150 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)

UDC 004.8 doi: 10.32620/reks.2025.3.11
Volodymyr VOZNIAK!, Oleksander BARMAK!, lurii KRAK??

! Khmelnytskyi National University, Khmelnytskyi, Ukraine
2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
% Glushkov Cybernetics Institute, Kyiv, Ukraine

METHOD FOR MATCHING SATELLITE AND UAV IMAGES FOR VISUAL PLACE
RECOGNITION WITH CROSS-VIEW COLOR NORMALIZATION

The subject of this article is visual place recognition (VPR), specifically matching satellite images with images
captured by unmanned aerial vehicles (UAVs). VPR is critical for autonomous UAV navigation, particularly in
GPS-denied environments such as urban canyons or areas with significant infrastructure coverage where GNSS
signals are unreliable. Despite its practical importance, accurately matching UAV images to satellite imagery
remains challenging due to significant viewpoint, scale, illumination, and texture discrepancies. Traditional ap-
proaches that rely on handcrafted descriptors or classical local features often fail under such cross-view condi-
tions. This study aims to design a robust visual place recognition method for matching UAV and satellite im-
agery, employing deep learning-based embeddings and advanced color normalization to improve reliability
across cross-view scenarios. The tasks addressed in this article are: firstly, designing a YOLO-based method is
designed for extracting global image embeddings, which utilizes YOLO’s multi-scale feature extraction capabil-
ities to encode semantically significant landmarks in the scene. Second, a novel preprocessing technique based
on aligning statistical color distributions between UAV and satellite images was developed and implemented to
enhance their visual congruence. Finally, these components are integrated into a complete VPR system and
evaluated for effectiveness using the challenging VPAIR dataset, emphasizing urban settings. The methods em-
ployed include deep learning techniques, particularly fine-tuning a YOLO11 neural network on a dataset spe-
cifically annotated for building segmentation. Statistical alignment techniques based on cumulative distribution
functions (CDF) were used to standardize image appearances between the two distinct image domains. Conclu-
sions. The experiments demonstrate significant improvements in UAV-to-satellite image matching performance
using the proposed method. Fine-tuning YOLO11 specifically for building segmentation resulted in a robust
embedding generation method that achieved high segmentation accuracy (F1-score of 0.722). The color prepro-
cessing technique further improved the recognition performance, with Recall@1 reaching 19.5% for urban ter-
rain within a localization radius of 3, substantially outperforming the traditional methods. This study provides
an effective solution for UAV localization tasks, particularly in complex urban environments, highlighting the
importance of integrated embedding extraction and domain-specific image preprocessing in cross-view visual
place recognition.

Keywords: visual place recognition; UAV; YOLO; image preprocessing; deep learning; image segmentation.

1. Introduction (VPR) is one such approach, wherein the UAV’s onboard
camera is used to recognize its location by matching the
1.1. Motivation current view against a database of geo-referenced images

[2]. Matching UAV-captured images to satellite imagery
Unmanned Aerial Vehicles (UAVs) are increas-  has emerged as a practical solution for global localiza-
ingly employed for tasks ranging from environmental  tjon, since satellites provide broad coverage and readily
monitoring and disaster response to smart agricultureand  ayajlable maps. This cross-view image matching prob-
urban planning [1]. A core requirement in these applica-  |em, identifying the same place from drastically different
tions is the accurate self-localization of the UAV. While  yjewpoints (ground obligue vs. overhead), is the focus of
Global Navigation Satellite Systems (GNSS) like GPS  extensive research due to its importance for autonomous
are the de facto solution, they often fail or degrade in per- AV navigation in GNSS-denied environments [3].
formance under signal blockages or interference (e.g., ur- However, UAV-satellite image matching poses sig-
ban canyons, areas with significant infrastructure cover- pjfjcant challenges [4]. The two image domains differ in
age). Vision-based localization offers an attractive alter-  \jewpoint (oblique/side perspective vs. top-down), scale,
native in GPS-denied scenarios, providing low-cost, rich-  and resolution and often exhibit stark appearance dis-
information positioning that does not suffer cumulative  crepancies in color, illumination, and texture [5]. Sea-
drift [1]. One such approach is Visual Place Recognition  sonal changes and weather conditions can alter the view
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of the UAV, while satellite images may be captured at
different times or spectral bands, thereby exacerbate vis-
ual mismatches. Moreover, aerial scenes often contain re-
petitive patterns (e.g., rooftops and fields) with few dis-
tinct landmarks, making correspondence ambiguous.
Traditional feature-based methods struggle in this con-
text. For instance, the direct matching of keypoints be-
tween UAV and satellite images is unreliable due to ex-
treme viewpoint differences and loss of 3D information
[3]. Asaresult, the early approaches to UAV localization
that relied on classical local features (SIFT, SURF) or
handcrafted descriptors had limited success in cross-view
settings.

These challenges motivate the use of learned image
embeddings to bridge the domain gap between UAV and
satellite imagery [6]. The rapid progress of deep learning
in computer vision has led to powerful convolutional
neural network (CNN) features and architectures that sig-
nificantly improve the robustness of place recognition
[3]. Deep models can learn viewpoint-invariant and ap-
pearance-invariant representations by training on large
datasets, succeeding where handcrafted descriptors fail.
Visual localization systems have begun to leverage such
deep embeddings to achieve high recall despite perspec-
tive changes, effectively overcoming many limitations of
traditional methods.

Appropriate image preprocessing techniques play a
crucial role in enhancing the effectiveness of these deep
learning-based approaches. Preprocessing steps, such as
geometric transformations, color normalization, illumi-
nation correction, and scale adjustment, significantly re-
duce domain discrepancies between UAV and satellite
imagery [7]. For example, geometric rectification and
alignment methods can normalize perspectives, reduce
viewpoint variability, and simplify cross-domain match-
ing. lllumination and color normalization techniques mit-
igate the effects of lighting variations and atmospheric
conditions, thereby stabilizing visual features across di-
verse environmental conditions. Additionally, prepro-
cessing can emphasize relevant semantic features while
suppressing irrelevant or ambiguous details, thereby en-
abling a more consistent feature extraction by the subse-
quent deep learning models.

