets covering normal traffic and four
attack types (DoS, Probe, R2L, U2R). Although it is
widely adopted due to its structure and accessibility, its
attack scenarios are outdated and less representative of
modern threats. Conversely, UNSW-NB15 was created
in the Cyber Range Lab at UNSW Canberra using IXIA
PerfectStorm to emulate contemporary user activity and
synthetic attacks. It contains 49 attributes and nine at-
tack categories (e.g., Fuzzers, DoS, Exploits, Recon-
naissance, Shellcode) captured with tcpdump and pro-
cessed with Argus, Bro-IDS, and feature extraction al-
gorithms. While based on controlled experiments and
not fully reflective of real-world variability, UNSW-
NB15 offers richer feature diversity and improved bal-
ance. Together, the two datasets provide a comprehen-
sive basis for evaluating the proposed model’s accuracy
and generalization.

Experimental environment. The Google Colab
Pro cloud environment was used to conduct the experi-
ments as part of the study. This environment provides
access to powerful computing resources, making it ideal
for performing resource-intensive tasks. Python version

3.10.12, Tensorflow version 2.15.0, and Keras version
2.15.0 were used in all experiments. The Optuna library
was chosen to optimize the hyperparameters. This open-
source library, written in Python, uses Bayesian optimi-
zation algorithms to find the best hyperparameter sets
for machine learning. The other basic parameters of the
model are as follows: dropout 0.5, number of epochs 50,
and Adam as the optimizer for parameter training. The
model uses the loss function categorical_crossentropy
for multiclass classification and binary_crossentropy for
binary classification. Table 1 shows the hyperparame-
ters selected for the model.

Table 1
Ranges for optimizing the hyperparameters
of the CNN-BiGRU-Attention model

Parameter Value
Cnn_layer_filters [16,128]

Cnn_layer_kernel_size [2,5]
Gru_layer_units [8,128]
Dense_layer_units [16,256]

Activation_dense_layer
Activation_cnn_layer

[‘tanh’, ‘relu’]
[‘tanh’, ‘relu’]

Pool_size [2,6]
Batch_size [32,512]
Learning_rate [0.0001, 0.001, 0.01]
Sequence_length [1,10]
Self_attention_units [32,256]
Window_width [1,4]

Evaluation metrics. Attention mechanisms are
evaluated using the accuracy, reliability, recall, and F1-
score metrics [22]. Accuracy determines the proportion
of items correctly identified in the total amount of data.
Reliability measures the accuracy of the model’s posi-
tive predictions and is calculated as the ratio of the
number of correctly predicted positive observations to
the total number of predicted positive outcomes. Recall
measures the ability of the model to capture all positive
outcomes by calculating the ratio of correctly predicted
positive observations to actual positive observations.
The F-measure expresses the harmonic mean of accura-
cy and reproducibility, which is a balanced measure that
considers both FPs and FNs.

First, we consider the performance of the model
using attention mechanisms on the NSL-KDD and
UNSW-NBL15 datasets for multiclass classification (Ta-
bles 2-5) and binary classification (Tables 6-9). Experi-
ments were conducted for 21 variants of attention
mechanisms and score functions. In each table, only the
top 5 options are shown, including global attention, lo-
cal attention with monotonic alignment, predictive
alignment, and a HybridAttention mechanism with the
scaled_dot function, as it showed the best results among
the other alignment functions.



184

Radioelectronic and Computer Systems , 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Table 2
Comparison of attention mechanisms by training
accuracy, precision, recall and f1-score metrics based on
the NSL-KDD dataset (multiclass classification)

Table 6
Comparison of attention mechanisms by training
accuracy, precision, recall and f1-score metrics based on
the NSL-KDD dataset (binary classification)

Attention Ac:::;ra- Precision Recall F1-score Attention Accuracy | Precision | Recall sigr-e
Global (location) 99.79 99.79 99.79 99.79 Global (scaled_dot) 99.79 99.79 99.79 99.79
Local (Monoton- Local (Monotonic

ic + dot) 99.82 99.82 99.82 99.82 + location) 99.79 99.79 99.79 99.79
Local (Predictive | g9g; | g9g1 | gog1 | oggg1 || Local(Predictive+ | g9 g, 9981 | 9981 | 9981
+ scaled_dot) concat)
Self-attention 99.83 99.83 99.83 99.83 Self-attention 99.79 99.79 99.79 99.79
HybridAttention 99.85 99.85 99.85 99.85 HybridAttention 99.85 99.85 99.85 99.85
Table 3 Table 7

