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DEEP INFORMATION-EXTREME MACHINE LEARNING FOR AUTONOMOUS
UAV BASED ON DECURSIVE DATA STRUCTURE FOR SEMANTIC
SEGMENTATION OF DIGITAL IMAGE OF A REGION

The subject of the research is functional categorical models of deep information-extreme machine learning
based on linear and hierarchical data structures, methods for optimizing machine learning parameters based
on information criteria and constructing a decursive binary data tree for a given alphabet of recognition
classes. The aim of the research is to improve the accuracy of machine learning for an autonomous UAV for
semantic segmentation of a digital image of a region obtained via an optoelectronic observation channel. This
goal is achieved by developing a method of deep information-extreme machine learning for an on-board
recognition system of an autonomous UAV using a decursive binary data structure. A new method of deep
information-extreme machine learning for autonomous UAVs has been developed, based on a hierarchical
data structure in the form of a decursive binary tree. The novelty of the method lies in the maximization of the
average interclass code distance within a given dimensionality of the Hamming feature space by optimizing the
selection level of coordinates of statistically averaged binary realizations of the recognition classes. At the
same time, the level of depth of information-extreme machine learning according to the principle of deferred
decisions is determined by the number of parameters of the system's functioning that are optimized according
to the information criterion. This approach, unlike neural-like structures, provides flexibility for the onboard
recognition system during retraining in the event of an expansion of the recognition class alphabet. The
Kullback-Leibler information measure modified by the authors serves as a criterion for optimizing machine
learning parameters. In addition, the proposed method involves the transformation of the input training matrix
into a working binary matrix specified in the Hamming space, which in the process of machine learning adapts
to its maximum accuracy. Results: Based on the results of deep information-extreme machine learning, error-
free decision rules based on the training matrix were constructed within the framework of a geometric
approach. It is shown that the accuracy of the deep information-extreme machine learning is affected by the
sequence of optimization of the parameters of the recognition system. The results of functional testing and
cross-validation have confirmed the high accuracy of information-extreme machine learning for an
autonomous UAV, as demonstrated by semantic segmentation of a digital image of a region. Conclusions: For
the first time, a method of deep information-extreme machine learning based on a hierarchical data structure
in the form of a decursive binary tree has been developed, which, unlike the known ones, additionally optimizes
the level of selection for coordinates of binary averaged vectors of recognition features.

Keywords: information-extreme machine learning; information criterion; optimization; autonomous UAV;
decursive binary tree; digital image of the region.

1. Introduction plants [3], and ecosystems [4, 5], recognition of ground
objects [6, 7], military [8], etc. One of the areas of
application of autonomous UAVs is mapping the
observation region [9, 10] which has practical
o ] significance for various sectors of the socio-economic

Providing a UAV  with —autonomy allows  gopere of society. An analysis of the current state of
expanding its functionality, increasing the probability of development of autonomous UAVs for observing the

mission completion, and reducing the burden on the  arth's surface showed that the main direction of their
personnel of the ground control station. Therg e jmprovement is the application of intelligent
known examples of the use of autonomous UAVs inthe  itormation technologies based on machine learning. In

agricultural sector [1, 2], for monitoring nuclear power paper [10], the application of a local descriptor for

1.1. Motivation
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semantic segmentation in combination with machine
learning is considered. In this case, there is an
unresolved issue of the choice of brightness threshold
for detecting a ground object. At the same time, the
issue of developing a highly accurate and operational
machine learning method for the onboard system of an
autonomous UAV for semantic segmentation of a digital
image of the observation region is acute. A promising
direction for solving this issue is the development of
machine learning methods within the framework of a
functional approach to modeling cognitive processes of
natural intelligence [11]. Therefore, the development of
a machine learning method that models the mechanism
of natural intelligence in constructing and making
classification decisions is an urgent task.

1.2. State of the Art

Increasing the functional efficiency of an
autonomous UAV depends mainly on the availability of
a relevant input mathematical description and a machine
learning method with high accuracy and efficiency in
making classification decisions. The paper [12]
emphasizes the feasibility of constructing decision rules
obtained in the process of machine learning within the
framework of a geometric approach, which allows
ensuring  their  practical invariance to the
multidimensionality of the recognition feature
dictionary. Known methods of information synthesis of
intelligent UAVs for recognizing terrestrial natural and
infrastructure objects, including the use of artificial
neural networks [7, 13], do not fully meet the practical
requirements due to complications of a scientific and
methodological nature. Such complications are mainly
due to arbitrary initial conditions for image formation,
the intersection of recognition classes in the feature
space, and the multidimensionality of the feature
dictionary and the alphabet of recognition classes. The
most common methods of information synthesis for
intelligent UAVs in recognizing natural and
infrastructural ground objects utilize artificial neural
networks [14, 15]. In [16], an autonomous navigation
system for UAV based on deep learning CNNs is
proposed, which enables the recognition of navigational
obstacles. The system under consideration is
multisensory, allowing it to perceive the entire
environment around the drone for obstacle detection and
avoidance, path planning, and movement in all
directions. Study [17] presents a monitoring system for
the development of citrus crops in precision agriculture.
For semantic pixel-wise segmentation of citrus leaves to
detect phytodiseases, a CNN with the Visual Geometry
Group 16 (VGG16) architecture was used.