Given the constrained compute resources on UAV
platforms, methods that are not only accurate but also ef-
ficient are needed. In this regard, the YOLO family [8] of
object detection networks stands out for its speed and ac-
curacy balance, even on edge devices [1]. YOLO-based
models process images in real-time on limited hardware,
making them promising candidates for UAV place recog-
nition. Moreover, YOLO’s architecture provides mul-
tiscale feature extraction and focuses on salient objects,
enriching place descriptors with semantically meaningful
cues. These considerations underpin the proposed ap-
proach, which exploits the strengths of YOLO to create

robust image embeddings for cross-view VPR while sim-
ultaneously addressing the appearance gap through me-
ticulous image preprocessing.

1.2. State of the art

Modern visual place recognition is typically formu-
lated as an image retrieval problem: a query image (e.g.,
a UAV snapshot) is compared against a large database of
geo-tagged reference images (e.g., satellite map tiles),
and the most similar match is returned as the hypothe-
sized location [3]. The key to this process is a reliable
image descriptor or embedding that makes matching ac-
curate and efficient. Early VPR systems (around the
2000s) used handcrafted global descriptors built on local
features, such as bag-of-visual-words representations [9].
Notably, FAB-MAP [10] introduced an appearance-
based place recognition method using a bag-of-words al-
gorithm over SURF features, and DBoW?2 [11] improved
speed with binary feature quantization. Although effec-
tive for moderate viewpoint changes, these classical
methods degrade severely under the wide baseline differ-
ences in UAV vs. satellite imagery.

The advent of deep learning caused a step-change
in descriptor quality: CNN-based embeddings proved far
more robust to illumination and viewpoint variation than
engineered features. A seminal example is NetVLAD
[12], which combined a CNN backbone with a VLAD
aggregation layer to produce compact global descriptors,
dramatically outperforming prior approaches on place
recognition benchmarks. Subsequent research has re-
fined global embeddings through various means, e.g.,
multiscale feature fusion and local feature integration in
Patch-NetVLAD [13], or transformer-based context ag-
gregation in recent methods — all with the aim of captur-
ing distinctive scene signatures that remain stable despite
viewpoint changes.

A typical VPR pipeline consists of (1) feature ex-
traction, where each image is converted to a descriptor,
and (2) feature matching/retrieval, where the descriptor
of a query is compared to those in the reference database
(often via nearest-neighbor search in the embedding
space). To handle cross-view scenarios, such as UAV-to-
satellite matching, specialized architectures are used. A
common approach is a dual-branch network (Siamese or
triplet network) that learns to map UAV and satellite im-
ages into a common embedding space, usually by train-
ing with metric learning objectives (contrastive or triplet
loss) so that true match pairs come together in that space.
This training paradigm, known as cross-view metric
learning, has been widely adopted in recent studies.

For example, [14] pioneered ground-to-aerial local-
ization by learning CNN features to match street-level
images with satellite images. [15] further demonstrated
deep regression of geo-coordinates from ground images
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using aerial reference data. Building on these, the intro-
duction of the University-1652 dataset by [16] brought
UAV drone imagery into the mix, enabling learning-
based geo-localization where drones capture building fa-
cades and are matched to overhead maps. University-
1652 and its variants framed UAV VPR as an image re-
trieval task and spurred the development of numerous
deep models. For instance, the dataset was used to train
cross-view networks with classification and triplet-loss
schemes, significantly improving retrieval accuracy for
drone views.

In recent years, new benchmarks have continued to
push the state of the art: VIGOR [17] introduced a vali-
dation beyond one-to-one matching by allowing multiple
correct matches and negative mining, and SUES-200 [18]
provided a large-scale cross-view dataset with multi-alti-
tude drone images and diverse scenes to evaluate robust-
ness across different flight heights. Even specialized da-
tasets such as ALTO [19] focus on large-scale outdoor
environments for UAV place recognition, or the very re-
cent ComplexUAV [20] emphasizes complex multi-ter-
rain scenarios, reflecting the community’s drive toward
more realistic evaluations.

The VPAIR dataset [21] complements these exist-
ing benchmarks by addressing challenges specific to me-
dium to high altitude aerial scenarios. The dataset in-
cludes downward-facing camera images paired with
high-resolution, rendered reference imagery, dense depth
maps, and precise 6-DoF reference poses captured from
a light aircraft at altitudes between 300 and 400 m. The
107-kilometer-long trajectory spans diverse landscapes,
including urban, agricultural, and forested regions, high-
lighting challenges such as large viewpoint differences
and significant in-plane rotations. Experiments on
VPAIR underscore the need for rotation-robust and com-
putationally efficient image descriptors tailored explic-
itly for aerial-to-aerial VPR tasks.

Several techniques have been proposed to generate
robust image embeddings for VPR. Researchers have ex-
plored local feature-based recognition beyond the
CNN+VLAD approaches, with the hypothesis being that
explicit keypoint matching could complement global de-
scriptors. For example, a 2023 study asked “Are local
features all you need for cross-domain VPR?” and found
that incorporating learned local features can boost perfor-
mance in challenging domain shifts. Hybrid methods
now often combine global and local cues: a global re-
trieval to shortlist candidates, followed by local feature
matching to re-rank or verify (a strategy employed by
Patch-NetVLAD [13] and others). Meanwhile, the rise of
Vision Transformers has influenced embedding design;
self-attention can encode long-range context useful for
place recognition, as seen in transformer-based global de-
scriptors and reranking models.

Numerous recent studies have investigated the use
of lightweight and multimodal feature representations for
place recognition. For instance, MinkLoc [22] uses
sparse 3D convolutions to enhance recognition perfor-
mance at scale, especially when applied to LIiDAR or
depth map inputs. Nevertheless, integrating such addi-
tional sensors can be unfeasible for UAVs due to strict
power and weight constraints. CosPlace [23] applied a
classification-oriented training strategy on the San Fran-
cisco XL dataset, which includes 40 million GPS-
annotated directional images, to address challenges in
image-based localization. Following that, MixVPR [24]
proposed a feature mixing approach based on MLPs,
trained using the GSV-Cities dataset [25], which consists
of 530,000 images spanning 62,000 different locations
worldwide. These cases highlight the growing reliance on
large-scale, highly curated datasets in contemporary VPR
research.

