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METHOD FOR OPTIMIZING DESCRIPTORS CLUSTERING IN THE FEATURE
DATABASE OF A CONTENT-BASED IMAGE RETRIEVAL SYSTEM

The subject of this study is the method of grouping image descriptors that are placed in the feature database of
search systems. This study aims to develop a method for optimizing the clustering of descriptors in Big Data
storage, represented by a Multidimensional Cube data model. Further use of the formed clusters for effective
search in content-based image retrieval systems. The task is to: analyze modern approaches and solutions for
forming groups of image descriptors in the feature database; formulate the problem of the clustering method in
the Multidimensional Cube and the requirements for its optimization; develop an abstract optimization method,;
develop specific optimization algorithms for different types of model placement in memory; develop metrics;
perform experiments and compare the results with analogs. The methodology includes analyzing the process of
forming groups using different methods, determining their advantages and disadvantages, applying numerical
methods to optimize the clustering process, conducting experiments with data sets available on the Internet,
evaluating the effectiveness of the optimization method, and generating result tables for comparison with ana-
logs. The following results were obtained: a method for optimizing the clustering of descriptors was developed
for use in the Multidimensional Cube data model, and optimization algorithms were developed for model place-
ment in random-access memory and databases. The results of clustering, determined by the metrics of time spent
and cluster filling, were compared with those of descriptor clustering performed using the k-means algorithm
and the Product Quantization approach with the implementation of Inverted Multi-Index. The results showed
that the use of the model with the developed optimizations demonstrates that the quality of descriptor clustering
is not worse than when using Inverted Multi-Index and better in terms of time spent than when using k-means or
Inverted Multi-Index. Conclusions: The developed method for optimizing descriptor clustering significantly im-
proves the distribution of descriptors within the Multidimensional Cube model and makes it a good alternative
for use in content-based image retrieval systems.

Keywords: information technology; algorithms and data structure; data storage; big data; search system; mul-
tidimensional data model; optimization method; clustering; computational complexity; CBIR.

1. Introduction sources, such as social media, autonomous vehicles, 10T
o sensors, medical records, financial transactions, and
1.1. Motivation supply chain logistics [2].

Cloud computing is typically used to work with
such data, provided by Amazon Web Services (AWS),
Azure, and Google [2]. For example, according to ap-
proximate unofficial estimates, as of the 2020s, AWS re-
quires approximately 500 Exabytes of storage for data,
whereas Dropbox requires approximately 733 Petabytes
of storage. In addition to systems that store data, there are
also streaming services that continuously transmit data
over the network. For instance, Netflix streams 140 mil-
lion hours of video per day, with approximately 1 Giga-
byte of storage required for each hour. Google has in-
dexed at least 30 billion pages, requiring around 62
Petabytes of storage [3].

Information on the Internet is not unique. A large
amount of duplicate and modified original data are pre-
sent. Searching for the required information in this huge
amount of data is not an easy task. In particular, in sce-
narios where high-rate search queries are generated, the
load on the search system is increased. A brute-force

Information is abundant in today’s world and comes
in various forms and formats. Most of the information is
digital, processed by computers, and available on the In-
ternet. Every year, such an amount of digital information
is created that, with an annual growth of 20%, the number
of bits will exceed the number of atoms on Earth in ap-
proximately 350 years. In addition to the volume of in-
formation, the amount of energy required to process and
store information has been increasing significantly,
which has a negative impact on the environment [1].

Software that works with large amounts of data is
often categorized as Big Data. The 3Vs model can be
used to define the concept of big data: volume, the
amount of data created and stored; variety, the diversity
of data types; and velocity, the speed at which data are
generated, transmitted, and processed [2].

These data are generated across various domains,
including social, vehicular, healthcare, urban, industrial,
and educational sectors, and originate from various
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search through the entire dataset is not feasible. In this
case, approaches are employed to minimize the search
space, that is, to reduce the number of potential candi-
dates that must be examined to find the optimal or most
suitable candidate [4]. Some of the possible approaches
are as follows: Beacon Guided Searching, Genetic Algo-
rithm, Nearest Neighbor Search (NNS) or Approximate
Nearest Neighbor Search (ANNS) [5]. The NNS category
has advanced significantly using various techniques and
data structures. Exact search may require excessive re-
sources; thus, approximate approaches are often used in-
stead [6].

The main one is a group of ANNS approaches
where information is grouped within the storage on the
basis of certain features or using a certain similarity cri-
terion. Each group is assigned an index by which it can
be accessed [7]. The search is performed only among the
information that is included in a certain group and not
across the entire dataset. This increases the speed at the
cost of accuracy. If the search within a specific group is
unsuccessful, techniques are applied to identify the clos-
est groups in which the search should continue.

These approaches also apply to content-based im-
age retrieval (CBIR) systems [8]. Such a search can be
performed in both publicly available search systems and
in closed corporate storage with proprietary information.
This task is challenging due to the large number of im-
ages in storage, duplicates and modifications, and the
complexity of formalized image representation and com-
parison during search.

Currently, the most common way to represent an
image is through a descriptor. This is a compact vector of
the normalized values. It is often a one-dimensional vec-
tor of a certain length. The values in the vector describe
certain characteristics of the image as a whole or a part
of it [9]. Image search compares image descriptors using
a certain metric and ranks the results according to the cal-
culated similarity score. Adaptations of ANNS ap-
proaches have been adapted for use with image de-
scriptors. Similar to other types of data, specialized
search models form groups of image descriptors and use
them to improve search efficiency [10].

