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METHOD FOR MATCHING SATELLITE AND UAV IMAGES FOR VISUAL PLACE 

RECOGNITION WITH CROSS-VIEW COLOR NORMALIZATION 
 

The subject of this article is visual place recognition (VPR), specifically matching satellite images with images 
captured by unmanned aerial vehicles (UAVs). VPR is critical for autonomous UAV navigation, particularly in 

GPS-denied environments such as urban canyons or areas with significant infrastructure coverage where GNSS 

signals are unreliable. Despite its practical importance, accurately matching UAV images to satellite imagery 

remains challenging due to significant viewpoint, scale, illumination, and texture discrepancies. Traditional ap-

proaches that rely on handcrafted descriptors or classical local features often fail under such cross-view condi-

tions. This study aims to design a robust visual place recognition method for matching UAV and satellite im-

agery, employing deep learning-based embeddings and advanced color normalization to improve reliability 

across cross-view scenarios. The tasks addressed in this article are: firstly, designing a YOLO-based method is 

designed for extracting global image embeddings, which utilizes YOLO’s multi-scale feature extraction capabil-

ities to encode semantically significant landmarks in the scene. Second, a novel preprocessing technique based 

on aligning statistical color distributions between UAV and satellite images was developed and implemented to 
enhance their visual congruence. Finally, these components are integrated into a complete VPR system and 

evaluated for effectiveness using the challenging VPAIR dataset, emphasizing urban settings. The methods em-

ployed include deep learning techniques, particularly fine-tuning a YOLO11 neural network on a dataset spe-

cifically annotated for building segmentation. Statistical alignment techniques based on cumulative distribution 

functions (CDF) were used to standardize image appearances between the two distinct image domains. Conclu-

sions. The experiments demonstrate significant improvements in UAV-to-satellite image matching performance 

using the proposed method. Fine-tuning YOLO11 specifically for building segmentation resulted in a robust 

embedding generation method that achieved high segmentation accuracy (F1-score of 0.722). The color prepro-

cessing technique further improved the recognition performance, with Recall@1 reaching 19.5% for urban ter-

rain within a localization radius of 3, substantially outperforming the traditional methods. This study provides 

an effective solution for UAV localization tasks, particularly in complex urban environments, highlighting the 

importance of integrated embedding extraction and domain-specific image preprocessing in cross-view visual 
place recognition. 
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1. Introduction 
 

1.1. Motivation  
 

Unmanned Aerial Vehicles (UAVs) are increas-

ingly employed for tasks ranging from environmental 

monitoring and disaster response to smart agriculture and 

urban planning [1]. A core requirement in these applica-

tions is the accurate self-localization of the UAV. While 

Global Navigation Satellite Systems (GNSS) like GPS 

are the de facto solution, they often fail or degrade in per-

formance under signal blockages or interference (e.g., ur-

ban canyons, areas with significant infrastructure cover-

age). Vision-based localization offers an attractive alter-

native in GPS-denied scenarios, providing low-cost, rich-

information positioning that does not suffer cumulative 

drift [1]. One such approach is Visual Place Recognition 

(VPR) is one such approach, wherein the UAV’s onboard 

camera is used to recognize its location by matching the 

current view against a database of geo-referenced images 

[2]. Matching UAV-captured images to satellite imagery 

has emerged as a practical solution for global localiza-

tion, since satellites provide broad coverage and readily 

available maps. This cross-view image matching prob-

lem, identifying the same place from drastically different 

viewpoints (ground oblique vs. overhead), is the focus of 

extensive research due to its importance for autonomous 

UAV navigation in GNSS-denied environments [3]. 

However, UAV-satellite image matching poses sig-

nificant challenges [4]. The two image domains differ in 

viewpoint (oblique/side perspective vs. top-down), scale, 

and resolution and often exhibit stark appearance dis-

crepancies in color, illumination, and texture [5]. Sea-

sonal changes and weather conditions can alter the view 
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of the UAV, while satellite images may be captured at 

different times or spectral bands, thereby exacerbate vis-

ual mismatches. Moreover, aerial scenes often contain re-

petitive patterns (e.g., rooftops and fields) with few dis-

tinct landmarks, making correspondence ambiguous. 

Traditional feature-based methods struggle in this con-

text. For instance, the direct matching of keypoints be-

tween UAV and satellite images is unreliable due to ex-

treme viewpoint differences and loss of 3D information 

[3]. As a result, the early approaches to UAV localization 

that relied on classical local features (SIFT, SURF) or 

handcrafted descriptors had limited success in cross-view 

settings. 

These challenges motivate the use of learned image 

embeddings to bridge the domain gap between UAV and 

satellite imagery [6]. The rapid progress of deep learning 

in computer vision has led to powerful convolutional 

neural network (CNN) features and architectures that sig-

nificantly improve the robustness of place recognition 

[3]. Deep models can learn viewpoint-invariant and ap-

pearance-invariant representations by training on large 

datasets, succeeding where handcrafted descriptors fail. 

Visual localization systems have begun to leverage such 

deep embeddings to achieve high recall despite perspec-

tive changes, effectively overcoming many limitations of 

traditional methods. 

Appropriate image preprocessing techniques play a 

crucial role in enhancing the effectiveness of these deep 

learning-based approaches. Preprocessing steps, such as 

geometric transformations, color normalization, illumi-

nation correction, and scale adjustment, significantly re-

duce domain discrepancies between UAV and satellite 

imagery [7]. For example, geometric rectification and 

alignment methods can normalize perspectives, reduce 

viewpoint variability, and simplify cross-domain match-

ing. Illumination and color normalization techniques mit-

igate the effects of lighting variations and atmospheric 

conditions, thereby stabilizing visual features across di-

verse environmental conditions. Additionally, prepro-

cessing can emphasize relevant semantic features while 

suppressing irrelevant or ambiguous details, thereby en-

abling a more consistent feature extraction by the subse-

quent deep learning models. 

