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A METHOD FOR IMPROVING THE ROBUSTNESS OF NEURAL NETWORK
MODEL FOR AERIAL IMAGE MATCHING

Neural network—based image matching techniques are increasingly employed in aerial image analysis—partic-
ularly for UAV navigation, localization, and mapping. However, their sensitivity to structured visual distortions
(e.g., shadows, illumination changes, and terrain variability) limits robustness under real-world conditions. Ad-
dressing this challenge, we propose a training methodology that enhances both robustness and cross-domain
generalization of feature-matching models by integrating adversarial procedural noise with activation - function
modification. During training, structured noise patterns (Perlin, Gabor, and Worley) are synthesized and ap-
plied in an adversarial manner, while the standard ReLU activation is replaced by a hybrid LeakyRelLU6 to
mitigate sensitivity to local perturbations. We evaluate our approach on both detector-based (SuperPoint + Su-
perGlue) and detector-free (LOFTR) architectures using the Aerial Image Matching Benchmark Dataset and
further assess cross-domain performance on the HPatches dataset. Experimental results show that our method
yields over 4 % absolute improvements in matching precision and recall on noisy test data for both classes of
models. Ablation studies confirm that these gains are attributable to the synergistic effect of procedural noise
and LeakyRelLU6. Moreover, models trained with our procedure exhibit significantly smaller performance drops
when transferred to HPatches, demonstrating enhanced generalization relative to conventionally trained coun-
terparts. To our knowledge, this is the first work to combine adversarial procedural - noise training with activa-
tion- function constraints for aerial image matching. Beyond improved noise resistance, our method advances
cross-domain applicability and is readily extendable to diverse neural - network architectures.

Keywords: image matching; robustness; adversarial training; procedural noise; aerial image.

However, the performance of these models tends to
degrade significantly in real-world conditions, where sur-
face texture changes caused by uneven lighting, diurnal
or seasonal illumination variations, partial occlusions,
and digital artifacts are common [4]. Natural variations
in lighting and texture, sensor-induced distortions, and
scene clutter can be interpreted as a form of adversarial
noise. This presents considerable challenges for achiev-
ing robust image matching, particularly in aerial imagery,
where variable viewpoints, terrain structures, and sensor-
specific noise are prevalent. Structured noise models
such as Gabor, Perlin, or Worley noise can be leveraged
during training to simulate such adversarial conditions
and improve the resilience of image matching models.

Despite recent advancements, there remains a re-
search gap in developing methods that explicitly enhance
the robustness of neural network-based image matching
models under structured adversarial noise. Addressing
this challenge is a promising area of research, particularly
for aerial applications, where consistent and reliable fea-
ture correspondence is essential for navigation, mapping,

1. Introduction

1.1 Motivation of research

In recent years, aerial image matching has emerged
as a crucial task in various computer vision applications,
including drone navigation, autonomous inspection, car-
tography, and geospatial analysis. For a long time, tradi-
tional feature detection and matching algorithms such as
SIFT, SURF, ORB, and FAST were widely used in these
domains [1]. In classical approaches, feature detection,
description, and matching are treated as independent pro-
cesses and are not jointly optimized. As a result, they of-
ten fail to adequately account for the contextual infor-
mation of the scene and individual keypoints, which lim-
its their accuracy and robustness compared to neural net-
work-based methods.

Among neural network-based approaches for key-
point detection and description, models such as Super-
Point, R2D2, and XFeat have gained widespread adop-
tion due to their computational efficiency and high relia-
bility [2]. For matching feature descriptors, SuperGlue

and LightGlue are commonly employed. Furthermore,
detector-free dense feature matching methods, such as
LoFTR, COTR, and DGC-Net, have also demonstrated
promising results [3].

and analysis.

1.2. Objectives and Contributions

The main objective of this research is to improve the
robustness of neural network models for aerial image
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matching by developing a novel training approach that
enhances performance under structured visual distor-
tions, measured by Matching Accuracy (MA) and Match-
ing Recall (MR). Robustness is defined as the ability to
maintain high MA and MR on noisy test data, with im-
proved accuracy as a secondary outcome. The proposed
method aims to increase the resilience of learned feature
descriptors and matching mechanisms to real-world var-
iations in scene appearance, sensor artifacts, and environ-
mental noise through adversarial procedural noise and
activation-function modification.

The key issues are as follows:

—analysis of existing methods for enhancing neural
network robustness, with a particular focus on their ap-
plication to image matching tasks;

— development of a training approach that improves
robustness by incorporating structured synthetic noise
such as Gabor, Perlin, and Worley noise during the learn-
ing process;

— comparative evaluation of models trained with the
proposed method versus conventional training proce-
dures, using MA and MR to quantify robustness and ac-
curacy improvements.