Comparison of attention mechanisms by testing
accuracy, precision, recall and f1-score metrics based on
the NSL-KDD dataset (multiclass classification)

Comparison of attention mechanisms by testing
accuracy, precision, recall and f1-score metrics based on
the NSL-KDD dataset (binary classification)

Attention Acg;ra- Precision | Recall | Fl-score Attention Accuracy P;%Cr:' Recall | Fl-score
Sg;a(ll\(/:gﬁzttlg:i)c 78.83 81.68 78.84 78.84 (scglle?jbadlot) 80.47 83.40 80.47 81.90
+ dot) 80.50 84.21 79.83 79.83 Cocal (Mc?notonic

— 84.12 85.84 84.13 84.97

Local (Predictive + + concat)

81.48 82.80 81.48 81.48 ——
scaled_dot) Local (Predictive 86.21 82.38 82.34 82.36
Self-attention 78.86 81.90 78.86 78.86 + concat) ) ) ) )
HybridAttention 81.91 85.12 81.91 81.91 Self-attention 82.01 84.37 82.02 83.17
HybridAttention 83.47 86.96 83.65 85.27
Table 4
Table 8

Comparison of attention mechanisms by training
accuracy, precision, recall and f1-score metrics based on
the UNSW-NB15 dataset (multiclass classification)

Attention Accuracy | Precision | Recall FL-
score
Global

(scaled_dot) 97.91 97.66 97.91 97.78
Local (Monotonic | g7 ¢ 97.93 | 9798 | 97.95

+ concat)
Local (Predictive | g4 5 9803 | 9802 | 98.02

+ concat)
Self-attention 97.86 97.75 97.86 97.77
HybridAttention 98.06 98.08 98.05 98.06

Table 5

Comparison of attention mechanisms by testing
accuracy, precision, recall and f1-score metrics based on
the UNSW-NB15 dataset (multiclass classification)

Attention Accuracy | Precision | Recall FL-

score

Global (scaled_dot) 97.87 97.58 97.87 97.72

Local (Monotonic + | g7 g4 97.87 | 97.94 | 97.90
concat)

Local (Predictive + | g7 g, 97.95 | 97.67 | 97.80
concat)

Self-attention 97.82 97.55 97.82 97.68

HybridAttention 98.05 98.09 98.05 98.07

Analyzing the data in tables 2-5 shows that the
HybridAttention mechanism outperforms others on the
NSL-KDD dataset, with better results on both training
and test datasets, particularly with local attention and
the scaled_dot function. Similarly, on the UNSW-NB15
dataset, the hybrid mechanism outperformed all alterna-
tives on both datasets.

Comparison of attention mechanisms by accuracy,
precision, recall and f1-score metrics based on the
UNSW-NBL15 dataset (binary classification)

Attention Accuracy Psrii)cr:- Recall F1-score
Global
(scaled_dot) 98.98 98.98 98.98 98.98
Local (Mono- 99.18 99.18 | 99.18 | 99.18
tonic + general)
Local (Predic-
tive + 99.18 99.18 99.18 99.18
scaled_dot)
Self-attention 99.15 99.15 99.15 99.15
HybridAttention 99.20 99.20 99.20 99.20
Table 9

Comparison of attention mechanisms by testing
accuracy, precision, recall and f1-score metrics based on
the UNSW-NB15 dataset (binary classification)

Attention Accuracy Precision cRaeIi F1-score
Global
(scaled._dot) 98.98 98.98 98.98 98.98
Local (Mono- 99.17 99.18 9917 | 9917
tonic + general)
Local (Predic-
tive + 99.17 99.17 99.17 99.17
scaled_dot)
Self-attention 99.14 99.14 99.14 99.14
HybridAttention 99.19 99.19 99.19 99.19

Tables 4-9 show that the HybridAttention mecha-
nism was the best for all metrics and datasets for the
UNSW-NBL15 dataset. For the NSL-KDD dataset, the
HybridAttention mechanism is the best option for the
training dataset. However, for the test dataset, the local
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attention mechanism with predictive alignment and con-
cat alignment function showed the best accuracy of
86.21%, and the local attention mechanism with mono-
tonic alignment with concat alignment function showed
the best recall of 84.02%. Similarly, the global attention
mechanism showed worse results for all the previous
tables.