Given the constrained compute resources on UAV 

platforms, methods that are not only accurate but also ef-

ficient are needed. In this regard, the YOLO family [8] of 

object detection networks stands out for its speed and ac-

curacy balance, even on edge devices [1]. YOLO-based 

models process images in real-time on limited hardware, 

making them promising candidates for UAV place recog-

nition. Moreover, YOLO’s architecture provides mul-

tiscale feature extraction and focuses on salient objects, 

enriching place descriptors with semantically meaningful 

cues. These considerations underpin the proposed ap-

proach, which exploits the strengths of YOLO to create 

robust image embeddings for cross-view VPR while sim-

ultaneously addressing the appearance gap through me-

ticulous image preprocessing. 

 

1.2. State of the art  

 

Modern visual place recognition is typically formu-

lated as an image retrieval problem: a query image (e.g., 

a UAV snapshot) is compared against a large database of 

geo-tagged reference images (e.g., satellite map tiles), 

and the most similar match is returned as the hypothe-

sized location [3]. The key to this process is a reliable 

image descriptor or embedding that makes matching ac-

curate and efficient. Early VPR systems (around the 

2000s) used handcrafted global descriptors built on local 

features, such as bag-of-visual-words representations [9]. 

Notably, FAB-MAP [10] introduced an appearance-

based place recognition method using a bag-of-words al-

gorithm over SURF features, and DBoW2 [11] improved 

speed with binary feature quantization. Although effec-

tive for moderate viewpoint changes, these classical 

methods degrade severely under the wide baseline differ-

ences in UAV vs. satellite imagery. 

The advent of deep learning caused a step-change 

in descriptor quality: CNN-based embeddings proved far 

more robust to illumination and viewpoint variation than 

engineered features. A seminal example is NetVLAD 

[12], which combined a CNN backbone with a VLAD 

aggregation layer to produce compact global descriptors, 

dramatically outperforming prior approaches on place 

recognition benchmarks. Subsequent research has re-

fined global embeddings through various means, e.g., 

multiscale feature fusion and local feature integration in 

Patch-NetVLAD [13], or transformer-based context ag-

gregation in recent methods – all with the aim of captur-

ing distinctive scene signatures that remain stable despite 

viewpoint changes. 

A typical VPR pipeline consists of (1) feature ex-

traction, where each image is converted to a descriptor, 

and (2) feature matching/retrieval, where the descriptor 

of a query is compared to those in the reference database 

(often via nearest-neighbor search in the embedding 

space). To handle cross-view scenarios, such as UAV-to-

satellite matching, specialized architectures are used. A 

common approach is a dual-branch network (Siamese or 

triplet network) that learns to map UAV and satellite im-

ages into a common embedding space, usually by train-

ing with metric learning objectives (contrastive or triplet 

loss) so that true match pairs come together in that space. 

This training paradigm, known as cross-view metric 

learning, has been widely adopted in recent studies. 

For example, [14] pioneered ground-to-aerial local-

ization by learning CNN features to match street-level 

images with satellite images. [15] further demonstrated 

deep regression of geo-coordinates from ground images 
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using aerial reference data. Building on these, the intro-

duction of the University-1652 dataset by [16] brought 

UAV drone imagery into the mix, enabling learning-

based geo-localization where drones capture building fa-

cades and are matched to overhead maps. University-

1652 and its variants framed UAV VPR as an image re-

trieval task and spurred the development of numerous 

deep models. For instance, the dataset was used to train 

cross-view networks with classification and triplet-loss 

schemes, significantly improving retrieval accuracy for 

drone views. 

In recent years, new benchmarks have continued to 

push the state of the art: VIGOR [17] introduced a vali-

dation beyond one-to-one matching by allowing multiple 

correct matches and negative mining, and SUES-200 [18] 

provided a large-scale cross-view dataset with multi-alti-

tude drone images and diverse scenes to evaluate robust-

ness across different flight heights. Even specialized da-

tasets such as ALTO [19] focus on large-scale outdoor 

environments for UAV place recognition, or the very re-

cent ComplexUAV [20] emphasizes complex multi-ter-

rain scenarios, reflecting the community’s drive toward 

more realistic evaluations. 

The VPAIR dataset [21] complements these exist-

ing benchmarks by addressing challenges specific to me-

dium to high altitude aerial scenarios. The dataset in-

cludes downward-facing camera images paired with 

high-resolution, rendered reference imagery, dense depth 

maps, and precise 6-DoF reference poses captured from 

a light aircraft at altitudes between 300 and 400 m. The 

107-kilometer-long trajectory spans diverse landscapes, 

including urban, agricultural, and forested regions, high-

lighting challenges such as large viewpoint differences 

and significant in-plane rotations. Experiments on 

VPAIR underscore the need for rotation-robust and com-

putationally efficient image descriptors tailored explic-

itly for aerial-to-aerial VPR tasks. 

Several techniques have been proposed to generate 

robust image embeddings for VPR. Researchers have ex-

plored local feature-based recognition beyond the 

CNN+VLAD approaches, with the hypothesis being that 

explicit keypoint matching could complement global de-

scriptors. For example, a 2023 study asked “Are local 

features all you need for cross-domain VPR?” and found 

that incorporating learned local features can boost perfor-

mance in challenging domain shifts. Hybrid methods 

now often combine global and local cues: a global re-

trieval to shortlist candidates, followed by local feature 

matching to re-rank or verify (a strategy employed by 

Patch-NetVLAD [13] and others). Meanwhile, the rise of 

Vision Transformers has influenced embedding design; 

self-attention can encode long-range context useful for 

place recognition, as seen in transformer-based global de-

scriptors and reranking models. 

Numerous recent studies have investigated the use 

of lightweight and multimodal feature representations for 

place recognition. For instance, MinkLoc [22] uses 

sparse 3D convolutions to enhance recognition perfor-

mance at scale, especially when applied to LiDAR or 

depth map inputs. Nevertheless, integrating such addi-

tional sensors can be unfeasible for UAVs due to strict 

power and weight constraints. CosPlace [23] applied a 

classification-oriented training strategy on the San Fran-

cisco XL dataset, which includes 40 million GPS-

annotated directional images, to address challenges in 

image-based localization. Following that, MixVPR [24] 

proposed a feature mixing approach based on MLPs, 

trained using the GSV-Cities dataset [25], which consists 

of 530,000 images spanning 62,000 different locations 

worldwide. These cases highlight the growing reliance on 

large-scale, highly curated datasets in contemporary VPR 

research. 