Structurally, the paper is organized as follows. Sec-
tion 2 provides an overview and analysis of related work
in the field of robust image matching. Section 3 presents
the proposed training method using structured noise to
simulate adversarial conditions. Section 4 details the ex-
perimental setup, dataset description, and evaluation re-
sults, including comparisons with baseline models and
robustness testing under various distortions. Section 5
discusses the method’s particularities, benefits, and limi-
tations. Finally, Section 6 concludes the paper and out-
lines potential directions for future research.

2. The State-of-the-Art

2.1. Applications of Image Matching in
Unmanned Aerial Systems

Image matching is a foundational component in
Unmanned Aerial Systems (UAS), enabling crucial func-
tionalities such as autonomous navigation, visual locali-
zation, mapping, and environmental monitoring [5]. By
aligning current UAV-captured imagery with reference
datasets—such as orthophotos, satellite images, or previ-
ous flight captures—UAS platforms can perform robust
geolocation and track environmental changes over time.
However, the reliability of these operations heavily de-
pends on the robustness of the underlying image match-
ing algorithms, particularly under challenging visual con-
ditions.

In the absence of GNSS signals, such as in urban
canyons, forests, or indoor environments, UAVS rely on

image matching for visual localization. Although numer-
ous methods have been proposed for this task, including
matching based on handcrafted features and deep-learn-
ing-based matching, many exhibit limited robustness
when exposed to real-world visual perturbations—such
as lighting variations, seasonal changes, partial occlu-
sions, or motion blur [6].

For instance, Kim et al. (2024) proposed a method
for UAV localization by matching onboard images to aer-
ial maps, achieving good performance in ideal conditions
but facing reduced accuracy under shadowed and low-
contrast scenes [7]. Similarly, Liu et al. (2024) bench-
marked multiple image matching models for UAV posi-
tioning and emphasized the sensitivity of feature match-
ers to viewpoint and illumination variations [8].

In environmental monitoring tasks, image matching
is used to detect subtle changes in terrain or vegetation
over time. However, these applications often suffer from
inconsistent image quality due to varying weather, light,
and sensor conditions. Sledziowski et al. (2022) utilized
UAV imagery to monitor underwater coastal structures
but noted that image matching reliability degraded sig-
nificantly in the presence of surface reflections and tur-
bidity [9].

Advanced techniques such as deep local descriptors
and dense feature matchers have been introduced to ad-
dress limitations of classical algorithms. For example,
Zhang et al. (2021) introduced a learning-based method
for matching infrared UAV imagery to satellite images,
yet the system remained sensitive to structural distortions
and non-rigid changes in appearance [10]. Koch et al.
(2016) proposed a feature detector tailored to UAV im-
agery, but their evaluation highlighted instability under
complex textures and occlusions [11].

In summary, while image matching has enabled nu-
merous UAS capabilities, current methods often fall short
in operational scenarios characterized by dynamic light-
ing, seasonal appearance changes, sensor-specific arti-
facts, and occlusions. These challenges underline the
need for more robust and adaptive matching approaches
capable of withstanding the structured visual distortions
typical of real aerial missions.

2.2. Neural Networks for Image Matching

The task of image matching has undergone signifi-
cant transformation with the advent of neural networks,
which have enabled data-driven learning of keypoint rep-
resentations, dense correspondence, and matching confi-
dence. Traditional pipelines relied on separate stages of
detection (e.g., Harris, FAST), description (e.g., SIFT,
ORB), and matching (e.g., nearest neighbor search), of-
ten lacking robustness to changes in scale, illumination,
and viewpoint. Modern learning-based methods offer
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more integrated and robust alternatives, especially im-
portant for aerial imagery where appearance variations
and geometric distortions are common.

A major direction in neural image matching is
based on learned keypoint detectors and descriptors. Su-
perPoint [12] is a widely adopted model that jointly
learns keypoint detection and description using self-su-
pervised and supervised stages. R2D2 [13] improves on
this by adding reliability and repeatability scoring, allow-
ing the network to emphasize semantically stable and ge-
ometrically consistent features. XFeat [14] introduces a
modular and lightweight architecture that separates de-
tection, description, and matching, making it suitable for
real-time and low-power applications such as UAV sys-
tems.

Another important advancement is the development
of context-aware matching networks that refine corre-
spondences between keypoints. SuperGlue [15] uses
graph neural networks with self- and cross-attention to
model interactions between keypoint sets, significantly
improving matching precision under challenging condi-
tions such as occlusion or repetitive textures. LightGlue
[16] provides a more efficient alternative optimized for
speed and memory, while preserving the core structure of
attention-based reasoning.

