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DEEP INFORMATION-EXTREME MACHINE LEARNING FOR AUTONOMOUS 

UAV BASED ON DECURSIVE DATA STRUCTURE FOR SEMANTIC  

SEGMENTATION OF DIGITAL IMAGE OF A REGION 
 

The subject of the research is functional categorical models of deep information-extreme machine learning 

based on linear and hierarchical data structures, methods for optimizing machine learning parameters based 

on information criteria and constructing a decursive binary data tree for a given alphabet of recognition 

classes. The aim of the research is to improve the accuracy of machine learning for an autonomous UAV for 

semantic segmentation of a digital image of a region obtained via an optoelectronic observation channel. This 

goal is achieved by developing a method of deep information-extreme machine learning for an on-board 

recognition system of an autonomous UAV using a decursive binary data structure. A new method of deep 

information-extreme machine learning for autonomous UAVs has been developed, based on a hierarchical 

data structure in the form of a decursive binary tree. The novelty of the method lies in the maximization of the 
average interclass code distance within a given dimensionality of the Hamming feature space by optimizing the 

selection level of coordinates of statistically averaged binary realizations of the recognition classes. At the 

same time, the level of depth of information-extreme machine learning according to the principle of deferred 

decisions is determined by the number of parameters of the system's functioning that are optimized according 

to the information criterion. This approach, unlike neural-like structures, provides flexibility for the onboard 

recognition system during retraining in the event of an expansion of the recognition class alphabet. The 

Kullback-Leibler information measure modified by the authors serves as a criterion for optimizing machine 

learning parameters. In addition, the proposed method involves the transformation of the input training matrix 

into a working binary matrix specified in the Hamming space, which in the process of machine learning adapts 

to its maximum accuracy. Results: Based on the results of deep information-extreme machine learning, error-

free decision rules based on the training matrix were constructed within the framework of a geometric 

approach. It is shown that the accuracy of the deep information-extreme machine learning is affected by the 
sequence of optimization of the parameters of the recognition system. The results of functional testing and 

cross-validation have confirmed the high accuracy of information-extreme machine learning for an 

autonomous UAV, as demonstrated by semantic segmentation of a digital image of a region. Conclusions: For 

the first time, a method of deep information-extreme machine learning based on a hierarchical data structure 

in the form of a decursive binary tree has been developed, which, unlike the known ones, additionally optimizes 

the level of selection for coordinates of binary averaged vectors of recognition features. 

 

Keywords: information-extreme machine learning; information criterion; optimization; autonomous UAV; 
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1. Introduction 

 

1.1. Motivation 

 
Providing a UAV with autonomy allows 

expanding its functionality, increasing the probability of 

mission completion, and reducing the burden on the 

personnel of the ground control station. There are 

known examples of the use of autonomous UAVs in the 

agricultural sector [1, 2], for monitoring nuclear power 

plants [3], and ecosystems [4, 5], recognition of ground 

objects [6, 7], military [8], etc. One of the areas of 

application of autonomous UAVs is mapping the 

observation region [9, 10] which has practical 

significance for various sectors of the socio-economic 

sphere of society. An analysis of the current state of 

development of autonomous UAVs for observing the 

Earth's surface showed that the main direction of their 

improvement is the application of intelligent 

information technologies based on machine learning. In 

paper [10], the application of a local descriptor for 
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semantic segmentation in combination with machine 

learning is considered. In this case, there is an 

unresolved issue of the choice of brightness threshold 

for detecting a ground object. At the same time, the 

issue of developing a highly accurate and operational 

machine learning method for the onboard system of an 

autonomous UAV for semantic segmentation of a digital 

image of the observation region is acute. A promising 

direction for solving this issue is the development of 

machine learning methods within the framework of a 

functional approach to modeling cognitive processes of 

natural intelligence [11]. Therefore, the development of 

a machine learning method that models the mechanism 

of natural intelligence in constructing and making 

classification decisions is an urgent task. 
 

1.2. State of the Art 

 

Increasing the functional efficiency of an 

autonomous UAV depends mainly on the availability of 

a relevant input mathematical description and a machine 

learning method with high accuracy and efficiency in 

making classification decisions. The paper [12] 

emphasizes the feasibility of constructing decision rules 

obtained in the process of machine learning within the 

framework of a geometric approach, which allows 

ensuring their practical invariance to the 

multidimensionality of the recognition feature 

dictionary. Known methods of information synthesis of 

intelligent UAVs for recognizing terrestrial natural and 

infrastructure objects, including the use of artificial 

neural networks [7, 13], do not fully meet the practical 

requirements due to complications of a scientific and 

methodological nature. Such complications are mainly 

due to arbitrary initial conditions for image formation, 

the intersection of recognition classes in the feature 

space, and the multidimensionality of the feature 

dictionary and the alphabet of recognition classes. The 

most common methods of information synthesis for 

intelligent UAVs in recognizing natural and 

infrastructural ground objects utilize artificial neural 

networks [14, 15].  In [16], an autonomous navigation 

system for UAV based on deep learning CNNs is 

proposed, which enables the recognition of navigational 

obstacles. The system under consideration is 

multisensory, allowing it to perceive the entire 

environment around the drone for obstacle detection and 

avoidance, path planning, and movement in all 

directions. Study [17] presents a monitoring system for 

the development of citrus crops in precision agriculture. 

For semantic pixel-wise segmentation of citrus leaves to 

detect phytodiseases, a CNN with the Visual Geometry 

Group 16 (VGG16) architecture was used. 

The main drawbacks of applying CNNs for 

semantic segmentation are their sensitivity to the high 

dimensionality of the feature recognition space and 

fundamental complications in retraining the system due 

to the increased complexity of the recognition class 

alphabet. Additionally, using CNNs requires a large 

training dataset, which leads to increased time and 

material costs of machine learning for autonomous 

UAVs. These complications are mainly caused by 

arbitrary initial conditions in image formation, 

overlapping recognition classes in the feature space, and 

the high dimensionality of the feature dictionary and 

recognition class alphabet. 