Another notable trend is leveraging foundation 

models and self-supervised learning. [13] and [26] advo-

cated general, pre-trained features for VPR. Recently, 

AnyLoc [27] demonstrated that using a pre-trained vision 

transformer (without any task-specific fine-tuning) can 

achieve state-of-the-art results on multiple VPR bench-

marks. This suggests that rich semantic embeddings from 

models like OpenAI’s CLIP [28] or Meta’s DINOv2 [29] 

are sufficiently discriminative for place recognition 

across modalities. Indeed, self-supervised models trained 

on massive image data have shown remarkable robust-

ness to viewpoint and appearance changes, making them 

appealing for cross-view tasks. On the other hand, do-

main-specific training is still crucial to squeeze out max-

imum performance; methods such as EigenPlaces [30] 

explicitly train on multi-view data to achieve viewpoint 

invariance. In summary, the state-of-the-art in image em-

beddings for VPR encompasses a spectrum from task-

specific deep models to generic pretrained features, often 

with an ensemble of global and local representation tech-

niques. 

An important aspect of cross-view VPR is the han-

dling of the photometric disparities between UAV and 

satellite images. Color preprocessing techniques attempt 

to normalize or reduce these differences before feature 

extraction, thereby making the recognition model’s task 

easier. Applying histogram matching is a straightforward 

approach: adjust the color histogram of the UAV image 

to mimic that of the satellite image (or vice versa). While 

histogram matching can align global color distributions, 

it often leads to unnatural color distortions. 

Recent research has proposed more nuanced color 

transfer methods. For example, [2] performed color 

alignment in a decorrelate color space by matching the 

mean and variance of UAV image channels to those of 

the satellite image, thereby avoiding some artifacts 
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caused by direct histogram warping. This kind of prepro-

cessing (sometimes called color constancy or style trans-

fer) essentially standardizes the UAV image appearance 

to be closer to the satellite domain before feeding it to the 

network. The benefit is a reduced domain gap, the feature 

extractor does not have to learn to ignore irrelevant color 

differences. Indeed, [2] reported that applying such color 

normalization to UAV images before training improved 

geo-localization accuracy in their experiments. 

Another popular strategy is data augmentation via 

style variation: instead of directly altering the images at 

test time, the model is trained on various appearance con-

ditions so that it becomes invariant. For instance, [5] used 

neural style transfer to create augmented training samples 

with different weather, lighting, and seasonal conditions, 

thereby improving the model’s robustness to environ-

mental changes. This approach has the model effectively 

learn to “see through” color and illumination differences. 

However, appearance normalization has limitations. As 

noted by [2], additional color correction may yield dimin-

ishing returns if images already contain rich color con-

tent, and over-normalizing can even wash out discrimi-

native details. Ultimately, geometric discrepancies 

(viewpoint and object arrangement) pose a greater chal-

lenge than color; thus, color preprocessing is a helpful but 

partial solution. It is most beneficial when the UAV and 

satellite images have systematic color biases (e.g., one 

captured at dusk and the other at noon), in which case 

normalizing brightness and tone can significantly aid 

matching. In current state-of-the-art pipelines, a combi-

nation of techniques is often used: basic normalization 

(such as per-channel mean subtraction and scaling as 

done in ImageNet preprocessing) is almost always ap-

plied, and in specialized cases, histogram equalization or 

learned style translation may be added to further reduce 

appearance gaps. 

The [31] method complements existing prepro-

cessing techniques by introducing a style alignment strat-

egy to reduce intraclass visual discrepancies between 

UAV and satellite images caused by differing illumina-

tion conditions and camera parameters. They use a cumu-

lative distribution-based mapping function derived from 

the RGB channels of satellite images to unify drone im-

agery to a consistent satellite-like visual style. This align-

ment significantly mitigates differences in lighting and 

color, thus improving feature consistency and matching 

accuracy across disparate views. This strategy particu-

larly benefits scenarios with strong variations in drone 

imagery due to sunlight or camera-induced chromatic ab-

errations. 

 

1.3. Objectives and tasks 

 

he objective of this work is to build an enhanced 

visual place recognition system that aligns UAV images 

with satellite views, integrating deep embedding models 

and color preprocessing techniques to achieve greater ro-

bustness and precision, especially in urban cross-view 

conditions. The target system is designed to reliably rec-

ognize places from a low-altitude UAV perspective by 

matching against satellite imagery, even under signifi-

cant viewpoint and appearance changes. Based on the in-

sights from the state-of-the-art, our approach integrates a 

YOLO-based feature extractor with color normalization 

techniques into the VPR pipeline. The motivation for us-

ing YOLO lies in its demonstrated efficiency and ability 

to capture multi-scale features and semantic objects in the 

scene [1], which is hypothesized to provide a rich de-

scriptor for place recognition [32], [33]. Moreover, the 

use of YOLO for visual place recognition represents a 

novel contribution because these architectures have not 

been previously applied in this domain. YOLO currently 

ranks among the most accurate models for image detec-

tion and segmentation, and its exceptionally high infer-

ence speed ensures effective real-time performance com-

pared to transformer-based approaches. Meanwhile, 

color preprocessing is employed to mitigate the domain 

gap between UAV camera and satellite images, unifying 

their visual characteristics and thus easing the learning 

task. 

The tasks addressed in this work are as follows: 

1. YOLO Embedding Generation. A method is 

designed and implemented to extract global image de-

scriptors from a YOLO network. Instead of using YOLO 

solely for object detection, its internal feature maps are 

repurposed to serve as image embeddings for the entire 

scene. By doing so, the embedding inherently encodes in-

formation about prominent objects and structures that 

could act as stable landmarks for place recognition 

(learned through YOLO’s detection training). 