In contrast to detector-based pipelines, detector-
free methods such as LOFTR [17] propose a radically dif-
ferent approach by eliminating explicit keypoint detec-
tion altogether. LOFTR performs dense matching at the
feature level by combining coarse-to-fine Transformer-
based descriptors, producing high-quality correspond-
ences across textureless or low-detail regions. This
makes it particularly attractive for aerial imagery, where
traditional keypoint detectors often fail due to repetitive
patterns, vegetation, or low contrast.

Each direction offers complementary strengths.
While sparse pipelines benefit from interpretability and
efficiency, dense methods provide higher coverage and
are more resilient to local feature loss. However, all of
these models still face significant challenges under struc-
tured visual perturbations, such as shadows, seasonal var-
iation, and natural noise — common in real-world aerial
applications. Enhancing their robustness to such factors
remains a critical research goal.

2.3. Approaches to Ensuring Robustness of Neural
Networks for Image Analysis and Matching

Neural networks have significantly advanced the
field of image analysis and matching, underpinning ap-
plications such as object recognition, scene understand-
ing, and image alignment [1]. However, their deployment
in real-world scenarios is often hindered by a pronounced

sensitivity to complex visual conditions, including varia-
tions in lighting, occlusions, noise, and other perturba-
tions.

One commonly explored direction is image prepro-
cessing using denoising autoencoders [18]. While this ap-
proach can partially mitigate input noise, it introduces ad-
ditional computational overhead, which is problematic in
resource-constrained environments such as onboard
UAV systems. Moreover, denoising autoencoders typi-
cally fail to handle perturbations that simultaneously af-
fect multiple domains — spatial, temporal, and latent fea-
ture space — limiting their practical robustness.

Various gradient-masking techniques have also
been proposed to counter adversarial perturbations.
These include non-differentiable input transformations
(e.g., JPEG compression, random padding and resizing),
defensive distillation, dropout-based ensemble strategies,
generative reconstruction, and discrete atomic compres-
sion methods [19]. While these methods can obscure gra-
dient-based attacks to some extent, they lack comprehen-
sive resilience to naturally occurring image variations
and structural noise, which frequently affect aerial im-
agery.

Standard data augmentation — involving rotations,
scaling, color jittering, and other visual transformations
— has also been used to increase network generalization
[20]. Although effective in controlled scenarios, such
augmentations often fail to capture the full complexity of
real-world disturbances. Models trained with these tech-
niques still suffer significant performance degradation
when exposed to naturally occurring occlusions, motion
blur, or textured clutter, underscoring the gap in robust-
ness.

Adversarial training offers another approach, where
networks are trained on intentionally perturbed samples
[21]. While this can enhance resistance to certain attack
types, it often suffers from poor generalization to unseen
perturbations. Moreover, adversarial training increases
the overall computational load and can cause overfitting
to the specific distortions present in the training set.

The effectiveness of adversarial training can be im-
proved by tailoring the perturbation types used during
training to more accurately reflect the kinds of noise and
distortions encountered in operational settings. For aerial
image matching tasks, structured noise generators —
such as Gabor, Perlin, or Worley noise — have shown
promise in this regard [22, 23]. These types of noise sim-
ulate real-world conditions: Gabor noise mimics repeti-
tive structures and cast shadows; Perlin noise models soft
gradients due to illumination or vegetation; and Worley
noise imitates irregular patterns like road textures or sur-
face degradation. Studies have demonstrated that using
such structured perturbations during training can improve
robustness in classification and detection tasks by teach-
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ing networks to ignore unstable or non-repeatable fea-
tures [23]. However, their use in aerial image matching
remains underexplored.

Architectural improvements also play a critical role
in enhancing robustness. For example, activation func-
tions with bounded output ranges such as ReLU6 have
been empirically shown to improve resistance to both ad-
versarial perturbations and structured noise [24]. Addi-
tionally, transformer-like architectures with self-atten-
tion mechanisms can better integrate contextual infor-
mation around local features, allowing the model to re-
main robust when portions of the image are degraded or
obscured by noise or shadows [2, 17].

In summary, multiple approaches have been pro-
posed to improve the robustness of neural networks for
image analysis and matching. However, no single
method has proven universally effective. Each technique
presents specific advantages and limitations, and the op-
timal strategy often depends on the specific nature of the
application domain. Consequently, the integration and
adaptation of multiple robustness-enhancing techniques
warrant further investigation, particularly for real-world
tasks such as aerial image matching under complex visual
conditions.