Another notable trend is leveraging foundation
models and self-supervised learning. [13] and [26] advo-
cated general, pre-trained features for VPR. Recently,
AnyLoc [27] demonstrated that using a pre-trained vision
transformer (without any task-specific fine-tuning) can
achieve state-of-the-art results on multiple VPR bench-
marks. This suggests that rich semantic embeddings from
models like OpenAl’s CLIP [28] or Meta’s DINOv2 [29]
are sufficiently discriminative for place recognition
across modalities. Indeed, self-supervised models trained
on massive image data have shown remarkable robust-
ness to viewpoint and appearance changes, making them
appealing for cross-view tasks. On the other hand, do-
main-specific training is still crucial to squeeze out max-
imum performance; methods such as EigenPlaces [30]
explicitly train on multi-view data to achieve viewpoint
invariance. In summary, the state-of-the-art in image em-
beddings for VPR encompasses a spectrum from task-
specific deep models to generic pretrained features, often
with an ensemble of global and local representation tech-
niques.

An important aspect of cross-view VPR is the han-
dling of the photometric disparities between UAV and
satellite images. Color preprocessing techniques attempt
to normalize or reduce these differences before feature
extraction, thereby making the recognition model’s task
easier. Applying histogram matching is a straightforward
approach: adjust the color histogram of the UAV image
to mimic that of the satellite image (or vice versa). While
histogram matching can align global color distributions,
it often leads to unnatural color distortions.

Recent research has proposed more nuanced color
transfer methods. For example, [2] performed color
alignment in a decorrelate color space by matching the
mean and variance of UAV image channels to those of
the satellite image, thereby avoiding some artifacts
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caused by direct histogram warping. This kind of prepro-
cessing (sometimes called color constancy or style trans-
fer) essentially standardizes the UAV image appearance
to be closer to the satellite domain before feeding it to the
network. The benefit is a reduced domain gap, the feature
extractor does not have to learn to ignore irrelevant color
differences. Indeed, [2] reported that applying such color
normalization to UAV images before training improved
geo-localization accuracy in their experiments.

Another popular strategy is data augmentation via
style variation: instead of directly altering the images at
test time, the model is trained on various appearance con-
ditions so that it becomes invariant. For instance, [5] used
neural style transfer to create augmented training samples
with different weather, lighting, and seasonal conditions,
thereby improving the model’s robustness to environ-
mental changes. This approach has the model effectively
learn to “see through” color and illumination differences.
However, appearance normalization has limitations. As
noted by [2], additional color correction may yield dimin-
ishing returns if images already contain rich color con-
tent, and over-normalizing can even wash out discrimi-
native details. Ultimately, geometric discrepancies
(viewpoint and object arrangement) pose a greater chal-
lenge than color; thus, color preprocessing is a helpful but
partial solution. It is most beneficial when the UAV and
satellite images have systematic color biases (e.g., one
captured at dusk and the other at noon), in which case
normalizing brightness and tone can significantly aid
matching. In current state-of-the-art pipelines, a combi-
nation of techniques is often used: basic normalization
(such as per-channel mean subtraction and scaling as
done in ImageNet preprocessing) is almost always ap-
plied, and in specialized cases, histogram equalization or
learned style translation may be added to further reduce
appearance gaps.

The [31] method complements existing prepro-
cessing techniques by introducing a style alignment strat-
egy to reduce intraclass visual discrepancies between
UAV and satellite images caused by differing illumina-
tion conditions and camera parameters. They use a cumu-
lative distribution-based mapping function derived from
the RGB channels of satellite images to unify drone im-
agery to a consistent satellite-like visual style. This align-
ment significantly mitigates differences in lighting and
color, thus improving feature consistency and matching
accuracy across disparate views. This strategy particu-
larly benefits scenarios with strong variations in drone
imagery due to sunlight or camera-induced chromatic ab-
errations.

1.3. Objectives and tasks

he objective of this work is to build an enhanced
visual place recognition system that aligns UAV images

with satellite views, integrating deep embedding models
and color preprocessing techniques to achieve greater ro-
bustness and precision, especially in urban cross-view
conditions. The target system is designed to reliably rec-
ognize places from a low-altitude UAV perspective by
matching against satellite imagery, even under signifi-
cant viewpoint and appearance changes. Based on the in-
sights from the state-of-the-art, our approach integrates a
YOLO-hased feature extractor with color normalization
techniques into the VPR pipeline. The motivation for us-
ing YOLUO lies in its demonstrated efficiency and ability
to capture multi-scale features and semantic objects in the
scene [1], which is hypothesized to provide a rich de-
scriptor for place recognition [32], [33]. Moreover, the
use of YOLO for visual place recognition represents a
novel contribution because these architectures have not
been previously applied in this domain. YOLO currently
ranks among the most accurate models for image detec-
tion and segmentation, and its exceptionally high infer-
ence speed ensures effective real-time performance com-
pared to transformer-based approaches. Meanwhile,
color preprocessing is employed to mitigate the domain
gap between UAV camera and satellite images, unifying
their visual characteristics and thus easing the learning
task.

The tasks addressed in this work are as follows:

1. YOLO Embedding Generation. A method is
designed and implemented to extract global image de-
scriptors from a YOLO network. Instead of using YOLO
solely for object detection, its internal feature maps are
repurposed to serve as image embeddings for the entire
scene. By doing so, the embedding inherently encodes in-
formation about prominent objects and structures that
could act as stable landmarks for place recognition
(learned through YOLO’s detection training).

2. Cross-Domain Color Preprocessing. The pre-
processing steps are investigated to unify the color distri-
butions of UAV and satellite images, with experiments
using methods such as histogram matching and learned
color transfer to standardize images across both domains.
The goal is to produce a consistent look between UAV
and satellite imagery, for example, by adjusting the UAV
images to approximate the spectral response of satellite
sensors or vice versa. The impact of converting images
to different color spaces and applying global normaliza-
tion will be evaluated.

