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MODEL FOR AERIAL IMAGE MATCHING 
 

Neural network–based image matching techniques are increasingly employed in aerial image analysis—partic-

ularly for UAV navigation, localization, and mapping. However, their sensitivity to structured visual distortions 

(e.g., shadows, illumination changes, and terrain variability) limits robustness under real-world conditions. Ad-

dressing this challenge, we propose a training methodology that enhances both robustness and cross-domain 

generalization of feature-matching models by integrating adversarial procedural noise with activation‐ function 

modification. During training, structured noise patterns (Perlin, Gabor, and Worley) are synthesized and ap-

plied in an adversarial manner, while the standard ReLU activation is replaced by a hybrid LeakyReLU6 to 

mitigate sensitivity to local perturbations. We evaluate our approach on both detector-based (SuperPoint + Su-
perGlue) and detector-free (LoFTR) architectures using the Aerial Image Matching Benchmark Dataset and 

further assess cross-domain performance on the HPatches dataset. Experimental results show that our method 

yields over 4 % absolute improvements in matching precision and recall on noisy test data for both classes of 

models. Ablation studies confirm that these gains are attributable to the synergistic effect of procedural noise 

and LeakyReLU6. Moreover, models trained with our procedure exhibit significantly smaller performance drops 

when transferred to HPatches, demonstrating enhanced generalization relative to conventionally trained coun-

terparts. To our knowledge, this is the first work to combine adversarial procedural‐ noise training with activa-

tion‐ function constraints for aerial image matching. Beyond improved noise resistance, our method advances 

cross-domain applicability and is readily extendable to diverse neural‐ network architectures. 
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1. Introduction 
 

1.1 Motivation of research 
 

In recent years, aerial image matching has emerged 

as a crucial task in various computer vision applications, 

including drone navigation, autonomous inspection, car-

tography, and geospatial analysis. For a long time, tradi-

tional feature detection and matching algorithms such as 

SIFT, SURF, ORB, and FAST were widely used in these 

domains [1]. In classical approaches, feature detection, 

description, and matching are treated as independent pro-

cesses and are not jointly optimized. As a result, they of-

ten fail to adequately account for the contextual infor-

mation of the scene and individual keypoints, which lim-

its their accuracy and robustness compared to neural net-

work-based methods. 

Among neural network-based approaches for key-

point detection and description, models such as Super-

Point, R2D2, and XFeat have gained widespread adop-

tion due to their computational efficiency and high relia-

bility [2]. For matching feature descriptors, SuperGlue 

and LightGlue are commonly employed. Furthermore, 

detector-free dense feature matching methods, such as 

LoFTR, COTR, and DGC-Net, have also demonstrated 

promising results [3].  

However, the performance of these models tends to 

degrade significantly in real-world conditions, where sur-

face texture changes caused by uneven lighting, diurnal 

or seasonal illumination variations, partial occlusions, 

and digital artifacts are common [4]. Natural variations 

in lighting and texture, sensor-induced distortions, and 

scene clutter can be interpreted as a form of adversarial 

noise. This presents considerable challenges for achiev-

ing robust image matching, particularly in aerial imagery, 

where variable viewpoints, terrain structures, and sensor-

specific noise are prevalent. Structured noise models 

such as Gabor, Perlin, or Worley noise can be leveraged 

during training to simulate such adversarial conditions 

and improve the resilience of image matching models.  

Despite recent advancements, there remains a re-

search gap in developing methods that explicitly enhance 

the robustness of neural network-based image matching 

models under structured adversarial noise. Addressing 

this challenge is a promising area of research, particularly 

for aerial applications, where consistent and reliable fea-

ture correspondence is essential for navigation, mapping, 

and analysis. 
 

1.2. Objectives and Contributions 
 

The main objective of this research is to improve the 

robustness of neural network models for aerial image 

 
 Creative Commons Attribution  

NonCommercial 4.0 International 

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk


Intelligent information technologies 
 

167 

matching by developing a novel training approach that 

enhances performance under structured visual distor-

tions, measured by Matching Accuracy (MA) and Match-

ing Recall (MR). Robustness is defined as the ability to 

maintain high MA and MR on noisy test data, with im-

proved accuracy as a secondary outcome. The proposed 

method aims to increase the resilience of learned feature 

descriptors and matching mechanisms to real-world var-

iations in scene appearance, sensor artifacts, and environ-

mental noise through adversarial procedural noise and 

activation-function modification. 