3. A Method for Enhancing the Robustness
of Aerial Image Matching Model

To improve model robustness under structured ad-
versarial conditions, we propose replacing all ReLU-like
activations in the network with a hybrid LeakyReL U6
function. This modification combines the advantages of
two well-studied activation design choices in adversarial
robustness research.

Leaky ReLU introduces a non-zero gradient in the
negative domain, which improves gradient flow during
adversarial training and reduces the likelihood of inactive
("dead™) neurons — a known limitation of standard
ReLU under gradient-based attacks. This smooth gradi-
ent profile supports better convergence and more stable
loss landscapes during adversarial fine-tuning [25].

ReL U6, a bounded variant of ReL.U, clips the acti-
vation output to a fixed upper limit (typically 6), which
has been shown to reduce the impact of activation spikes
caused by input perturbations during inference. By con-
straining the dynamic range of activations, ReL U6 helps
limit the amplification of structured noise in deeper lay-
ers, contributing to improved generalization in visually
degraded conditions [2].

The proposed LeakyReLU6 formulation aims to
benefit from both effects — preserving smoothness for
robust optimization, while maintaining a bounded re-
sponse for improved stability under perceptual perturba-
tions such as Perlin, Gabor, and Worley noise.

Figure 1 illustrates the stages of the proposed
method, where the procedural noise can be generated in
the form of Gabor, Perlin, Simplex, Voronoi, Worley
noise, or other variants.

Pretraining the original neural network for image
matching on its designated dataset.

v

Modifying the model by replacing ReLU-like activation
functions with LeakyReLUS6.

v

Integrating a structured noise injection procedure
into the data augmentation pipeline during the
formation of training pairs for image matching, using
low-amplitude procedural noise with randomized
parameters.

Fine-tuning the neural model with all architecture
modifications and the structured noise-based data
generator in place.

Fig. 1. Stages of the Proposed Method for Improving
the Robustness of Neural Network-Based Image
Matching Models

When adapting a pretrained model for robustness
through activation replacement, we recommend substi-
tuting ReL U-like activations with LeakyRelL. U6 primar-
ily in the deep convolutional layers and feature extraction
blocks, where improved gradient flow and bounded acti-
vation outputs help suppress noise amplification and
dead neurons. Do not modify activations in the final clas-
sification layers, where changes could disrupt output dis-
tributions, nor in Transformer-style attention blocks,
which typically use GELU or similar smooth activations
designed for stability. Additionally, avoid replacing acti-
vations in the initial layers directly following input, as
these may act as implicit noise filters. When batch nor-
malization is used, replacement is acceptable only when
the activation follows normalization (i.e., BN — ReLU),
to maintain expected activation distributions.

To simulate natural yet adversarial visual distor-
tions that commonly degrade the performance of image
matching systems, we propose the injection of structured
procedural noise during training. Specifically, we utilize
Gabor, Perlin, and Worley noise patterns to perturb the
input data in a way that approximates real-world condi-
tions such as shadows, surface textures, occlusions, and
lighting inconsistencies.

Unlike unstructured white or Gaussian noise, these
patterns introduce semantically plausible perturbations
that mimic natural signal variability, thereby forcing the
model to focus on stable, semantically meaningful fea-
tures rather than texture-biased or fragile keypoints.
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Perlin Noise — models organic variations like illu-
mination gradients or natural surfaces. It is generated us-
ing interpolated gradients at grid points and typically im-
plemented recursively to create fractal behavior. The Per-
lin noise is constructed as a fractal sum of smoothed co-
frequencies in the frequency space [22]:

2n—1

on-1
Sper(X:Y) = g:lp(xx_xi y Ay )v

Ac, Ay are the wavelength parameters along the respec-
tive axes;
Q is the number of octaves (i.e., levels of granularity);
p (+) denotes the classical 2D Perlin noise function.

To enhance visual contrast, researchers often apply
a sinusoidal transformation:

Gper(xl Y) = Sin(ZT[ ' cI)sine ' Sper(X' Y))v

where g, IS a sine frequency parameter.

Gabor Noise — mimics directional patterns such as
cast shadows or repetitive structures (e.g., fences, roof-
tops). Gabor noise is defined as the convolution of sparse
white noise with a Gabor kernel [23]:

g(x,y) = e ™4y ¢cog (27“ (x cos(w)+y-

sin(oo))),

where o is the Gaussian envelope width;
A is the wavelength (harmonic period);
w is the orientation.
The resulting Gabor noise is generated as a sum of
convolutions:

1
Sgab (X, y) = gziﬂ i gx—x, y-ysoAw+ %),

where & is the number of orientations (degree of isot-
ropy);

(x;, yi) are the randomly selected kernel placement
points.