In study [18], the robustness and accuracy of an 

image segmentation method based on the ant colony 

optimization algorithm are investigated under varying 

levels of additive Gaussian noise, along with a 

comparison of its performance against the classical 

segmentation approach using the Sobel filter. The 

proposed method has practical value for determining the 

contour of terrain areas during pixel-wise semantic 

segmentation of digital images of the monitored region. 

Overall, the complexities of modern intelligent 

data analysis technologies, including neural-like 

structures, are mainly caused by arbitrary initial 

conditions in image formation, overlapping recognition 

classes in the feature space, and the high dimensionality 

of the feature dictionary and recognition class alphabet. 

One of the promising areas of information 

synthesis of the onboard autonomous UAV system for 

semantic segmentation is the application of ideas and 

methods of information-extreme intellectual technology 

(IEI technology) for data analysis, developed within the 

framework of a functional approach to modeling 

cognitive processes of natural intelligence [19, 20]. The 

data mining methods proposed within this technology 

are based on maximizing the information capacity of the 

system during the machine learning process. Contrary to 

neural-like structures, the adaptation of the input 

mathematical description in IEI technology methods is 

carried out by optimizing machine learning parameters 

according to the information criterion. Study [21] 

examines information-extreme machine learning with 

the third level of depth for semantic segmentation of a 

digital image of a region, where the input data had a 

linear structure. Information-extreme machine learning 

for UAVs based on a hierarchical data structure was 

explored in study [22]. As a result, the multiclass 

machine learning problem was reduced to a binary 

classification task for each stratum of a decursive binary 

tree, which enabled the construction of highly reliable 

decision rules by implementing the basic second-level 

machine learning algorithm. However, in cases of 

significant overlap between recognition classes in the 

feature space, the accuracy of information-extreme 

machine learning heavily depends on its depth level. 

Therefore, despite successful applications of 
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information-extreme machine learning, further research 

is needed to ensure high accuracy as the size of the 

recognition class alphabet increases. 

 

1.3. Objectives and approaches 

The aim of the article is to improve the accuracy of 

information-extreme machine learning for an 

autonomous UAV for semantic segmentation of a digital 

image of a region by developing a method of deep 

information-extreme machine learning for an 

autonomous UAV based on a decursive binary data 

structure. The developed algorithm must be suitable for 

use by intelligent reconnaissance UAVs with the 2nd 

level of autonomy for recognizing natural and 

infrastructural ground objects.  Within the framework of 

the functional approach, to build highly reliable decision 

rules, the method must adapt the input mathematical 

description for increasing the accuracy of machine 

learning. Similar to natural intelligence, such adaptation 

is achieved by optimizing the system's operational 

parameters in accordance with the information criterion. 

In this case, according to the principle of deferred 

decisions, the required level of machine learning depth 

is determined by the number of optimization 

parameters. At the same time, decision rules constructed 

using the optimal geometric parameters of radial basis 

containers for recognition classes in the information-

theoretic sense demonstrate practical invariance to the 

dimensionality of the feature space. In addition, decision 

rules built within the framework of the geometric 

approach are characterized by high efficiency in making 

classification decisions due to the minimal complexity 

of calculations. 

The structure of the article includes several main 

sections. Section 2 presents the formalized statement for 

the problem of information synthesis during the training 

of an autonomous on-board system. Two different 

algorithms of machine learning were described for 

linear and hierarchical data structures. Section 3 

presents the results of experimental testing of the 

proposed UAV identification model and training 

method. A detailed discussion of the research results is 

provided in Section 4. The concluding section 5 

formulates the main conclusions and outlines directions 

for further research.  

 

2. Materials and methods of research 
 

2.1. Formalized statement  

of the research problem 

 
Let's consider, within the framework of IEI 

technology, a formalized formulation of the problem of 

information synthesis in a learnable on-board system of 

an autonomous UAV for the semantic segmentation of a 

digital image of the region. Let’s assume that we are 

given an alphabet of recognition classes }M,1m|X{ o
m  , 

that characterize different natural areas of the 

observation region in the image. Accordingly, a training 

matrix of the type “object property” 

,n,1j,N,1i,| |y| |
)j(
i,m   is formed, where N is the 

number of recognition features; n is the number of 

structured feature vectors (hereinafter simply referred to 

as vectors) of the recognition classes, respectively. 

According to the concept of IEI technology, the 

input training matrix is transformed into a working 

binary matrix specified in the Hamming space, which, 

through permissible transformations in the process of 

machine learning, is adapted to its maximum accuracy. 

Therefore, in the Hamming space, it is necessary to 

specify a structured vector of optimization parameters 

(hereinafter in the text in the information sense), the 

number of which determines the level of machine 

learning depth. For example, for machine learning for 

an autonomous UAV to recognize class 
o
mX  vectors, 

such a vector will be represented in the form of a 

structure 
 

            ρ};N,1i|δ{;δ;dg imm ,         (1) 

 

where 
md  is the radius of the hyperspherical container 

of the recognition class o
mX  , which is reconstructed in 

the radial basis of the recognition feature space; δ  is a 

parameter equal to half of the symmetric field of control 

tolerances for recognition features; iδ  is a parameter of 

the control tolerance field for the i-th recognition 

feature; ρ  is the level of selection of coordinates of 

binary averaged feature vectors that determine the 

geometric centers of hyperspherical containers of 

recognition classes in the feature space. 

The range of values of the radius of the container 

of the recognition class o
mX  is given by the inequality 

)xx(dd cmm  , where )xx(d cm   is an inter-center 

code distance between the nearest neighboring 

recognition classes 
o

mX  and o
cX , which is defined as 

the code distance between the averaged recognition 

feature vectors o
mm Xx   and o

cc Xx  . 