The main drawbacks of applying CNNs for
semantic segmentation are their sensitivity to the high

dimensionality of the feature recognition space and
fundamental complications in retraining the system due
to the increased complexity of the recognition class
alphabet. Additionally, using CNNs requires a large
training dataset, which leads to increased time and
material costs of machine learning for autonomous
UAVs. These complications are mainly caused by
arbitrary initial conditions in image formation,
overlapping recognition classes in the feature space, and
the high dimensionality of the feature dictionary and
recognition class alphabet.

In study [18], the robustness and accuracy of an
image segmentation method based on the ant colony
optimization algorithm are investigated under varying
levels of additive Gaussian noise, along with a
comparison of its performance against the classical
segmentation approach using the Sobel filter. The
proposed method has practical value for determining the
contour of terrain areas during pixel-wise semantic
segmentation of digital images of the monitored region.

Overall, the complexities of modern intelligent
data analysis technologies, including neural-like
structures, are mainly caused by arbitrary initial
conditions in image formation, overlapping recognition
classes in the feature space, and the high dimensionality
of the feature dictionary and recognition class alphabet.

One of the promising areas of information
synthesis of the onboard autonomous UAV system for
semantic segmentation is the application of ideas and
methods of information-extreme intellectual technology
(IEI technology) for data analysis, developed within the
framework of a functional approach to modeling
cognitive processes of natural intelligence [19, 20]. The
data mining methods proposed within this technology
are based on maximizing the information capacity of the
system during the machine learning process. Contrary to
neural-like structures, the adaptation of the input
mathematical description in IEI technology methods is
carried out by optimizing machine learning parameters
according to the information criterion. Study [21]
examines information-extreme machine learning with
the third level of depth for semantic segmentation of a
digital image of a region, where the input data had a
linear structure. Information-extreme machine learning
for UAVs based on a hierarchical data structure was
explored in study [22]. As a result, the multiclass
machine learning problem was reduced to a binary
classification task for each stratum of a decursive binary
tree, which enabled the construction of highly reliable
decision rules by implementing the basic second-level
machine learning algorithm. However, in cases of
significant overlap between recognition classes in the
feature space, the accuracy of information-extreme
machine learning heavily depends on its depth level.
Therefore,  despite  successful  applications  of
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information-extreme machine learning, further research
is needed to ensure high accuracy as the size of the
recognition class alphabet increases.

1.3. Objectives and approaches

The aim of the article is to improve the accuracy of
information-extreme  machine learning for an
autonomous UAV for semantic segmentation of a digital
image of a region by developing a method of deep
information-extreme  machine learning for an
autonomous UAV based on a decursive binary data
structure. The developed algorithm must be suitable for
use by intelligent reconnaissance UAVs with the 2nd
level of autonomy for recognizing natural and
infrastructural ground objects. Within the framework of
the functional approach, to build highly reliable decision
rules, the method must adapt the input mathematical
description for increasing the accuracy of machine
learning. Similar to natural intelligence, such adaptation
is achieved by optimizing the system's operational
parameters in accordance with the information criterion.
In this case, according to the principle of deferred
decisions, the required level of machine learning depth
is determined by the number of optimization
parameters. At the same time, decision rules constructed
using the optimal geometric parameters of radial basis
containers for recognition classes in the information-
theoretic sense demonstrate practical invariance to the
dimensionality of the feature space. In addition, decision
rules built within the framework of the geometric
approach are characterized by high efficiency in making
classification decisions due to the minimal complexity
of calculations.

The structure of the article includes several main
sections. Section 2 presents the formalized statement for
the problem of information synthesis during the training
of an autonomous on-board system. Two different
algorithms of machine learning were described for
linear and hierarchical data structures. Section 3
presents the results of experimental testing of the
proposed UAV identification model and training
method. A detailed discussion of the research results is
provided in Section 4. The concluding section 5
formulates the main conclusions and outlines directions
for further research.

2. Materials and methods of research

2.1. Formalized statement
of the research problem

Let's consider, within the framework of IEI
technology, a formalized formulation of the problem of

information synthesis in a learnable on-board system of
an autonomous UAYV for the semantic segmentation of a
digital image of the region. Let’s assume that we are
given an alphabet of recognition classes{X? | m=1M},
that characterize different natural areas of the
ohservation region in the image. Accordingly, a training
matrix of  the type “object property”
yW | i=LN, j=1n, is formed, where N is the

m,

number of recognition features; n is the number of
structured feature vectors (hereinafter simply referred to
as vectors) of the recognition classes, respectively.