Worley (Cellular) Noise — simulates structural ir-
regularities like stone patterns, cracked surfaces, or une-
ven soil. It is defined by computing the distance to the
nearest point in a grid of pseudo-random feature
points [22]:

W(x,y) = min||(x,y) — p;ll,
pi€F

where F is the set of random control points (feature
points), typically generated 1-2 per cell of a regular grid;
(%, y) are the coordinates of a pixel or a point in space.

To ensure the adversarial effectiveness of these
noise patterns, their parameters (orientation, frequency,
phase, feature spacing, etc.) are randomized per training
iteration or batch, while the amplitude is constrained to a
small range (e.g., 3-8% of dynamic range) to maintain
visual plausibility and avoid trivializing the task. The re-
sulting image is formed through additive noise superpo-
sition:

Inoisy =I+e Nxy)

where € is the noise amplitude parameter,e €
[0.03, 0.08].

This results in imperceptible yet semantically dis-
ruptive perturbations, making them ideal candidates for
structured adversarial training. By exposing the model to
such distortions, we promote resilience to the types of
visual variability commonly encountered in real aerial
imagery.

To evaluate the effectiveness of the proposed
method, it was decided to consider both keypoint detec-
tion—based and detector-free models. The most popular
models for keypoint detection and description are the
neural network combinations of SuperPoint and Super-
Glue [16]. One of the most well-known and effective de-
tector-free models is the LoFTR neural network [17].

4. Experiments

4.1 Dataset and Image Processing Description

The experiments utilize the Aerial Image Matching
Benchmark Dataset [26], comprising high-resolution aer-
ial image pairs (1-2 m/pixel, urban and rural scenes) with
ground-truth homographies, sourced from ISPRS-Eu-
roSDR and IEEE DataPort. The dataset includes over
10,000 image pairs, split into training (70%), validation
(15%), and test (15%) sets, ensuring robust evaluation
across diverse scenes (e.g., buildings, forests, roads). The
HPatches Dataset is used for cross-domain evaluation,
containing 1,500+ planar patches with controlled view-
point and illumination changes, also with ground-truth
homographies. Sample images include urban rooftops,
rural fields, and textured surfaces, processed with ran-
dom homographies (e.g., rotation, scaling) and photo-
metric distortions (e.g., brightness, contrast). Procedural
noise (Gabor, Perlin, Worley) is applied during training
to simulate real-world distortions like shadows, illumina-
tion gradients, and surface textures, with parameters ran-
domized per batch (e.g., 3-8% amplitude). These da-
tasets’ diversity and scale ensure trustworthy evaluation
of robustness, as validated by consistent results across
splits.

Figure 2 presents an example image from the Aerial
Image Matching Benchmark Dataset [26] together with
two versions perturbed by procedural noise. As seen in
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Fig. 2b and Fig. 2c, procedural noise of limited amplitude
does not distort the scene semantics; during training it
can enhance the network’s ability to extract local features
and maintain correct correspondences along field bound-
aries, forest shelterbelts, and shadowed regions. This, in
turn, improves matching robustness and reduces the num-
ber of false correspondences under challenging illumina-
tion conditions.

c

Fig. 2. Example aerial image and its versions perturbed

by procedural noise: (a) original aerial image; (b) image
with Perlin noise; (c) image with Gabor noise

4.2 Experimental Setup and Scheme

The goal of the experiments is to enhance model ro-
bustness under structured noise, evaluated via Matching
Accuracy (MA) and Matching Recall (MR). The scheme
involves: (1) pretraining SuperPoint+SuperGlue and
LoFTR on the Aerial Image Matching Benchmark Da-
taset; (2) fine-tuning with procedural noise augmentation

(Gabor, Perlin, Worley) to simulate adversarial condi-
tions; (3) replacing ReL U activations with LeakyReL U6
in convolutional layers to reduce noise amplification. In-
itial conditions include pretrained models (public
weights from [12, 17]), learning rate 1e-4, batch size 16,
100 epochs, and Adam optimizer. Image pairs are gener-
ated by applying random homographies and photometric
distortions, with noise parameters randomized per batch.
Evaluation uses ground-truth homographies to compute
MA and MR, with a threshold of 3 pixels.

We generate image pairs by sampling random
homographies and applying random photometric distor-
tions to aerial images. The underlying images come from
the set of aerial images in the Aerial Image Matching
Benchmark Dataset [26], split into training, validation,
and test sets.