Tables 10 and 11 present the results of comparing
the HybridAttention mechanism with modern develop-
ments. Note that the tables contain the value “N/A”,
which indicates the absence of data on these metrics in
the work.

Table 10
Comparison of the model with a HybridAttention
mechanism with modern developments (NSL-KDD)

T | e [ | e [ | e
CANET [6] (rﬁﬁh{ffa’% 99.77 NA | %072 | NA
CANET [6] N(Sb'i-r;:n[/’)D 99.79 NA | %72 | A

CA’;‘t’:nS(I)ﬁELZJ] (ﬁﬁh{ff;% 99.81 9981 | 9981 | 9981

i’r\:g:{r?cﬁ?lg]_ N(Sbli_n-;::/))D 99.83 9983 | 99.83 | 990.83

The nﬁé‘é’é?se" (mﬁ:;{_'égs[;) 99.84 9984 | 9984 | 99.84
The nz;czjzcl)sed N(Sbli_r;:r;D 99.85 99.85 99.85 99.85
Table 11

Comparison of the model with a HybridAttention
mechanism with modern developments (UNSW-NB15)

Model name Dataset Accuracy Precision Recall F1-score

SSAE-BiGRU-Att UNSW_NB15

5] (binary) 98.68 99 99 N/A

SSAE-BIGRU-Att UNSW_N B15 98.68 99 99 N/A

[5] (binary)

UNSW-NB15

CANET [6] (multi-class) 89.39 N/A 98.93 N/A
UNSW-NB15

CANET [6] (binary) 96.43 N/A 96.97 N/A
CNN-BiGRU- UNSW-NB15

Attention[12] (multi-class) 97.80 o761 7.8l o1
CNN-BiGRU- UNSW-NB15

Attention[12] (binary) 99.18 99.17 99.17 99.17
CNN-BIiLSTM- UNSW-NB15

Attention [3] (multi-class) 86.83 NIA 96.51 N/A

Bi-LSTM [22] UNSW_NBIS | gq o5 99 | 9936 | 9915

(binary)

UNSW-NB15

The proposed model (multi-class) 98.06 98.08 98.05 98.06
UNSW-NB15

The proposed model (binary) 99.20 99.20 99.20 99.20

The data presented in Tables 10 and 11 demon-
strate that the proposed approach with a HybridAtten-
tion mechanism outperforms the results of known stud-
ies. In a previous study [12], only one attention mecha-
nism was considered, whereas alternative options were
evaluated in this study. The results of the training da-
tasets were selected for comparison. The CNN-
BiLSTM-Attention [3] and SSAE-BiGRU-ALt [5] archi-
tectures have shown competitive results, but their effec-
tiveness often depends on the specific dataset. Com-
pared with these, the proposed HybridAttention mecha-
nism demonstrates more stable accuracy and generaliza-
tion ability on different NSL-KDD and UNSW-NB15

datasets. More complex models, such as CANET [6]
and HAGRU [7], use hierarchical attention mechanisms
to account for multi-level dependencies, but this in-
creases computational costs and does not guarantee sta-
ble generalization. Hybrid approaches, such as EHID-
SCA [8], which combine spatial and channel attention,
have shown improvements in wireless sensor networks,
but remain domain-specific. The Bi-LSTM model [22],
which combines multidimensional feature processing
with long-term dependency learning, has shown high
performance on the UNSW-NB15, NSL-KDD, and
CIC-IDS2017 datasets, but its effectiveness also de-
pends on data sampling and preprocessing. In contrast,
the proposed HybridAttention mechanism, which com-
bines self-attention and dynamic local attention, demon-
strates greater versatility, high accuracy, and generaliza-
tion ability on the NSL-KDD and UNSW-NB15 da-
tasets.