According to the concept of IEI technology, the
input training matrix is transformed into a working
binary matrix specified in the Hamming space, which,
through permissible transformations in the process of
machine learning, is adapted to its maximum accuracy.
Therefore, in the Hamming space, it is necessary to
specify a structured vector of optimization parameters
(hereinafter in the text in the information sense), the
number of which determines the level of machine
learning depth. For example, for machine learning for

an autonomous UAV to recognize class XJ, vectors,

such a vector will be represented in the form of a
structure

Om =<dp; 3 {8; [I=L N} p>, @

where d, is the radius of the hyperspherical container
of the recognition class X?, , which is reconstructed in
the radial basis of the recognition feature space; 6 is a
parameter equal to half of the symmetric field of control
tolerances for recognition features; d; is a parameter of

the control tolerance field for the i-th recognition
feature; p is the level of selection of coordinates of

binary averaged feature vectors that determine the
geometric centers of hyperspherical containers of
recognition classes in the feature space.

The range of values of the radius of the container

of the recognition class X;, is given by the inequality
dm, <d(X,, ®x.), where d(x,, ®X.) is an inter-center
code distance between the nearest neighboring

recognition classes X, and X2, which is defined as

c:!
the code distance between the averaged recognition

feature vectors x,, € X7, and x, € Xg .
The range of values of parameters & and 9; is

given by the interval [0;8,,/2], where 5, is a width for

range of values for the normalized control tolerance
field. The range of values for selection level p is an

interval [0; 1].
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In the machine learning process of autonomous
UAV it is necessary to:

1) Determine the optimal values of machine
learning parameters (1) that provide the maximum
average value of the information criterion over the
alphabet of recognition classes

M

E :%mz max E, (d) , @)

GENG
1Ed

where E,(d) is an information criterion for optimizing
machine learning parameters, which is calculated at the
current radius d of the recognition class container X?, ;

Gg is a working (permissible) area of definition of the

information criterion function of optimization; G is the

permissible range of values of the radiuses of the
recognition class container, which is reconstructed in
the radial basis of the binary Hamming feature space;

2) Using the optimal geometric parameters of the
recognition class containers obtained during the
machine learning process, construct decision rules that
are error-free according to the training matrix;

3) At the functional testing stage, check the
accuracy of machine learning according to the
constructed decision rules.

Thus, the information synthesis of a learning
onboard recognition system for an autonomous UAV is
carried out by optimizing the operating parameters (1)
according to the information criterion (2) in the process
of information-extreme machine learning.

2.2. Machine learning on linear
data structure

Within the framework of the functional approach
to modeling cognitive processes, the functional
categorical model of information-extreme machine
learning is constructed in the form of a directed graph.
At the same time, the input mathematical description of
the functional categorical model of machine learning is
presented in the form of a structure

Len=<F,T,Q, K, Z YlMl, XlMl; f.f. >,

where F is the space of factors that affect the image; T
is a set of moments in time of receiving information; Q
is a recognition feature space; Z is an alphabet of
recognition classes; K is a set of frames of a digital

image of a region; Y™ is an input training matrix,
where M is a cardinal number; X! is a working binary
training matrix that adapts to its maximum accuracy
during the machine learning process; f, is an operator

for forming the input training matrix Y™ : f, is a
transformation operator of the input Euclidean training
matrix Y™ into the working binary training matrix

XM formed in Hamming space.

Figure 1 shows the functional categorical model of
information-extreme machine learning on a linear data
structure with optimization of parameters of the vector

Q.

u

63 83 T y
le '
~ = Tl

WA T K Z sy Lo v s s o

Fig. 1. Functional categorical machine learning
model based on linear data structure

In Figure 1, the operator & displays binary vectors

of the working training matrix X™' for a divison %M
of recognition classes. The classification operator

tests the underlying statistical hypothesis y, : x{0; e X3, .

Operator y formsa set 39! for accuracy characteristics

of classification solutions, where Q=G?, and the
operator @ calculates the set of values E of the
information optimization criterion, which is a function
from the accuracy characteristics. The operator r
restores the recognition class partition ™! at each step
of machine learning. The optimization loop of control
tolerances for recognition features is closed by the term
set D. At the same time, the operator 3, sets the control
tolerance values at each step of machine learning. The
operator 9, changes the control tolerances for all
recognition features at each step of machine learning
during their parallel optimization, and the operator 95
accordingly changes the control tolerances for the i-th
characteristic during their sequential optimization. The
optimization contour for the selection level of
coordinates of averaged binary vectors of recognition
classes is closed by the term-set C of selection level
values. In this circuit, the operator p, sets the value of

the selection level, and operator p, forms the averaged

binary feature vectors of the recognition classes. The
machine learning process is regulated by operator u.
According to the FCM (fig. 1), the deep
information-extreme machine learning algorithm with
optimization of the selection level for coordinates of
averaged binary recognition feature vectors for the
training matrix is represented as an iterative procedure
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for searching the global extremum of the information
criterion (2) within the working domain of its function
definition.

G, 5 Gs GenGy

where G is the range of permissible values of the

selection level for coordinates of averaged binary
vectors of training matrices for recognition classes;
G Isthe range of permissible values of the parameter

&; of the control tolerance field for the i-th recognition

feature; G, is the range of permissible values of

parameter d of the control tolerance field for recognition
features.