2. Cross-Domain Color Preprocessing. The pre-

processing steps are investigated to unify the color distri-

butions of UAV and satellite images, with experiments 

using methods such as histogram matching and learned 

color transfer to standardize images across both domains. 

The goal is to produce a consistent look between UAV 

and satellite imagery, for example, by adjusting the UAV 

images to approximate the spectral response of satellite 

sensors or vice versa. The impact of converting images 

to different color spaces and applying global normaliza-

tion will be evaluated. 

3. System Integration and Evaluation. The 

YOLO-based embedding and color preprocessing are in-

tegrated into a complete VPR pipeline for UAV localiza-

tion. This includes building a reference database of satel-

lite image descriptors, processing incoming UAV frames 

through color normalization and embedding extraction, 

and performing a fast nearest-neighbor search to retrieve 

candidate matches. Then, a thorough evaluation is per-

formed on the benchmark dataset VPAIR [21],  
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comparing the proposed method against classical feature-

based baselines and recent deep-learning methods. Key 

evaluation metrics include Recall@K [26] and localiza-

tion accuracy under varying conditions, enabling the 

quantification of improvements. The contribution of each 

component (embedding network vs. color preprocessing) 

is analyzed through ablation studies to confirm the tangi-

ble benefits of each proposed element. 

The expected outcome is a state-of-the-art image 

matching system that substantially improves UAV-

satellite place recognition performance by accomplishing 

these tasks. In summary, the contributions of this paper 

are as follows: 

1) a novel YOLO-derived image embedding tai-

lored for cross-view place recognition; 

2) a color normalization approach to bridge UAV 

and satellite image appearance; 

3) an extensive evaluation demonstrating superior 

performance to existing methods on challenging cross-

view datasets. 

Collectively, these contributions advance the field 

of visual place recognition for aerial robots, moving 

closer to reliable GPS-independent UAV navigation in 

real-world environments. 

The paper is structured as follows: Section 1 intro-

duces the problem of visual place recognition (VPR) for 

UAVs, highlighting the challenges of cross-view image 

matching between UAV and satellite imagery, and pro-

vides a comprehensive review of related work, objec-

tives, and motivation for the research. Section 2 describes 

the materials and methods used in the study, detailing the 

proposed approach that combines a YOLO-based embed-

ding extraction with statistical color preprocessing, as 

well as the evaluation methodology and metrics for as-

sessing system performance. Section 3 presents the re-

sults and discussion, including the YOLO model fine-

tuning for building segmentation, the image prepro-

cessing method’s effectiveness, and experimental com-

parisons using the VPAIR dataset. Section 4 concludes 

the paper by summarizing the main findings, discussing 

the advantages and current limitations of the proposed 

method, and outlining potential directions for future re-

search. 

 

2. Materials and methods of research 
 

2.1. Methods 
 

Determining the location of Unmanned Aerial Ve-

hicles (UAVs) is typically addressed through Visual 

Place Recognition (VPR). This study proposes a method 

that compares UAV-captured query images against a ge-

otagged satellite imagery database. The system identifies 

the UAV’s approximate global position by finding the 

most closely matched satellite image or group of images. 

Subsequently, a precise coordinate determination method 

is used to align the UAV’s query image with the matched 

satellite imagery. 

Thus, the primary task can be divided into the fol-

lowing subtasks: 

1) global location estimation: identifying the satel-

lite image (tile) most closely resembling the UAV’s 

query image within an extensive database; 

2) precise coordinate estimation: determining the 

exact coordinates (latitude and longitude) within the se-

lected tile. 

Figure 1 demonstrates the general workflow em-

ployed to determine the UAV coordinates. 

This study specifically targets the determination of 

global UAV locations in urban areas using CNN-based 

methods. A detailed schematic overview of the proposed 

approach is presented in Figure 2. 

The following notation is introduced. Let 𝒬 = {q} 

denote a query image captured by the UAV at a particular 

location and orientation, and let ℛ = {r1, r2, … , rn} rep-

resent a set of predefined images (typically satellite im-

agery) with known coordinates. 

Additionally, the following mapping is defined to 

obtain vector representations (feature vectors) from im-

ages: 

 

F: I → V, (1) 

 

where I is the image, V is the feature vector. 

Consequently, the overall objective of UAV global 

location determination to identify an image rj ∈ ℛ whose 

spatial position ℓ(rj) most closely aligns with the query 

image position ℓ(𝑞). Formally, this is represented as fol-

lows: 

 

k = argmin d
1≤j≤n

(F(q), F(rj)) , (2) 

 

where d(∙,∙) is a metric (e.g., Euclidean distance) operat-

ing on images represented as feature vectors, and k is the 

identified satellite image. 

A satellite imagery database covering predeter-

mined flight routes must be accessible to facilitate UAV 

global location identification. Using deep learning archi-

tectures, vector representations or image features can be 

derived (1). In this study, the YOLO11 model is em-

ployed, specifically fine-tuned using segmented building 

images. Feature vectors are extracted from the final back-

bone layer, as this layer encapsulates the richest image 

information obtained through the convolutional structure 

of YOLO11. Crucially, the model is identical for obtain-

ing vector features from both UAV and satellite images. 

Thus, the refined YOLO11 model generates image vec-

tors for the satellite database, enabling accurate UAV 

global localization. YOLO11 is used to process real-time 
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Fig. 1. General data processing scheme for determining UAV location coordinates 

 

 
Fig. 2. Processing scheme for UAV global localization using an image preprocessing method  

and a YOLO11 model fine-tuned on a segmented building dataset 

 

UAV images to obtain vector representations (1), after 

which the best-matching satellite image (2) is determined 

using a similarity metric (e.g., Euclidean distance). This 

matched satellite image represents the approximate 

global position of the UAV. 

To improve the visual congruence between UAV 

and satellite imagery, a method is proposed to align their 

statistical distributions. Unlike conventional methods 

that directly apply satellite cumulative distribution func-

tions (CDF) to UAV images, which may lead to distor-

tion from mismatched distributions [31], our method cal-

culates transformations for each UAV frame individu-

ally, accommodating its specific distribution. 