Although the proposed HybridAttention mecha-
nism demonstrates clear advantages over individual
attention variants, certain limitations should be
acknowledged. First, the proposed approach increases
computational requirements during training and infer-
ence, which may pose challenges for deployment in
highly resource-constrained environments, such as loT
or edge devices. Nevertheless, this limitation is partly
mitigated by the increasing availability of hardware
accelerators and optimization frameworks. Second,
while dynamic local attention enhances adaptability, the
model’s interpretability remains limited, which is a
common issue for deep learning—based NIDS. Third, the
system’s performance is inherently dependent on the
quality and diversity of the training data, as insufficient
representation of novel attacks could reduce robustness;
however, the hybrid design improves generalization
compared to single-mechanism baselines. Finally, the
model’s scalability to high-throughput backbone net-
works requires further evaluation because additional
latency may occur under heavy traffic. Despite these
considerations, the proposed HybridAttention mecha-
nism is a promising solution that balances detection
accuracy and adaptability.

4. Practical Implementation Scenario
for Critical or Corporate Networks

While the experimental evaluation presented in
Section 3 was conducted in the Google Colab Pro cloud
environment, this section focuses on how the trained
model can be practically deployed within critical or cor-
porate network infrastructures. The proposed architec-
ture can be implemented in both critical networks,
where real-time detection and high availability are es-
sential (e.g., industrial control systems, healthcare, or
energy infrastructures), and corporate environments,



186

Radioelectronic and Computer Systems , 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

which emphasize scalability, interoperability, and inte-
gration with existing SOC/SIEM systems. In critical
networks, stringent latency and reliability requirements
require lightweight deployment on dedicated nodes,
whereas in corporate infrastructures, multi-layer securi-
ty and centralized monitoring are prioritized.

As illustrated in Fig. 3, the proposed approach
based on a HybridAttention mechanism can be effec-
tively integrated into the security infrastructure of cor-
porate or critical networks.

In this context, network traffic is duplicated at key
points within the network, including core switches and
aggregation routers, using standard mirroring tech-
niques. The mirrored traffic is transmitted to a dedicated
analysis node or an isolated containerized environment,
where real-time inspection and classification are per-
formed.

Internet
Core Router
(10.0.0.1)

l

Core Switch

/ |
\

.

\

4

\
Aggregation Router \ mirror
\

S \
N
% \
S MIrror
o \
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Mirror Tap
(Mirroring Traffic)

Aggregation Switch

Analysis Node
(Real-time Classifier)

‘/miner lrfrastructure)\

SIEM : Kubernetes Node
(Security Info & Event Mgmt)

SOC

(Security Operations Center)

Docker Host

Fig. 3. HybridAttention-Based NIDS Architecture

The system can operate in near real-time and clas-
sify observed network flows into benign or potentially
malicious categories. The attention mechanism imple-
mented in the classification module allows the system to
dynamically focus on significant features and structural
patterns of traffic, thereby enabling the detection of both
known and previously unseen threats. This adaptability
enhances the resilience of the system in changing opera-
tional environments.

For practical deployment, the solution may be in-
tegrated as a detection module within a Security Opera-
tions Center (SOC). Detected anomalies are converted
into structured alerts and transmitted centralized moni-
toring systems, such as Security Information and Event
Management (SIEM) platforms. These alerts can initiate
automated incident response procedures based on prede-
fined policies, including dynamic modification of fire-
wall rules, traffic redirection, or initiation of in-depth
forensic investigation.

The scalability and reliability of the system can be
ensured using container orchestration platforms (e.g.,
Docker and Kubernetes), which allow for horizontal
scaling and load balancing depending on the traffic vol-
ume and infrastructure constraints. The modular design
of the solution supports flexible integration into existing
cybersecurity architectures, regardless of the size or
technical stack of the organization.

Thus, the proposed method is not limited to theo-
retical evaluation but demonstrates its applicability in
operational conditions. It ensures timely detection of
complex threats while maintaining adaptability, trans-
parency, and compatibility with modern infrastructure
management practices.