3. System Integration and Evaluation. The
YOLO-based embedding and color preprocessing are in-
tegrated into a complete VPR pipeline for UAV localiza-
tion. This includes building a reference database of satel-
lite image descriptors, processing incoming UAV frames
through color normalization and embedding extraction,
and performing a fast nearest-neighbor search to retrieve
candidate matches. Then, a thorough evaluation is per-
formed on the benchmark dataset VPAIR [21],
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comparing the proposed method against classical feature-
based baselines and recent deep-learning methods. Key
evaluation metrics include Recall @K [26] and localiza-
tion accuracy under varying conditions, enabling the
quantification of improvements. The contribution of each
component (embedding network vs. color preprocessing)
is analyzed through ablation studies to confirm the tangi-
ble benefits of each proposed element.

The expected outcome is a state-of-the-art image
matching system that substantially improves UAV-
satellite place recognition performance by accomplishing
these tasks. In summary, the contributions of this paper
are as follows:

1) a novel YOLO-derived image embedding tai-
lored for cross-view place recognition;

2) a color normalization approach to bridge UAV
and satellite image appearance;

3) an extensive evaluation demonstrating superior
performance to existing methods on challenging cross-
view datasets.

Collectively, these contributions advance the field
of visual place recognition for aerial robots, moving
closer to reliable GPS-independent UAV navigation in
real-world environments.

The paper is structured as follows: Section 1 intro-
duces the problem of visual place recognition (VPR) for
UAVs, highlighting the challenges of cross-view image
matching between UAV and satellite imagery, and pro-
vides a comprehensive review of related work, objec-
tives, and motivation for the research. Section 2 describes
the materials and methods used in the study, detailing the
proposed approach that combines a YOLO-based embed-
ding extraction with statistical color preprocessing, as
well as the evaluation methodology and metrics for as-
sessing system performance. Section 3 presents the re-
sults and discussion, including the YOLO model fine-
tuning for building segmentation, the image prepro-
cessing method’s effectiveness, and experimental com-
parisons using the VPAIR dataset. Section 4 concludes
the paper by summarizing the main findings, discussing
the advantages and current limitations of the proposed
method, and outlining potential directions for future re-
search.

2. Materials and methods of research

2.1. Methods

Determining the location of Unmanned Aerial Ve-
hicles (UAVs) is typically addressed through Visual
Place Recognition (VPR). This study proposes a method
that compares UAV-captured query images against a ge-
otagged satellite imagery database. The system identifies
the UAV’s approximate global position by finding the
most closely matched satellite image or group of images.

Subsequently, a precise coordinate determination method
is used to align the UAV’s query image with the matched
satellite imagery.

Thus, the primary task can be divided into the fol-
lowing subtasks:

1) global location estimation: identifying the satel-
lite image (tile) most closely resembling the UAV’s
query image within an extensive database;

2) precise coordinate estimation: determining the
exact coordinates (latitude and longitude) within the se-
lected tile.

Figure 1 demonstrates the general workflow em-
ployed to determine the UAV coordinates.

This study specifically targets the determination of
global UAV locations in urban areas using CNN-based
methods. A detailed schematic overview of the proposed
approach is presented in Figure 2.

The following notation is introduced. Let @ = {q}
denote a query image captured by the UAV at a particular
location and orientation, and let R = {r;,r5, ...,ry} rep-
resent a set of predefined images (typically satellite im-
agery) with known coordinates.

Additionally, the following mapping is defined to
obtain vector representations (feature vectors) from im-
ages:

F:l1-V, 1)

where | is the image, V is the feature vector.
Consequently, the overall objective of UAV global

location determination to identify an image r; € R whose

spatial position {’(r]-) most closely aligns with the query

image position £(g). Formally, this is represented as fol-
lows:

k = argmin d (F(q), F(r]-)), )

1<j<n

where d(-,") is a metric (e.g., Euclidean distance) operat-
ing on images represented as feature vectors, and Kk is the
identified satellite image.

A satellite imagery database covering predeter-
mined flight routes must be accessible to facilitate UAV
global location identification. Using deep learning archi-
tectures, vector representations or image features can be
derived (1). In this study, the YOLO11 model is em-
ployed, specifically fine-tuned using segmented building
images. Feature vectors are extracted from the final back-
bone layer, as this layer encapsulates the richest image
information obtained through the convolutional structure
of YOLOL11. Crucially, the model is identical for obtain-
ing vector features from both UAV and satellite images.
Thus, the refined YOLO11 model generates image vec-
tors for the satellite database, enabling accurate UAV
global localization. YOLO11 is used to process real-time
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Fig. 2. Processing scheme for UAV global localization using an image preprocessing method
and a YOLO11 model fine-tuned on a segmented building dataset

UAV images to obtain vector representations (1), after
which the best-matching satellite image (2) is determined
using a similarity metric (e.g., Euclidean distance). This
matched satellite image represents the approximate
global position of the UAV.

To improve the visual congruence between UAV
and satellite imagery, a method is proposed to align their
statistical distributions. Unlike conventional methods
that directly apply satellite cumulative distribution func-
tions (CDF) to UAV images, which may lead to distor-
tion from mismatched distributions [31], our method cal-
culates transformations for each UAV frame individu-
ally, accommodating its specific distribution.

Our approach utilizes probability theory principles:
given a random variable € with a known distribution
function F¢(x), applying its own distribution function
generates a uniformly distributed variable y ~ U(0,1),
y = F:(&). Conversely, applying the inverse distribution
function to a uniform variable y ~ U(0,1) recovers & with

distribution F¢(x). Satellite images consistently captured
by similar sensors possess uniform color properties,
whereas UAV images captured under varying conditions
exhibit different statistical traits. Thus, pixel intensities
in images behave like distinct random variables, produc-
ing random variable Y and X from UAV and satellite im-
age intensities, respectively. By accurately computing
Fx(x) from satellite data and estimating Fy(y) for UAV
images, the alignment of distributions becomes achieva-
ble via Fx*(Fy(y)).

The proposed technique consists of two phases:

1) calculating the average cumulative distribution
function from the satellite images;

2) applying this average distribution individually
to UAV-captured images.