The range of values of parameters δ  and iδ  is 

given by the interval ]2/δ;0[ H , where Hδ is a width for 

range of values for the normalized control tolerance 

field. The range of values for selection level ρ  is an 

interval ]1;0[ .
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In the machine learning process of autonomous 

UAV it is necessary to:  

1)  Determine the optimal values of machine 

learning parameters (1) that provide the maximum 

average value of the information criterion over the 

alphabet of recognition classes 

 

)d(Emax
M

1
E m

M

1m
dGEG

*





 ,              (2) 

 

where )d(Em  is an information criterion for optimizing 

machine learning parameters, which is calculated at the 

current radius d of the recognition class container o
mX ; 

EG  is a working (permissible) area of definition of the 

information criterion function of optimization; dG is the 

permissible range of values of the radiuses of the 

recognition class container, which is reconstructed in 

the radial basis of the binary Hamming feature space;  

2) Using the optimal geometric parameters of the 

recognition class containers obtained during the 

machine learning process, construct decision rules that 

are error-free according to the training matrix; 

3) At the functional testing stage, check the 

accuracy of machine learning according to the 

constructed decision rules. 

Thus, the information synthesis of a learning 

onboard recognition system for an autonomous UAV is 

carried out by optimizing the operating parameters (1) 

according to the information criterion (2) in the process 

of information-extreme machine learning. 

 

2.2. Machine learning on linear  

data structure 

Within the framework of the functional approach 

to modeling cognitive processes, the functional 

categorical model of information-extreme machine 

learning is constructed in the form of a directed graph. 

At the same time, the input mathematical description of 

the functional categorical model of machine learning is 

presented in the form of a structure 

 

 .f,f;X,Y;Z,K,,T,FІ 21
|M||M|

ent
,  

  

where F  is the space of factors that affect the image; T  

is a set of moments in time of receiving information;   
is a recognition feature space; Z  is an alphabet of 

recognition classes; K is a set of frames of a digital 

image of a region; 
|M|Y  is an input training matrix, 

where M is a cardinal number; 
|M|X  is a working binary 

training matrix that adapts to its maximum accuracy 

during the machine learning process; 1f  is an operator 

for forming the input training matrix |M|Y ; 2f  is a 

transformation operator of the input Euclidean training 

matrix |M|Y  into the working binary training matrix 
|M|X  formed in Hamming space.  

Figure 1 shows the functional categorical model of 

information-extreme machine learning on a linear data 

structure with optimization of parameters of the vector 

(1). 

 

 
 

Fig. 1. Functional categorical machine learning  

model based on linear data structure 

 

In Figure 1, the operator ξ  displays binary vectors 

of the working training matrix 
|M|X  for a divison |M|  

of recognition classes. The classification operator ψ  

tests the underlying statistical hypothesis o
m

)j(
i,m1 Xx:γ  . 

Operator γ  forms a set |Q|  for accuracy characteristics 

of classification solutions, where 2GQ  , and the 

operator φ  calculates the set of values E of the 

information optimization criterion, which is a function 

from the accuracy characteristics. The operator r 

restores the recognition class partition |M|  at each step 

of machine learning. The optimization loop of control 

tolerances for recognition features is closed by the term 

set D. At the same time, the operator 1δ  sets the control 

tolerance values at each step of machine learning. The 

operator 2δ  changes the control tolerances for all 

recognition features at each step of machine learning 

during their parallel optimization, and the operator 3δ  

accordingly changes the control tolerances for the i-th 

characteristic during their sequential optimization. The 

optimization contour for the selection level of 
coordinates of averaged binary vectors of recognition 

classes is closed by the term-set C of selection level 

values. In this circuit, the operator 1ρ  sets the value of 

the selection level, and operator 2ρ  forms the averaged 

binary feature vectors of the recognition classes. The 

machine learning process is regulated by operator u. 

According to the FCM (fig. 1), the deep 

information-extreme machine learning algorithm with 

optimization of the selection level for coordinates of 

averaged binary recognition feature vectors for the 

training matrix is represented as an iterative procedure 
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for searching the global extremum of the information 

criterion (2) within the working domain of its function 

definition. 

 

   })}}d(E
M

1
max{max{max{maxargρ

M

1m

m
GGGGG

*

dEδiδρ




 ,  (3) 

 

where ρG  is the range of permissible values of the 

selection level for coordinates of averaged binary 

vectors of training matrices for recognition classes; 

iδ
G  is the range of permissible values of the parameter 

iδ  of the control tolerance field for the i-th recognition 

feature; δG is the range of permissible values of 

parameter δ of the control tolerance field for recognition 

features.  

The iterative procedure (3) determines the bottom 

of the depth of information-extreme machine learning. 

According to the principle of deferred decisions by O. 

G. Ivakhnenko, machine learning does not necessarily 

reach a given depth, since decision rules that are error-

free according to the training matrix can be built at a 

smaller depth. Therefore, information-extreme machine 

learning begins with the second level of depth, at which 

the basic two-cycle procedure for finding the global 

maximum of the information optimization criterion is 

implemented: 

 







M

1m

m
dGEGδG

* )}d(E
M

1
max{maxargδ ,              (4) 

 

where δG  is the range of permissible values of 

parameter .δ  

According to procedure (4), at the first depth level, 

the geometric parameters of the hyperspherical 

containers of the recognition classes are optimized, and 

at the second, the control tolerances for the recognition 

features are optimized in parallel. 

The input information for the machine learning 

algorithm is the training matrix array }y{
)j(
i,m , system of 

normalized tolerance fields }{δH  for recognition 

features, which specifies the range of values of the 

corresponding control tolerances, and the selection level 

ρ  of the coordinates of the averaged binary feature 

vectors of the recognition classes, which by default is 

equal to 0.5.  