5. Conclusions

1. Based on the analyzed studies, a review of the
existing attention mechanisms is carried out. The use of
attention mechanisms in NIDS can significantly im-
prove their effectiveness in recognizing and tracking
anomalies or attacks in network traffic. Local attention
can focus on the key characteristics of network traffic,
thereby reducing computational complexity. Global
attention can consider the overall context and detect
complex anomalies. Self-attention can dynamically de-
termine the importance of different parts of the input
data, adapting to different types of traffic and attacks.

2. Different attention mechanisms, such as local,
global, and self-attention, are added to the previously
developed CNN-BiGRU-Attention model instead of the
Attention layer. Their effectiveness in intrusion detec-
tion is compared using traditional evaluation metrics.
The experimental results show that local and self-
attention work better than global attention in the net-
work intrusion detection context.

3. Comparison of the use of a HybridAttention
mechanism that includes dynamic local attention and
self-attention with the results of known studies. In com-
bination with the HybridAttention mechanism, the
CNN-BiGRU model demonstrated better results for
both multiclass and binary classification.

These results confirm that the HybridAttention
mechanism effectively enhances both spatial and tem-
poral feature extraction within network flows. The mod-
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el efficiently prioritizes relevant traffic patterns by
combining self-attention with dynamic local attention,
thereby improving detection accuracy for both known
and emerging threats. In addition, the adaptive window
mechanism contributes to better generalization across
datasets and reduces false-positive rates, further
strengthening the model’s robustness.

Despite these promising findings, several limita-
tions remain. The interpretability of the model’s deci-
sions is limited, which may hinder human understanding
and results’ reproducibility in practical applications.
Furthermore, the data preprocessing procedure and the
evaluation metrics range require further refinement.
Future research will focus on addressing these short-
comings and optimizing the model through dimension-
ality reduction and metaheuristic algorithms, such as the
genetic algorithm, to improve both efficiency and trans-
parency.
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BUKOPUCTAHHS I'lBPUTHOI'O MEXAHI3MY YBAT'U AK METOAY HNIABUIIIEHHSA
E®EKTUBHOCTI CUCTEM BUSIBJIEHHA MEPEKEBUX BTOPTTHEHb