Algorithm 1 provides the pseudocode for compu-
ting the averaged cumulative distribution function from
satellite imagery, and Algorithm 2 outlines the averaged
function’s application to individual UAV images.
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Algorithm 1
Calculating the averaged cumulative distribution func-
tion from the satellite images
Input: R = {ry, 1y, ..., ry} —n satellite images.
Initialization: Fs"™ « 0,,,x € [0; 255],c € {R, G, B}.
Foriinl.n
Step 1. Compute the normalized histogram (probabil-
ity density function) for each color channel ¢ €
(R, G,B}:
c1(X)

EC,i(X) = 2255 HCI( )

where H;(x) is the number of pixels with value x in
channel c of the i-th satellite image.

Step 2. Compute the cumulative distribution function
(CDF) for each channel:

Fey() = ZECI(k)

Step 3. Add the cumulatlve dlstrlbutlon function val-

ues to FsU™ to later derive the average cumulative dis-

tribution function:

Fi(x) = [Fri(¥), Fg,i(x), Fp; X)];
FsUM(x) = FsU™(x) + F;(x).

End For
Step 4. The averaged cumulative distribution function
(CDF) is computed as follows:

F(X) _ FSUm (X)-

Output: F(x) — averaged cumulative distribution func-
tion of satellite images, x € [0; 255].

Algorithm 2
Applying the averaged cumulative distribution function
of satellite images to UAV images individually.
Input: Q ={q;,93, ---»qm} — M UAV images.
Forjinl.m
Step 1. Compute the normalized histogram (probabil-
ity density function) for each color channel ¢ €

{R,G,B}:
S

D.. —
(o8] (Y) 2255 SC](Y)
where S.;(y) is the number of pixels with value y in
a channel c of the j-th UAV image.

Step 2. Compute the cumulative distribution function
(CDF) for each channel:

Ges) —ZEC,(n)

Step 3. Define the transformatlon function for each
channel c by finding the value at which the cumula-
tive distribution function (CDF) from the UAV im-
ages aligns with the averaged cumulative distribution
function of satellite imageS'

( c,(y))

M;(y) =

where F71 is the inverse functlon of the averaged cu-
mulative distribution function for satellite images in

a channel c. Because FZ* might be non-analytical, in-
terpolation is used as an approximation:
Mc,j (Y) = interp(G(:,j (Y)t FC(Z)J Z);
where interp is an interpolation function that finds
the corresponding z for each G.(y), such that F.(z) =
G.(2).
End For
Output: M;(y) — the resulting function that transforms
the input pixels of the j-th UAV image for the given color
channel ¢, y € [0; 255].

Histogram alignment ensures that UAV and satel-
lite imagery share similar pixel intensity distributions,
adjusting contrast, brightness, and tonal attributes, mini-
mizing variations within classes and enhancing feature
matching and recognition accuracy.

2.2. Evaluation

The standard evaluation metrics employed for im-
age segmentation include mAP, Precision, Recall, and
Fl-score. Metrics such as Precision, Recall, and
F1-score, are widely used across machine learning tasks,
extending from binary classifications to segmentation.
The absence of true-negative values in the confusion ma-
trix is a unique aspect of segmentation tasks, although
this does not affect the calculation of these metrics.

Additionally, mean Average Precision (mAP) war-
rants individual discussion. It is formally represented as
follows:

N
AR, = D Ry =Ry )P, ©)
n=1
1 C
mAP = EZ AP,, 4
c=1

where P, and R, are Precision and Recall at threshold n
with R, = 0 and Ry = 1, C is the number of classes, AP,
— average precision for the class c.

AP, can alternatively be viewed as the area under
the Precision-Recall curve specific to class c. In the cur-
rent study, which focuses exclusively on buildings, the
mAP simplifies to AP,.

Recall@N [26] is frequently used to assess locali-
zation techniques. According to this metric, if the corre-
sponding database image appears within the top N search
outcomes, search results are true-positive for a given
query. This metric is widely recognized in the computer
vision domain, particularly when additional processing
can further filter incorrect matches:

My
Recall@N = —, (5)
No
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where Ny, is the total number of query images, and My, is
the number of queries with at least one correct match
within the top-N results.

An alternative metric version incorporates a locali-
zation radius, considering a match as true-positive if the
spatial distance between the query and database images
is within a specified range, defined in meters or frame
count. This variant is particularly beneficial for scenarios
involving overlapping reference imagery, allowing pre-
cise UAV localization even without exact image
matches.

3. Results and Discussion
3.1. YOLO fine-tuning

Given that the standard YOLO model does not rec-
ognize buildings as a specific class, this study suggests
fine-tuning the YOLO11 [34] model using a specialized
dataset exclusively consisting of building segmentation.
The dataset encompasses 9,665 images from cities in-
cluding Tyrol (2999), Tripoli (1078), Kherson (1053),
Donetsk (999), Mekelle (951), Mykolaiv (739), and
Kharkiv (602). Figure 3 shows an example of building
segmentation from the training dataset.

The YOLO11l model was fine-tuned using the
building segmentation dataset [35] and the open-source
Python library ultralytics [36], running on an Ubuntu op-
erating system and an Nvidia MSI RTX 3060 GPU. The
segmentation task targeted buildings exclusively, and the
default YOLO11 architecture was implemented with 100
training epochs and 640-pixel image resolution.

The performance metrics for the refined YOLO
model — mAP, Precision, Recall, and F1-score —were cal-
culated. The F1-score was prioritized because of its bal-
anced assessment of both false negatives (missed

Original Image

buildings) and false positives (incorrectly identified non-
buildings). Metrics were averaged (Avg) and standard
deviations (Std) were computed from seven randomized
splits of the dataset into 80% training and 20% testing
subsets to evaluate model reliability.

Figure 4 illustrates a sample of building segmenta-
tion results derived from an image within the test set used
for the YOLO11 model’s fine-tuning. Figure 5 depicts a
similar building segmentation outcome using an image
sourced from the VPAIR dataset [21].

Figure 6 shows the training and validation loss
curves associated with the YOLO11 model, specifically
fine-tuned using the optimal split of training and testing
datasets. The YOLO model architecture incorporates
multiple loss functions combined using a weighted sum-
mation approach. The following four distinct loss func-
tions are employed for tasks related to image segmenta-
tion:

1) box_loss focuses primarily on the precise posi-
tioning of bounding boxes surrounding detected objects
(assigned weight: 7.5).