The key issues are as follows: 

– analysis of existing methods for enhancing neural 

network robustness, with a particular focus on their ap-

plication to image matching tasks; 

– development of a training approach that improves 

robustness by incorporating structured synthetic noise 

such as Gabor, Perlin, and Worley noise during the learn-

ing process; 

– comparative evaluation of models trained with the 

proposed method versus conventional training proce-

dures, using MA and MR to quantify robustness and ac-

curacy improvements. 

Structurally, the paper is organized as follows. Sec-

tion 2 provides an overview and analysis of related work 

in the field of robust image matching. Section 3 presents 

the proposed training method using structured noise to 

simulate adversarial conditions. Section 4 details the ex-

perimental setup, dataset description, and evaluation re-

sults, including comparisons with baseline models and 

robustness testing under various distortions. Section 5 

discusses the method’s particularities, benefits, and limi-

tations. Finally, Section 6 concludes the paper and out-

lines potential directions for future research. 

 

2. The State-of-the-Art 
 

2.1. Applications of Image Matching in  

Unmanned Aerial Systems 

 

Image matching is a foundational component in 

Unmanned Aerial Systems (UAS), enabling crucial func-

tionalities such as autonomous navigation, visual locali-

zation, mapping, and environmental monitoring [5]. By 

aligning current UAV-captured imagery with reference 

datasets—such as orthophotos, satellite images, or previ-

ous flight captures—UAS platforms can perform robust 

geolocation and track environmental changes over time. 

However, the reliability of these operations heavily de-

pends on the robustness of the underlying image match-

ing algorithms, particularly under challenging visual con-

ditions. 

In the absence of GNSS signals, such as in urban 

canyons, forests, or indoor environments, UAVs rely on 

image matching for visual localization. Although numer-

ous methods have been proposed for this task, including 

matching based on handcrafted features and deep-learn-

ing-based matching, many exhibit limited robustness 

when exposed to real-world visual perturbations—such 

as lighting variations, seasonal changes, partial occlu-

sions, or motion blur [6]. 

For instance, Kim et al. (2024) proposed a method 

for UAV localization by matching onboard images to aer-

ial maps, achieving good performance in ideal conditions 

but facing reduced accuracy under shadowed and low-

contrast scenes [7]. Similarly, Liu et al. (2024) bench-

marked multiple image matching models for UAV posi-

tioning and emphasized the sensitivity of feature match-

ers to viewpoint and illumination variations [8]. 

In environmental monitoring tasks, image matching 

is used to detect subtle changes in terrain or vegetation 

over time. However, these applications often suffer from 

inconsistent image quality due to varying weather, light, 

and sensor conditions. Śledziowski et al. (2022) utilized 

UAV imagery to monitor underwater coastal structures 

but noted that image matching reliability degraded sig-

nificantly in the presence of surface reflections and tur-

bidity [9]. 

Advanced techniques such as deep local descriptors 

and dense feature matchers have been introduced to ad-

dress limitations of classical algorithms. For example, 

Zhang et al. (2021) introduced a learning-based method 

for matching infrared UAV imagery to satellite images, 

yet the system remained sensitive to structural distortions 

and non-rigid changes in appearance [10]. Koch et al. 

(2016) proposed a feature detector tailored to UAV im-

agery, but their evaluation highlighted instability under 

complex textures and occlusions [11]. 

In summary, while image matching has enabled nu-

merous UAS capabilities, current methods often fall short 

in operational scenarios characterized by dynamic light-

ing, seasonal appearance changes, sensor-specific arti-

facts, and occlusions. These challenges underline the 

need for more robust and adaptive matching approaches 

capable of withstanding the structured visual distortions 

typical of real aerial missions. 

 

2.2. Neural Networks for Image Matching 

 

The task of image matching has undergone signifi-

cant transformation with the advent of neural networks, 

which have enabled data-driven learning of keypoint rep-

resentations, dense correspondence, and matching confi-

dence. Traditional pipelines relied on separate stages of 

detection (e.g., Harris, FAST), description (e.g., SIFT, 

ORB), and matching (e.g., nearest neighbor search), of-

ten lacking robustness to changes in scale, illumination, 

and viewpoint. Modern learning-based methods offer 
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more integrated and robust alternatives, especially im-

portant for aerial imagery where appearance variations 

and geometric distortions are common. 

A major direction in neural image matching is 

based on learned keypoint detectors and descriptors. Su-

perPoint [12] is a widely adopted model that jointly 

learns keypoint detection and description using self-su-

pervised and supervised stages. R2D2 [13] improves on 

this by adding reliability and repeatability scoring, allow-

ing the network to emphasize semantically stable and ge-

ometrically consistent features. XFeat [14] introduces a 

modular and lightweight architecture that separates de-

tection, description, and matching, making it suitable for 

real-time and low-power applications such as UAV sys-

tems. 