Since the homography between the original image
and its randomly transformed version is known, the cor-
rectness of the matching can always be verified using the
following formula [27]

|IH-x — x'|| < 8 = match is correct,

where H is the random homography applied to the orig-
inal image to generate the image pair;
x, X' are the original image and its modified version after
applying random homographies and random photometric
distortions;
0 is the threshold value (typically 3 or 5 pixels).
Matching precision (P) and recall (R) are evaluation
metrics and computed from the ground truth
correspondences.
Matching Recall (or Matching Score) is the propor-
tion of true correspondences that have been correctly
identified by the matching model:

Number of correct matches (within 8)
Total number of ground truth matches’

Recallg =

Matching Accuracy (or Matching Precision) is the
proportion of true correspondences among all those pre-
dicted by the matching model:

Number of correct matches (within 8)

MAg = :
0 Total number of predicted matches

4.3 Results

To improve the robustness of the models against
structured distortions simulated using procedural noise
(Gabor, Perlin, Worley), additional training was con-
ducted with the use of a modified LeakyReL U6 activa-
tion function. The results obtained during testing of the
trained models on test data with the same type of proce-
dural noise applied are presented in Table 1.
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Table 1 The obtained results depend not only on the model
Results on the Aerial Image Matching and training method but also on the training and test da-
Benchmark Dataset tasets. Therefore, it is important to evaluate the effective-
ness of the proposed method on other publicly available
Local Matching | Matching | datasets as well. In this context, it is useful to compare
features Matcher | Accuracy | Recall the results achieved using the proposed method with
0=3) | (8=3) those obtained using a conventional approach. Table 3
SuperPoint | SuperGlue 82.5 75.0 presents the results reported in [27] using SuperPoint +
LoFTR LoFTR 85.3 78.2 SuperGlue, alongside the results obtained with the pro-
SupePoint+ | SuperGlue+ 88.1 81.5 posed method on HPatches Dataset.
LeakyReLU | LeakyRelLU
pretrained pretrained Table 3
with  proce- | with proce- Results on the HPatches Dataset for neural networks
dural noise dural noise pre-trained on the HPatches Dataset
LoFTR + | LoFTR + 90.1 84.3
LeakyReLU | LeakyRelU Matching | Matching
pretrained pretrained Local fea- Matcher Accuracy Recall
with  proce- | with proce- tures ©®=3) | (68=273)
duralnoise | dural noise SuperPoint | SuperGlue 91.5 95.5
SuperPoint+ | SuperGlue+ 92.9 97.1
Analysis of Table 1 shows that the proposed method LeakyReLU | LeakyReLU
improves the matching accuracy of noisy images for both pretrained pretrained
feature-based models (by 5.5%) and detector-free models | with  proce- | with proce-
(by 5%). However, the individual contribution of proce- dural noise dural noise

dural noise and activation function modification to the fi-
nal result remains unclear. Therefore, we conduct an ab-
lation study in which procedural noise is retained as part
of the data pair augmentation during training, but the
LeakyRelL U activation function is not used (see Table 2).
Tables 1 and 2 show that the use of the modified
LeakyRelL U6 activation function in combination with
procedural noise resulted in a 4.7% increase in matching
accuracy and a 5.5% increase in matching recall for Su-
perPoint+SuperGlue. For LoFTR, the wuse of
LeakyRelL U6 led to a 4.1% improvement in matching ac-
curacy and a 5.1% improvement in matching recall.

Analysis of Table 3 shows that the well-known
HPatches Dataset also demonstrates an improvement in
Matching Accuracy and Matching Recall compared to
the baseline reported in [27].

The proposed method shares many similarities with
previous works on data augmentation and adversarial
training aimed at improving the generalization ability and
robustness of neural networks to observation variability
[27]. Therefore, it is worth investigating the generaliza-
tion capabilities of neural networks trained on the Aerial
Image Matching Benchmark Dataset when tested on
clean (non-noisy) data from the HPatches Dataset (see
Table 4).

Table 4
Results on the HPatches Dataset for neural networks
pre-trained on the Aerial Image Matching
Benchmark Dataset

Table 2
Ablation study: matching performance without
LeakyRelL U6 activation
Matching Matching
Lo;:al fea- | \ratcher Accuracy Recall
ures © = 3) © = 3)
SuperPoint | SuperGlue 83.4 76.0
pretrained | pretrained
with proce- | with proce-
dural noise | dural noise
LoFTR LoFTR 86.0 79.2
pretrained | pretrained
with proce- | with proce-
dural noise | dural noise

Matching | Matching
Local
features Matcher Accuracy Recall
0=3) | 6=3
SuperPoint | SuperGlue 88.1 90.3
Super- SuperGlue+ 91.9 96.2
Point+ LeakyRelLU
LeakyReLU | pretrained
pretrained with proce-
with proce- | dural noise
dural noise
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Analysis of Table 4 shows that the SuperPoint+Su-
perGlue models trained on the Aerial Image Matching
Benchmark Dataset exhibit a 3.4% decrease in Matching
Accuracy and a 5% decrease in Matching Recall when
tested on the HPatches Dataset. In contrast, the models
trained using the proposed method show only a 1% de-
crease in Matching Accuracy and a 0.9% decrease in
Matching Recall. This confirms the improved generaliza-
tion capability of the models trained with the proposed
approach.