The iterative procedure (3) determines the bottom
of the depth of information-extreme machine learning.
According to the principle of deferred decisions by O.
G. lvakhnenko, machine learning does not necessarily
reach a given depth, since decision rules that are error-
free according to the training matrix can be built at a
smaller depth. Therefore, information-extreme machine
learning begins with the second level of depth, at which
the basic two-cycle procedure for finding the global
maximum of the information optimization criterion is
implemented:

1 M
& =argmax{ max — Y E_(d 4
gmadmax D E@), @
where G; is the range of permissible values of

parameter .

According to procedure (4), at the first depth level,
the geometric parameters of the hyperspherical
containers of the recognition classes are optimized, and
at the second, the control tolerances for the recognition
features are optimized in parallel.

The input information for the machine learning

algorithm is the training matrix array {y(‘) }, system of
normalized tolerance fields {8,3} for recognition

features, which specifies the range of values of the
corresponding control tolerances, and the selection level
p of the coordinates of the averaged binary feature

vectors of the recognition classes, which by default is
equal to 0.5.

Following are the main stages of implementing the
UAV machine learning algorithm according to
procedure (5) with parallel optimization of control
tolerances for recognition features:

1) resetting the recognition class counter: m:=0;

2) m:m+1;

3) resetting the parameter change counter 6 :
5:=0;

4) 8:=0+1;

5) the lower A, ., and upper A

tolerances for recognition features are calculated
according to the rules

sx; control

Apk,i =Yi—8 Ak =VYi+3d, (5)

where y; is an averaged (nominal) value of the i-th
recognition feature;

6) resetting the counter of steps of changing the
radius of the hyperspherical container of the recognition
class: k:=0;

7 ki=k=1,

8) forming a three-dimensional array of binary
training matrix {x;}, whose elements are calculated

according to the rule

(J) [d1= Lif Ak ilkl< y(J) < Agk,ilKT;
0, if else;

9) formation of an array of averaged binary
realizations {x_} , whose elements are determined by

the rule

n

L1
Loif =Y xWispps
Xmi = n lel m
0, if else;

where pm is a quantization level of binary vector
coordinates X, , which defaults to 0.5.
10) partitioning a set of vectors {x,,} into pairs of

nearest neighbors;

11) the information optimization criterion is
calculated (2);

12) if k<d(x, ®X,), where d(x,, ®x,) is inter-
center code distance for nearest neighboring recognition
classes X7, i X¢, then step 13, otherwise step 7;

13) if 8=3,,, then step 14, otherwise step 4;

14) the maximum value of the information
criterion in the working (allowable) area of its function
definition is determined;

15) if m = M, then step 16, otherwise step 2;

16) the global maximum of the averaged

information criterion E _ is determined in the workspace
of its function;
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17) the optimal parameters given by the vector (1)
are determined:

{X,|m=1M} are the optimal average feature
vectors of recognition classes from a given alphabet;

{d’, |m=1,M} are the optimal radii of recognition
class containers;

& is the optimal parameter of the control tolerance
field for recognition features;

18) according to formula (6) by parameter 8" the
optimal  lower  {A}, ;|i=LN} and  upper
{Agkili —1,N} control tolerances for recognition
features are calculated:

Al =Y =8 3 A, =Y +9

19) STOP.

As a criterion for optimizing machine learning
parameters, the modified Kullback-Leibler information
measure was considered in the form [15]:

K@= 0, ~TKy (0)+ K
oo |2 K@ Ko @207 ©
T K@K @107

where K, (d) is the number of events in which

recognition class X9, vectors are mistakenly not
assigned to it; K, ,(d) is a number of events in which

vectors of another recognition class are mistakenly
attributed to a recognition class X7 ; n,, — minimum

size of a representative training sample; 107 is a
sufficiently small number entered to avoid division by
zero.

The normalized form of criterion (6) is represented
as

En= ; (7

where K is the maximum value of criterion (6) that

it accepts when substituting K, (d)=n., and

K,m(d)=0.

The implementation of the basic algorithm (5) of
information-extreme machine learning depending on the
degree of intersection in the space of recognition class
features does not always allow constructing error-free
decision rules according to the training matrix. In this

case, according to the procedure (4), it is necessary to
increase the level of depth by sequentially optimizing
the control tolerances for recognition features according
to the scheme

- L
5 11=1 N} = arg @ max{mex{ max

1 M
M;Em(d)}},
®)

where ® is a symbol for repeating the procedure (8); L
is the number of runs of the iterative procedure for
optimizing the control tolerance system for recognition
features; N is the number of recognition features.

Since in the process of optimizing the i-th feature,
other subsequent features have suboptimal control
tolerances, sequential optimization requires repeating
the iterative procedure until the wvalues of the
information criterion for optimization stop changing. To
increase the efficiency of machine learning, it is
advisable to choose the optimal control tolerances
obtained during parallel optimization as starting ones. In
this case, the values of the information criterion for
optimization calculated at each step of machine learning
are constantly in the working area of determining its
function.