2) seg_loss — targets the accurate delineation of
segmentation masks around the identified objects (as-
signed weight: 7.5);

3) cls_loss — emphasizes the correct categorization
of detected objects (assigned weight: 0.5);

4) dfl_loss — emphasizes differentiation between
visually similar or challenging-to-distinguish objects by
highlighting unique characteristics (assigned weight:
1.5).

The presented graphs confirm the capacity of the
model to effectively learn and generalize underlying fea-
tures from the dataset, as evidenced by a steady decline
in the training loss and its stabilization when evaluated
on the validation dataset.

True Segmentation

Fig. 3. An example of segmented buildings from one image of the training dataset
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Fig. 4. An example of building segmentation on an image from the test dataset used for fine-tuning YOLO11
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Fig. 5. An example of building segmentation on an image from the VPAIR dataset [21]
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Figure 7 provides the confusion matrix, excluding
true-negative metrics since defining such metrics is am-
biguous within segmentation contexts.

Confusion Matrix
17500

15000

Building 8462

12500
10000

7500

Predicted
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Background
2500

Backg‘round
True

Building

Fig. 7. The confusion matrix for the YOLO11
fine-tuned model on the dataset of segmented buildings

Table 1 summarizes the evaluation metrics for the
YOLO11 model, specifically fine-tuned on the building
segmentation dataset. This summary includes metrics,
such as mean Average Precision (mAP), Precision, Re-
call, and F1-score, computed over seven unique splits of
training and testing data subsets. Additionally, average
(Avg) values and standard deviations (Std) are provided
to provide insights into the performance stability of the
model.

Figure 8 presents the Precision-Recall curve for the
top-performing split of training and testing data, achiev-
ing an area under the curve (AUC [37]) of 0.76. Such a
curve is particularly significant for segmentation tasks
because it underscores the model’s ability to accurately
identify positive instances (buildings) of notable class
imbalance (buildings versus background).

For building segmentation tasks, especially those
involving partially obscured structures or buildings with
intricate outlines, achieving an F1-score of 0.722 on the
test dataset reflects a favorable result, notably consider-
ing the YOLO models’ inherent advantage of real-time
performance. This suggests that the fine-tuned model re-
liably recognizes buildings, a critical capability for pro-
ducing vector data necessary for UAV-based global po-
sitioning. Additionally, the standard deviation values for
all evaluated metrics are consistently under 0.5% across
both the training and testing subsets, highlighting the
model’s robustness and uniformity. Future research di-
rections might include modifications to the structure of
the YOLO11 neural network and fine-tuning hyperpa-
rameters to further enhance the F1-score, particularly for
building segmentation scenarios.

Precision-Recall Curve
1.0

0.84

0.6 4

Precision

0.24

0.0 02 04 06 08 1.0

Recall

Fig. 8. Precision-Recall curve for YOLO11
fine-tuned model on the dataset of segmented buildings

Table 1

Evaluation metrics obtained from the fine-tuned YOLO11 model on the segmented building dataset

) Random splitting
Metric Avg Std
1 2 3 4 5 6 7
AP Train 0.813 0.821 0.820 0.823 0.813 0.817 0.814 0817 0.0043
Test 0.748 0.760 0.757 0.755 0.757 0.753 0.749 0.754 0.0043
mecall Train 0.727 0.737 0.736 0.738 0.728 0.730 0.728 0732 0.0047
Test 0.677 0.685 0.681 0.679 0.681 0.680 0.673 0.680 0.0037
orecision Train 0.809 0.819 0.815 0.820 0.809 0.813 0.813 0814 0.0042
Test 0.764 0.773 0.775 0.768 0.778 0.770 0.769 0771 0.0047
el Train 0.766 0.775 0.773 0.777 0.766 0.769 0.768 0771 0.0044
Test 0.718 0.727 0.725 0.721 0.726 0.722 0.718 0722 0.0037




160

Radioelectronic and Computer Systems, 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

3.2. Visual place recognition with image
preprocessing method

The VPAIR dataset [21] was utilized to validate the
method designed to align statistical distributions between
UAV and satellite images. Specifically created for UAV
localization tasks under challenging scenarios, this da-
taset was compiled during a 107-kilometer flight stretch-
ing from Bonn into the mountainous Eifel area in Ger-
many. The data collection, performed on October 13,
2020, covered various terrains, such as urban zones, ag-
ricultural fields, and forested regions. Images were cap-
tured using a single-lens color camera with a resolution
of 1600x1200 pixels, subsequently downsized to
800x600 pixels for dataset inclusion, alongside highly ac-
curate GNSS/INS positioning (rotational error: 0.05°, po-
sitional accuracy: <1 meter). The complete dataset con-
tains 2706 query images from the flight, an equal number
of matching satellite images, and an additional 10,000
distractor images from a separate region near Diisseldorf.

Because the terrain-type annotations from the orig-
inal authors were not publicly available, a new classifica-
tion was developed into four distinct terrain categories:

Satellite images

Original UAV images

urban (primarily buildings and roads), field, forest, and
water.

The statistical distribution alignment method be-
tween UAV and satellite images for UAV localization
was validated using the VPAIR dataset [21], employing
the Recall@1 metric with a localization radius of 3. Met-
rics were assessed across varied terrain types, including
urban, field, forest, and water. This study prioritized ur-
ban terrain, reflecting the specialized fine-tuning of the
YOLO11 model on segmented buildings for generating
feature vectors.

Three comparative experiments were executed be-
tween the proposed YOLO11-based method and estab-
lished UAV localization approaches (CosPlace [23]): one
using original, unprocessed VPAIR dataset [21] images,
another utilizing grayscale image conversions, and a third
applying the proposed preprocessing method.

Figure 9 demonstrates the visual outcomes obtained
using the introduced averaged cumulative distribution
function (CDF) approach on UAV imagery, matching
their statistical properties with corresponding satellite
images.