Following are the main stages of implementing the 

UAV machine learning algorithm according to 

procedure (5) with parallel optimization of control 

tolerances for recognition features: 

1) resetting the recognition class counter: m: 0 ; 

2) m: m 1 ; 

3) resetting the parameter change counter  : 

: 0;    

4) : 1   ; 

5) the lower 
HK,iA  and upper 

BK,iA control 

tolerances for recognition features are calculated 

according to the rules 

 

           ,δyA;δyA ii,BKii,HK                  (5) 

 

where yi is an averaged (nominal) value of the i-th 

recognition feature; 

6) resetting the counter of steps of changing the 

radius of the hyperspherical container of the recognition 

class: k : 0 ;  

7) k : k 1  ; 

8) forming a three-dimensional array of binary 

training matrix 
{j}

m, i{x } , whose elements are calculated 

according to the rule 

 





 


;elseif,0

];k[Ay]k[Aif,1
]d[x

i,BK
)j(
i,mi,HK)j(

i,m  

 

9) formation of an array of averaged binary 

realizations 
m{x } , whose elements are determined by 

the rule 

 














;elseif,0

;ρx
n

1
if,1

x

n

1j

m
)j(
i,m

i,m  

 

where m is a quantization level of binary vector 

coordinates mx , which defaults to 0.5. 

10) partitioning a set of vectors 
m{x }  into pairs of 

nearest neighbors; 

11) the information optimization criterion is 

calculated (2);  

12) if m ck d(x x )  , where 
m cd(x x )  is inter-

center code distance for nearest neighboring recognition 

classes 
o

mX  і o

cX , then step 13, otherwise step 7; 

13) if H   , then step 14, otherwise step 4; 

14) the maximum value of the information 

criterion in the working (allowable) area of its function 

definition is determined; 

15) if m = M, then step 16, otherwise step 2; 

16) the global maximum of the averaged 

information criterion 
*

E  is determined in the workspace 

of its function; 
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17) the optimal parameters given by the vector (1) 

are determined:  
*

m{x | m 1,M}  are the optimal average feature 

vectors of recognition classes from a given alphabet; 
*

m{d | m 1,M}  are the optimal radii of recognition 

class containers; 
* is the optimal parameter of the control tolerance 

field for recognition features;  

18) according to formula (6) by parameter 
*  the 

optimal lower }N,1i|A{ *
i,HK   and upper 

}N,1i|A{ *
i,BK   control tolerances for recognition 

features are calculated: 

 
*

m

*
i,HK δуA *  ; *

m

*
i,BK δуA *  ; 

 

19) STOP. 

As a criterion for optimizing machine learning 

parameters, the modified Kullback-Leibler information 

measure was considered in the form [15]: 

 

      
 

,
10)d(K)d(K

10)d(K)d(Kn2
log

)]}d(K)d(K[n{
n

1
)d(K

λ

m,2m,1

λ

m,2m,1min

2

m,2m,1min

min

m






















        (6) 

 

where )d(K m,1  is the number of events in which 

recognition class o
mX  vectors are mistakenly not 

assigned to it; )d(K m,2 is a number of events in which 

vectors of another recognition class are mistakenly 

attributed to a recognition class o

mX ; minn   minimum 

size of a representative training sample; λ10 is a 

sufficiently small number entered to avoid division by 

zero. 

The normalized form of criterion (6) is represented 

as 

 

                             
max

m
m

K

)d(K
E  ,                              (7) 

 

where maxK  is the maximum value of criterion (6) that 

it accepts when substituting minm,1 n)d(K   and 

0)d(K m,2  . 

The implementation of the basic algorithm (5) of 

information-extreme machine learning depending on the 

degree of intersection in the space of recognition class 

features does not always allow constructing error-free 

decision rules according to the training matrix. In this 

case, according to the procedure (4), it is necessary to 

increase the level of depth by sequentially optimizing 

the control tolerances for recognition features according 

to the scheme 

 







M

1m

m
dGEGδG

iδ
G

L

1l

*

i )}},d(E
M

1
max{max{maxarg}N,1i|δ

(8) 

 

where   is a symbol for repeating the procedure (8); L 

is the number of runs of the iterative procedure for 

optimizing the control tolerance system for recognition 

features; N is the number of recognition features. 

Since in the process of optimizing the i-th feature, 

other subsequent features have suboptimal control 

tolerances, sequential optimization requires repeating 

the iterative procedure until the values of the 

information criterion for optimization stop changing. To 

increase the efficiency of machine learning, it is 

advisable to choose the optimal control tolerances 

obtained during parallel optimization as starting ones. In 

this case, the values of the information criterion for 

optimization calculated at each step of machine learning 

are constantly in the working area of determining its 

function. 

The main stages of implementing the algorithm for 

sequential optimization of control tolerances for 

recognition features are: 

1. 0:s  . 

2. 1s:s  . 

3. Resetting the recognition feature counter: 

.0:i   

4. 1i:i  . 

5. Determining the optimal parameter of the 

control tolerance field for the i-th recognition feature 

using procedure (5). 

6. If Ni  , then step 4, otherwise step 7. 

7. The maximum value of the information 

criterion 
)s(

E  averaged over the alphabet of recognition 

classes is calculated. 

8. If )}ss(&]EE{[ fmax

)s(
 , where fs  is a set 

amount of runs, then step 2, otherwise step 9. 

9. The optimal parameters of the control tolerance 

field for recognition features are calculated by the 

assignment operation  

 

}N,1i|δ:δ{
)s(

i
*
i  . 

 

10. According to formulas (6), the optimal lower 

and upper control tolerances are calculated. 

11. Optimal machine learning parameters are 

memorized 
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}M,1m|x{ *
m  are the optimal average feature 

vectors of recognition classes; 

}M,1m|d{ *
m   are the optimal radii of recognition 

class containers; 

}N,1i|A{,}N,1i|A{ *
i,BK

*
i,HK   are the optimal 

lower and upper control tolerances for recognition 

features. 