The efficiency of a CBIR model depends on the de-
scriptors it can use, how it groups them in its feature da-
tabase (FDB), and how it performs search based on the
formed groups. However, the FDB structure and the
method for grouping descriptors within it have the great-
est impact on performance.

Problem statement. The efficient grouping of image
descriptors in Big Data storage to ensure high search ef-
ficiency in content-based image retrieval systems is prob-
lematic. After grouping, the descriptors should be
grouped based on certain similarity features. Grouping
should be performed quickly to ensure that it can be per-
formed repeatedly when updating the storage content to

avoid halting the search system in conditions of high-in-
tensity queries. Moreover, it provides a convenient group
structure for applying search methods.

1.2. State of the art

Multidimensional data structures, such as kd-trees
[11], are generally not considered state-of-the-art solu-
tions for modern CBIR systems, as they do not scale well
to large datasets and high-dimensional spaces.

Graph-based methods, such as HNSW [12] and
deep learning-based solutions [13], can be used. Each de-
scriptor is assigned to a specific node in the graph based
on the proximity and relationships between the de-
scriptors in the vector space. Similar descriptors are con-
nected by edges according to defined similarity rules,
forming clusters or subgraphs. Groups of similar de-
scriptors are effectively represented as interconnected
nodes. Navigating the graph structure, leveraging
shortcuts and hierarchical connections for efficient tra-
versal and retrieval, the search for neighboring groups is
performed.

Another approach is to apply hashing to descriptor
vectors. These algorithms can be either traditional algo-
rithms, such as LSH, SH, or ITQ [14], or deep hashing
algorithms [15]. A special hash function, or several such
functions, are trained or selected randomly or based on
the labeled data and applied to the descriptor vector. The
vector is reduced to a certain value and placed into a spe-
cific bucket. Other descriptors are placed in the same or
other buckets according to the same principle. Then,
based on the hash value of the searched descriptor, the
bucket with the closest matching descriptors can be
found. However, determining which buckets are most
similar to the current one is challenging because the value
distribution properties of the hash function do not inher-
ently preserve similarity relationships.

Classical clustering methods, such as k-means,
DBSCAN, STING, FCM, and ABC, can also be used
[16]. For example, k-means is used to form clusters based
on the available descriptor values [4]. Similar descriptors
are assigned to the same cluster. Each cluster has a cen-
troid. The distance to the cluster centroids is calculated
for the image searched. The closest cluster is determined
by this distance. If the search is unsuccessful in a cluster,
the search continues in the next cluster in terms of the
distance from the vector to the centroid.

Because of their effectiveness, classical clustering
methods have been widely used in CBIR tasks. This ap-
proach has been continuously improved through various
modifications. One of these is related to the use of Prod-
uct Quantization (PQ) [17] and its modifications, such as
Inverted Multi-Index (IMI) [18], Optimized Product
Quantization (OPQ) [19], and Enhanced Accumulative
Quantization (E-AQ) [20]. The main idea behind these
modifications is to divide the initial multidimensional
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space of descriptor features into smaller subspaces and
perform clustering within the subspaces using classical
methods. This makes clustering faster and more accurate.
As a result, the image descriptor corresponds to several
centroids, which somewhat complicates the search algo-
rithm. However, it allows for increased search speed and
efficiency [18]. The Symmetric Distance Computation
variation also helps reduce the memory requirements for
operation [17].

The Multidimensional Cube (MDC) model follows
the idea of dividing descriptor feature space into sub-
spaces. The descriptor groups are defined without using
the classical clustering methods. Instead, the values in the
generated subspaces are distributed across specific inter-
vals. These intervals form the basis for cells, where de-
scriptors are assigned according to the corresponding fea-
ture value range. Using the same principle, descriptors
with similar vector values fall into the cell. If the search
in a particular cell is unsuccessful, it continues in the
neighboring cells, which are determined by the MDC
structure [21].

Table 1 compares these methods. The definition of
the data dimension in the table corresponds to the de-
scriptor vector length that describes the image features.
These approaches are considered in the context of Big
Data. The advantages and disadvantages mentioned ap-
ply to this particular case.

1.3. Objective and Approach

One main limitation is that classical clustering
methods are used to form groups of descriptors within the
formed subspaces after the space is split into subspaces

[18]. Although the dimensionality of the input vector is
significantly reduced, this process is resource- and time-
intensive. Popular solutions such as Faiss employ this ap-
proach [22].

This problem can be solved by adopting models that
do not use classical clustering algorithms. One such
model is MDC [21] although it introduces its own chal-
lenge, which this paper seeks to address.

The main disadvantage of MDC is the formation of
cells (clusters) and the placement of descriptors in them.
Because the descriptor values do not participate in deter-
mining the cell parameters, this method can be condition-
ally referred to as clustering. Only the range of possible
values is considered. Thus, the cell parameters are deter-
mined in a rather abstract manner, resulting in an ineffi-
cient distribution of descriptors, which increases the
search’s computational complexity and negates the
model’s advantages.

This study aims to develop a method for optimizing
the clustering of descriptors in a Big Data storage, repre-
sented as an MDC model, for further use of the formed
clusters for efficient search in image-based retrieval sys-
tems.