The main stages of implementing the algorithm for
sequential optimization of control tolerances for
recognition features are:

1. s=0.

2. s==s+1.

3. Resetting the recognition feature counter:
i=0.

4. i=i+1.

5. Determining the optimal parameter of the
control tolerance field for the i-th recognition feature
using procedure (5).

6. If i <N, then step 4, otherwise step 7.

7. The maximum value of the information

criterion E(S) averaged over the alphabet of recognition
classes is calculated.

8. If {[E(S) <Epax]& (s <s¢)}, Where s; is a set

amount of runs, then step 2, otherwise step 9.

9. The optimal parameters of the control tolerance
field for recognition features are calculated by the
assignment operation

{7:=89 |i=1,N}.

10. According to formulas (6), the optimal lower
and upper control tolerances are calculated.

11. Optimal machine learning parameters are
memorized
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{x, |m=1M} are the optimal average feature
vectors of recognition classes;

{d" |m=1,M} are the optimal radii of recognition
class containers;

{Al ki li=LN}{AG5k; |li=1 N} are the optimal
lower and upper control tolerances for recognition
features.

12.STOP.

13.If the information criterion averaged over the
alphabet of recognition classes does not reach its
maximum value at the third level of machine learning
depth, then it is necessary to move to the next level of
depth. In our case, the outer loop of procedure (4) is
implemented, in which the selection level p level

changes within its permissible range at each step of
machine learning. Based on the optimal geometric
parameters of the recognition class containers obtained
in the process of machine learning, decision rules are
constructed, which in production form are represented
as

X0 e RMY (vxD e RM)if[(u,, >0) &
T n{1a}x{pm}] thenx? e X° elsex” ¢ X°},

©)

where x” is a vector of recognition features; W, is a

membership function of vector x to the container of
recognition class X, .

In expression (9), the membership function for the
hyperspherical container of the recognition class X is
defined by the formula

0 zl_M
m * )

0 (10)

where d(x;, ®xP)is a code distance between vector
x5, and vector x| which is being recognized.
Verification of the accuracy of machine learning
by decision rules (9) is carried out in the functional
testing mode. The task of functional testing is to verify
the accuracy of decision rules built according to optimal
geometric parameters. The functional testing algorithm
is implemented according to the following scheme:

1) resetting the counter for recognition classes:
m:=0;

2) initializing the counter for recognition classes:
m:=m+1;

3) calculating function (10)

4) if m< M, then step 2, otherwise step;

5) determining the maximal value of membersip
function;
6) according to the decision rules (9), a decision is

made on whether the feature vector x) belongs to one
of the recognition classes of the given alphabet;

7) STOP.

The decision rules (9) constructed in the process of
machine learning within the framework of the geometric
approach are characterized by high efficiency and are
practically invariant to the multidimensionality of the
recognition feature dictionary due to their low
computational complexity.

2.3. Hierarchical Information-Extreme
Machine Learning

The disadvantage of machine learning based on a
linear data structure is the decrease in accuracy as the
alphabet of recognition classes increases. To increase
the accuracy of information-extreme machine learning
with more than two recognition classes, it is advisable to
switch to using a hierarchical data structure in the form
of a decursive binary tree. The construction of a
decursive binary tree is carried out according to the
following scheme:

1) for a given alphabet, a variational series of
recognition classes is constructed by increasing the
proximity criterion;

2) the variational series is divided into two groups,
which respectively define two branches of the decursive
binary tree;

3) as attributes of the vertices of the upper (first in
dendrographic classification) tier of the decursive tree,
the training matrices of the neighboring boundaries for
each of the groups of recognition classes are selected;

4) attributes of vertices of the upper-tier stratum
are transferred to vertices of the corresponding lower-
tier child stratums;

5) as an attribute of another vertex of the lower tier
stratum, the training matrix of the nearest neighbor in its
group of recognition classes is selected;

6) the tree construction continues until strata
containing training matrices of all recognition classes
are formed.

Therefore, the binary decursive tree constructed
according to the above scheme divides the given set of
recognition classes into strata, each of which contains
two nearest neighboring classes. As a result, for the two
nearest neighboring recognition classes of each stratum,
the above-considered information-extreme machine
learning algorithm can be applied to the linear data
structure with the required level of depth.
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The input information description of the system
learning from the decursive binary structure is
represented as

I =< F! T1 Qy Ky 21 YlMlaHyY}Lz’lsyxlﬁ!s; g17 92!g3lg4 >

where H is a decursive binary tree; Y/2

is an input
training matrix of two recognition classes for the

stratum s of the h-th tier of decursive tree; X7, is the
working training matrix given in Hamming space; 0,
is the operator for forming the input training matrix
YMI; g, is the operator for constructing a recursive
binary tree H; g, is the operator for forming the matrix
Y{2; g, is the operator for forming the training matrix
2

xP .