Another important advancement is the development 

of context-aware matching networks that refine corre-

spondences between keypoints. SuperGlue [15] uses 

graph neural networks with self- and cross-attention to 

model interactions between keypoint sets, significantly 

improving matching precision under challenging condi-

tions such as occlusion or repetitive textures. LightGlue 

[16] provides a more efficient alternative optimized for 

speed and memory, while preserving the core structure of 

attention-based reasoning. 

In contrast to detector-based pipelines, detector-

free methods such as LoFTR [17] propose a radically dif-

ferent approach by eliminating explicit keypoint detec-

tion altogether. LoFTR performs dense matching at the 

feature level by combining coarse-to-fine Transformer-

based descriptors, producing high-quality correspond-

ences across textureless or low-detail regions. This 

makes it particularly attractive for aerial imagery, where 

traditional keypoint detectors often fail due to repetitive 

patterns, vegetation, or low contrast. 

Each direction offers complementary strengths. 

While sparse pipelines benefit from interpretability and 

efficiency, dense methods provide higher coverage and 

are more resilient to local feature loss. However, all of 

these models still face significant challenges under struc-

tured visual perturbations, such as shadows, seasonal var-

iation, and natural noise — common in real-world aerial 

applications. Enhancing their robustness to such factors 

remains a critical research goal. 

 

2.3. Approaches to Ensuring Robustness of Neural 

Networks for Image Analysis and Matching 

 

Neural networks have significantly advanced the 

field of image analysis and matching, underpinning ap-

plications such as object recognition, scene understand-

ing, and image alignment [1]. However, their deployment 

in real-world scenarios is often hindered by a pronounced 

sensitivity to complex visual conditions, including varia-

tions in lighting, occlusions, noise, and other perturba-

tions.  

One commonly explored direction is image prepro-

cessing using denoising autoencoders [18]. While this ap-

proach can partially mitigate input noise, it introduces ad-

ditional computational overhead, which is problematic in 

resource-constrained environments such as onboard 

UAV systems. Moreover, denoising autoencoders typi-

cally fail to handle perturbations that simultaneously af-

fect multiple domains — spatial, temporal, and latent fea-

ture space — limiting their practical robustness.  

Various gradient-masking techniques have also 

been proposed to counter adversarial perturbations. 

These include non-differentiable input transformations 

(e.g., JPEG compression, random padding and resizing), 

defensive distillation, dropout-based ensemble strategies, 

generative reconstruction, and discrete atomic compres-

sion methods [19]. While these methods can obscure gra-

dient-based attacks to some extent, they lack comprehen-

sive resilience to naturally occurring image variations 

and structural noise, which frequently affect aerial im-

agery.  

Standard data augmentation — involving rotations, 

scaling, color jittering, and other visual transformations 

— has also been used to increase network generalization 

[20]. Although effective in controlled scenarios, such 

augmentations often fail to capture the full complexity of 

real-world disturbances. Models trained with these tech-

niques still suffer significant performance degradation 

when exposed to naturally occurring occlusions, motion 

blur, or textured clutter, underscoring the gap in robust-

ness.  

Adversarial training offers another approach, where 

networks are trained on intentionally perturbed samples 

[21]. While this can enhance resistance to certain attack 

types, it often suffers from poor generalization to unseen 

perturbations. Moreover, adversarial training increases 

the overall computational load and can cause overfitting 

to the specific distortions present in the training set. 

The effectiveness of adversarial training can be im-

proved by tailoring the perturbation types used during 

training to more accurately reflect the kinds of noise and 

distortions encountered in operational settings. For aerial 

image matching tasks, structured noise generators — 

such as Gabor, Perlin, or Worley noise — have shown 

promise in this regard [22, 23]. These types of noise sim-

ulate real-world conditions: Gabor noise mimics repeti-

tive structures and cast shadows; Perlin noise models soft 

gradients due to illumination or vegetation; and Worley 

noise imitates irregular patterns like road textures or sur-

face degradation. Studies have demonstrated that using 

such structured perturbations during training can improve 

robustness in classification and detection tasks by teach-
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ing networks to ignore unstable or non-repeatable fea-

tures [23]. However, their use in aerial image matching 

remains underexplored. 

Architectural improvements also play a critical role 

in enhancing robustness. For example, activation func-

tions with bounded output ranges such as ReLU6 have 

been empirically shown to improve resistance to both ad-

versarial perturbations and structured noise [24]. Addi-

tionally, transformer-like architectures with self-atten-

tion mechanisms can better integrate contextual infor-

mation around local features, allowing the model to re-

main robust when portions of the image are degraded or 

obscured by noise or shadows [2, 17]. 