Thus, the proposed method for enhancing the ro-
bustness of image matching neural networks is suitable
for both feature-based and detector-free models. Moreo-
ver, improvements in accuracy metrics were achieved
during both training and testing across different datasets.

5. Discussion

The proposed method enhances robustness by com-
bining LeakyReLUG6 activation and procedural noise
training, addressing real-world challenges in aerial image
matching. LeakyReL U6 reduces noise amplification by
bounding activations (up to 6) and improving gradient
flow, while procedural noise (Gabor, Perlin, Worley)
mimics natural distortions like shadows and terrain tex-
tures, forcing models to prioritize stable features. Bene-
fits include over 4% improvements in Matching Accu-
racy (MA) and Matching Recall (MR) on noisy data (Ta-
bles 1-2) and better cross-domain generalization on
HPatches (Tables 3—4), with only a 1% MA drop com-
pared to 3.4% for baselines. This makes the method suit-
able for UAV applications like navigation and mapping
under adverse conditions (e.g., shadows, seasonal
changes).

Limitations include the lack of optimization for
noise parameters (e.g., frequency, amplitude), which may
affect robustness, and evaluation restricted to two models
(SuperPoint+SuperGlue, LoFTR), limiting generalizabil-
ity to other architectures. The synergy of LeakyRel.U6
and procedural noise is confirmed by ablation studies
(Table 2), but further analysis of individual contributions
(e.g., noise types) is needed. The method’s platform-ag-
nostic nature supports deployment on various UAVSs, but
real-time implementation requires additional optimiza-
tion.

The gains achieved by the proposed training
scheme are particularly valuable for visual navigation in
GNSS-denied settings (e.g., forest edges, urban canyons,
and dense built-up areas). By injecting procedural pertur-
bations during training, we encourage the network to at-
tend to stable, semantically meaningful boundaries—
field/parcel borders, shorelines and water edges, forest
margins and shelterbelts, as well as building footprints,
roof edges, and other architectural contours—rather than

transient appearance cues. Consequently, feature extrac-
tion and matching remain more consistent across shad-
ows and seasonal illumination changes, which reduces
drift in visual localization and improves alignment to aer-
ial maps. Figure 2 illustrates that the proposed augmen-
tations preserve the visibility of these semantically sali-
ent boundaries (e.g., agricultural parcels, tree lines, and
building edges); when used during training, this empha-
sis biases the network toward such stable structures, ulti-
mately improving in-flight map-matching reliability.

6. Conclusions

This study introduces a novel method to enhance
the robustness of neural network models for aerial image
matching by integrating LeakyReL U6 activation func-
tions and adversarial procedural noise (Perlin, Gabor,
Worley) during training. The contribution lies in combin-
ing these techniques to improve Matching Accuracy
(MA) and Matching Recall (MR) under structured noise,
achieving over 4% improvements for both feature-based
(SuperPoint+SuperGlue) and detector-free (LOFTR)
models on the Aerial Image Matching Benchmark Da-
taset (Tables 1-2). The novelty is the first application of
this combined approach to aerial image matching, en-
hancing cross-domain generalization on HPatches (Ta-
bles 3-4, with 1% vs. 3.4% MA drop). Practically, the
method improves UAV navigation and mapping reliabil-
ity under adverse conditions like shadows and seasonal
changes.

Limitations include untested noise parameter opti-
mization and evaluation limited to two models. Future re-
search will focus on: (1) optimizing noise parameters
(e.g., frequency, amplitude) to balance robustness and
generalization; (2) applying meta-learning to adapt mod-
els to diverse noise types dynamically; (3) evaluating ad-
ditional architectures like R2D2 and XFeat; (4) exploring
real-time implementation for UAV onboard systems to
enhance practical deployment.