Transformed UAV images

Fig. 9. Visual results of the proposed averaged cumulative distribution function (CDF) method applied
to UAV images, aligning their statistical distributions with those of the satellite images.
From left to right: satellite images — original UAV images — transformed UAV images
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Table 2 provides a comprehensive snapshot of how
each stage of the evaluation pipeline influences the final
localization accuracy. For every UAV query image in the
VPAIR dataset [21], the following sequence was exe-
cuted three times, once per color-handling variant, before
recording Recall@1 with a localization radius of 3. A
step-by-step methodology to achieve these results is pro-
vided below.

1. Color handling — (a) leave the RGB image un-
changed, (b) convert it to single-channel grayscale, or (c)
apply the proposed averaged cumulative distribution-
function (CDF) transfer that aligns UAV pixel statistics
to the satellite domain.

2. Embedding extraction — feed the pre-pro-
cessed image to either CosPlace [23] or to our fine-tuned
YOLO11 model.

3. Nearest-neighbour retrieval — perform an L2
search against the 2706-image satellite reference set; the
closest match is taken as the predicted place.

4. Localization test — declare a hit if the matched
satellite tile lies within three reference frames of the
ground-truth tile; otherwise record a miss.

5. Metric aggregation — accumulate hits over all
2706 queries separated into four terrain labels (Urban,
Field, Forest, Water) and report the proportion of hits as
Recall@1 for that terrain.

The findings reveal enhanced performance for
CNN-based localization techniques (CosPlace [23],
YOLO) when the proposed preprocessing strategy is em-
ployed, validating its effectiveness in improving global
localization accuracy for UAVs. While CosPlace [23]
shows superior performance for terrains such as fields,
forests, and water, the proposed YOLO-based technique
excels particularly in urban areas and targeted terrains.
This performance gain arises primarily from the
YOLO11 model being fine-tuned using segmented build-
ing data.

Given the significant challenges typically encoun-
tered in UAV global localization tasks, where sustaining
high accuracy at top ranks remains difficult, achieving a

Recall@1 score of 0.195 (19.5%) within a localization
radius of 3 for urban settings is highly encouraging. This
underscores the YOLOI11 approach’s competitiveness
and robustness, even when faced with input data variabil-
ity. Additionally, the performance of this approach sur-
passes established methods, such as CosPlace [23], high-
lighting its current effectiveness within CNN-based lo-
calization research.

However, the proposed UAV global localization
method has several limitations, including its limited ap-
plicability to urban regions during daytime and favorable
weather conditions and its dependence on a predeter-
mined collection of satellite images along the anticipated
UAV flight paths.

4. Conclusions

The main goal of this study was effectively accom-
plished: the development of a resilient UAV—satellite im-
age matching method that leverages deep embeddings
and color normalization to strengthen precision and ro-
bustness under challenging cross-view and urban condi-
tions. Fine-tuning the YOLO11 model with a dataset con-
taining segmented building data generated vector repre-
sentations that considerably boosted the accuracy of
matching UAV images to satellite images.

The proposed preprocessing technique, which fo-
cuses on synchronizing the statistical distributions be-
tween satellite imagery and images captured by UAVS,
demonstrated notable benefits. It elevated visual con-
sistency vital for accurate localization, surpassing estab-
lished approaches like CosPlace [23], especially within
urban and specific terrain contexts. The quantitative re-
sults include achieving an F1-score of 0.722, indicating
robust and reliable performance in building segmenta-
tion, which is critical for generating effective vector rep-
resentations. Moreover, the obtained Recall@1 metric of
19.5% within a localization radius of 3 significantly ex-
ceeds existing urban terrain benchmarks, underscoring
the suggested approach’s enhanced robustness and com-
petitive edge.

Table 2

Recall@1 metric results with a localization radius of 3 across different terrain types from the VPAIR dataset [21]

Method | Urban | Field | Forest | Water

(a) Without color preprocessing
CosPlace [23] 0.140 0.097 0.122 0.364
YOLO (Our) 0.181 0.049 0.055 0.345
(b) Using grayscale preprocessing
CosPlace [23] 0.132 0.093 0.114 0.366
YOLO (Our) 0.175 0.030 0.038 0.255
(c) Using proposed averaged cumulative distribution function

CosPlace [23] 0.145 0.108 0.134 0.374
YOLO (Our) 0.195 0.068 0.070 0.545
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The key advantages of this research include the ca-
pability for swift and precise UAV localization in unreli-
able GPS signals, thus addressing significant weaknesses
of existing localization frameworks. Combining
YOLOL11’s inherent real-time processing efficiency with
advanced vector-matching strategies provides a viable
and efficient solution, which is particularly beneficial for
practical applications involving urgent operations, such
as emergency rescue, urban surveillance, and infrastruc-
ture evaluation.

However, despite these advancements, the proposed
method’s current application scope remains predomi-
nantly effective in urban settings under ideal conditions,
namely, during daytime and favorable weather condi-
tions. Its performance also depends heavily on the avail-
ability and quality of an existing database of satellite im-
agery aligned with possible UAV operational routes. Fur-
thermore, to minimize the effects of seasonal variations
on visual place recognition, the reference imagery should
be captured in the summer, late spring, or early autumn,
when the environmental appearance is most stable and
consistent. Additionally, the imagery used should closely
resemble those from the VPAIR dataset [21], with a min-
imum spatial resolution of 640%640 pixels, to ensure suf-
ficient detail and comparability for robust feature extrac-
tion and matching. Moreover, the difference in resolution
between UAV and satellite images is irrelevant because
all images are converted to a resolution of 640x640 pix-
els when fed into YOLO.