In summary, multiple approaches have been pro-

posed to improve the robustness of neural networks for 

image analysis and matching. However, no single 

method has proven universally effective. Each technique 

presents specific advantages and limitations, and the op-

timal strategy often depends on the specific nature of the 

application domain. Consequently, the integration and 

adaptation of multiple robustness-enhancing techniques 

warrant further investigation, particularly for real-world 

tasks such as aerial image matching under complex visual 

conditions.  

 

3. A Method for Enhancing the Robustness 

of Aerial Image Matching Model 

 

To improve model robustness under structured ad-

versarial conditions, we propose replacing all ReLU-like 

activations in the network with a hybrid LeakyReLU6 

function. This modification combines the advantages of 

two well-studied activation design choices in adversarial 

robustness research. 

Leaky ReLU introduces a non-zero gradient in the 

negative domain, which improves gradient flow during 

adversarial training and reduces the likelihood of inactive 

("dead") neurons — a known limitation of standard 

ReLU under gradient-based attacks. This smooth gradi-

ent profile supports better convergence and more stable 

loss landscapes during adversarial fine-tuning [25]. 

ReLU6, a bounded variant of ReLU, clips the acti-

vation output to a fixed upper limit (typically 6), which 

has been shown to reduce the impact of activation spikes 

caused by input perturbations during inference. By con-

straining the dynamic range of activations, ReLU6 helps 

limit the amplification of structured noise in deeper lay-

ers, contributing to improved generalization in visually 

degraded conditions [2]. 

The proposed LeakyReLU6 formulation aims to 

benefit from both effects — preserving smoothness for 

robust optimization, while maintaining a bounded re-

sponse for improved stability under perceptual perturba-

tions such as Perlin, Gabor, and Worley noise. 

Figure 1 illustrates the stages of the proposed 

method, where the procedural noise can be generated in 

the form of Gabor, Perlin, Simplex, Voronoi, Worley 

noise, or other variants. 

 

Pretraining the original neural network for image 
matching on its designated dataset.

Modifying the model by replacing ReLU-like activation 
functions with LeakyReLU6.

Fine-tuning the neural model with all architecture 
modifications and the structured noise-based data 
generator in place.

Integrating a structured noise injection procedure 
into the data augmentation pipeline during the 
formation of training pairs for image matching, using 
low-amplitude procedural noise with randomized 
parameters.

 
 

Fig. 1. Stages of the Proposed Method for Improving 

the Robustness of Neural Network-Based Image  

Matching Models 

 
When adapting a pretrained model for robustness 

through activation replacement, we recommend substi-

tuting ReLU-like activations with LeakyReLU6 primar-

ily in the deep convolutional layers and feature extraction 

blocks, where improved gradient flow and bounded acti-

vation outputs help suppress noise amplification and 

dead neurons. Do not modify activations in the final clas-

sification layers, where changes could disrupt output dis-

tributions, nor in Transformer-style attention blocks, 

which typically use GELU or similar smooth activations 

designed for stability. Additionally, avoid replacing acti-

vations in the initial layers directly following input, as 

these may act as implicit noise filters. When batch nor-

malization is used, replacement is acceptable only when 

the activation follows normalization (i.e., BN → ReLU), 

to maintain expected activation distributions. 

To simulate natural yet adversarial visual distor-

tions that commonly degrade the performance of image 

matching systems, we propose the injection of structured 

procedural noise during training. Specifically, we utilize 

Gabor, Perlin, and Worley noise patterns to perturb the 

input data in a way that approximates real-world condi-

tions such as shadows, surface textures, occlusions, and 

lighting inconsistencies. 

Unlike unstructured white or Gaussian noise, these 

patterns introduce semantically plausible perturbations 

that mimic natural signal variability, thereby forcing the 

model to focus on stable, semantically meaningful fea-

tures rather than texture-biased or fragile keypoints. 
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Perlin Noise – models organic variations like illu-

mination gradients or natural surfaces. It is generated us-

ing interpolated gradients at grid points and typically im-

plemented recursively to create fractal behavior. The Per-

lin noise is constructed as a fractal sum of smoothed co-

frequencies in the frequency space [22]: 

 

Sper(x, y) = ∑ pΩ
n=1 (x

2n−1

λx
,  y

2n−1

λy
), 

 

λx , λy are the wavelength parameters along the respec-

tive axes; 

Ω is the number of octaves (i.e., levels of granularity); 

p (∙) denotes the classical 2D Perlin noise function. 