Future research will focus on the application of
meta-learning, regularization, and architectural improve-
ments to enhance the robustness and resilience of neural
network-based aerial image matchers.
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METO/, IABUIEHHSI POBACTHOCTI MOJIEJI HEHPOHHOI MEPEXKI
JIUISI CIIIBCTABJIEHHSI AEPO3HIMKIB

B. B. Mockanenko, A. C. Mockanenko, IO. B. Mockanenko

HeiipoHHi Mepexxi uist 3a1a4i 3iCTaBIeHHS 300pa)KeHb Jie/lalli YacTillle BUKOPUCTOBYIOTHCS B aHAIII31 aepO3HIM-
KiB, 30kpema Juisi HaBiraiii BITJIA, nokamizaunii Ta kaprorpadysanns. OnHaK iXHs YyTAUBICTh 0 CTPYKTYpPOBAHUX
Bi3yaJIbHMUX CIIOTBOPEHb — TaKHX fK TiHI, 3MiHMA OCBITJICHHS Ta BapiaOenbHICTh penbedy — 0OMEXKYe CTIHKICTD y
peanpHUX yMoBaX. Po3poOieHHs METOAIB HaBYAHHS, IO ITiABHUIIYIOTh CTIMKICTh 3iCTaBIIEHHA O3HAK 3a HASBHOCTI
3MaraJbHUX ITyMiB, € aKTyaJIbHUM 3aBIaHHAM. [IpeaMeToM TOCHiIKEHHS Y CTaTTi € METOJ ITi IBUIIECHHS PoOaCTHOCTI
MoJieNieii HeMpOHHUX MEpex IS 3iCTaBIICHHS aepO3HIMKIB 32 HAassBHOCTI CTPYKTYpPOBAHOTO Bi3yaldbHOTO mrymy. Me-
TOI0 JOCIIDKEHHS € PO3pOOJICHHS METONY HABYAHHS, SIKUH IiABHUILYE POOACTHICTD Ta 3AATHICTH 1O y3arajJbHEHHS
Moziereil 3icTaBieHHs 300paskeHs. MeToqaMM TOCTIKSHHS €: METOAW 3MarajbHOrO HABYaHHS, METOIM TeHepamii
MIPOIIETyPHOTO IIYMY, a TAKOXK CrocoOu Moandikaii apxiTekTypu Hefipomepexk. [Ipu mpoMy SK IponeaypHUi Irym
posrisimatoTees mryM I'abopa, Ilepmina Ta Bopmi. Sk Momndikalis apxXiTeKTypH HelipoMepeski POIIOHYEThCS 3aMiHa
RelLU-nioxi6uoi ¢ynkmii aktuBarii Ha LeakyReLU6. Otprmano Taki pe3yJIbTaTH. 3alpOIIOHOBAHUI METOJ TTOKpa-
IIye SIK TOYHICTH (precision) 3icTaBieHHs, Tak i HOBHOTY (recall) 3icTaBieHHs Oinbin HiX Ha 4% SIK IS MopeneH,
OCHOBAaHHWX Ha JeTeKTyBaHHI 03HaK (SuperPoint+SuperGlue), Tak i ans 6e3nerexropanx mozaenert (LoFTR) ra 3amry-
MJICHUX TECTOBUX HaHUX. JloCIimKeHHs aOsii mATBEpKYIOTh, IO i ABUIICHHS HaJiHOCTI BiOyBa€ThCS 3aBISKU
TIOETHAHHIO TporieaypHoro mymy Ta LeakyReLU6. Kpim Toro, mozeni, HaB4eHi Ha TecTOBOMY HaOopi maHnx Aerial
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Image Matching Benchmark Dataset i onineni Ha MikoMeHHOMY Habopi nanux HPatches, nemoHcTpyroTh mokpa-
IIeHE y3araJbHEeHHs, TOOTO BHILI TOYHICTHI XapaKTEPUCTHKU MOPIBHSIHO 3 PE3YJAbTaTOM TPAJWIIHHOTO METOAY HaB-
yaHHs. BucHoBKkH. Briepie 3anponoHoBaHO METOJ IMiABUIIEHHS poOacTHOCTI MoJIesIel 3icTaBlIeHHs 300pakeHb Ha
OCHOBI MOETHAHHS 3MarajJbHOr0 HABYaHHS Ha JAHWX 3 HAKJIAJCHUM TPOLEIyPHAM IIIyMOM, Ta Moxudikamnii GyHKIii
aKTHBAIl [UTs 1 0OOMEXXEHHS TiJT Yac MPsSIMOTO ITOUIMPEHHS. 3aIIpOITOHOBAHUI METOJT OKPIM CTIHKOCTI 110 IIyMy TIOK-
paliye MiXKJIOMEHHE y3arajJbHEHHsI, a TAKO)K MOKe OYTH 3aCTOCOBAHUI 1O PI3HUX apXiTEeKTyp HEHPOHHUX MEPEK.

Koarou4osi cioBa: 3icraBieHHs 300pa)keHb, pOOACTHICTH; 3MarajbHe HaBYaHHS; NPOUEAYPHUH IIYM; aepo3-
HIMKH.
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