To achieve this objective, these tasks must be ad-
dressed:

1) develop a method for optimizing the clustering
of descriptors in the storage represented by the MDC
model, which uses the descriptor values to determine the
cluster parameters;

2) develop clustering optimization algorithms for
different types of MDC placement in memory: in ran-
dom-access memory (RAM) and in the database (DB);

Table 1

Comparison of the most common methods of grouping descriptors in CBIR models

Grouping method Advantages

Disadvantages

- Works well with dense and sparse data.

- Difficult to implement and config-

- Good performance on dense data.

Graphs - Good performance. ure. . .
. - - High computational complexity and
- Simple process of determining the closest groups. e
training time.
- Accuracy is not stable.
. - Suitable for high-dimensional data. - Complicated process of finding the
Hashing closest groups.

- Requires significant resources for
hash function selection and hashing.

Classical cluster-

- Works well on dense and large datasets.
ing - Simple process of identifying the closest groups.

- High complexity and training time.
- Does not work well with sparse
data.

Product Quantiza- | - Effective for large datasets.

- Simple process of identifying the closest groups.

- Difficult to implement and config-
ure.

- Simple process of determining the closest groups.

tion : - Requires time for classical cluster-
- High accuracy. e
ing in the subspaces.
- High speed of structure formation. .
MDC - Ease of implementation. - Low quality of the generated

groups.
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3) develop metrics and experimentally test the effi-
ciency of clustering descriptors in MDC using the devel-
oped optimization method compared with clustering per-
formed using the k-means algorithm and Product Quan-
tization with the IMI implementation.

After applying the optimizations, the MDC model
should provide effective clustering of descriptors within
its FDB structure, at a level not lower than when using
PQ (IMI). This will allow us to quickly build an effi-
ciently populated search model, rebuild it if necessary
without stopping the search system, and perform the
search efficiently.

Given the same clustering quality, MDC can be a
good competitor to PQ-based implementations because it
solves their main problem and has advantages that may
be necessary in certain situations.

Section 2.1 describes the MDC clustering problem.
Section 2.2 introduces the clustering optimization
method. In Sections 2.3 and 2.4, we present the algorith-
mic implementations of the method for various memory
model placement strategies. Section 2.5 offers a theoret-
ical analysis of the computational complexity of different
clustering methods. The experimental methodology is
outlined in Section 3. Section 4 presents the experimental
results and discussion. Section 5 summarizes the study’s
conclusions and further steps.

2. MDC clustering optimization

2.1. MDC clustering problem details

The main idea of the PQ approach in the context of
CBIR systems is to split a descriptor’s feature space into
subspaces. In practice, this means dividing a descriptor
vector of length n to N shorter subvectors of lengths n’
thereby forming N subspaces. Furthermore, execution of
the standard clustering algorithm on subvectors, forming
K’ clusters in each subspace and K clusters into a total.
As a result of the processing, the descriptor vector is re-
placed by a vector of cluster indices. Each index corre-
sponds to a subvector in a particular subspace. The Car-
tesian product of the cluster indices from all subspaces
describes the formed groups (clusters) in the original
space. To determine the closest clusters, the distance to
the cluster centroids in each subspace and the sum of the
distances of all possible options must be determined. To
create a search model, it is necessary to use storage de-
scriptors [18].

MDC performs clustering differently. A vector of
length nisalso divided into N of subvectors with a length
of n’. Each subvector corresponds to one MDC dimen-
sion. The values are aggregated in pairs on each subvec-
tor to form a single value. This value is called the dimen-
sion value. The range of its possible values depends on
the number of aggregations performed and the initial

range of values of the features of the normalized vector.
Next, the range of possible dimension values (for exam-
ple [0-1]) is evenly divided into k intervals, each of which
is assigned an index. The dimension value falls into an
interval with a certain index. An index vector is formed
from the defined indices, which can be used to identify a
group (cluster) of descriptors. The visualization of the de-
scriptor vector processing in MDC is shown in Figure 1.

Vector ’ ‘
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Dimension
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Dimension
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[t]2]sf4]s]ef7]s]o]
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Vector of the indexes of the dimension’s interval

Fig. 1. Descriptor vector processing in MDC,
indexes are determined based on uniform
defined dimension intervals

The Cartesian product of the interval indices from
all dimensions describes the clusters formed in the initial
space. To determine the closest clusters, we need to take
the closest index values for each dimension and form a
Cartesian product of them [21]. As a result, we obtain the
total number of clusters described by the following for-
mula:

K=kN, (1)

where K — total number of clusters;
N — number of subspaces (dimensions);
k —number of intervals in each subspace (dimension).

Geometrically, the dimensions are in Euclidean
space. The area bounded by the descriptor values is di-
vided into intervals to form a multidimensional cube. The
cube cells are clusters.

The problem here is that the uniform division of di-
mensions into intervals does not account for the actual
distribution of values within the possible range. Thus,
there are more in one interval and fewer in the other. Con-
sequently, more descriptors fall into one cell and fewer
into another.

Each interval should contain approximately the
same number of values to solve the problem. Then the
boundaries of the intervals will not be equal to each other,
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and graphically the structure will look like a multidimen-
sional parallelepiped.