To enhance visual contrast, researchers often apply 

a sinusoidal transformation: 

 

Gper(x, y) = sin(2π ∙ ϕsine ∙ Sper(x, y)), 

 

where ϕsine is a sine frequency parameter. 

Gabor Noise – mimics directional patterns such as 

cast shadows or repetitive structures (e.g., fences, roof-

tops). Gabor noise is defined as the convolution of sparse 

white noise with a Gabor kernel [23]: 

 

g(x, y) = e−πσ2(x2+y2)cos (
2π

λ
(x ∙ cos(ω) + y ∙

sin (ω))), 

 

where σ is the Gaussian envelope width; 

λ is the wavelength (harmonic period); 

ω is the orientation. 

The resulting Gabor noise is generated as a sum of 

convolutions: 

 

Sgab(x, y) =
1

ξ
∑ ∑ g(x − xi,  y − yi; σ, λ, ω +

nπ

ξ
)i

ξ
n=1 , 

 

where ξ is the number of orientations (degree of isot-

ropy); 

(xi ,  yi) are the randomly selected kernel placement 

points. 

Worley (Cellular) Noise – simulates structural ir-

regularities like stone patterns, cracked surfaces, or une-

ven soil. It is defined by computing the distance to the 

nearest point in a grid of pseudo-random feature 

points [22]: 

 

W(x, y) = min
piϵF

‖(x, y) − pi‖, 

 

where F is the set of random control points (feature 

points), typically generated 1–2 per cell of a regular grid; 

(x, y) are the coordinates of a pixel or a point in space. 

To ensure the adversarial effectiveness of these 

noise patterns, their parameters (orientation, frequency, 

phase, feature spacing, etc.) are randomized per training 

iteration or batch, while the amplitude is constrained to a 

small range (e.g., 3–8% of dynamic range) to maintain 

visual plausibility and avoid trivializing the task. The re-

sulting image is formed through additive noise superpo-

sition: 

Inoisy = I + ϵ ∙ N(x, y) 

 

where ϵ is the noise amplitude parameter, ϵ ∈

[0.03,  0.08]. 

This results in imperceptible yet semantically dis-

ruptive perturbations, making them ideal candidates for 

structured adversarial training. By exposing the model to 

such distortions, we promote resilience to the types of 

visual variability commonly encountered in real aerial 

imagery. 

To evaluate the effectiveness of the proposed 

method, it was decided to consider both keypoint detec-

tion–based and detector-free models. The most popular 

models for keypoint detection and description are the 

neural network combinations of SuperPoint and Super-

Glue [16]. One of the most well-known and effective de-

tector-free models is the LoFTR neural network [17]. 

 

4. Experiments 

 
4.1 Dataset and Image Processing Description 

The experiments utilize the Aerial Image Matching 

Benchmark Dataset [26], comprising high-resolution aer-

ial image pairs (1–2 m/pixel, urban and rural scenes) with 

ground-truth homographies, sourced from ISPRS-Eu-

roSDR and IEEE DataPort. The dataset includes over 

10,000 image pairs, split into training (70%), validation 

(15%), and test (15%) sets, ensuring robust evaluation 

across diverse scenes (e.g., buildings, forests, roads). The 

HPatches Dataset is used for cross-domain evaluation, 

containing 1,500+ planar patches with controlled view-

point and illumination changes, also with ground-truth 

homographies. Sample images include urban rooftops, 

rural fields, and textured surfaces, processed with ran-

dom homographies (e.g., rotation, scaling) and photo-

metric distortions (e.g., brightness, contrast). Procedural 

noise (Gabor, Perlin, Worley) is applied during training 

to simulate real-world distortions like shadows, illumina-

tion gradients, and surface textures, with parameters ran-

domized per batch (e.g., 3–8% amplitude). These da-

tasets’ diversity and scale ensure trustworthy evaluation 

of robustness, as validated by consistent results across 

splits. 

Figure 2 presents an example image from the Aerial 

Image Matching Benchmark Dataset [26] together with 

two versions perturbed by procedural noise. As seen in 
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Fig. 2b and Fig. 2c, procedural noise of limited amplitude 

does not distort the scene semantics; during training it 

can enhance the network’s ability to extract local features 

and maintain correct correspondences along field bound-

aries, forest shelterbelts, and shadowed regions. This, in 

turn, improves matching robustness and reduces the num-

ber of false correspondences under challenging illumina-

tion conditions. 