Our approach utilizes probability theory principles: 

given a random variable ξ with a known distribution 

function Fξ(x), applying its own distribution function 

generates a uniformly distributed variable γ ~ U(0,1), 

γ = Fξ( ξ ). Conversely, applying the inverse distribution 

function to a uniform variable γ ~ U(0,1) recovers ξ with 

distribution Fξ(x). Satellite images consistently captured 

by similar sensors possess uniform color properties, 

whereas UAV images captured under varying conditions 

exhibit different statistical traits. Thus, pixel intensities 

in images behave like distinct random variables, produc-

ing random variable Y and X from UAV and satellite im-

age intensities, respectively. By accurately computing 

FX(x) from satellite data and estimating FY(y) for UAV 

images, the alignment of distributions becomes achieva-

ble via FX
−1(FY(y)). 

The proposed technique consists of two phases: 

1) calculating the average cumulative distribution 

function from the satellite images; 

2) applying this average distribution individually 

to UAV-captured images. 

Algorithm 1 provides the pseudocode for compu-

ting the averaged cumulative distribution function from 

satellite imagery, and Algorithm 2 outlines the averaged 

function’s application to individual UAV images. 
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Algorithm 1 

Calculating the averaged cumulative distribution func-

tion from the satellite images 

Input: ℛ = {r1, r2, … , rn} – n satellite images. 

Initialization: Fsum ← 0x×c, x ∈ [0; 255], c ∈ {R, G, B}. 

For i in 1..n 

Step 1. Compute the normalized histogram (probabil-

ity density function) for each color channel c ∈
{R, G, B}: 

Ec,i(x) =
Hc,i(x)

∑ Hc,i(x)255
x=0

, 

where Hc,i(x) is the number of pixels with value x in 

channel c of the i-th satellite image. 
Step 2. Compute the cumulative distribution function 

(CDF) for each channel: 

Fc,i(x) = ∑ Ec,i(k)

x

k=0

. 

Step 3. Add the cumulative distribution function val-

ues to Fsum to later derive the average cumulative dis-

tribution function: 

Fi(x) = [FR,i(x), FG,i(x), FB,i(x)]; 
Fsum(x) = Fsum(x) + Fi(x). 

End For 

Step 4. The averaged cumulative distribution function 

(CDF) is computed as follows: 

F̂(x) =
Fsum(x)

n
. 

Output: F̂(x) – averaged cumulative distribution func-

tion of satellite images, x ∈ [0; 255]. 
 

Algorithm 2 

Applying the averaged cumulative distribution function 

of satellite images to UAV images individually. 

Input: 𝒬 = {q1, q2, … , qm} – m UAV images. 

For j in 1..m 

Step 1. Compute the normalized histogram (probabil-

ity density function) for each color channel c ∈
{R, G, B}: 

Dc,j(y) =
Sc,j(y)

∑ Sc,j(y)255
y=0

, 

where Sc,j(y) is the number of pixels with value y in 

a channel c of the j-th UAV image. 

Step 2. Compute the cumulative distribution function 

(CDF) for each channel: 

Gc,j(y) = ∑ Ec,j(n)

y

n=0

. 

Step 3. Define the transformation function for each 

channel c by finding the value at which the cumula-

tive distribution function (CDF) from the UAV im-

ages aligns with the averaged cumulative distribution 
function of satellite images: 

Mc,j(y) = F̂c,j
−1 (Gc,j(y)), 

where F̂c
−1 is the inverse function of the averaged cu-

mulative distribution function for satellite images in 

a channel c. Because F̂c
−1 might be non-analytical, in-

terpolation is used as an approximation: 

Mc,j(y) = interp(Gc,j(y), F̂c(z), z), 

where interp is an interpolation function that finds 

the corresponding z for each Gc(y), such that F̂c(z) ≈
Gc(z). 

End For 

Output: Mc,j(y) – the resulting function that transforms 

the input pixels of the j-th UAV image for the given color 

channel c, y ∈ [0; 255]. 
 

Histogram alignment ensures that UAV and satel-

lite imagery share similar pixel intensity distributions, 

adjusting contrast, brightness, and tonal attributes, mini-

mizing variations within classes and enhancing feature 

matching and recognition accuracy. 

 

2.2. Evaluation 

 

The standard evaluation metrics employed for im-

age segmentation include mAP, Precision, Recall, and 

F1-score. Metrics such as Precision, Recall, and  

F1-score, are widely used across machine learning tasks, 

extending from binary classifications to segmentation. 

The absence of true-negative values in the confusion ma-

trix is a unique aspect of segmentation tasks, although 

this does not affect the calculation of these metrics. 

Additionally, mean Average Precision (mAP) war-

rants individual discussion. It is formally represented as 

follows: 

 

APc = ∑(Rn − Rn−1)Pn

N

n=1

, (3) 

mAP =
1

C
∑ APc

C

c=1

, (4) 

 

where Pn and Rn are Precision and Recall at threshold n 

with R0 = 0 and RN = 1, С is the number of classes, APc 

– average precision for the class c. 

APc can alternatively be viewed as the area under 

the Precision-Recall curve specific to class c. In the cur-

rent study, which focuses exclusively on buildings, the 

mAP simplifies to APb. 

Recall@N [26] is frequently used to assess locali-

zation techniques. According to this metric, if the corre-

sponding database image appears within the top N search 

outcomes, search results are true-positive for a given 

query. This metric is widely recognized in the computer 

vision domain, particularly when additional processing 

can further filter incorrect matches: 

 

Recall@N =
M𝒬

N𝒬

, (5) 
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where N𝒬 is the total number of query images, and M𝒬 is 

the number of queries with at least one correct match 

within the top-N results. 

An alternative metric version incorporates a locali-

zation radius, considering a match as true-positive if the 

spatial distance between the query and database images 

is within a specified range, defined in meters or frame 

count. This variant is particularly beneficial for scenarios 

involving overlapping reference imagery, allowing pre-

cise UAV localization even without exact image 

matches. 
 