A. O. Hikimenko, €. O. bauikoe

ITpenMeToM OCITi/PKEHHS € TIOpPUIHUN MEXaHi3M yBarH, iHTErpOBaHUI y TIIMOOKY HEHPOHHY apXiTeKTypy IUis
MepeKeBHX CHCTeM BusiBiieHHs! BTopraeHb (NIDS). MeTo1o pobotu € po3poOka Ta JOCIiIKEeHHS TiOpUIHOrO Mexa-
HI3My yBaru Ha OCHOBI KOMOiHalii r1o0aabHOI (camMOyBaru) Ta JIOKaJbHOI (IMHAMIYHOI JIOKAIBHOI yBarn) Mojaenei
JUTsL T IBUILIEHHST sIKOCTI Kiacudikaiii Tpadiky B NIDS, 1110 npaiiooTs B pexuMi peaibHOro 4acy. 3aBAaHHsI: aHa-
Ji3 ICHYIOUYMX MEXaHi3MiB yBaru Ha MpeIMET 1X 3aCTOCOBHOCTI JUIs BUSIBJICHHSI MEPEKEBUX BTOPTHEHb; 1HTErparis
piznux tumiB yBard B apxitektypy CNN-BiGRU; po3po6ka riOpuaHOro MexaHi3My yBard Ha OCHOBI JMHAMIYHOTO
BUPIBHIOBaHHsI BIKOH; ONTUMI3allis Mozen 3a joroMoroo Optuna; ekcriepuMeHTallbHa OLiHKa 11 MPOIyKTUBHOCTI
Ha TECTOBHMX HabOpax JaHHMX 3 BHKOPHCTaHHSIM CTaHIAPTHUX METPUK Kiacudikaiii. Bukopucrani Meromm: Moje-
JIIOBaHHS TIMOOKoro HaB4yaHHs 3 apxiTekryporo CNN-BiGRU, inTerpaiis pi3HUX MeXaHi3MIiB yBaru, BKIIIOHAIO4U
HOBY TiOpHIHY yBary, OoNnTHMIi3allis rineprnapamerpis 3a gornoMoror Optuna Ta OLiHKAa MPOJYKTHBHOCTI HA OCHOBI
CTaHIApTHUX MeTpuK Kiacudikaiii. Pe3yabraT poOOTH MOKa3ylOTh, II0 3aMpPOINOHOBAHUN MEXaHIi3M TiOpHIHOT
yBaru JIEMOHCTpY€E IIepeBary HaJ OKPeMHMH THIIaMH YBarW 3a BCiMa KJIIOYOBUMH MeTpHUKaMH. Mopenb mocsria
To4HOCTI 10 99,85% Ha HaB4anbHHUX AaHUX Habopy manux NSL-KDD i npomzeMoHCTpyBaia CHIBHE y3araabHEHHS
Ha HaOopi ganux UNSW-NBIS5, nocsraysuru Tounocti 10 98,06% B OaraTokiacoBiit kinacudikamii i 1o 99,20% B
OiHapHiil knacugikamii. Mozgenb Takox MepeBeplinia CyqacHl aHaIOTIvHI MiAX0au sl 00poOKU He30amaHCOBaHUX
JaHUX Ta BUSBJICHHS Pi3HMX THUIIB aTak. BucHoBku. HaykoBa HOBH3HA OTpHMaHUX Pe3yNbTATIB IOJIATAE B HACTYII-
HOMY: PO3pOOJICHO TIOpUIHUI MEXaHi3M YBary, 10 MOEIHYE CaMOyBary Ta JUHaMidHY JOKAIbHY yBary Juis MoKpa-
LIEHHS MOCIIIOBHOI'O PO3Mi3HABaHHs 00pa3iB y MepekeBoMy Tpadiky; nokpamieHo apxitektypy CNN-BiGRU 3a
PaxyHOK iHTerparii AeKiJpbKOX MOAYJIIB yBarw;, CHCTEMaTH4YHA TilleprapaMeTpruyHa ONTHUMI3allis 3 BUKOPHCTAHHIM
Optuna mokpammita y3araabHEHHS Ha He30aIaHCOBAaHHX IAHMX; 3aIPOIIOHOBaHA MOJAETH IEPEBEPIIMIA iCHYIOUl
I IXOM HA TECTOBUX HA0Opax MaHWX IPH BUSBIICHHI SIK BiIOMHUX, TaK 1 HOBHX KibepaTak.

KirouoBi ciioBa: rimmboke HaBYaHHS; MEXaHI3M yBard; CHCTeMa BUSBJICHHS MEpPEXEBUX BTOPTHEHB, TiOpHI-
HUM MEeXaHI3M yBard; TUHaMidHa JIOKAJTbHA yBara.

HikiTenko Anapiii OyiekcanapoBuy — acr. kad. nmpukiaaHoi Matematuku ta iHpopmaruku JIBH3 «Jlonerb-
KW HalliOHAJIFHAN TEXHIYHUH YHiBepcuTeT», Jporobuy, Ykpaina

BamkoB €Bren OJieKcaHAPOBUY — JI-p TEXH. HAYK, Pod., Ipod. Kad. MPUKIATHOI MATEMATHKU Ta iHQOpMa-
tuku JIBH3 «JloHenpknii HaliOHAThHAN TEXHIYHUH YHIBepcUTET», porodoud, Ykpaina

Andrii Nikitenko — PhD Student of the Department of Applied Mathematics and Informatics, Donetsk
National Technical University, Drohobych, Ukraine,
e-mail: andrii.nikitenko@donntu.edu.ua, ORCID: 0009-0006-1363-2324.

Yevhen Bashkov — Doctor of Technical Sciences, Professor, Professor at the Department of Applied
Mathematics and Informatics, Donetsk National Technical University, Drohobych, Ukraine,
e-mail: yevhen.bashkov@donntu.edu.ua, ORCID: 0000-0001-6974-4882, Scopus Author ID: 6602250825.


https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset

