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METHOD FOR OPTIMIZING DESCRIPTORS CLUSTERING IN THE FEATURE 

DATABASE OF A CONTENT-BASED IMAGE RETRIEVAL SYSTEM  
 

The subject of this study is the method of grouping image descriptors that are placed in the feature database of 

search systems. This study aims to develop a method for optimizing the clustering of descriptors in Big Data 

storage, represented by a Multidimensional Cube data model. Further use of the formed clusters for effective 

search in content-based image retrieval systems. The task is to: analyze modern approaches and solutions for 

forming groups of image descriptors in the feature database; formulate the problem of the clustering method in 

the Multidimensional Cube and the requirements for its optimization; develop an abstract optimization method; 

develop specific optimization algorithms for different types of model placement in memory; develop metrics; 

perform experiments and compare the results with analogs. The methodology includes analyzing the process of 

forming groups using different methods, determining their advantages and disadvantages, applying numerical 

methods to optimize the clustering process, conducting experiments with data sets available on the Internet, 

evaluating the effectiveness of the optimization method, and generating result tables for comparison with ana-
logs. The following results were obtained: a method for optimizing the clustering of descriptors was developed 

for use in the Multidimensional Cube data model, and optimization algorithms were developed for model place-

ment in random-access memory and databases. The results of clustering, determined by the metrics of time spent 

and cluster filling, were compared with those of descriptor clustering performed using the k-means algorithm 

and the Product Quantization approach with the implementation of Inverted Multi-Index. The results showed 

that the use of the model with the developed optimizations demonstrates that the quality of descriptor clustering 

is not worse than when using Inverted Multi-Index and better in terms of time spent than when using k-means or 

Inverted Multi-Index. Conclusions: The developed method for optimizing descriptor clustering significantly im-

proves the distribution of descriptors within the Multidimensional Cube model and makes it a good alternative 

for use in content-based image retrieval systems. 
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1. Introduction 
 

1.1. Motivation 
 

Information is abundant in today’s world and comes 

in various forms and formats. Most of the information is 

digital, processed by computers, and available on the In-

ternet. Every year, such an amount of digital information 

is created that, with an annual growth of 20%, the number 

of bits will exceed the number of atoms on Earth in ap-

proximately 350 years. In addition to the volume of in-

formation, the amount of energy required to process and 

store information has been increasing significantly, 

which has a negative impact on the environment [1]. 

Software that works with large amounts of data is 

often categorized as Big Data. The 3Vs model can be 

used to define the concept of big data: volume, the 

amount of data created and stored; variety, the diversity 

of data types; and velocity, the speed at which data are 

generated, transmitted, and processed [2]. 

These data are generated across various domains, 

including social, vehicular, healthcare, urban, industrial, 

and educational sectors, and originate from various 

sources, such as social media, autonomous vehicles, IoT 

sensors, medical records, financial transactions, and 

supply chain logistics  [2]. 

Cloud computing is typically used to work with 

such data, provided by Amazon Web Services (AWS), 

Azure, and Google [2]. For example, according to ap-

proximate unofficial estimates, as of the 2020s, AWS re-

quires approximately 500 Exabytes of storage for data, 

whereas Dropbox requires approximately 733 Petabytes 

of storage. In addition to systems that store data, there are 

also streaming services that continuously transmit data 

over the network. For instance, Netflix streams 140 mil-

lion hours of video per day, with approximately 1 Giga-

byte of storage required for each hour. Google has in-

dexed at least 30 billion pages, requiring around 62 

Petabytes of storage [3].  

Information on the Internet is not unique. A large 

amount of duplicate and modified original data are pre-

sent. Searching for the required information in this huge 

amount of data is not an easy task. In particular, in sce-

narios where high-rate search queries are generated, the 

load on the search system is increased. A brute-force 

 
 Creative Commons Attribution  

NonCommercial 4.0 International 

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk


ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 3(115)               ISSN 2663-2012 (online) 

138 

search through the entire dataset is not feasible. In this 

case, approaches are employed to minimize the search 

space, that is, to reduce the number of potential candi-

dates that must be examined to find the optimal or most 

suitable candidate [4]. Some of the possible approaches 

are as follows: Beacon Guided Searching, Genetic Algo-

rithm, Nearest Neighbor Search (NNS) or Approximate 

Nearest Neighbor Search (ANNS) [5]. The NNS category 

has advanced significantly using various techniques and 

data structures. Exact search may require excessive re-

sources; thus, approximate approaches are often used in-

stead [6]. 

The main one is a group of ANNS approaches 

where information is grouped within the storage on the 

basis of certain features or using a certain similarity cri-

terion. Each group is assigned an index by which it can 

be accessed [7]. The search is performed only among the 

information that is included in a certain group and not 

across the entire dataset. This increases the speed at the 

cost of accuracy. If the search within a specific group is 

unsuccessful, techniques are applied to identify the clos-

est groups in which the search should continue. 

These approaches also apply to content-based im-

age retrieval (CBIR) systems [8]. Such a search can be 

performed in both publicly available search systems and 

in closed corporate storage with proprietary information. 

This task is challenging due to the large number of im-

ages in storage, duplicates and modifications, and the 

complexity of formalized image representation and com-

parison during search. 

Currently, the most common way to represent an 

image is through a descriptor. This is a compact vector of 

the normalized values. It is often a one-dimensional vec-

tor of a certain length. The values in the vector describe 

certain characteristics of the image as a whole or a part 

of it [9]. Image search compares image descriptors using 

a certain metric and ranks the results according to the cal-

culated similarity score. Adaptations of ANNS ap-

proaches have been adapted for use with image de-

scriptors. Similar to other types of data, specialized 

search models form groups of image descriptors and use 

them to improve search efficiency [10]. 

The efficiency of a CBIR model depends on the de-

scriptors it can use, how it groups them in its feature da-

tabase (FDB), and how it performs search based on the 

formed groups. However, the FDB structure and the 

method for grouping descriptors within it have the great-

est impact on performance. 

Problem statement. The efficient grouping of image 

descriptors in Big Data storage to ensure high search ef-

ficiency in content-based image retrieval systems is prob-

lematic. After grouping, the descriptors should be 

grouped based on certain similarity features. Grouping 

should be performed quickly to ensure that it can be per-

formed repeatedly when updating the storage content to 

avoid halting the search system in conditions of high-in-

tensity queries. Moreover, it provides a convenient group 

structure for applying search methods.  
 

1.2. State of the art 
 

Multidimensional data structures, such as kd-trees 

[11], are generally not considered state-of-the-art solu-

tions for modern CBIR systems, as they do not scale well 

to large datasets and high-dimensional spaces. 

Graph-based methods, such as HNSW [12] and 

deep learning-based solutions [13], can be used. Each de-

scriptor is assigned to a specific node in the graph based 

on the proximity and relationships between the de-

scriptors in the vector space. Similar descriptors are con-

nected by edges according to defined similarity rules, 

forming clusters or subgraphs. Groups of similar de-

scriptors are effectively represented as interconnected 

nodes. Navigating the graph structure, leveraging 

shortcuts and hierarchical connections for efficient tra-

versal and retrieval, the search for neighboring groups is 

performed. 

Another approach is to apply hashing to descriptor 

vectors. These algorithms can be either traditional algo-

rithms, such as LSH, SH, or ITQ [14], or deep hashing 

algorithms [15]. A special hash function, or several such 

functions, are trained or selected randomly or based on 

the labeled data and applied to the descriptor vector. The 

vector is reduced to a certain value and placed into a spe-

cific bucket. Other descriptors are placed in the same or 

other buckets according to the same principle. Then, 

based on the hash value of the searched descriptor, the 

bucket with the closest matching descriptors can be 

found. However, determining which buckets are most 

similar to the current one is challenging because the value 

distribution properties of the hash function do not inher-

ently preserve similarity relationships. 

Classical clustering methods, such as k-means, 

DBSCAN, STING, FCM, and ABC, can also be used 

[16]. For example, k-means is used to form clusters based 

on the available descriptor values [4]. Similar descriptors 

are assigned to the same cluster. Each cluster has a cen-

troid. The distance to the cluster centroids is calculated 

for the image searched. The closest cluster is determined 

by this distance. If the search is unsuccessful in a cluster, 

the search continues in the next cluster in terms of the 

distance from the vector to the centroid. 

Because of their effectiveness, classical clustering 

methods have been widely used in CBIR tasks. This ap-

proach has been continuously improved through various 

modifications. One of these is related to the use of Prod-

uct Quantization (PQ) [17] and its modifications, such as 

Inverted Multi-Index (IMI) [18], Optimized Product 

Quantization (OPQ) [19], and Enhanced Accumulative 

Quantization (E-AQ) [20]. The main idea behind these 

modifications is to divide the initial multidimensional 
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space of descriptor features into smaller subspaces and 

perform clustering within the subspaces using classical 

methods. This makes clustering faster and more accurate. 

As a result, the image descriptor corresponds to several 

centroids, which somewhat complicates the search algo-

rithm. However, it allows for increased search speed and 

efficiency [18]. The Symmetric Distance Computation 

variation also helps reduce the memory requirements for 

operation [17]. 

The Multidimensional Cube (MDC) model follows 

the idea of dividing descriptor feature space into sub-

spaces. The descriptor groups are defined without using 

the classical clustering methods. Instead, the values in the 

generated subspaces are distributed across specific inter-

vals. These intervals form the basis for cells, where de-

scriptors are assigned according to the corresponding fea-

ture value range. Using the same principle, descriptors 

with similar vector values fall into the cell. If the search 

in a particular cell is unsuccessful, it continues in the 

neighboring cells, which are determined by the MDC 

structure [21]. 

Table 1 compares these methods. The definition of 

the data dimension in the table corresponds to the de-

scriptor vector length that describes the image features. 

These approaches are considered in the context of Big 

Data. The advantages and disadvantages mentioned ap-

ply to this particular case.  
 

1.3. Objective and Approach 
 

One main limitation is that classical clustering 

methods are used to form groups of descriptors within the 

formed subspaces after the space is split into subspaces 

[18]. Although the dimensionality of the input vector is 

significantly reduced, this process is resource- and time-

intensive. Popular solutions such as Faiss employ this ap-

proach [22]. 

This problem can be solved by adopting models that 

do not use classical clustering algorithms. One such 

model is MDC [21] although it introduces its own chal-

lenge, which this paper seeks to address. 

The main disadvantage of MDC is the formation of 

cells (clusters) and the placement of descriptors in them. 

Because the descriptor values do not participate in deter-

mining the cell parameters, this method can be condition-

ally referred to as clustering. Only the range of possible 

values is considered. Thus, the cell parameters are deter-

mined in a rather abstract manner, resulting in an ineffi-

cient distribution of descriptors, which increases the 

search’s computational complexity and negates the 

model’s advantages. 

This study aims to develop a method for optimizing 

the clustering of descriptors in a Big Data storage, repre-

sented as an MDC model, for further use of the formed 

clusters for efficient search in image-based retrieval sys-

tems. 

To achieve this objective, these tasks must be ad-

dressed: 

1) develop a method for optimizing the clustering 

of descriptors in the storage represented by the MDC 

model, which uses the descriptor values to determine the 

cluster parameters; 

2) develop clustering optimization algorithms for 

different types of MDC placement in memory: in ran-

dom-access memory (RAM) and in the database (DB); 

 

 

Table 1 

Comparison of the most common methods of grouping descriptors in CBIR models 

Grouping method Advantages Disadvantages 

Graphs 

- Works well with dense and sparse data. 

- Good performance. 

- Simple process of determining the closest groups. 

- Difficult to implement and config-

ure. 

- High computational complexity and 

training time. 

Hashing            
- Suitable for high-dimensional data. 

- Good performance on dense data. 

- Accuracy is not stable. 
- Complicated process of finding the 

closest groups. 

- Requires significant resources for 

hash function selection and hashing. 

Classical cluster-

ing  

- Works well on dense and large datasets. 

- Simple process of identifying the closest groups. 

- High complexity and training time. 

- Does not work well with sparse 

data. 

Product Quantiza-

tion 

- Effective for large datasets. 

- Simple process of identifying the closest groups. 

- High accuracy. 

- Difficult to implement and config-

ure. 

- Requires time for classical cluster-

ing in the subspaces. 

MDC 

- High speed of structure formation. 

- Ease of implementation. 

- Simple process of determining the closest groups. 

- Low quality of the generated 

groups. 
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3) develop metrics and experimentally test the effi-

ciency of clustering descriptors in MDC using the devel-

oped optimization method compared with clustering per-

formed using the k-means algorithm and Product Quan-

tization with the IMI implementation. 

After applying the optimizations, the MDC model 

should provide effective clustering of descriptors within 

its FDB structure, at a level not lower than when using 

PQ (IMI). This will allow us to quickly build an effi-

ciently populated search model, rebuild it if necessary 

without stopping the search system, and perform the 

search efficiently. 

Given the same clustering quality, MDC can be a 

good competitor to PQ-based implementations because it 

solves their main problem and has advantages that may 

be necessary in certain situations. 

Section 2.1 describes the MDC clustering problem. 

Section 2.2 introduces the clustering optimization 

method. In Sections 2.3 and 2.4, we present the algorith-

mic implementations of the method for various memory 

model placement strategies. Section 2.5 offers a theoret-

ical analysis of the computational complexity of different 

clustering methods. The experimental methodology is 

outlined in Section 3. Section 4 presents the experimental 

results and discussion. Section 5 summarizes the study’s 

conclusions and further steps. 

 

2. MDC clustering optimization 
 

2.1. MDC clustering problem details 

 

The main idea of the PQ approach in the context of 

CBIR systems is to split a descriptor’s feature space into 

subspaces. In practice, this means dividing a descriptor 

vector of length n to N shorter subvectors of lengths n′ 

thereby forming N subspaces. Furthermore, execution of 

the standard clustering algorithm on subvectors, forming 

K′ clusters in each subspace and K clusters into a total. 

As a result of the processing, the descriptor vector is re-

placed by a vector of cluster indices. Each index corre-

sponds to a subvector in a particular subspace. The Car-

tesian product of the cluster indices from all subspaces 

describes the formed groups (clusters) in the original 

space. To determine the closest clusters, the distance to 

the cluster centroids in each subspace and the sum of the 

distances of all possible options must be determined. To 

create a search model, it is necessary to use storage de-

scriptors [18]. 

MDC performs clustering differently. A vector of 

length n is also divided into N of subvectors with a length 

of n′. Each subvector corresponds to one MDC dimen-

sion. The values are aggregated in pairs on each subvec-

tor to form a single value. This value is called the dimen-

sion value. The range of its possible values depends on 

the number of aggregations performed and the initial 

range of values of the features of the normalized vector. 

Next, the range of possible dimension values (for exam-

ple [0-1]) is evenly divided into k intervals, each of which 

is assigned an index. The dimension value falls into an 

interval with a certain index. An index vector is formed 

from the defined indices, which can be used to identify a 

group (cluster) of descriptors. The visualization of the de-

scriptor vector processing in MDC is shown in Figure 1. 
 

 
 

Fig. 1.  Descriptor vector processing in MDC,  

indexes are determined based on uniform 

defined dimension intervals 

 

The Cartesian product of the interval indices from 

all dimensions describes the clusters formed in the initial 

space. To determine the closest clusters, we need to take 

the closest index values for each dimension and form a 

Cartesian product of them [21]. As a result, we obtain the 

total number of clusters described by the following for-

mula: 
 

NK k ,                                  (1) 

   

where K – total number of clusters; 

N – number of subspaces (dimensions); 

k – number of intervals in each subspace (dimension). 

Geometrically, the dimensions are in Euclidean 

space. The area bounded by the descriptor values is di-

vided into intervals to form a multidimensional cube. The 

cube cells are clusters. 

The problem here is that the uniform division of di-

mensions into intervals does not account for the actual 

distribution of values within the possible range. Thus, 

there are more in one interval and fewer in the other. Con-

sequently, more descriptors fall into one cell and fewer 

into another. 

Each interval should contain approximately the 

same number of values to solve the problem. Then the 

boundaries of the intervals will not be equal to each other, 
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and graphically the structure will look like a multidimen-

sional parallelepiped.   

 

2.2.  Optimization method 

 

The main idea of the optimization method is to en-

sure that the same number of dimension values fall into 

the formed dimension intervals, and approximately the 

same number of descriptors fall into the cells of the MDC 

model. For this purpose, the number of clusters should be 

optimal for the number of descriptors available in the 

storage, and the boundaries of dimension intervals should 

be determined based on the values of the descriptor vec-

tors, not on the range of their possible values. 

The storage contains D images for which D de-

scriptors are calculated and the MDC is formed. Each of 

the N dimensions is divided into k intervals.  

The first step in the optimization process is to deter-

mine the number of intervals in the dimensions rather 

than changing the interval parameters. According to the 

formula (1) the value of the number of intervals k to-

gether with the value of the number of dimensions N de-

termines the number of MDC cells (clusters) K. The 

number of cells depends on how many F descriptors 

should be in one cluster for the convenience of searching. 

This number can be individual for each search system 

and is determined by many factors, such as search condi-

tions and available resources. However, the main factor 

that dictates this value is the number of images that need 

to be returned to the system during one search iteration, 

i.e., the size of the search page. This allows searching in 

only one cell when a query is received. Therefore, the 

number of descriptors in the cluster maximally satisfy the 

following equation: 

 

N

D
F R,  R ,

k
                              (2) 

 

where F – expected number of descriptors in the cluster;  

R – the number of descriptors in the cluster with the 

current parameters;  

D – number of descriptors in the storage;  

k – number of intervals on the dimension;  

N – number of dimensions. 

When optimizing, the value of N and k are iterated 

over until the obtained value R will not be as close as 

possible to the specified value F. The general algorithm 

for optimizing the number of clusters is as follows: 

1) count the number of descriptors (D), that will be 

created for images from the main image storage; 

2) determine the expected number of image de-

scriptors (R) in one feature database cluster; 

3) iterate over the values N and k until the resulting 

value R will not be as close as possible to F. 

After determining the number of clusters and the in-

tervals, the second stage of optimization begins – optimi-

zation of the distribution of descriptors across the formed 

cells by adjusting the boundaries of the intervals on the 

dimensions. With the optimal distribution of dimension 

values, each interval should contain approximately the 

same number of values, which is determined by the fol-

lowing formula: 

 

D
E ,

k
                                  (3) 

 

where E – expected number of values in each dimension 

interval;  

D – number of descriptors in the storage; 

k – number of intervals on the dimension. 

During the optimization, the boundaries of the in-

tervals into which each dimension is divided are changed. 

Therefore, each dimension interval has approximately 

the same number of values close to E. The general ab-

stract algorithm of this numerical optimization method is 

executed after the preliminary division of dimensions 

into equal intervals and does not require descriptors to be 

loaded into the MDC. The algorithm has the following 

steps for each dimension separately: 

1) determine E by the formula (3) for a particular 

storage, and the value of Δ, by which the expected num-

ber of values in the interval may differ from the actual 

number; 

2) start checking from the first dimension interval; 

3) check the number of values that are currently in 

the interval;  

4) if the number is less than E, then increase the in-

terval upper bound, if more – then decrease it. If it is ap-

proximately equal to the value of Δ, then stop adjusting 

the interval boundary; 

5) go to the next interval using the index;  

6) repeat steps 3-5 if it is not the last interval by the 

index. If it is, stop the optimization. At the last interval, 

the value already corresponds to the expected value. 

This algorithm is abstract because it implements the 

ideas of the method and some of its steps can be modified 

depending on how the MDC is stored in memory.  

The values are distributed evenly over the intervals 

of each dimension as a result of the optimization. 

Figure 2 shows an example of the feature space of 

the initial descriptor and the feature space divided by 

MDC before and after optimization. For example, for de-

scriptors whose values are in the range [0-1] and MDC 

parameters are defined as N = 3, k = 3, the boundaries of 

the intervals after optimization are shown in Figure 3. 

The dimensions are named as x, y, z. 
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Fig. 2.  Descriptor feature space in its original form, in form of MDC without optimization,  

and in form of MDC with optimization 

 

 
 

Fig. 3.  Adjusting of interval boundaries based  

on the number of dimension values in the range  

of possible values. Example for 9 values 

 

However, this does not necessarily guarantee that 

the descriptors are evenly distributed across the clusters. 

The uniformity of descriptor placement across clusters is 

affected by the characteristics of a particular type of de-

scriptor and the specifics of images in the particular stor-

age. The number of groups of related images can be ei-

ther larger or smaller than the number of clusters formed 

in MDC. 

The presented algorithm of the optimization method 

is called DINOA (Dimension Intervals Numeric Optimi-

zation Algorithm). 

 

2.3. Optimization algorithm  

for placing MDC in database 

 

The algorithm closest to the abstract one is used 

when the MDC is stored in an external storage, such as a 

relational database (DB). In this case, the descriptors are 

located in the database, and when executing the  

algorithm, the tools provided by the DB – SQL queries 

must be used. This allows us to effectively evaluate the 

number of dimension values that fall into the specific in-

terval and adjust the boundaries of the intervals based on 

the values. 

The algorithm in this implementation does not re-

quire a preliminary division of dimensions into equal in-

tervals, but requires loading descriptors into MDC and 

aggregating vectors according to the value of N by the 

MDC rules. It has the following steps for each dimension 

separately: 

1) determine E by the formula (3) for a specific stor-

age and value of Δ, by which the expected number of val-

ues in the interval may differ from the actual number. De-

fine steps of a fixed size. By default, the following step 

sizes are used: 0.1, 0.01, 0.001. These are the values by 

which the interval boundary will move within the possi-

ble range of dimension values; 

2) optimization for the first dimension interval is 

started. The step value is specified as the largest of the 

defined;  

3) the upper bound of the interval is increased by 

the step value; 

4) the number of values that are currently in the in-

terval after changing the bound is checked. 

5) if the value is less than E, then the upper bound 

of the interval is increased by the same step. If it is 

greater, then the upper bound of the interval is decreased 

by the specified step, and the step value is replaced with 

the next (smaller) one from the list, and repeat steps 3-5. 

If the smallest defined step value is currently being used 

and the number of values in the interval is approximately 

equal, considering the value Δ, then stop the adjusting of 

the interval boundary; 
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6) go to the next interval using the index;  

7) repeat steps 3-7 if it is not the last interval by the 

index. If it is, stop the optimization. 

This optimization algorithm modification is called 

DINOA-in-DB. It is graphically depicted in Figure 4. 

 

 
 

Fig. 4. Steps of the DINOA-in-DB 

 

2.4 Optimization algorithm for placing MDC 

 in random-access memory 
 

The algorithm used when the MDC is placed in the 

random-access memory (RAM) of the workstation host-

ing the search system is another implementation. In this 

situation, the proposed algorithm is significantly simpli-

fied.  

This implementation’s algorithm does not require a 

preliminary division of dimensions into equal intervals 

but requires loading descriptors into MDC and aggregat-

ing vectors according to the value of N by the MDC rules. 

It has the following steps for each dimension separately: 

1) read all dimension values and present them as a 

list of values; 

2) sort the list in ascending order (in our implemen-

tation by the TimSort algorithm [23]); 

3) divide the sorted list of values into k intervals; 

4) the value of the upper bound of the previous in-

terval plus the minimum possible value or 0 sets the 

lower bound of the interval. The upper bound of the in-

terval is determined by the last dimension value in the 

interval or the maximum possible dimension value after 

aggregation. 

This algorithm modification is called DINOA-in-

RAM. It is graphically depicted in Figure 5.  

It requires sorting the values that fall within a pos-

sible range of values instead of gradually pulling the  

values from the storage. This greatly simplifies and 

speeds up optimization. 

 

 
 

Fig. 5. Steps of the DINOA-in-RAM 

 

For both of these implementations, all the de-

scriptors that should be placed in the FDB should not be 

used. It is possible to load some descriptors, perform op-

timization based on them, and then distribute the remain-

ing descriptors to the formed clusters. 

 

2.5. Computational complexity  

of clustering algorithms 

 

The estimation of the maximum computational 

complexity of the k-means, PQ (IMI), and MDC with 

DINOA-in-RAM optimization clustering algorithms is as 

follows: 

 

k means

PQ(IMI)

MDC(DINOA in RAM)

O O(D K n i),

O O(D K n N i),

O O(D log(D) N),



 

   

     

  

    (4) 

 

where D – the number of descriptors in the storage; 

K – number of clusters in the feature space;  

K′ – number of clusters in the feature subspace;  

n – dimensionality of the space;  

n′ – dimensionality of the subspace;  

N – number of the subspaces;  

i – number of the iterations. 

 Formula (4) does not consider the complexity of 

the DINOA-in-DB because it is difficult to estimate, 

since it depends on the chosen parameters of the interval 

boundary movement step and the specific data set. Dif-

ferent data sets may require a different number of steps. 

The PQ (IMI) clustering estimate is the product of 

each subspace’s clustering complexity. The MDC clus-

tering estimate is the product of the complexity of sorting 

all dimensions’ values. The estimates for k-means and 

PQ (IMI) have a variable – the number of iterations that 

must be performed before clusters are formed. In MDC 

clustering, there is only one iteration. 

Optimizing the complexity and time of clustering is 

possible by using a part of the available data set rather 
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than the entire data set. Interval boundaries or centroids 

are formed on a part of the data, and then the FDB is 

loaded with all the data. Of course, in this case, the clus-

tering accuracy may be lower.  

 

3. Experiments Methodology 
 

The experiments evaluate the effectiveness of im-

age descriptor clustering in the FDB, which is performed 

as follows: 

1) k-means algorithm; 

2) PQ approach in the implementation of IMI;  

3) MDC without optimization; 

4) MDC with DINOA-in-RAM optimization; 

5) MDC with DINOA-in-DB optimization. 

During the experiments 2 metrics are evaluated:  

1) time spent on clusters formation;  

2) occupancy of the formed clusters: the number of 

populated clusters and the number of descriptors in the 

them.  

The time spent plays a key role in building and re-

building the feature database, the key component of the 

search model. Only the time spent on clustering is evalu-

ated. The time spent loading descriptors into RAM is ex-

cluded from the results. For the MDC with DINOA-in-

DB optimization, the time spent on loading descriptors 

into the database is not included, but the time spent trans-

ferring data from the database during optimization is in-

cluded. 

Cluster occupancy is critical to search performance. 

The expected number of descriptors in a cluster guaran-

tees the expected search speed and time spent. However, 

the final search efficiency depends on the search method 

using the formed clusters. 

The COCO2017 image set was used in the experi-

ments [24]. It has different images: in terms of size, con-

tent, or processing level. In the experiments, 100 000 ran-

domly selected images are used. 

Descriptors of the Invariant Brightness Histogram 

type are generated in advance for the selected images and 

provided to the experiment [21]. These are one-dimen-

sional vectors with fractional numbers of size 8 bytes and 

dimension 32, normalized in the range of [0-1]. 

The search system results page should display the 

10 most similar images; therefore, the cluster size is set 

to 10. For the selected 100 000 images, 10 000 clusters 

will be formed. For MDC, the parameters are defined as 

follows: the number of dimensions is 4, the number of 

intervals per dimension is 10, and the expected number 

of values on each dimension’s interval is 10 000. For PQ 

(IMI), the number of subspaces is 4, and the number of 

clusters in a subspace is up to 10. Up to 10 000 clusters 

can be formed for k-means clustering.  

The plan of the experiment is as follows:  

1) form clusters using each of the above methods; 

Evaluate the speed of their creation and occupancy;  

2) check the clustering efficiency when using 20% 

of available descriptors;  

3) make tables to compare the results;  

4) compare and analyze the obtained results, draw 

conclusions. 

All clustering methods were implemented using the 

Java 17 programming language. The software solution is 

a separate application for conducting clustering task ex-

periments.  

Except for DINOA-in-DB, all implementations use 

descriptor placement in RAM. DINOA-in-DB uses the 

default interval boundary movement step values. The 

JDBC interface is used to communicate with the data-

base. PostgreSQL 15 is used as the DBMS. 

The experiments were performed on the following 

computer: MacBook Pro 2021: M1 Pro processor on 

ARM architecture, 10-cores up to 3.2 GHz, 16 GB of 

LPDDR5 SDRAM up to 200 Gb/s, 512 GB SSD, inte-

grated GPU with 16 cores. 

 

4. Results and Discussion 
 

4.1. Results 
 

Figure 6 shows the resulting boundaries of the 

MDC dimension intervals after applying DINOA-in-

RAM. These boundaries are not uniform. 

 

 
 

Fig. 6. The intervals after the optimization 

 

Figure 7 shows the uneven distribution of values 

across intervals in one MDC dimension after uniformly 

defining interval boundaries. The even distribution with 

expected count of values achieved after applying 

DINOA, both when using all descriptors and when ini-

tially using 20% of the descriptors before loading the en-

tire dataset. 

Table 2 presents detailed statistics on the cluster oc-

cupancy. The first value in each table cell represents the 

result when all descriptors from the dataset were used. 

The second value shows the result when only 20% of the 

descriptors were initially used, followed by loading the 

entire dataset. Table 3 shows the main clustering metrics 

results using different methods.  
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Table 2 

Distribution of descriptors among the formed clusters, all values in units 

Number of de-

scriptors in the 

cluster 

Number of such 

clusters in MDC 

without optimi-

zation 

The number of 

such clusters in 

MDC (DINOA-

in-DB) 

The number of 

such clusters in 

MDC (DINOA-

in-RAM) 

The number of 

such clusters 

after applying 

k-means 

The number of 

such clusters 

after applying 

PQ (IMI) 

0 9 539 
7 234 

7 227 

7 232 

7 227 

455 

2 140 

7 304 

7 202 

1-10 130 
985 

996 

988 

996 

5 460 

4 076 

1 562 

1 667 

11-20 50 
447 

444 

444 

444 

3 284 

2 236 

339 

347 

21-30 32 
275 
259 

278 
257 

692 
1 030 

213 
167 

31-40 20 
214 

234 

210 

235 

104 

376 

102 

104 

41-50 12 
167 

161 

171 

163 

5 

116 

65 

91 

51-100 49 
447 

449 

446 

446 

0 

26 

182 

192 

101-200 57 
201 

199 

201 

201 

0 

0 

121 

129 

201-300 35 
25 

27 

25 

27 

0 

0 

55 

41 

301-400 18 
3 

2 

3 

2 

0 

0 

20 

15 

401-500 10 
1 

1 

1 

1 

0 

0 

12 

14 

501-1000 24 
1 

1 

1 

1 

0 

0 

18 

24 

1001+ 24 
0 

0 

0 

0 

0 

0 

7 

7 

 

 
 

Fig. 7. The distribution of dimension values between intervals, which are: evenly divided, optimized by DINOA 

based on entire dataset, and optimized by DINOA based on 20% of the dataset 
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Table 3 

Results of descriptor clustering – main metrics 

Clustering method Time spent, seconds 
Number of populated 

clusters, units 

Maximum number of de-

scriptors in a cluster, units 

Classic (K-means) 
21 780.062 

3 602.29 

9 545 

7 860 

50 

71 

PQ (IMI) 
43.279 

10.562 

2 696 

2 798 

1 881 

1 447 

MDC without optimization 0.0026 461 5 543 

MDC (DINOA-in-DB) 
242.738 

110.354 

2 766 

2 773 

721 

717 

MDC (DINOA-in-RAM) 
1.758 

1.527 

2 768 

2 773 

721 

717 

 

4.2. Discussions 

 

The k-means algorithm provides the most effective 

clustering in terms of cluster occupancy. When all avail-

able descriptors were used, 9 545 populated clusters were 

formed out of the maximum possible 10 000. The maxi-

mum number of descriptors in a cluster is 50, whereas the 

expected number is 10. When 20% of the descriptors 

were used, 7 860 populated clusters were formed, with a 

maximum of 71 descriptors in a cluster. That is, when 

using an incomplete data set, the clustering quality de-

creased by approximately 20%. However, the time for 

cluster formation decreased from 21 780 s to 3 602 s, i.e., 

6 times. 

In terms of cluster occupancy efficiency, the second 

place is taken by the MDC with DINOA-in-RAM opti-

mization. When all descriptors and 20% of them are used, 

the number of populated clusters is almost the same and 

amounts to 2 770. The same holds true for the maximum 

number of descriptors in a cluster, which is 720. This 

means that when using a part of the available dataset, the 

clustering quality decreases slightly. However, the num-

ber of populated clusters is significantly lower, and the 

maximum number of descriptors in a cluster is signifi-

cantly higher than when using k-means. The time spent 

using the data in both variants shows good results and 

does not exceed 2 s. 

In the same terms, the third place is taken by the 

MDC with DINOA-in-DB optimization. It provides the 

same results in terms of the number of populated clusters 

and the maximum number of descriptors in a cluster as 

the RAM modification. However, it shows worse results 

of the time spent on clustering: 242 s when using all the 

data and 110 s when using part of the data, respectively. 

However, as noted in the experimental methodology, this 

result is expected because this variation considers the 

time of sending data from/to the DB. Using 20% of the 

descriptors does not negatively affect the clustering qual-

ity and speeds it up by 2.2 times. 

The fourth most efficient approach is PQ(IMI). The 

clustering speed is slightly worse than that in MDC using 

DINOA-in-RAM but better than that when using 

DINOA-in-DB. The number of populated clusters at the 

MDC level with optimizations, with a small deviation. 

However, the maximum number of descriptors in a clus-

ter is worse than that when using MDC and is 1 881 when 

using all the data and 1 447 when using 20% of the data. 

The use of part of the data does not negatively affect the 

clustering quality and speeds it up by 4 times. 

The clustering performed by MDC without optimi-

zations demonstrates the best cluster formation speed. It 

took less than 1 s; however, the number of populated 

clusters was the smallest among the competitors (461), 

and the maximum number of descriptors in a cluster was 

significantly higher than that of the competitors – 5 543.  

Since k-means clustering can be considered a 

benchmark in terms of clustering quality, Table 4 com-

pares the main metrics of the experiment with it.  

Table 4 

Comparison of the results of the approaches with the results of clustering performed using k-means   

Clustering 

method 

How many times is 

faster than k-means 

How many times the number 

of populated clusters is less 

than in k-means 

How many times is the maximum num-

ber of descriptors in the cluster larger 

than in k-means 

MDC without 

optimization 

2 178 006.2 

360 229 

20.705 

17.049 

110.86 

78.07 

MDC (DB) 
89.727 
32.643 

3.451 
2.834 

14.42 
10.099 

MDC (RAM) 
12 389.114 

2 359.064 

3.448 

2.834 

14.42 

10.099 

PQ (IMI) 
503.248 

341.061 

3.54 

2.809 

37.62 

20.38 
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This highlights how other approaches perform 

worse in terms of clustering quality but achieve higher 

speed. The first value in each table cell represents the re-

sult when all descriptors from the dataset were used. The 

second value shows the result when only 20% of the de-

scriptors were initially used, followed by loading the en-

tire dataset. 

The summary from Table 4 is as follows: classical 

clustering methods such as k-means show the best result 

in terms of cluster occupancy, offering approximately a 

threefold advantage over competitors in terms of the 

number of populated clusters and about 20 times in terms 

of the maximum number of descriptors in a cluster. It re-

quires much more time than its competitors to perform 

clustering. 

Since the variants of MDC and PQ (IMI) implemen-

tations demonstrate almost the same results in terms of 

cluster occupancy, we can conclude that these results di-

rectly depend on the properties of a particular type of im-

age descriptor and dataset. The obtained results do not 

contradict the theoretical estimates of the computational 

complexity. The clustering performed using MDC with 

DINOA-in-RAM optimization demonstrated the shortest 

clustering timeamong similar techniques and was not in-

ferior in quality to the PQ (IMI). 

The distribution of descriptors across clusters (Ta-

ble 2) shows that most of the populated clusters have an 

expected number of descriptors in k-means clustering. 

No cluster has more than 100 descriptors. When applying 

MDC with both optimizations, most of the populated 

clusters have the expected number of descriptors, and the 

maximum number of descriptors (up to 1 000) is located 

in only one cluster. The number of clusters with the ex-

pected number of descriptors is higher when using PQ 

(IMI) than in MDC. However, 7 clusters contain more 

than 1 000 descriptors. This suggests that clustering us-

ing PQ (IMI) is not as uniform in terms of cluster occu-

pancy as MDC. When clusters are formed based on 20% 

of the descriptors of the dataset and the entire dataset is 

assigned to these clusters, the distribution of descriptors 

across clusters significantly deteriorates when using k-

means. However, with MDC and PQ (IMI), this deterio-

ration is negligible.  
 

5. Conclusions 
 

In this paper, we present a method for optimizing 

the clustering of descriptors in the feature database of an 

image content-based retrieval system represented by the 

Multidimensional Cube (MDC) model. An abstract opti-

mization algorithm, DINOA, and two specific implemen-

tations were developed: DINOA-in-RAM and DINOA-

in-DB for storing MDC in RAM and in a relational data-

base, respectively. 

Experiments were conducted using descriptors of 

the type Invariant Brightness Histogram for images from 

the COCO2017 dataset, comparing clustering performed 

by MDC with optimizations, the k-means algorithm, and 

Product Quantization with the implementation of In-

verted Multi-Index.  

The results showed that if the clustering time is not 

critical for the retrieval system (the storage is rarely up-

dated and clusters are not rebuilt), then using classical 

clustering methods and algorithms such as k-means is the 

best solution. The cluster formation speed is significantly 

worse compared to alternative methods. Alternative clus-

tering methods should be used in other cases. When com-

paring the speed and quality of the formed clusters under 

the same conditions, using MDC with optimizations and 

PQ (IMI), MDC was found to deliver better results. This 

confirms the high efficiency of the developed optimiza-

tion method and the achievement of the work’s objec-

tives. 

The obtained results demonstrate that the developed 

method and clustering optimization algorithms provide 

MDC with high cluster creation and occupancy effi-

ciency. This will allow the model to be quickly rebuilt if 

necessary and should ensure high search efficiency. 

The future research directions are as follows: 

1) conducting detailed experiments to determine 

the efficiency of searching in MDC using the formed 

clusters with the help of DINOA. 

2) conducting additional optimization for de-

scriptor clusters with a significantly higher number of de-

scriptors than expected. During this optimization, an in-

ternal division of such a cluster into smaller ones is also 

performed. 
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МЕТОД ОПТИМІЗАЦІЇ КЛАСТЕРИЗАЦІЇ ДЕСКРИПТОРІВ В БАЗІ ДАНИХ ВЛАСТИВОСТЕЙ 

СИСТЕМИ ПОШУКУ ЗОБРАЖЕНЬ НА ОСНОВІ ВМІСТУ 

С. Д. Даниленко, К. С. Смеляков 

Предметом дослідження є методи групування дескрипторів зображень, які розміщуються у базі даних 

властивостей систем пошуку. Метою є розробка методу оптимізації процесу кластеризації дескрипторів у 

сховищі Big Data, представленого моделлю даних Багатовимірного Кубу, для подальшого використання утво-

рених кластерів для ефективного пошуку у системах пошуку на основі вмісту зображень. Завдання полягає 

у: аналізі сучасних підходів і рішень для групування дескрипторів зображень у базі даних властивостей;  фо-

рмулювання проблеми методу кластеризації в Багатовимірному Кубі і вимог до його оптимізації; розробці 

абстрактного методу оптимізації; розробці конкретних алгоритмів оптимізації для різного типу розміщення 

моделі в пам’яті; розробці метрик; виконанні експериментів і порівнянні отриманих результатів з аналогами. 
Методологія включає в себе аналіз процесу формування груп за допомогою різних методів, визначення їх 

переваг та недоліків; застосування чисельних методів оптимізації для оптимізації процесу кластеризації; про-

ведення експериментів з наявними в мережі Інтернет наборів даних; оцінка ефективності методу оптимізації 

і формування результуючих таблиць для порівняння з аналогами. Були отримані такі результати: розроблено 

метод оптимізації кластеризації дескрипторів, який використовується в моделі даних Багатовимірний Куб; 

розроблено алгоритми оптимізації, що реалізують цей метод для розміщення моделі в оперативній пам’яті та 

в базі даних. Результати формування кластерів, визначені метриками витраченого часу та наповненістю кла-

стерів були порівняні з кластеризацією дескрипторів, виконаним за допомогою алгоритму k-means та підходу 

Product Quantization з реалізацією Inverted Multi-Index. Результати показали, що використання моделі з розро-

бленими оптимізаціями демонструє ефективність кластеризації дескрипторів не гіршу, ніж при застосуванні  

Inverted Multi-Index та краще по витраченому часі ніж при застосуванні k-means чи Inverted Multi-Index. Ви-

сновки: розроблений метод оптимізації кластеризації дескрипторів значно покращує розподілення дескрип-

торів всередині моделі Багатовимірного Кубу та робить її гарною альтернативою для використання в системах 

пошуку зображень на основі вмісту. 

Ключові слова: інформаційні технології; алгоритми і структури даних; сховище даних; великі дані; по-

шукова система; багатовимірна модель даних; метод оптимізації; кластеризація; обчислювальна складність. 
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