3. Results and Discussion 
 

3.1. YOLO fine-tuning 
 

Given that the standard YOLO model does not rec-

ognize buildings as a specific class, this study suggests 

fine-tuning the YOLO11 [34] model using a specialized 

dataset exclusively consisting of building segmentation. 

The dataset encompasses 9,665 images from cities in-

cluding Tyrol (2999), Tripoli (1078), Kherson (1053), 

Donetsk (999), Mekelle (951), Mykolaiv (739), and 

Kharkiv (602). Figure 3 shows an example of building 

segmentation from the training dataset. 

The YOLO11 model was fine-tuned using the 

building segmentation dataset [35] and the open-source 

Python library ultralytics [36], running on an Ubuntu op-

erating system and an Nvidia MSI RTX 3060 GPU. The 

segmentation task targeted buildings exclusively, and the 

default YOLO11 architecture was implemented with 100 

training epochs and 640-pixel image resolution. 

The performance metrics for the refined YOLO 

model – mAP, Precision, Recall, and F1-score – were cal-

culated. The F1-score was prioritized because of its bal-

anced assessment of both false negatives (missed  

buildings) and false positives (incorrectly identified non-

buildings). Metrics were averaged (Avg) and standard 

deviations (Std) were computed from seven randomized 

splits of the dataset into 80% training and 20% testing 

subsets to evaluate model reliability. 

Figure 4 illustrates a sample of building segmenta-

tion results derived from an image within the test set used 

for the YOLO11 model’s fine-tuning. Figure 5 depicts a 

similar building segmentation outcome using an image 

sourced from the VPAIR dataset [21]. 

Figure 6 shows the training and validation loss 

curves associated with the YOLO11 model, specifically 

fine-tuned using the optimal split of training and testing 

datasets. The YOLO model architecture incorporates 

multiple loss functions combined using a weighted sum-

mation approach. The following four distinct loss func-

tions are employed for tasks related to image segmenta-

tion: 

1) box_loss focuses primarily on the precise posi-

tioning of bounding boxes surrounding detected objects 

(assigned weight: 7.5). 

2) seg_loss – targets the accurate delineation of 

segmentation masks around the identified objects (as-

signed weight: 7.5); 

3) cls_loss – emphasizes the correct categorization 

of detected objects (assigned weight: 0.5); 

4) dfl_loss – emphasizes differentiation between 

visually similar or challenging-to-distinguish objects by 

highlighting unique characteristics (assigned weight: 

1.5). 

The presented graphs confirm the capacity of the 

model to effectively learn and generalize underlying fea-

tures from the dataset, as evidenced by a steady decline 

in the training loss and its stabilization when evaluated 

on the validation dataset. 

 

 
Fig. 3. An example of segmented buildings from one image of the training dataset 
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Fig. 4. An example of building segmentation on an image from the test dataset used for fine-tuning YOLO11 

 

 
Fig. 5. An example of building segmentation on an image from the VPAIR dataset [21] 

 

 
Fig. 6. Loss function plots for the training (train) and validation (val) sets 
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Figure 7 provides the confusion matrix, excluding 

true-negative metrics since defining such metrics is am-

biguous within segmentation contexts. 

 

 
 

Fig. 7. The confusion matrix for the YOLO11  

fine-tuned model on the dataset of segmented buildings 

 

Table 1 summarizes the evaluation metrics for the 

YOLO11 model, specifically fine-tuned on the building 

segmentation dataset. This summary includes metrics, 

such as mean Average Precision (mAP), Precision, Re-

call, and F1-score, computed over seven unique splits of 

training and testing data subsets. Additionally, average 

(Avg) values and standard deviations (Std) are provided 

to provide insights into the performance stability of the 

model. 

Figure 8 presents the Precision-Recall curve for the 

top-performing split of training and testing data, achiev-

ing an area under the curve (AUC [37]) of 0.76. Such a 

curve is particularly significant for segmentation tasks 

because it underscores the model’s ability to accurately  

identify positive instances (buildings) of notable class 

imbalance (buildings versus background). 

For building segmentation tasks, especially those 

involving partially obscured structures or buildings with 

intricate outlines, achieving an F1-score of 0.722 on the 

test dataset reflects a favorable result, notably consider-

ing the YOLO models’ inherent advantage of real-time 

performance. This suggests that the fine-tuned model re-

liably recognizes buildings, a critical capability for pro-

ducing vector data necessary for UAV-based global po-

sitioning. Additionally, the standard deviation values for 

all evaluated metrics are consistently under 0.5% across 

both the training and testing subsets, highlighting the 

model’s robustness and uniformity. Future research di-

rections might include modifications to the structure of 

the YOLO11 neural network and fine-tuning hyperpa-

rameters to further enhance the F1-score, particularly for 

building segmentation scenarios. 
 

 
 

Fig. 8. Precision-Recall curve for YOLO11  

fine-tuned model on the dataset of segmented buildings 

 

Table 1 

Evaluation metrics obtained from the fine-tuned YOLO11 model on the segmented building dataset 

Metric  
Random splitting 

Avg Std 
1 2 3 4 5 6 7 

mAP 
Train 0.813 0.821 0.820 0.823 0.813 0.817 0.814 0.817 0.0043 

Test 0.748 0.760 0.757 0.755 0.757 0.753 0.749 
0.754 0.0043 

Recall 
Train 0.727 0.737 0.736 0.738 0.728 0.730 0.728 0.732 0.0047 

Test 0.677 0.685 0.681 0.679 0.681 0.680 0.673 
0.680 0.0037 

Precision 
Train 0.809 0.819 0.815 0.820 0.809 0.813 0.813 0.814 0.0042 

Test 0.764 0.773 0.775 0.768 0.778 0.770 0.769 
0.771 0.0047 

F1 
Train 0.766 0.775 0.773 0.777 0.766 0.769 0.768 0.771 0.0044 

Test 0.718 0.727 0.725 0.721 0.726 0.722 0.718 
0.722 0.0037 
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3.2. Visual place recognition with image  

preprocessing method 
 

The VPAIR dataset [21] was utilized to validate the 

method designed to align statistical distributions between 

UAV and satellite images. Specifically created for UAV 

localization tasks under challenging scenarios, this da-

taset was compiled during a 107-kilometer flight stretch-

ing from Bonn into the mountainous Eifel area in Ger-

many. The data collection, performed on October 13, 

2020, covered various terrains, such as urban zones, ag-

ricultural fields, and forested regions. Images were cap-

tured using a single-lens color camera with a resolution 

of 1600x1200 pixels, subsequently downsized to 

800x600 pixels for dataset inclusion, alongside highly ac-

curate GNSS/INS positioning (rotational error: 0.05°, po-

sitional accuracy: <1 meter). The complete dataset con-

tains 2706 query images from the flight, an equal number 

of matching satellite images, and an additional 10,000 

distractor images from a separate region near Düsseldorf. 