Figure 2 shows the functional categorical model of

machine learning based on a hierarchical data structure
in the form of a decursive binary tree.

u
— FxTxQxKxZ ——<—— ¢
D « 9 F <_3|Q|
V4
& 3, 8] C r y
Py
£ & 2“8 2 N g2l W
S yYM —> H —> Yy —> X’ —> R, —19

Fig. 2. Functional categorical model of hierarchical
machine learning based on decursive data structure

Hierarchical functional categorical model differs
from the machine learning model (Fig. 1) in the input
mathematical description. In the process of hierarchical
information-extreme machine learning, the operator n

projects binary vectors of the working training matrix
XP on a fuzzy, in general case, partition SR} of two

recognition classes for each stratum of the decursive

tree. Next, the classification operator \|1:‘J~%|2| — 1 tests
the basic statistical hypothesis about the membership of
a binary vector x{), . in a class X7, ¢ and the

information-extreme  machine
discussed above are implemented.

Therefore, constructing a decursive binary tree
allows  multi-class  information-extreme  machine
learning to be reduced to two-class for each stratum,
which is a necessary condition for increasing the
accuracy of machine learning.

learning  operators

3. Experiments and Results

For machine learning of the onboard frame
identification system, an image of the observation
region obtained from aerial photography was selected

(Fig. 3).

Fig. 3. Image of the region

Figure 4 shows selected frames of the image of the
region (Fig. 3), which characterize the forest -

recognition class X7 , field Nel —recognition class X9 ,
field Ne2 — recognition class X§ and field Ne3 —

recognition class X§ .

a b c d

Fig. 4. Image frames: a — recognition class X7 ;

b — recognition class X$ ; ¢ —recognition class X3 ;

d —recognition class X9 ;

Analysis of Figure 3 shows that the brightness
spectra of the selected image frames are close, which
causes a priori fuzzy partitioning of recognition classes
in the feature space and makes it difficult to achieve
high accuracy of machine Ilearning. Initially,
information-extreme machine learning was
implemented on a linear data structure with parallel
optimization of control tolerances for recognition
features, i.e. with a second level of depth according to
procedure (5). At the same time, the normalized
information criterion (7) was used to optimize the
machine learning parameters.

Figure 5 shows a graph of the dependence of the
alphabet-averaged recognition of the normalized
information criterion (7) on the parameter of the control
tolerance field, obtained in the process of information-
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extreme machine learning based on the linear data
structure.

0.6
0.4

0.2

0 6
0 10 20 30 40 50 60 70

Fig. 5. Graph of the dependence of the information
criterion on the parameter of the control tolerance field

Analysis of Figure 5 shows that the graph lacks the
working (allowable) region for determining the
information criterion function (7) for optimizing
machine learning parameters, which indicates the
indivisibility of recognition classes due to the high
degree of their intersection in the recognition feature
space. This fact determines the feasibility of switching
to information-extreme machine learning with a
hierarchical data structure in the form of a decursive
binary tree. For this purpose, a variational series of
recognition classes was previously constructed by
increasing the average brightness of the training
matrices of recognition classes (Fig. 6).

X:I®I@ng

Fig. 6. Variational series of recognition classes

Figure 7 shows a decursive binary tree constructed
using a variational series for a given alphabet {X7, , ;}
of recognition classes.

Fig. 7. Structure of a decursive binary tree

According to the above-described algorithm for
constructing a decursive binary tree, the stratum
recognition classes of the first (uppermost in
dendrographic classification) tier are adjacent for two
groups of the variation series (Fig. 6).

Figure 8 shows a graph of the dependence of the
averaged information criterion Ens on the parameter
8y, ¢ » Obtained in the process of machine learning with

parallel optimization of control tolerances for the
features of the first-tier stratum recognition classes
using procedure (5).
E1.1
0.6

0.4
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0 8.4
0 10 20 30 40 50 60 70

Fig. 8. Graph of the dependence of the information
criterion on the parameter of the control tolerance field
for the stratum of the upper tier of the decursive tree

Analysis of Figure 8 shows that the working
(permissible) areas of the information criterion function
definition have appeared on the graph, but the
normalized information criterion does not reach its

maximum limit value E;,S =1, which does not allow
constructing error-free decision rules based on the
training matrix. To improve the accuracy of machine
learning, its depth level was increased by sequentially
optimizing the control tolerances for recognition
features using an iterative procedure for finding the
global maximum of the information criterion.

N e L —
Brsili=1 N}=arg[l_€<>ln(13§x{ max Eﬂ‘)s (d)}}

GGy

1)

where Eﬂ,)s (d) is the average value of the information
criterion for optimizing the machine learning parameters
of the recognition classes of the s-th stratum on h-th tier
of decursive; G is the range of permissible values of

the control tolerance field of the i-th recognition feature;
G is an information criterion definition workspace;

G4 is a range of permissible radius values d for

m,h,s
the container of recognition class X?, ,; ® isasymbol

of operation repetition; L is the amount of runs for
procedure (11); i is the number of features in the
structured vector of the recognition class training matrix

?n,h,s .
Figure 9 shows a graph of the change in the
averaged normalized criterion (7), obtained as a result of
sequential optimization of the parameter of the control
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tolerance field for recognition features according to
procedure (11).