12. STOP. 

13. If the information criterion averaged over the 

alphabet of recognition classes does not reach its 

maximum value at the third level of machine learning 

depth, then it is necessary to move to the next level of 

depth. In our case, the outer loop of procedure (4) is 

implemented, in which the selection level ρ  level 

changes within its permissible range at each step of 

machine learning. Based on the optimal geometric 

parameters of the recognition class containers obtained 

in the process of machine learning, decision rules are 

constructed, which in production form are represented 

as 

 

  

o |M| ( j) |M|

m m

( j) o ( j) o

m m m m
{m}

( X )( x ){if[( 0) &

& max{ }] then x X elsex X },

     

    
   (9) 

 

where
( j)x  is a vector of recognition features; m  is a 

membership function of vector 
( j)x  to the container of 

recognition class o

mX . 

In expression (9), the membership function for the 

hyperspherical container of the recognition class o

mX  is 

defined by the formula 

 

                    ,
d

)xx(d
1μ

*
m

)j(*
m

m


                         (10) 

 

where )xx(d )j(*
m  is a code distance between vector 

*
mx  and vector 

)j(x , which is being recognized. 

Verification of the accuracy of machine learning 

by decision rules (9) is carried out in the functional 

testing mode. The task of functional testing is to verify 

the accuracy of decision rules built according to optimal 

geometric parameters. The functional testing algorithm 

is implemented according to the following scheme: 

1) resetting the counter for recognition classes: 

;0:m   

2) initializing the counter for recognition classes: 

1m:m  ; 

3) calculating function (10) 

4) if Mm  , then step 2, otherwise step; 

5) determining the maximal value of membersip 

function; 

6) according to the decision rules (9), a decision is 

made on whether the feature vector 
)j(x  belongs to one 

of the recognition classes of the given alphabet; 

7) STOP. 

The decision rules (9) constructed in the process of 

machine learning within the framework of the geometric 

approach are characterized by high efficiency and are 

practically invariant to the multidimensionality of the 

recognition feature dictionary due to their low 

computational complexity. 

 

2.3. Hierarchical Information-Extreme 

Machine Learning 
 

The disadvantage of machine learning based on a 

linear data structure is the decrease in accuracy as the 

alphabet of recognition classes increases. To increase 

the accuracy of information-extreme machine learning 

with more than two recognition classes, it is advisable to 

switch to using a hierarchical data structure in the form 

of a decursive binary tree. The construction of a 

decursive binary tree is carried out according to the 

following scheme:  

1) for a given alphabet, a variational series of 

recognition classes is constructed by increasing the 

proximity criterion; 

2) the variational series is divided into two groups, 

which respectively define two branches of the decursive 

binary tree; 

3) as attributes of the vertices of the upper (first in 

dendrographic classification) tier of the decursive tree, 

the training matrices of the neighboring boundaries for 

each of the groups of recognition classes are selected;  

4) attributes of vertices of the upper-tier stratum 

are transferred to vertices of the corresponding lower-

tier child stratums; 

5) as an attribute of another vertex of the lower tier 

stratum, the training matrix of the nearest neighbor in its 

group of recognition classes is selected; 

6) the tree construction continues until strata 

containing training matrices of all recognition classes 

are formed. 

Therefore, the binary decursive tree constructed 

according to the above scheme divides the given set of 

recognition classes into strata, each of which contains 

two nearest neighboring classes. As a result, for the two 

nearest neighboring recognition classes of each stratum, 

the above-considered information-extreme machine 

learning algorithm can be applied to the linear data 

structure with the required level of depth. 
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The input information description of the system 

learning from the decursive binary structure is 

represented as  

  

 4321
|2|
s,h

|2|
s,h

|M| g,g,g,g;X,Y,H,Y,Z,K,,T,FI  

 

where H  is a decursive binary tree; |2|
s,hY  is an input 

training matrix of two recognition classes for the 

stratum s of the h-th tier of decursive tree; |2|
s,hX  is the 

working training matrix given in Hamming space; 1g  

is the operator for forming the input training matrix 
|M|Y ; 2g  is the operator for constructing a recursive 

binary tree H; 3g  is the operator for forming the matrix 

|2|
s,hY ; 4g  is the operator for forming the training matrix 

|2|
s,hX .  

Figure 2 shows the functional categorical model of 

machine learning based on a hierarchical data structure 

in the form of a decursive binary tree. 

 

 
 

Fig. 2. Functional categorical model of hierarchical 

machine learning based on decursive data structure 

 

Hierarchical functional categorical model differs 

from the machine learning model (Fig. 1) in the input 

mathematical description. In the process of hierarchical 

information-extreme machine learning, the operator η  

projects binary vectors of the working training matrix 
|2|
s,hX  on a fuzzy, in general case, partition |2|

s,h

~
  of two 

recognition classes for each stratum of the decursive 

tree. Next, the classification operator 
|G||2| I

~
:ψ   tests 

the basic statistical hypothesis about the membership of 

a binary vector )j(
s,h,mx  in a class o

s,h,mX  and the 

information-extreme machine learning operators 

discussed above are implemented. 

Therefore, constructing a decursive binary tree 

allows multi-class information-extreme machine 

learning to be reduced to two-class for each stratum, 

which is a necessary condition for increasing the 

accuracy of machine learning. 

 

3. Experiments and Results 

 
For machine learning of the onboard frame 

identification system, an image of the observation 

region obtained from aerial photography was selected 

(Fig. 3). 

 

 
 

Fig. 3. Image of the region 

 

Figure 4 shows selected frames of the image of the 

region (Fig. 3), which characterize the forest - 

recognition class o
1X , field №1 – recognition class o

2X , 

field №2 – recognition class o
3X  and field №3 – 

recognition class o
4X . 