Because the terrain-type annotations from the orig-

inal authors were not publicly available, a new classifica-

tion was developed into four distinct terrain categories: 

urban (primarily buildings and roads), field, forest, and 

water. 

The statistical distribution alignment method be-

tween UAV and satellite images for UAV localization 

was validated using the VPAIR dataset [21], employing 

the Recall@1 metric with a localization radius of 3. Met-

rics were assessed across varied terrain types, including 

urban, field, forest, and water. This study prioritized ur-

ban terrain, reflecting the specialized fine-tuning of the 

YOLO11 model on segmented buildings for generating 

feature vectors. 

Three comparative experiments were executed be-

tween the proposed YOLO11-based method and estab-

lished UAV localization approaches (CosPlace [23]): one 

using original, unprocessed VPAIR dataset [21] images, 

another utilizing grayscale image conversions, and a third 

applying the proposed preprocessing method. 

Figure 9 demonstrates the visual outcomes obtained 

using the introduced averaged cumulative distribution 

function (CDF) approach on UAV imagery, matching 

their statistical properties with corresponding satellite 

images. 

 

 
Fig. 9. Visual results of the proposed averaged cumulative distribution function (CDF) method applied  

to UAV images, aligning their statistical distributions with those of the satellite images.  

From left to right: satellite images – original UAV images – transformed UAV images 



Methods and means of image processing 
 

161 

Table 2 provides a comprehensive snapshot of how 

each stage of the evaluation pipeline influences the final 

localization accuracy. For every UAV query image in the 

VPAIR dataset [21], the following sequence was exe-

cuted three times, once per color-handling variant, before 

recording Recall@1 with a localization radius of 3. A 

step-by-step methodology to achieve these results is pro-

vided below. 

1. Color handling – (a) leave the RGB image un-

changed, (b) convert it to single-channel grayscale, or (c) 

apply the proposed averaged cumulative distribution-

function (CDF) transfer that aligns UAV pixel statistics 

to the satellite domain. 

2. Embedding extraction – feed the pre-pro-

cessed image to either CosPlace [23] or to our fine-tuned 

YOLO11 model. 

3. Nearest-neighbour retrieval – perform an L2 

search against the 2706-image satellite reference set; the 

closest match is taken as the predicted place. 

4. Localization test – declare a hit if the matched 

satellite tile lies within three reference frames of the 

ground-truth tile; otherwise record a miss. 

5. Metric aggregation – accumulate hits over all 

2706 queries separated into four terrain labels (Urban, 

Field, Forest, Water) and report the proportion of hits as 

Recall@1 for that terrain. 

The findings reveal enhanced performance for 

CNN-based localization techniques (CosPlace [23], 

YOLO) when the proposed preprocessing strategy is em-

ployed, validating its effectiveness in improving global 

localization accuracy for UAVs. While CosPlace [23] 

shows superior performance for terrains such as fields, 

forests, and water, the proposed YOLO-based technique 

excels particularly in urban areas and targeted terrains. 

This performance gain arises primarily from the 

YOLO11 model being fine-tuned using segmented build-

ing data. 

Given the significant challenges typically encoun-

tered in UAV global localization tasks, where sustaining 

high accuracy at top ranks remains difficult, achieving a 

Recall@1 score of 0.195 (19.5%) within a localization 

radius of 3 for urban settings is highly encouraging. This 

underscores the YOLO11 approach’s competitiveness 

and robustness, even when faced with input data variabil-

ity. Additionally, the performance of this approach sur-

passes established methods, such as CosPlace [23], high-

lighting its current effectiveness within CNN-based lo-

calization research. 

However, the proposed UAV global localization 

method has several limitations, including its limited ap-

plicability to urban regions during daytime and favorable 

weather conditions and its dependence on a predeter-

mined collection of satellite images along the anticipated 

UAV flight paths. 
 

4. Conclusions 
 

The main goal of this study was effectively accom-

plished: the development of a resilient UAV–satellite im-

age matching method that leverages deep embeddings 

and color normalization to strengthen precision and ro-

bustness under challenging cross-view and urban condi-

tions. Fine-tuning the YOLO11 model with a dataset con-

taining segmented building data generated vector repre-

sentations that considerably boosted the accuracy of 

matching UAV images to satellite images. 

The proposed preprocessing technique, which fo-

cuses on synchronizing the statistical distributions be-

tween satellite imagery and images captured by UAVs, 

demonstrated notable benefits. It elevated visual con-

sistency vital for accurate localization, surpassing estab-

lished approaches like CosPlace [23], especially within 

urban and specific terrain contexts. The quantitative re-

sults include achieving an F1-score of 0.722, indicating 

robust and reliable performance in building segmenta-

tion, which is critical for generating effective vector rep-

resentations. Moreover, the obtained Recall@1 metric of 

19.5% within a localization radius of 3 significantly ex-

ceeds existing urban terrain benchmarks, underscoring 

the suggested approach’s enhanced robustness and com-

petitive edge. 