E
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Fig. 9. Graph of changes in the information criterion in
the process of sequential optimization of control
tolerances for the upper tier stratum

Analysis of figure 9 shows that the information
criterion reaches its peak value on the first iteration of
procedure (11), number of which is determined by the
ratio of iterations to recognition features. Figure 10
shows a graph of the dependence of the information
criterion (7) on the parameter §,, of the field of control

tolerances for recognition features, obtained in the
process of machine learning with parallel optimization
of control tolerances for the features of recognition
classes at the first stratum of the decursive tree’s lower
tier.

E2.1
0.16

0.08

0.04

0 621

0 10 20 30 40

Fig. 10. Graph of dependence of the information
criterion on the width of control tolerance field
at the lower tier’s first stratum

Graph analysis shows that the peak value of
information criterion is low. In this case, the depth of
machine learning was increased by sequentially
optimizing the control tolerances for recognition
features according to the procedure (11). Figure 11
shows the graph of the change in the information
criterion (7), obtained in the process of information-
extreme machine learning with sequential optimization
of the control tolerances for recognition features.

Analysis of Figure 11 shows that the maximum
value of the normalized information criterion has
increased, but remains low. Therefore, the depth of
machine learning was increased by optimizing the level
of selection of coordinates of averaged binary vectors of
recognition classes according to procedure (4).

Figure 12 shows a graph of the dependence of the
averaged normalized information criterion (7), obtained
in the process of information-extreme machine learning
with optimization of the level of selection of coordinates
of averaged binary vectors of recognition classes after
sequential optimization of control tolerances for
recognition features. At the same time, the values of the
selection level on the graph changed in the interval [0.3;
0.7].

0.4 E2.1

0.3

0.2 4_J_/—r—’—'7

0.1

0 i
0 20 40 60 80 100 120 140

Fig. 11. Graph of changes in the information criterion
in the process of sequential optimization of control
tolerances for the first stratum of the lower tier
of the decursive tree
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Fig. 12. Graph of dependence of information criterion
on the selection level for recognition classes
at the lower tier’s first stratum

Analysis of Figure 12 shows that at this depth level
the maximum value of the information criterion has
increased to 0.60, but does not reach its limit value. This
fact allows us to conclude that the partition of
recognition classes constructed based on the results of
machine learning remains indeterminate. Therefore, the
idea arose to implement information-extreme machine
learning with optimization of the level of selection of
coordinates of binary vectors representing recognition
classes of the first stratum of the lower tier between
parallel  and sequential optimization of control
tolerances.

Figure 13 shows a graph of the dependence of the
information criterion (7) on the selection level p, ¢,

obtained in the process of information-extreme machine
learning after parallel optimization of control tolerances
for the first stratum of the lower tier.
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Analysis of Figure 13 shows that the maximum
value of the normalized information criterion has
significantly increased compared to the result of the
basic information-extreme machine learning algorithm

and is equal to E;,l =0,55 at the optimal selection level
p21 =040 . To improve the accuracy of machine

learning, the level of its depth was increased, at which
information-extreme machine learning was carried out
with sequential optimization of control tolerances for
recognition features. Figure 14 shows a graph of the
change in the information criterion (7), obtained in the
process of information-extreme machine learning with
sequential optimization of control tolerances for
recognition features at the optimal selection level

p =04.

E 21
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Fig. 13. Graph of dependence of criterion on the
selection level for recognition classes
at the lower tier’s first stratum
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Fig. 14. Graph of changes in the information criterion
in the process of sequential optimization of control
tolerances for the first stratum of the lower tier

Analysis of Figure 14 shows that in the second run
of procedure (11) the averaged information criterion
reaches its maximum limit value.

Figure 15 shows a graph of the dependence of the
normalized information criterion (7) on the parameter of
the field of control tolerances 5,, for recognition

features, obtained in the process of machine learning
with parallel optimization of control tolerances for

features of recognition classes of the second stratum of
the second (lower) tier.

Analysis of Figure 15 shows that for the
recognition classes of the second stratum of the second
tier, the normalized information criterion reaches its

maximum value Ez,z =1, which allows us to construct
error-free decision rules based on the training matrix.

1.0 E 2.2
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0.6
0.4

0.2

0 62
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Fig. 15. Graph of the dependence of the information
criterion on the parameter of the control tolerance field
for the second stratum of the lower tier
of the decursive tree

So, for all strata of the decursive tree (Fig. 6) based
on the results of two-class information-extreme machine
learning, error-free decision rules for vectors from the
input training matrix were constructed.

To form the membership functions (10), it is
necessary to determine the optimal geometric
parameters of the recognition class containers. Figure 16
shows graphs of the dependence of the normalized
criterion (7) on the radii of the recognition class
containers of the strata of the decursive binary tree
(Fig. 6).

Since in the process of information-extreme
machine learning on a decursive data structure, the
optimization of the radii of the average containers in the
variational series of recognition classes occurs in two
strata with different nearest neighbors, the smallest
extreme value of the radii must be taken as the optimal
one.