Future research should aim to enhance the versatil-
ity and precision of the YOLO11 model for more exten-
sive segmentation and localization tasks. Extensive im-
age augmentation strategies, architectural improvements,
and meticulous hyperparameter tuning can achieve this.
Additionally, extending the localization capabilities to
cover varied landscapes such as forests, agricultural
fields, and aquatic regions would substantially increase
the adaptability and practical utility of the proposed
method, thereby expanding its applicability across a
wider range of UAV mission scenarios.
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METO/1 JIJIsI CHIBCTABJIEHHSI CYITYTHUKOBMX I BILIA-305PAKEHB
JIJISI BI3YAJIBHOI'O PO3IIIBHABAHHS MICIIEBOCTI I3 BAKOPUCTAHHSIM
MI)KPAKYPCHOI KOJIbOPOBOi HOPMAJII3ALIIQ

B. 3. Bo3nusak, O. B. bapmak, I0. B. Kpax

IIpeamerom nociimkeHHs € BidyaibHe posnizHaBaHHs MicieBocti (Visual Place Recognition, VPR), a came
31CTaBJICHHS CYITYTHUKOBHX 300paXKeHb 13 300pakeHHAMHE, OTPUMaHNMU 3 Oe3MUIOTHUX JiTanbHux anaparis (BILIA).
VPR € BaxxnuBuM 1u1st aBTroHoMHOI Hagiramnii BITJIA, oco6iuBo B yMOBax, KOJIM CHTHAJIM INI00AJbHUX HaBIralliiHIX
cynyraukoBux cucteM (GNSS) HeHaniiiHi, HANPHUKIAA, B YMOBaX MiChKOi 3a0yJOBU YHM TEPHUTOPIil 13 MIIIBHOIO 1H-
(bpactpykTypHOIO 320y10BOI0. He3Baxkaroun Ha MpakTUYHY 3HAYUMICTh, TOUHE 3icTaBieHHs 300paxenb bITJIA i3 cy-
MyTHUKOBHMHU 3aJIMIIAETHCS CKIIAJHOO 33/]a4uero Yepe3 3HauHI BiJIMIHHOCTI B paKkypci, MaciTadi, OCBITJCHHI Ta TeK-
crypi. TpaauiiiiHi miaX0AM HAa OCHOBI PyYHHUX JIECKPUNTOPIB 200 KIIACHYHHX JIOKAJIbHUX O3HAK YacTO Hee(eKTUBHI B
YMOBaxX TaKUX MIKBUJIOBUX BiJIMiHHOCTeil. MeTOI0 1IbOT0 JIOCHIDKEHHS € PO3p00Ka HaIIiTHOr0 METOY Bi3yaJIbHOr'O
pO3Mi3HABAHHS MICITb ISl CIIBCTaBIICHHS 300pakeHb, oTpuMaHux BIUIA ta cymyTHHKamHu, i3 BUKOPUCTAHHIM BOY-
JOBYBAaHb Ha OCHOBI INTMOMHHOTO HABYAHHA Ta PO3IMIMPEHUX METO/IIB HOpMaJIi3allil KOIbOpiB AJIS IMiJBUILCHHS HaIiii-
HOCTi B yMOBaX MIXpaKypCHUX BiIMIHHOCTEH. 3aBAaHHS: [TO-TIepIIe, po3poOUTH METO/ TeHepallil rI100aJIbHAX BeK-
TOpHHX TpeacTaBieHs Ha 0a3i YOLO, skuii BUKOPHCTOBYE MOMIIMBOCTI OaraToMaciTabHOI eKCTPAaKIii O3HAK st
KOIYBaHHSA CEMaHTUYHO 3HAYYIINX OPi€EHTHPIB MICIIEBOCTI; MO-ApPYyTe, CTBOPUTH Ta BIPOBATUTH HOBY TEXHIKY Iepe-
I00poOKH 300payKeHb Ha OCHOBI BUPIBHIOBAHHS CTATHCTHYHUX PO3MOALIIB KOIBOPY Mix 300paxkenHsmu BIUJIA Ta
CYIYTHUKOBUMH 300paXeHHSIMU; IIO-TPETE, IHTErPyBaTH Il KOMIIOHEHTH Y 3aBepireHy cuctemy VPR ta omianty ii
e(eKTHBHICTh Ha cKIamHoMy Habopi manmx VPAIR 3 akueHTOM Ha MichKi TepuTopii. MeToau, 10 BUKOPHCTOBY-
FOTHCS, BKIIIOYAIOTH TIMOOKE HAaBYAHHS, 30KpeMa HamamrtyBaHHs Hefipomepexki YOLO11 Ha HabOopi manmx, creria-
JIFHO aHOTOBAHOMY JUTSI CETMEHTaIlii OyniBenb. J10AaTKOBO 3aCTOCOBYIOTHCSI CTATUCTAYHI METOIH BUPIBHIOBAHHS Ha
OCHOBI KyMmynsaTuBHAX QyHKIiH posmoniny (CDF) nms cranmapTtusamnii BUTISAAY 300pakeHb TBOX PI3HHUX JOMEHIB.
BucnoBkmu. [IpoBeneHi eKkCIepUMEHTH ITOKa3aJIi 3HAYHE ITOKpAIIeHHs e(peKTHBHOCTI 3icTaBieHH: 300pakeHs BILJIA
13 CYITlyTHUKOBHUMHU 3aBJISIKM 3arponoHoBaHOMY Metony. HamamryBaras YOLOI11 cremiansHO it cermMeHTamii Oy-
ZiBeNb 3a0€3MeYnIIO CTBOPSHHS HAJIHHUX BEKTOPHHUX TPEICTABIICHB, IO JO3BOIMIIO JOCSTTH BHCOKOi TOYHOCTI CeT-
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menraii (F1-score — 0,722). Mertox Koib0poBoi epeo0dpoOKH T0aTKOBO MOKPAIKB TOYHICTh PO3II3HABAHHS: 3HA-
yenHs Recall@] nocsirio 19,5% mns MichKUX TepUTOpIH MpH paniyci Jokaiizamii 3, 3HauHO NEepEeBUIILYIOYH TTOKa3-
HUKH TPaJAUIIHHUX MiaxoxiB. JlaHe 1ociiDkeHHs TPONoHye eeKTUBHE PillleHHs s 3a1a4 jJokauizamii BI1JIA, 30k-
peMa B CKJIAJHUX MICHKHX YMOBAaX, IiJIKPECIIOIOUM Ba)KJIMBICTh KOMIUIEKCHOT'O IIIXOAY 10 TeHeparlii BEKTOPHUX
TIPE/ICTaBIICHb Ta epeo0pOOKH 300pakeHb.

KurouoBi ciioBa: BizyanpHe posmizHaBaHHs MicrieBocti; BITJIA; YOLO; nepemo0Opodka 300pakeHb; TIHOOKE
HaBYaHHS; CETMEHTAIIisl 300paKeHb.
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