 

Table 2 

Recall@1 metric results with a localization radius of 3 across different terrain types from the VPAIR dataset [21] 

Method Urban Field Forest Water 

(a) Without color preprocessing 

CosPlace [23] 0.140 0.097 0.122 0.364 

YOLO (Our) 0.181 0.049 0.055 0.345 

(b) Using grayscale preprocessing 

CosPlace [23] 0.132 0.093 0.114 0.366 

YOLO (Our) 0.175 0.030 0.038 0.255 

(c) Using proposed averaged cumulative distribution function 

CosPlace [23] 0.145 0.108 0.134 0.374 

YOLO (Our) 0.195 0.068 0.070 0.545 
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The key advantages of this research include the ca-

pability for swift and precise UAV localization in unreli-

able GPS signals, thus addressing significant weaknesses 

of existing localization frameworks. Combining 

YOLO11’s inherent real-time processing efficiency with 

advanced vector-matching strategies provides a viable 

and efficient solution, which is particularly beneficial for 

practical applications involving urgent operations, such 

as emergency rescue, urban surveillance, and infrastruc-

ture evaluation. 

However, despite these advancements, the proposed 

method’s current application scope remains predomi-

nantly effective in urban settings under ideal conditions, 

namely, during daytime and favorable weather condi-

tions. Its performance also depends heavily on the avail-

ability and quality of an existing database of satellite im-

agery aligned with possible UAV operational routes. Fur-

thermore, to minimize the effects of seasonal variations 

on visual place recognition, the reference imagery should 

be captured in the summer, late spring, or early autumn, 

when the environmental appearance is most stable and 

consistent. Additionally, the imagery used should closely 

resemble those from the VPAIR dataset [21], with a min-

imum spatial resolution of 640×640 pixels, to ensure suf-

ficient detail and comparability for robust feature extrac-

tion and matching. Moreover, the difference in resolution 

between UAV and satellite images is irrelevant because 

all images are converted to a resolution of 640×640 pix-

els when fed into YOLO. 

Future research should aim to enhance the versatil-

ity and precision of the YOLO11 model for more exten-

sive segmentation and localization tasks. Extensive im-

age augmentation strategies, architectural improvements, 

and meticulous hyperparameter tuning can achieve this. 

Additionally, extending the localization capabilities to 

cover varied landscapes such as forests, agricultural 

fields, and aquatic regions would substantially increase 

the adaptability and practical utility of the proposed 

method, thereby expanding its applicability across a 

wider range of UAV mission scenarios. 
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МЕТОД ДЛЯ СПІВСТАВЛЕННЯ СУПУТНИКОВИХ І БПЛА-ЗОБРАЖЕНЬ  

ДЛЯ ВІЗУАЛЬНОГО РОЗПІЗНАВАННЯ МІСЦЕВОСТІ ІЗ ВИКОРИСТАННЯМ  

МІЖРАКУРСНОЇ КОЛЬОРОВОЇ НОРМАЛІЗАЦІЇ 

В. З. Возняк, О. В. Бармак, Ю. В. Крак 

Предметом дослідження є візуальне розпізнавання місцевості (Visual Place Recognition, VPR), а саме 

зіставлення супутникових зображень із зображеннями, отриманими з безпілотних літальних апаратів (БПЛА). 

VPR є важливим для автономної навігації БПЛА, особливо в умовах, коли сигнали глобальних навігаційних 

супутникових систем (GNSS) ненадійні, наприклад, в умовах міської забудови чи територій із щільною ін-

фраструктурною забудовою. Незважаючи на практичну значимість, точне зіставлення зображень БПЛА із су-

путниковими залишається складною задачею через значні відмінності в ракурсі, масштабі, освітленні та тек-

стурі. Традиційні підходи на основі ручних дескрипторів або класичних локальних ознак часто неефективні в 

умовах таких міжвидових відмінностей. Метою цього дослідження є розробка надійного методу візуального 

розпізнавання місць для співставлення зображень, отриманих БПЛА та супутниками, із використанням вбу-

довувань на основі глибинного навчання та розширених методів нормалізації кольорів для підвищення надій-

ності в умовах міжракурсних відмінностей. Завдання: по-перше, розробити метод генерації глобальних век-

торних представлень на базі YOLO, який використовує можливості багатомасштабної екстракції ознак для 

кодування семантично значущих орієнтирів місцевості; по-друге, створити та впровадити нову техніку пере-

добробки зображень на основі вирівнювання статистичних розподілів кольору між зображеннями БПЛА та 

супутниковими зображеннями; по-третє, інтегрувати ці компоненти у завершену систему VPR та оцінити її 

ефективність на складному наборі даних VPAIR з акцентом на міські території. Методи, що використову-

ються, включають глибоке навчання, зокрема налаштування нейромережі YOLO11 на наборі даних, спеціа-

льно анотованому для сегментації будівель. Додатково застосовуються статистичні методи вирівнювання на 

основі кумулятивних функцій розподілу (CDF) для стандартизації вигляду зображень двох різних доменів. 

Висновки. Проведені експерименти показали значне покращення ефективності зіставлення зображень БПЛА 

із супутниковими завдяки запропонованому методу. Налаштування YOLO11 спеціально для сегментації бу-

дівель забезпечило створення надійних векторних представлень, що дозволило досягти високої точності сег-

https://docs.ultralytics.com/models/yolo11
https://universe.roboflow.com/roboflow-universe-projects/buildings-instance-segmentation/dataset/1
https://universe.roboflow.com/roboflow-universe-projects/buildings-instance-segmentation/dataset/1
https://universe.roboflow.com/roboflow-universe-projects/buildings-instance-segmentation/dataset/1
https://github.com/ultralytics/ultralytics
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ментації (F1-score – 0,722). Метод кольорової передобробки додатково покращив точність розпізнавання: зна-

чення Recall@1 досягло 19,5% для міських територій при радіусі локалізації 3, значно перевищуючи показ-

ники традиційних підходів. Дане дослідження пропонує ефективне рішення для задач локалізації БПЛА, зок-

рема в складних міських умовах, підкреслюючи важливість комплексного підходу до генерації векторних 

представлень та передобробки зображень. 

Ключові слова: візуальне розпізнавання місцевості; БПЛА; YOLO; передобробка зображень; глибоке 

навчання; сегментація зображень. 
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