2.2. Optimization method

The main idea of the optimization method is to en-
sure that the same number of dimension values fall into
the formed dimension intervals, and approximately the
same number of descriptors fall into the cells of the MDC
model. For this purpose, the number of clusters should be
optimal for the number of descriptors available in the
storage, and the boundaries of dimension intervals should
be determined based on the values of the descriptor vec-
tors, not on the range of their possible values.

The storage contains D images for which D de-
scriptors are calculated and the MDC is formed. Each of
the N dimensions is divided into k intervals.

The first step in the optimization process is to deter-
mine the number of intervals in the dimensions rather
than changing the interval parameters. According to the
formula (1) the value of the number of intervals k to-
gether with the value of the number of dimensions N de-
termines the number of MDC cells (clusters) K. The
number of cells depends on how many F descriptors
should be in one cluster for the convenience of searching.
This number can be individual for each search system
and is determined by many factors, such as search condi-
tions and available resources. However, the main factor
that dictates this value is the number of images that need
to be returned to the system during one search iteration,
i.e., the size of the search page. This allows searching in
only one cell when a query is received. Therefore, the
number of descriptors in the cluster maximally satisfy the
following equation:

F~R R=—, @)

where F — expected number of descriptors in the cluster;
R — the number of descriptors in the cluster with the
current parameters;
D — number of descriptors in the storage;
k — number of intervals on the dimension;
N — number of dimensions.

When optimizing, the value of N and k are iterated
over until the obtained value R will not be as close as
possible to the specified value F. The general algorithm
for optimizing the number of clusters is as follows:

1) count the number of descriptors (D), that will be
created for images from the main image storage;

2) determine the expected number of image de-
scriptors (R) in one feature database cluster;

3) iterate over the values N and k until the resulting
value R will not be as close as possible to F.

After determining the number of clusters and the in-
tervals, the second stage of optimization begins — optimi-
zation of the distribution of descriptors across the formed
cells by adjusting the boundaries of the intervals on the
dimensions. With the optimal distribution of dimension
values, each interval should contain approximately the
same number of values, which is determined by the fol-
lowing formula:

D
E= o ®)

where E — expected number of values in each dimension
interval,;

D — number of descriptors in the storage;

k — number of intervals on the dimension.

During the optimization, the boundaries of the in-
tervals into which each dimension is divided are changed.
Therefore, each dimension interval has approximately
the same number of values close to E. The general ab-
stract algorithm of this numerical optimization method is
executed after the preliminary division of dimensions
into equal intervals and does not require descriptors to be
loaded into the MDC. The algorithm has the following
steps for each dimension separately:

1) determine E by the formula (3) for a particular
storage, and the value of A, by which the expected hum-
ber of values in the interval may differ from the actual
number;

2) start checking from the first dimension interval;

3) check the number of values that are currently in
the interval;

4) if the number is less than E, then increase the in-
terval upper bound, if more — then decrease it. If it is ap-
proximately equal to the value of A, then stop adjusting
the interval boundary;

5) go to the next interval using the index;

6) repeat steps 3-5 if it is not the last interval by the
index. If it is, stop the optimization. At the last interval,
the value already corresponds to the expected value.

This algorithm is abstract because it implements the
ideas of the method and some of its steps can be modified
depending on how the MDC is stored in memory.

The values are distributed evenly over the intervals
of each dimension as a result of the optimization.

Figure 2 shows an example of the feature space of
the initial descriptor and the feature space divided by
MDC before and after optimization. For example, for de-
scriptors whose values are in the range [0-1] and MDC
parameters are defined as N = 3, k = 3, the boundaries of
the intervals after optimization are shown in Figure 3.
The dimensions are named as x, v, z.
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Fig. 2. Descriptor feature space in its original form, in form of MDC without optimization,
and in form of MDC with optimization
Dimiehsiotivaines diseibution algorithm, the tools provided by the DB — SQL queries
must be used. This allows us to effectively evaluate the
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Fig. 3. Adjusting of interval boundaries based
on the number of dimension values in the range
of possible values. Example for 9 values

However, this does not necessarily guarantee that
the descriptors are evenly distributed across the clusters.
The uniformity of descriptor placement across clusters is
affected by the characteristics of a particular type of de-
scriptor and the specifics of images in the particular stor-
age. The number of groups of related images can be ei-
ther larger or smaller than the number of clusters formed
in MDC.

The presented algorithm of the optimization method
is called DINOA (Dimension Intervals Numeric Optimi-
zation Algorithm).

2.3. Optimization algorithm
for placing MDC in database

The algorithm closest to the abstract one is used
when the MDC is stored in an external storage, such as a
relational database (DB). In this case, the descriptors are
located in the database, and when executing the

terval and adjust the boundaries of the intervals based on
the values.

The algorithm in this implementation does not re-
quire a preliminary division of dimensions into equal in-
tervals, but requires loading descriptors into MDC and
aggregating vectors according to the value of N by the
MDC rules. It has the following steps for each dimension
separately:

1) determine E by the formula (3) for a specific stor-
age and value of A, by which the expected number of val-
ues in the interval may differ from the actual number. De-
fine steps of a fixed size. By default, the following step
sizes are used: 0.1, 0.01, 0.001. These are the values by
which the interval boundary will move within the possi-
ble range of dimension values;

2) optimization for the first dimension interval is
started. The step value is specified as the largest of the
defined;

3) the upper bound of the interval is increased by
the step value;

4) the number of values that are currently in the in-
terval after changing the bound is checked.

5) if the value is less than E, then the upper bound
of the interval is increased by the same step. If it is
greater, then the upper bound of the interval is decreased
by the specified step, and the step value is replaced with
the next (smaller) one from the list, and repeat steps 3-5.
If the smallest defined step value is currently being used
and the number of values in the interval is approximately
equal, considering the value A, then stop the adjusting of
the interval boundary;
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6) go to the next interval using the index;

7) repeat steps 3-7 if it is not the last interval by the
index. If it is, stop the optimization.

This optimization algorithm modification is called
DINOA-in-DB. It is graphically depicted in Figure 4.

= [l [
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min Values in the possible range max
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o ]
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Interval 1

max count> E

max count<FE

max count ~® E

Interval k&

Fig. 4. Steps of the DINOA-in-DB

2.4 Optimization algorithm for placing MDC
in random-access memory

The algorithm used when the MDC is placed in the
random-access memory (RAM) of the workstation host-
ing the search system is another implementation. In this
situation, the proposed algorithm is significantly simpli-
fied.

This implementation’s algorithm does not require a
preliminary division of dimensions into equal intervals
but requires loading descriptors into MDC and aggregat-
ing vectors according to the value of N by the MDC rules.
It has the following steps for each dimension separately:

1) read all dimension values and present them as a
list of values;

2) sort the list in ascending order (in our implemen-
tation by the TimSort algorithm [23]);

3) divide the sorted list of values into k intervals;

4) the value of the upper bound of the previous in-
terval plus the minimum possible value or 0 sets the
lower bound of the interval. The upper bound of the in-
terval is determined by the last dimension value in the
interval or the maximum possible dimension value after
aggregation.

This algorithm modification is called DINOA-in-
RAM. It is graphically depicted in Figure 5.

It requires sorting the values that fall within a pos-
sible range of values instead of gradually pulling the

values from the storage. This greatly simplifies and
speeds up optimization.

min Values in the possible range max
!
min Sorted values max
‘
min | | max
Interval 1 Interval 2 Interval k

Fig. 5. Steps of the DINOA-in-RAM

For both of these implementations, all the de-
scriptors that should be placed in the FDB should not be
used. It is possible to load some descriptors, perform op-
timization based on them, and then distribute the remain-
ing descriptors to the formed clusters.

2.5. Computational complexity
of clustering algorithms

The estimation of the maximum computational
complexity of the k-means, PQ (IMI), and MDC with
DINOA-in-RAM optimization clustering algorithms isas
follows:

Oy _means = O(Dx K xnxi),
Opqamiy =O(DxK'xn"x N xi), 4)

Ombc(pinoa-in-ram) = O(D x1og(D) x N),

where D — the number of descriptors in the storage;
K — number of clusters in the feature space;
K’ — number of clusters in the feature subspace;
n — dimensionality of the space;
n’ — dimensionality of the subspace;
N — number of the subspaces;
i —number of the iterations.

Formula (4) does not consider the complexity of
the DINOA-in-DB because it is difficult to estimate,
since it depends on the chosen parameters of the interval
boundary movement step and the specific data set. Dif-
ferent data sets may require a different number of steps.

The PQ (IMI) clustering estimate is the product of
each subspace’s clustering complexity. The MDC clus-
tering estimate is the product of the complexity of sorting
all dimensions’ values. The estimates for k-means and
PQ (IMI) have a variable — the number of iterations that
must be performed before clusters are formed. In MDC
clustering, there is only one iteration.

Optimizing the complexity and time of clustering is
possible by using a part of the available data set rather
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than the entire data set. Interval boundaries or centroids
are formed on a part of the data, and then the FDB is
loaded with all the data. Of course, in this case, the clus-
tering accuracy may be lower.

3. Experiments Methodology

The experiments evaluate the effectiveness of im-
age descriptor clustering in the FDB, which is performed
as follows:

1) k-means algorithm;

2) PQ approach in the implementation of IMI;

3) MDC without optimization;

4) MDC with DINOA-in-RAM optimization;

5) MDC with DINOA-in-DB optimization.

During the experiments 2 metrics are evaluated:

1) time spent on clusters formation;

2) occupancy of the formed clusters: the number of
populated clusters and the number of descriptors in the
them.

The time spent plays a key role in building and re-
building the feature database, the key component of the
search model. Only the time spent on clustering is evalu-
ated. The time spent loading descriptors into RAM is ex-
cluded from the results. For the MDC with DINOA-in-
DB optimization, the time spent on loading descriptors
into the database is not included, but the time spent trans-
ferring data from the database during optimization is in-
cluded.

Cluster occupancy is critical to search performance.
The expected number of descriptors in a cluster guaran-
tees the expected search speed and time spent. However,
the final search efficiency depends on the search method
using the formed clusters.

The COCO02017 image set was used in the experi-
ments [24]. It has different images: in terms of size, con-
tent, or processing level. In the experiments, 100 000 ran-
domly selected images are used.

Descriptors of the Invariant Brightness Histogram
type are generated in advance for the selected images and
provided to the experiment [21]. These are one-dimen-
sional vectors with fractional numbers of size 8 bytes and
dimension 32, normalized in the range of [0-1].

The search system results page should display the
10 most similar images; therefore, the cluster size is set
to 10. For the selected 100 000 images, 10 000 clusters
will be formed. For MDC, the parameters are defined as
follows: the number of dimensions is 4, the number of
intervals per dimension is 10, and the expected number
of values on each dimension’s interval is 10 000. For PQ
(IMI), the number of subspaces is 4, and the number of
clusters in a subspace is up to 10. Up to 10 000 clusters
can be formed for k-means clustering.