 

 
a 

 
b 

 
c 

Fig. 2. Example aerial image and its versions perturbed 

by procedural noise: (a) original aerial image; (b) image 

with Perlin noise; (c) image with Gabor noise 

 

4.2 Experimental Setup and Scheme 

 

The goal of the experiments is to enhance model ro-

bustness under structured noise, evaluated via Matching 

Accuracy (MA) and Matching Recall (MR). The scheme 

involves: (1) pretraining SuperPoint+SuperGlue and 

LoFTR on the Aerial Image Matching Benchmark Da-

taset; (2) fine-tuning with procedural noise augmentation 

(Gabor, Perlin, Worley) to simulate adversarial condi-

tions; (3) replacing ReLU activations with LeakyReLU6 

in convolutional layers to reduce noise amplification. In-

itial conditions include pretrained models (public 

weights from [12, 17]), learning rate 1e-4, batch size 16, 

100 epochs, and Adam optimizer. Image pairs are gener-

ated by applying random homographies and photometric 

distortions, with noise parameters randomized per batch. 

Evaluation uses ground-truth homographies to compute 

MA and MR, with a threshold of 3 pixels. 

We generate image pairs by sampling random 

homographies and applying random photometric distor-

tions to aerial images. The underlying images come from 

the set of aerial images in the Aerial Image Matching 

Benchmark Dataset [26], split into training, validation, 

and test sets.  

Since the homography between the original image 

and its randomly transformed version is known, the cor-

rectness of the matching can always be verified using the 

following formula [27] 

 

‖H ∙ x − x′‖ < θ ⇒ match is correct, 

 

where  H is the random homography applied to the orig-

inal image to generate the image pair; 

x, x′ are the original image and its modified version after 

applying random homographies and random photometric 

distortions; 

θ is the threshold value (typically 3 or 5 pixels). 

Matching precision (P) and recall (R) are evaluation 

metrics and computed from the ground truth 

correspondences.  

Matching Recall (or Matching Score) is the propor-

tion of true correspondences that have been correctly 

identified by the matching model: 

 

Recallθ =
Number of correct matches (within θ)

Total number of ground truth matches
. 

 
Matching Accuracy (or Matching Precision) is the 

proportion of true correspondences among all those pre-

dicted by the matching model: 

 

MAθ =
Number of correct matches (within θ)

Total number of predicted matches
. 

 

4.3 Results 

 

To improve the robustness of the models against 

structured distortions simulated using procedural noise 

(Gabor, Perlin, Worley), additional training was con-

ducted with the use of a modified LeakyReLU6 activa-

tion function. The results obtained during testing of the 

trained models on test data with the same type of proce-

dural noise applied are presented in Table 1. 
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Table 1  

Results on the Aerial Image Matching  

Benchmark Dataset 

 

Local 

features 
Matcher 

Matching 

Accuracy 

(θ = 3) 

Matching 

Recall 

(θ = 3) 

SuperPoint SuperGlue 82.5 75.0 

LoFTR LoFTR 85.3 78.2 

SupePoint+ 

LeakyReLU 

pretrained 

with proce-

dural noise 

SuperGlue+ 

LeakyReLU 

pretrained 

with proce-

dural noise 

88.1 81.5 

LoFTR + 

LeakyReLU 

pretrained 

with proce-

dural noise 

LoFTR +  

LeakyReLU 

pretrained 

with proce-

dural noise 

90.1 84.3 

 

Analysis of Table 1 shows that the proposed method 

improves the matching accuracy of noisy images for both 

feature-based models (by 5.5%) and detector-free models 

(by 5%). However, the individual contribution of proce-

dural noise and activation function modification to the fi-

nal result remains unclear. Therefore, we conduct an ab-

lation study in which procedural noise is retained as part 

of the data pair augmentation during training, but the 

LeakyReLU activation function is not used (see Table 2). 

Tables 1 and 2 show that the use of the modified 

LeakyReLU6 activation function in combination with 

procedural noise resulted in a 4.7% increase in matching 

accuracy and a 5.5% increase in matching recall for Su-

perPoint+SuperGlue. For LoFTR, the use of 

LeakyReLU6 led to a 4.1% improvement in matching ac-

curacy and a 5.1% improvement in matching recall. 

 

Table 2 

Ablation study: matching performance without 

LeakyReLU6 activation 

 

Local fea-

tures 
Matcher 

Matching 

Accuracy 

(θ = 3) 

Matching 

Recall 

(θ = 3) 

SuperPoint 

pretrained 

with proce-

dural noise 

SuperGlue 

pretrained 

with proce-

dural noise 

83.4 76.0 

LoFTR 

pretrained 

with proce-

dural noise 

LoFTR 

pretrained 

with proce-

dural noise 

86.0 79.2 

 

The obtained results depend not only on the model 

and training method but also on the training and test da-

tasets. Therefore, it is important to evaluate the effective-

ness of the proposed method on other publicly available 

datasets as well. In this context, it is useful to compare 

the results achieved using the proposed method with 

those obtained using a conventional approach. Table 3 

presents the results reported in [27] using SuperPoint + 

SuperGlue, alongside the results obtained with the pro-

posed method on HPatches Dataset.  

 
Table 3  

Results on the HPatches Dataset for neural networks 

pre-trained on the HPatches Dataset 

 

Local fea-

tures 
Matcher 

Matching 

Accuracy 

(θ = 3) 

Matching 

Recall 

(θ = 3) 

SuperPoint SuperGlue 91.5 95.5 

SuperPoint+ 

LeakyReLU 

pretrained 

with proce-

dural noise 

SuperGlue+ 

LeakyReLU 

pretrained 

with proce-

dural noise 

92.9 97.1 

 

Analysis of Table 3 shows that the well-known 

HPatches Dataset also demonstrates an improvement in 

Matching Accuracy and Matching Recall compared to 

the baseline reported in [27].  

The proposed method shares many similarities with 

previous works on data augmentation and adversarial 

training aimed at improving the generalization ability and 

robustness of neural networks to observation variability 

[27]. Therefore, it is worth investigating the generaliza-

tion capabilities of neural networks trained on the Aerial 

Image Matching Benchmark Dataset when tested on 

clean (non-noisy) data from the HPatches Dataset (see 

Table 4). 

 
Table 4  

Results on the HPatches Dataset for neural networks 

pre-trained on the Aerial Image Matching  

Benchmark Dataset 

 

Local 

features 
Matcher 

Matching 

Accuracy 

(θ = 3) 

Matching 

Recall 

(θ = 3) 

SuperPoint SuperGlue 88.1 90.3 

Super-

Point+ 

LeakyReLU 

pretrained 

with proce-

dural noise 

SuperGlue+ 

LeakyReLU 

pretrained 

with proce-

dural noise 

91.9 96.2 
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Analysis of Table 4 shows that the SuperPoint+Su-

perGlue models trained on the Aerial Image Matching 

Benchmark Dataset exhibit a 3.4% decrease in Matching 

Accuracy and a 5% decrease in Matching Recall when 

tested on the HPatches Dataset. In contrast, the models 

trained using the proposed method show only a 1% de-

crease in Matching Accuracy and a 0.9% decrease in 

Matching Recall. This confirms the improved generaliza-

tion capability of the models trained with the proposed 

approach. 

Thus, the proposed method for enhancing the ro-

bustness of image matching neural networks is suitable 

for both feature-based and detector-free models. Moreo-

ver, improvements in accuracy metrics were achieved 

during both training and testing across different datasets. 

 

5. Discussion 

 

The proposed method enhances robustness by com-

bining LeakyReLU6 activation and procedural noise 

training, addressing real-world challenges in aerial image 

matching. LeakyReLU6 reduces noise amplification by 

bounding activations (up to 6) and improving gradient 

flow, while procedural noise (Gabor, Perlin, Worley) 

mimics natural distortions like shadows and terrain tex-

tures, forcing models to prioritize stable features. Bene-

fits include over 4% improvements in Matching Accu-

racy (MA) and Matching Recall (MR) on noisy data (Ta-

bles 1–2) and better cross-domain generalization on 

HPatches (Tables 3–4), with only a 1% MA drop com-

pared to 3.4% for baselines. This makes the method suit-

able for UAV applications like navigation and mapping 

under adverse conditions (e.g., shadows, seasonal 

changes). 

Limitations include the lack of optimization for 

noise parameters (e.g., frequency, amplitude), which may 

affect robustness, and evaluation restricted to two models 

(SuperPoint+SuperGlue, LoFTR), limiting generalizabil-

ity to other architectures. The synergy of LeakyReLU6 

and procedural noise is confirmed by ablation studies 

(Table 2), but further analysis of individual contributions 

(e.g., noise types) is needed. The method’s platform-ag-

nostic nature supports deployment on various UAVs, but 

real-time implementation requires additional optimiza-

tion. 

The gains achieved by the proposed training 

scheme are particularly valuable for visual navigation in 

GNSS-denied settings (e.g., forest edges, urban canyons, 

and dense built-up areas). By injecting procedural pertur-

bations during training, we encourage the network to at-

tend to stable, semantically meaningful boundaries—

field/parcel borders, shorelines and water edges, forest 

margins and shelterbelts, as well as building footprints, 

roof edges, and other architectural contours—rather than 

transient appearance cues. Consequently, feature extrac-

tion and matching remain more consistent across shad-

ows and seasonal illumination changes, which reduces 

drift in visual localization and improves alignment to aer-

ial maps. Figure 2 illustrates that the proposed augmen-

tations preserve the visibility of these semantically sali-

ent boundaries (e.g., agricultural parcels, tree lines, and 

building edges); when used during training, this empha-

sis biases the network toward such stable structures, ulti-

mately improving in-flight map-matching reliability. 

 

6. Conclusions 
 

This study introduces a novel method to enhance 

the robustness of neural network models for aerial image 

matching by integrating LeakyReLU6 activation func-

tions and adversarial procedural noise (Perlin, Gabor, 

Worley) during training. The contribution lies in combin-

ing these techniques to improve Matching Accuracy 

(MA) and Matching Recall (MR) under structured noise, 

achieving over 4% improvements for both feature-based 

(SuperPoint+SuperGlue) and detector-free (LoFTR) 

models on the Aerial Image Matching Benchmark Da-

taset (Tables 1–2). The novelty is the first application of 

this combined approach to aerial image matching, en-

hancing cross-domain generalization on HPatches (Ta-

bles 3–4, with 1% vs. 3.4% MA drop). Practically, the 

method improves UAV navigation and mapping reliabil-

ity under adverse conditions like shadows and seasonal 

changes. 

Limitations include untested noise parameter opti-

mization and evaluation limited to two models. Future re-

search will focus on: (1) optimizing noise parameters 

(e.g., frequency, amplitude) to balance robustness and 

generalization; (2) applying meta-learning to adapt mod-

els to diverse noise types dynamically; (3) evaluating ad-

ditional architectures like R2D2 and XFeat; (4) exploring 

real-time implementation for UAV onboard systems to 

enhance practical deployment. 

Future research will focus on the application of 

meta-learning, regularization, and architectural improve-

ments to enhance the robustness and resilience of neural 

network-based aerial image matchers. 
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МЕТОД ПІДВИЩЕННЯ РОБАСТНОСТІ МОДЕЛІ НЕЙРОННОЇ МЕРЕЖІ  

ДЛЯ СПІВСТАВЛЕННЯ АЕРОЗНІМКІВ 

В. В. Москаленко, А. С. Москаленко, Ю. В. Москаленко 

Нейронні мережі для задачі зіставлення зображень дедалі частіше використовуються в аналізі аерознім-

ків, зокрема для навігації БПЛА, локалізації та картографування. Однак їхня чутливість до структурованих 

візуальних спотворень — таких як тіні, зміни освітлення та варіабельність рельєфу — обмежує стійкість у 

реальних умовах. Розроблення методів навчання, що підвищують стійкість зіставлення ознак за наявності 

змагальних шумів, є актуальним завданням. Предметом дослідження у статті є метод підвищення робастності 

моделей нейронних мереж для зіставлення аерознімків за наявності структурованого візуального шуму. Ме-

тою дослідження є розроблення методу навчання, який підвищує робастність та здатність до узагальнення 

моделей зіставлення зображень. Методами дослідження є: методи змагального навчання, методи генерації 

процедурного шуму, а також способи модифікації архітектури нейромереж. При цьому як процедурний шум 

розглядаються шум Габора, Перліна та Ворлі. Як модифікація архітектури нейромережі пропонується заміна 

ReLU-подібної функції активації на LeakyReLU6. Отримано такі результати. Запропонований метод покра-

щує як точність (precision) зіставлення, так і повноту (recall) зіставлення більш ніж на 4% як для моделей, 

основаних на детектуванні ознак (SuperPoint+SuperGlue), так і для бездетекторних моделей (LoFTR) на зашу-

млених тестових даних. Дослідження абляції підтверджують, що підвищення надійності відбувається завдяки 

поєднанню процедурного шуму та LeakyReLU6. Крім того, моделі, навчені на тестовому наборі даних Aerial 
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Image Matching Benchmark Dataset і оцінені на міждоменному наборі даних HPatches, демонструють покра-

щене узагальнення, тобто вищі точністні характеристики порівняно з результатом традиційного методу нав-

чання. Висновки.  Вперше запропоновано метод підвищення робастності моделей зіставлення зображень на 

основі поєднання змагального навчання на даних з накладеним процедурним шумом, та модифікації функції 

активації для її обмеження під час прямого поширення. Запропонований метод окрім стійкості до шуму пок-

ращує міждоменне узагальнення, а також може бути застосований до різних архітектур нейронних мереж. 

Ключові слова: зіставлення зображень; робастність; змагальне навчання; процедурний шум; аероз-

німки. 
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