 

    
              a                  b                   c                  d  

 

Fig. 4. Image frames: a – recognition class o
1X ;  

b – recognition class o
2X ; c – recognition class o

3X ;  

d – recognition class o
4X ; 

 

Analysis of Figure 3 shows that the brightness 

spectra of the selected image frames are close, which 

causes a priori fuzzy partitioning of recognition classes 

in the feature space and makes it difficult to achieve 

high accuracy of machine learning. Initially, 

information-extreme machine learning was 

implemented on a linear data structure with parallel 

optimization of control tolerances for recognition 

features, i.e. with a second level of depth according to 

procedure (5). At the same time, the normalized 

information criterion (7) was used to optimize the 

machine learning parameters. 

Figure 5 shows a graph of the dependence of the 

alphabet-averaged recognition of the normalized 

information criterion (7) on the parameter of the control 

tolerance field, obtained in the process of information-
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extreme machine learning based on the linear data 

structure. 

 
 

Fig. 5. Graph of the dependence of the information 

criterion on the parameter of the control tolerance field 

 

Analysis of Figure 5 shows that the graph lacks the 

working (allowable) region for determining the 

information criterion function (7) for optimizing 

machine learning parameters, which indicates the 

indivisibility of recognition classes due to the high 

degree of their intersection in the recognition feature 

space. This fact determines the feasibility of switching 

to information-extreme machine learning with a 

hierarchical data structure in the form of a decursive 

binary tree. For this purpose, a variational series of 

recognition classes was previously constructed by 

increasing the average brightness of the training 

matrices of recognition classes (Fig. 6). 

 

 
Fig. 6. Variational series of recognition classes 

 

Figure 7 shows a decursive binary tree constructed 

using a variational series for a given alphabet }X{ o
s,h,m  

of recognition classes. 

 

 
Fig. 7. Structure of a decursive binary tree 

 

According to the above-described algorithm for 

constructing a decursive binary tree, the stratum 

recognition classes of the first (uppermost in 

dendrographic classification) tier are adjacent for two 

groups of the variation series (Fig. 6). 

Figure 8 shows a graph of the dependence of the 

averaged information criterion s,hE  on the parameter 

s,hδ , obtained in the process of machine learning with 

parallel optimization of control tolerances for the 

features of the first-tier stratum recognition classes 

using procedure (5). 

 

 
 

Fig. 8. Graph of the dependence of the information 

criterion on the parameter of the control tolerance field 

for the stratum of the upper tier of the decursive tree 

 

Analysis of Figure 8 shows that the working 

(permissible) areas of the information criterion function 

definition have appeared on the graph, but the 

normalized information criterion does not reach its 

maximum limit value 1E
*

s,h  , which does not allow 

constructing error-free decision rules based on the 

training matrix. To improve the accuracy of machine 

learning, its depth level was increased by sequentially 

optimizing the control tolerances for recognition 

features using an iterative procedure for finding the 

global maximum of the information criterion. 

 

,)}d(Emax{maxarg}N,1i|δ{
)l(
s,h

GGG

L

1l

*
i,s,h

dEδ












  

(11) 

 

where )d(E
)l(
s,h  is the average value of the information 

criterion for optimizing the machine learning parameters 

of the recognition classes of the s-th stratum on h-th tier 

of decursive; 
iδ

G  is the range of permissible values of 

the control tolerance field of the i-th recognition feature; 

EG  is an information criterion definition workspace; 

dG  is a range of permissible radius values s,h,md  for 

the container of recognition class o
s,h,mX ;   is a symbol 

of operation repetition; L is the amount of runs for 

procedure (11); i is the number of features in the 

structured vector of the recognition class training matrix 
o

s,h,mX .  

Figure 9 shows a graph of the change in the 

averaged normalized criterion (7), obtained as a result of 

sequential optimization of the parameter of the control 
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tolerance field for recognition features according to 

procedure (11). 

 

 
 

Fig. 9. Graph of changes in the information criterion in 

the process of sequential optimization of control 

tolerances for the upper tier stratum 

 

Analysis of figure 9 shows that the information 

criterion reaches its peak value on the first iteration of 

procedure (11), number of which is determined by the 

ratio of iterations to recognition features. Figure 10 

shows a graph of the dependence of the information 

criterion (7) on the parameter 1,2δ  of the field of control 

tolerances for recognition features, obtained in the 

process of machine learning with parallel optimization 

of control tolerances for the features of recognition 

classes at the first stratum of the decursive tree’s lower 

tier. 
 

 
 

Fig. 10. Graph of dependence of the information 

criterion on the width of control tolerance field  

at the lower tier’s first stratum 

 

Graph analysis shows that the peak value of 

information criterion is low. In this case, the depth of 

machine learning was increased by sequentially 

optimizing the control tolerances for recognition 

features according to the procedure (11). Figure 11 

shows the graph of the change in the information 

criterion (7), obtained in the process of information-

extreme machine learning with sequential optimization 

of the control tolerances for recognition features. 

Analysis of Figure 11 shows that the maximum 

value of the normalized information criterion has 

increased, but remains low. Therefore, the depth of 

machine learning was increased by optimizing the level 

of selection of coordinates of averaged binary vectors of 

recognition classes according to procedure (4). 

Figure 12 shows a graph of the dependence of the 

averaged normalized information criterion (7), obtained 

in the process of information-extreme machine learning 

with optimization of the level of selection of coordinates 

of averaged binary vectors of recognition classes after 

sequential optimization of control tolerances for 

recognition features. At the same time, the values of the 

selection level on the graph changed in the interval [0.3; 

0.7]. 

 

 
 

Fig. 11. Graph of changes in the information criterion 

in the process of sequential optimization of control 

tolerances for the first stratum of the lower tier  

of the decursive tree 

 

 
 

Fig. 12. Graph of dependence of information criterion 

on the selection level for recognition classes  

at the lower tier’s first stratum 

 

Analysis of Figure 12 shows that at this depth level 

the maximum value of the information criterion has 

increased to 0.60, but does not reach its limit value. This 

fact allows us to conclude that the partition of 

recognition classes constructed based on the results of 

machine learning remains indeterminate. Therefore, the 

idea arose to implement information-extreme machine 

learning with optimization of the level of selection of 

coordinates of binary vectors representing recognition 

classes of the first stratum of the lower tier between 

parallel  and sequential optimization of control 

tolerances. 

Figure 13 shows a graph of the dependence of the 

information criterion (7) on the selection level s,hρ , 

obtained in the process of information-extreme machine 

learning after parallel optimization of control tolerances 

for the first stratum of the lower tier. 
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Analysis of Figure 13 shows that the maximum 

value of the normalized information criterion has 

significantly increased compared to the result of the 

basic information-extreme machine learning algorithm 

and is equal to 55,0E
*

1,2   at the optimal selection level 

40,0ρ*
1,2  . To improve the accuracy of machine 

learning, the level of its depth was increased, at which 

information-extreme machine learning was carried out 

with sequential optimization of control tolerances for 

recognition features. Figure 14 shows a graph of the 

change in the information criterion (7), obtained in the 

process of information-extreme machine learning with 

sequential optimization of control tolerances for 

recognition features at the optimal selection level

4,0ρ*  .  

 

 
 

Fig. 13. Graph of dependence of criterion on the 

selection level for recognition classes  

at the lower tier’s first stratum 

 

 
 

Fig. 14. Graph of changes in the information criterion  

in the process of sequential optimization of control 

tolerances for the first stratum of the lower tier  

 

Analysis of Figure 14 shows that in the second run 

of procedure (11) the averaged information criterion 

reaches its maximum limit value. 

Figure 15 shows a graph of the dependence of the 

normalized information criterion (7) on the parameter of 

the field of control tolerances 2,2δ  for recognition 

features, obtained in the process of machine learning 

with parallel optimization of control tolerances for 

features of recognition classes of the second stratum of 

the second (lower) tier. 

Analysis of Figure 15 shows that for the 

recognition classes of the second stratum of the second 

tier, the normalized information criterion reaches its 

maximum value 1E
*

2,2  , which allows us to construct 

error-free decision rules based on the training matrix. 

 

 
 

Fig. 15. Graph of the dependence of the information 

criterion on the parameter of the control tolerance field 

for the second stratum of the lower tier  

of the decursive tree 

 

So, for all strata of the decursive tree (Fig. 6) based 

on the results of two-class information-extreme machine 

learning, error-free decision rules for vectors from the 

input training matrix were constructed. 

To form the membership functions (10), it is 

necessary to determine the optimal geometric 

parameters of the recognition class containers. Figure 16 

shows graphs of the dependence of the normalized 

criterion (7) on the radii of the recognition class 

containers of the strata of the decursive binary tree 

(Fig. 6). 

Since in the process of information-extreme 

machine learning on a decursive data structure, the 

optimization of the radii of the average containers in the 

variational series of recognition classes occurs in two 

strata with different nearest neighbors, the smallest 

extreme value of the radii must be taken as the optimal 

one.  

In addition, according to the minimum distance 

principle of recognition theory, in the case of several 

extreme values of the radii of the containers of 

recognition classes, the smaller value must be chosen as 

the optimal one. As a result, the decision rules of the 

recognition classes will have the following optimal radii 

of their hyperspherical containers, respectively: *

1d 53  

(hereinafter in code units) *

2d 52 , *

3d 10  and 

*

4d 28 . 
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a  b 

            
c d 

            

e f 

 

Fig. 16. Graphs of the dependence of the information criterion on the radii of containers:  

a – recognition class o
1,1,2X ; b – recognition class o

1,1,3X ; c – recognition class o
1,2,2X ;  

d – recognition class o
1,2,1X ; e – recognition class o

2,2,3X ; f – recognition class o
2,2,4X  

 

The accuracy of decision rules was checked in the 

functional testing mode. For comparison with other 

machine learning technologies, a typical artificial neural 

network with backpropagation of error was chosen. In 

order to create equal conditions for the experiment, the 

training matrix used in information-extreme machine 

learning was provided as input to the neural network. 

The results of the functional testing are presented in 

Table 1. 

 

Table 1  
Testing results 

Method 
Accur

acy 

Sensiti

vity 

Speci

ficity 

F1-

score 

AUC-

ROC 

ІЕІ-

techno-

logy 

0,97 0,96 0,98 0,95 0.97 

ANN 0,78 0,75 0.79 0,74 0,75 

The analysis of Table 1 shows that the obtained 

results for the proposed information-extreme machine 

learning method demonstrate high average values of 

standard accuracy metrics. Notably, the high sensitivity 

and specificity reflect the system's capability to 

minimize Type I and Type II errors, respectively. The 

AUC-ROC value, being close to 1, confirms high-

quality classification achieved for all target classes. For 

the neural network, the lower values of standard 

accuracy metrics can be attributed to the limited size of 

the training matrix, which constrained performance 

improvement. In addition, unlike information-extreme 

machine learning methods, neural-like architectures 

exhibit limitations such as reduced flexibility, 

interpretability, and uniformity. 

 

4. Discussion 
 

The results of computer modeling demonstrated 

that, during the process of information-extreme machine 
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learning using a hierarchical data structure in the form 

of a decursive binary tree at the fourth level of depth, it 

was possible to construct decision rules that produced 

zero errors on the training matrix. It was also 

experimentally shown that achieving high accuracy 

requires adherence to the principle of variability in the 

deep information-extreme machine learning strategy. 

For example, analysis of Figure 10 showed that 

optimizing the selection level of the coordinates of 

binary averaged vectors of recognition classes after 

parallel-sequential optimization of control tolerances did 

not lead to high machine learning accuracy. Therefore, 

the selection level of the coordinates of binary vectors 

was instead optimized between the parallel and 

sequential stages of control tolerance optimization. This 

resulted in an increase in the maximum value achieved 

for the information criterion, averaged over the 

recognition class alphabet. This fact is explained by the 

algorithm of sequential optimization being sensitive to 

the starting values of control tolerances obtained from 

the results at the previous depth level of information-

extreme machine learning. The main limitation of the 

proposed method of deep information-extreme machine 

learning based on a decursive data structure is the use of 

hyperspherical containers for recognition classes. This 

assumption is justified in the case of a Gaussian 

distribution of class vectors relative to their geometric 

centers. However, if the empirical distribution deviates 

from the Gaussian model, more complex forms of radial 

basis containers for recognition classes must be used, 

such as hyperellipsoidal, hypercylindroidal, and others. 

 

5. Conclusions 
 

The problem of information synthesis of the onboard 

system of an autonomous UAV for identifying frames 

of a digital image of a region was solved based on 

machine learning. As a result of the conducted research, 

the following results were obtained: 

1. For the first time, a method of deep 

information-extreme machine learning based on a 

hierarchical data structure in the form of a decursive 

binary tree has been developed, which, unlike the 

known ones, additionally optimizes the selection level 

of the coordinates of binary averaged recognition 

feature vectors, which define the geometric centers of 

recognition classes in a Hamming space, and allows: 

– to move from multi-class machine learning to 

two-class for each stratum of a decursive binary tree, 

which creates the necessary conditions for increasing 

the accuracy of classification decisions; 

– for a given alphabet of recognition classes, 

construct, within the framework of a geometric 

approach, error-free decision rules based on the training 

matrix, which are characterized by high efficiency in 

making classification decisions. 

2. It is experimentally proven that deep 

information-extreme machine learning requires 

optimization of its implementation plan. It is shown that 

optimization of the selection level of coordinates of 

binary averaged realizations of recognition classes after 

parallel-sequential optimization of control tolerances did 

not allow to achieve high accuracy of machine learning. 

At the same time, optimization of selection levels after 

parallel optimization of control tolerances and before 

their sequential optimization allowed to achieve the 

limiting maximum value of the information criterion 

averaged over the alphabet of recognition classes. 

3. Further research will be conducted in two 

directions. The first involves increasing the depth of 

machine learning with a large capacity of the 

recognition class alphabet. The second direction focuses 

on investigating the impact of additional machine 

learning parameters on system performance, with an 

emphasis on optimizing the parameters for forming the 

input mathematical description. 
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ГЛИБОКЕ ІНФОРМАЦІЙНО-ЕКСТРЕМАЛЬНЕ МАШИННЕ НАВЧАННЯ АВТОНОМНОГО БПЛА 

ЗА ДЕКУРСИВНОЮ СТРУКТУРОЮ ДАНИХ ДЛЯ СЕМАНТИЧНОЇ СЕГМЕНТАЦІЇ  

ЦИФРОВОГО ЗОБРАЖЕННЯ РЕГІОНУ 

В. O.Черановський, M. I. Mироненко, С. O. Koвалевський,  

Р. O. Kрасковський, M. С. Oтрощенко 

Предметом дослідження є функціональні категорійні моделі інформаційно-екстремального глибокого 

машинного навчання за лінійною та ієрархічною структурами даних, методи оптимізації параметрів 

машинного навчання за інформаційним критерієм та побудови декурсивного бінарного дерева даних для 

заданої абетки класів розпізнавання. Метою дослідження є підвищення точності машинного навчання 

автономного БПЛА для семантичної сегментації цифрового зображення регіону, отриманого за 
оптоелектронним каналом спостереження. Поставлена мета досягається шляхом розроблення методу 

глибокого інформаційно-екстремального машинного навчання бортової системи розпізнавання автономного 

БПЛА за декурсивною бінарною структурою даних. Розроблено новий метод глибокого інформаційно-

екстремального машинного навчання автономного БПЛА за ієрархічною структурою даних у вигляді 

декурсивного бінарного дерева. Новизна методу полягає в максимізації середньої міжкласової кодової 

відстані в заданому вимірі простору ознак Геммінга шляхом оптимізації рівня селекції координат 

статистично усереднених двійкових реалізацій класів розпізнавання. При цьому рівень глибини 

інформаційно-екстремального машинного навчання згідно з принципом відкладених рішень визначається 

кількістю параметрів функціонування системи, що оптимізуються за інформаційним критерієм. Такий підхід 

на відміну від нейроподібних структур дозволяє надати бортовій системі розпізнавання, що навчається, 

гнучкості при перенавчанні у випадку розширення абетки класів розпізнавання. Як критерій оптимізації 

параметрів машинного навчання розглядається модифікована авторами інформаційна міра Кульбака-
Лейблера. Крім того, запропонований метод передбачає трансформацію вхідної навчальної матриці у задану 

в просторі Геммінга робочу бінарну матрицю, яка в процесі машинного навчання адаптується до його 

максимальної точності. Результати: За результатами глибокого інформаційно-екстремального машинного 

навчання побудовано у рамках геометричного підходу безпомилкові за навчальною матрицею вирішувальні 

правила. Показано, що при глибокому інформаційно-екстремальному машинному навчанні на його точність 

впливає послідовність оптимізації параметрів функціонування системи розпізнавання. Результатами 

функціонального тестування та крос-валідації підтверджено високу точність інформаційно-екстремального 

машинного навчання автономного БПЛА на прикладі семантичної сегментації цифрового зображення 

регіону. Висновки: Вперше розроблено метод глибокого інформаційно-екстремального машинного 

навчання за ієрархічною структурою даних у вигляді декурсивного бінарного дерева, який на відміну від 

відомих додатково оптимізує рівень селекції координат двійкових усереднених векторів ознак 
розпізнавання. 

Ключові слова: інформаційно-екстремальне машинне навчання; інформаційний критерій; оптимізація; 

автономний БПЛА; декурсивне бінарне дерево; цифрове зображення регіону. 
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