The plan of the experiment is as follows:

1) form clusters using each of the above methods;

Evaluate the speed of their creation and occupancy;

2) check the clustering efficiency when using 20%
of available descriptors;

3) make tables to compare the results;

4) compare and analyze the obtained results, draw
conclusions.

All clustering methods were implemented using the
Java 17 programming language. The software solution is
a separate application for conducting clustering task ex-
periments.

Except for DINOA-in-DB, all implementations use
descriptor placement in RAM. DINOA-in-DB uses the
default interval boundary movement step values. The
JDBC interface is used to communicate with the data-
base. PostgreSQL 15 is used as the DBMS.

The experiments were performed on the following
computer: MacBook Pro 2021: M1 Pro processor on
ARM architecture, 10-cores up to 3.2 GHz, 16 GB of
LPDDR5 SDRAM up to 200 Gb/s, 512 GB SSD, inte-
grated GPU with 16 cores.

4. Results and Discussion

4.1. Results

Figure 6 shows the resulting boundaries of the
MDC dimension intervals after applying DINOA-in-
RAM. These boundaries are not uniform.

o4 JT T T T T T ] [ |
o3 [T T [ [ [ [ ] |
o2 [ [ [ [ [ [ | [ | |
ot [J ][] [ | [ 1 I |

0 0.2 0.4 0.6 0.8 1

D - Dimension
Fig. 6. The intervals after the optimization

Figure 7 shows the uneven distribution of values
across intervals in one MDC dimension after uniformly
defining interval boundaries. The even distribution with
expected count of values achieved after applying
DINOA, both when using all descriptors and when ini-
tially using 20% of the descriptors before loading the en-
tire dataset.

Table 2 presents detailed statistics on the cluster oc-
cupancy. The first value in each table cell represents the
result when all descriptors from the dataset were used.
The second value shows the result when only 20% of the
descriptors were initially used, followed by loading the
entire dataset. Table 3 shows the main clustering metrics
results using different methods.
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Distribution of descriptors among the formed clusters, all values in units

Table 2

Number of de- Number of such The number of The number of The number of | The number of
scrintors in the clusters in MDC such clusters in such clusters in such clusters such clusters
F::Iuster without optimi- MDC (DINOA- MDC (DINOA- | after applying | after applying
zation in-DB) in-RAM) k-means PQ (IMI)
7234 7232 455 7 304
0 9539 7227 7227 2140 7202
985 988 5460 1562
1-10 130 996 996 4076 1667
447 444 3284 339
11-20 50 444 444 2236 347
275 278 692 213
21-30 32 259 257 1030 167
214 210 104 102
31-40 20 234 235 376 104
167 171 5 65
41-50 12 161 163 116 o1
447 446 0 182
51-100 49 449 446 26 192
201 201 0 121
101-200 57 199 201 0 129
25 25 0 55
201-300 35 27 27 0 a1
3 3 0 20
301-400 18 2 2 0 15
1 1 0 12
401-500 10 1 1 0 14
1 1 0 18
501-1000 24 1 1 0 24
0 0 0 7
1001+ 24 0 0 0 7
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Fig. 7. The distribution of dimension values between intervals, which are: evenly divided, optimized by DINOA
based on entire dataset, and optimized by DINOA based on 20% of the dataset
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Table 3

Results of descriptor clustering — main metrics

. . Number of populated Maximum number of de-
Clustering method Time spent, seconds clusters, units scriptors in a cluster, units
Classic (K-means) 21 780.062 9545 50

3602.29 7 860 71
43.279 2 696 1881
PQ (IM) 10.562 2798 1447
MDC without optimization 0.0026 461 5543
. 242.738 2766 721
MDC (DINOA-in-DB) 110.354 2773 717
. 1.758 2768 721
MDC (DINOA-in-RAM) 1527 2773 717

4.2. Discussions

The k-means algorithm provides the most effective
clustering in terms of cluster occupancy. When all avail-
able descriptors were used, 9 545 populated clusters were
formed out of the maximum possible 10 000. The maxi-
mum number of descriptors in a cluster is 50, whereas the
expected number is 10. When 20% of the descriptors
were used, 7 860 populated clusters were formed, with a
maximum of 71 descriptors in a cluster. That is, when
using an incomplete data set, the clustering quality de-
creased by approximately 20%. However, the time for
cluster formation decreased from 21 780st0 3 602 s, i.e.,
6 times.

In terms of cluster occupancy efficiency, the second
place is taken by the MDC with DINOA-in-RAM opti-
mization. When all descriptors and 20% of them are used,
the number of populated clusters is almost the same and
amounts to 2 770. The same holds true for the maximum
number of descriptors in a cluster, which is 720. This
means that when using a part of the available dataset, the
clustering quality decreases slightly. However, the num-
ber of populated clusters is significantly lower, and the
maximum number of descriptors in a cluster is signifi-
cantly higher than when using k-means. The time spent
using the data in both variants shows good results and
does not exceed 2 s.

In the same terms, the third place is taken by the
MDC with DINOA-in-DB optimization. It provides the

same results in terms of the number of populated clusters
and the maximum number of descriptors in a cluster as
the RAM modification. However, it shows worse results
of the time spent on clustering: 242 s when using all the
data and 110 s when using part of the data, respectively.
However, as noted in the experimental methodology, this
result is expected because this variation considers the
time of sending data from/to the DB. Using 20% of the
descriptors does not negatively affect the clustering qual-
ity and speeds it up by 2.2 times.

The fourth most efficient approach is PQ(IMI). The
clustering speed is slightly worse than that in MDC using
DINOA-in-RAM but better than that when using
DINOA-in-DB. The number of populated clusters at the
MDC level with optimizations, with a small deviation.
However, the maximum number of descriptors in a clus-
ter is worse than that when using MDC and is 1 881 when
using all the data and 1 447 when using 20% of the data.
The use of part of the data does not negatively affect the
clustering quality and speeds it up by 4 times.

The clustering performed by MDC without optimi-
zations demonstrates the best cluster formation speed. It
took less than 1 s; however, the number of populated
clusters was the smallest among the competitors (461),
and the maximum number of descriptors in a cluster was
significantly higher than that of the competitors — 5 543.

Since k-means clustering can be considered a
benchmark in terms of clustering quality, Table 4 com-
pares the main metrics of the experiment with it.

Table 4

Comparison of the results of the approaches with the results of clustering performed using k-means

How many times the number

How many times is the maximum num-

Cf'#::ﬁggg g gtvg rTh?nylszZr:Z of populated clusters is less ber of descriptors in the cluster larger
than in k-means than in k-means

MDC without 2178 006.2 20.705 110.86
optimization 360 229 17.049 78.07
89.727 3.451 14.42
MDC (DB) 32,643 2.834 10.099
12 389.114 3.448 14.42
MDC (RAM) 2 350,064 2.834 10.099
503.248 3.54 37.62
PQ (IM1) 341.061 2.809 20.38
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This highlights how other approaches perform
worse in terms of clustering quality but achieve higher
speed. The first value in each table cell represents the re-
sult when all descriptors from the dataset were used. The
second value shows the result when only 20% of the de-
scriptors were initially used, followed by loading the en-
tire dataset.

The summary from Table 4 is as follows: classical
clustering methods such as k-means show the best result
in terms of cluster occupancy, offering approximately a
threefold advantage over competitors in terms of the
number of populated clusters and about 20 times in terms
of the maximum number of descriptors in a cluster. It re-
quires much more time than its competitors to perform
clustering.

Since the variants of MDC and PQ (IMI) implemen-
tations demonstrate almost the same results in terms of
cluster occupancy, we can conclude that these results di-
rectly depend on the properties of a particular type of im-
age descriptor and dataset. The obtained results do not
contradict the theoretical estimates of the computational
complexity. The clustering performed using MDC with
DINOA-in-RAM optimization demonstrated the shortest
clustering timeamong similar techniques and was not in-
ferior in quality to the PQ (IMI).

The distribution of descriptors across clusters (Ta-
ble 2) shows that most of the populated clusters have an
expected number of descriptors in k-means clustering.
No cluster has more than 100 descriptors. When applying
MDC with both optimizations, most of the populated
clusters have the expected number of descriptors, and the
maximum number of descriptors (up to 1 000) is located
in only one cluster. The number of clusters with the ex-
pected number of descriptors is higher when using PQ
(IMI) than in MDC. However, 7 clusters contain more
than 1 000 descriptors. This suggests that clustering us-
ing PQ (IMI) is not as uniform in terms of cluster occu-
pancy as MDC. When clusters are formed based on 20%
of the descriptors of the dataset and the entire dataset is
assigned to these clusters, the distribution of descriptors
across clusters significantly deteriorates when using k-
means. However, with MDC and PQ (IMI), this deterio-
ration is negligible.

5. Conclusions

In this paper, we present a method for optimizing
the clustering of descriptors in the feature database of an
image content-based retrieval system represented by the
Multidimensional Cube (MDC) model. An abstract opti-
mization algorithm, DINOA, and two specific implemen-
tations were developed: DINOA-in-RAM and DINOA-
in-DB for storing MDC in RAM and in a relational data-
base, respectively.

Experiments were conducted using descriptors of
the type Invariant Brightness Histogram for images from

the COCO02017 dataset, comparing clustering performed
by MDC with optimizations, the k-means algorithm, and
Product Quantization with the implementation of In-
verted Multi-Index.

The results showed that if the clustering time is not
critical for the retrieval system (the storage is rarely up-
dated and clusters are not rebuilt), then using classical
clustering methods and algorithms such as k-means is the
best solution. The cluster formation speed is significantly
worse compared to alternative methods. Alternative clus-
tering methods should be used in other cases. When com-
paring the speed and quality of the formed clusters under
the same conditions, using MDC with optimizations and
PQ (IMI), MDC was found to deliver better results. This
confirms the high efficiency of the developed optimiza-
tion method and the achievement of the work’s objec-
tives.

The obtained results demonstrate that the developed
method and clustering optimization algorithms provide
MDC with high cluster creation and occupancy effi-
ciency. This will allow the model to be quickly rebuilt if
necessary and should ensure high search efficiency.

The future research directions are as follows:

1) conducting detailed experiments to determine
the efficiency of searching in MDC using the formed
clusters with the help of DINOA.

2) conducting additional optimization for de-
scriptor clusters with a significantly higher number of de-
scriptors than expected. During this optimization, an in-
ternal division of such a cluster into smaller ones is also
performed.
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METO/] ONTUMIBAIIL KJTACTEPU3AIIIL JECKPAIITOPIB B BA3I JAHUX BJIACTUBOCTEM
CUCTEMMU IOIYKY 30BPA’KEHBb HA OCHOBI BMICTY

C. 1. Janunenxo, K. C. Cuenakos

IIpeameTom gociiPKEHHSI € METOIU TPYIYBaHHS IECKPUIITOPIB 300pakeHb, sIKi pO3MILIYIOThCS Y 0a3i JaHuX
BJIACTHBOCTEH cHCTeM Mouryky. MeTor € po3poOka METOAy ONnTuMi3allii mpolecy Kiactepu3alii IECKpUITOpiB Y
cxosuii Big Data, npeacraBnenoro mozemntto ganux bararosumiproro Ky0y, A mopanbnioro BAKOPUCTAHHS YTBO-
PEeHUX KiacTepiB It epEeKTHBHOTO MOMIYKY Y CHCTEMaXx TOIIYKY Ha OCHOBI BMICTy 300pakeHb. 3aBJaHHSI IOJISIrae
y: aHaJi31 CydacHHX MiJXO/IB 1 pillIeHb JUIs TPYITyBaHHS JECKPHUIITOPIB 300paXkeHb y 0a3i NaHuX BIacTUBOCTEH; (o-
pMyJTIOBaHHS podieMu MeToay kiacrepusauii B bararoBumipHomy Ky06i i BuMor 1o #ioro onrtumizanii; po3po0ii
a0CTPaKTHOrO METOJly ONTUMI3allii; po3poOIli KOHKPETHUX AITOPUTMIB ONTUMI3alii sl Pi3HOTO TUIY PO3MillIEHHS
MOJIETIi B ITaM’sITi; po3po0Ili METPHK; BUKOHAHHI €KCIIEPHUMEHTIB 1 TIOPiBHSHHI OTPUMAaHHUX PE3yJIbTATIB 3 aHAJIOTaMH.
MeTtopostorisi BKiIto4ae B cede aHaii3 npouecy (GOpMYBaHHS TPyl 3a JOMOMOIOK Pi3HUX METOAIB, BU3HAYCHHS 1X
niepeBar Ta HeJI0JiKiB; 3aCTOCYBaHHS YUCEIbHUX METO/IIB ONTHMI3aIlil AJ1s ONTHMI3alil Mpoliecy KilacTepu3allii; mpo-
BEJICHHSI EKCIIEPUMEHTIB 3 HassBHUMU B MepeXi [HTepHeT HabopiB JaHuX; OlliHKa eEKTHBHOCTI METOY ONTHUMI3allii
1 opMyBaHHS Pe3yJAbTYIOUMX TAOIHIb JJIs TOPIBHSHHS 3 aHaJIoraMu. bynmu orpuMaHi Taki pe3yabTaTH: po3po0iIeHO
METOJ| ONTUMI3allii Ki1acTepu3alii IeCKPUITOPIB, SIKM BUKOPUCTOBYEThCS B Mojieni naHux baratoBumipauii Ky0;
PO3pO0JIEHO AITOPUTMH ONTUMI3allii, 1[0 peai3yoTh el METOA JUIsl PO3MILEHHs MOJIeJl B ONlepaTUBHIM maM’sITi Ta
B 0a3i nanux. Pesynbratu (hopMyBaHHs KilacTepiB, BU3HAYEHI METPUKAMH BUTPAYSHOTO Yacy Ta HAIOBHEHICTIO KJa-
cTepiB OyJIM MOPIBHSIHI 3 KJIACTEPU3ALIEI0 AECKPUIITOPIB, BAKOHAHKM 3a JIONIOMOr 00 aliroput™My k-means Ta migxony
Product Quantization 3 peaumizarieto Inverted Multi-Index. Pe3ynbraTtn nokasasnu, 1o BUKOPUCTaHHS MO 3 PO3PO-
OJICHUMH OITHMI3aLisIMH JEMOHCTPYE e(eKTUBHICTh KiIacTepH3allii JeCKPUNTOPIB He Tiplly, HiXK MPHU 3aCTOCYBaHHI
Inverted Multi-Index Ta kparie o BUTpaueHOMY 4aci Hix mpu 3actocyBanHi k-means uu Inverted Multi-Index. Bu-
CHOBKH: pO3pO0JIEHHH METO]] ONTHMI3alli] KIacTepu3allii IeCKpUITOPiB 3HAYHO OKPAIILY€E PO3IOIIICHHS ECKPHUII-
TOpiB BeepeauHi Mojieni bararoumipraoro KyOy Ta poOuTh 11 rapHOIO ajbTEPHATUBOIO /1Sl BHKOPUCTAHHS B CUCTEMAaX
TOIIYKY 300pa)keHb Ha OCHOBI BMICTY.

Koarwouosi ciioBa: iHpopMaliiiHi TeXHOJIOTT; arOPUTMH 1 CTPYKTYPH JJAHUX; CXOBUILE JAHUX; BEIUKI JlaHi; 1o-
LIYKOBA cucTeMa; baraToBUMipHa MOJEIb JAHUX; METOJ ONTUMI3allii; KlacTepu3allis; 00UUCIIOBaIbHA CKIIAIHICTB.
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