In addition, according to the minimum distance
principle of recognition theory, in the case of several
extreme values of the radii of the containers of
recognition classes, the smaller value must be chosen as
the optimal one. As a result, the decision rules of the
recognition classes will have the following optimal radii

of their hyperspherical containers, respectively: d; =53
(hereinafter in code units) d,=52 , d;=10 and
d,=28.
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Fig. 16. Graphs of the dependence of the information criterion on the radii of containers:

a —recognition class x$ , , ; b —recognition class x
d —recognition class xy, ,; e —recognition class x3, , ; f—recognition class x

The accuracy of decision rules was checked in the
functional testing mode. For comparison with other
machine learning technologies, a typical artificial neural
network with backpropagation of error was chosen. In
order to create equal conditions for the experiment, the
training matrix used in information-extreme machine
learning was provided as input to the neural network.
The results of the functional testing are presented in
Table 1.

Table 1
Testing results

Accur | Sensiti | Speci | F1- AUC-

Method acy vity ficity | score | ROC
1EI-

techno- | 0,97 0,96 0,98 | 0,95 0.97
logy

ANN 0,78 0,75 0.79 | 0,74 0,75

; C—recognition class x

o o .
311" 2,21

o
4,2,2

The analysis of Table 1 shows that the obtained
results for the proposed information-extreme machine
learning method demonstrate high average values of
standard accuracy metrics. Notably, the high sensitivity
and specificity reflect the system's capability to
minimize Type | and Type Il errors, respectively. The
AUC-ROC value, being close to 1, confirms high-
quality classification achieved for all target classes. For
the neural network, the lower values of standard
accuracy metrics can be attributed to the limited size of
the training matrix, which constrained performance
improvement. In addition, unlike information-extreme
machine learning methods, neural-like architectures
exhibit limitations such as reduced flexibility,
interpretability, and uniformity.

4. Discussion

The results of computer modeling demonstrated
that, during the process of information-extreme machine
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learning using a hierarchical data structure in the form
of a decursive binary tree at the fourth level of depth, it
was possible to construct decision rules that produced
zero errors on the training matrix. It was also
experimentally shown that achieving high accuracy
requires adherence to the principle of variability in the
deep information-extreme machine learning strategy.
For example, analysis of Figure 10 showed that
optimizing the selection level of the coordinates of
binary averaged vectors of recognition classes after
parallel-sequential optimization of control tolerances did
not lead to high machine learning accuracy. Therefore,
the selection level of the coordinates of binary vectors
was instead optimized between the parallel and
sequential stages of control tolerance optimization. This
resulted in an increase in the maximum value achieved
for the information criterion, averaged over the
recognition class alphabet. This fact is explained by the
algorithm of sequential optimization being sensitive to
the starting values of control tolerances obtained from
the results at the previous depth level of information-
extreme machine learning. The main limitation of the
proposed method of deep information-extreme machine
learning based on a decursive data structure is the use of
hyperspherical containers for recognition classes. This
assumption is justified in the case of a Gaussian
distribution of class vectors relative to their geometric
centers. However, if the empirical distribution deviates
from the Gaussian model, more complex forms of radial
basis containers for recognition classes must be used,
such as hyperellipsoidal, hypercylindroidal, and others.

5. Conclusions

The problem of information synthesis of the onboard
system of an autonomous UAV for identifying frames
of a digital image of a region was solved based on
machine learning. As a result of the conducted research,
the following results were obtained:

1. For the first time, a method of deep
information-extreme machine learning based on a
hierarchical data structure in the form of a decursive
binary tree has been developed, which, unlike the
known ones, additionally optimizes the selection level
of the coordinates of binary averaged recognition
feature vectors, which define the geometric centers of
recognition classes in a Hamming space, and allows:

— to move from multi-class machine learning to
two-class for each stratum of a decursive binary tree,
which creates the necessary conditions for increasing
the accuracy of classification decisions;

— for a given alphabet of recognition classes,
construct, within the framework of a geometric
approach, error-free decision rules based on the training

matrix, which are characterized by high efficiency in
making classification decisions.

2. It is experimentally proven that deep
information-extreme  machine  learning  requires
optimization of its implementation plan. It is shown that
optimization of the selection level of coordinates of
binary averaged realizations of recognition classes after
parallel-sequential optimization of control tolerances did
not allow to achieve high accuracy of machine learning.
At the same time, optimization of selection levels after
parallel optimization of control tolerances and before
their sequential optimization allowed to achieve the
limiting maximum value of the information criterion
averaged over the alphabet of recognition classes.

3. Further research will be conducted in two
directions. The first involves increasing the depth of
machine learning with a large capacity of the
recognition class alphabet. The second direction focuses
on investigating the impact of additional machine
learning parameters on system performance, with an
emphasis on optimizing the parameters for forming the
input mathematical description.
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IJIMBOKE THOOPMAIIMHO-EKCTPEMAJIbHE MAIIIMHHE HABUAHHSI ABTOHOMHOTI'O BILIA
3A JIEKYPCUBHOIO CTPYKTYPOIO JAHUX JIJISI CEMAHTUYHOI CETMEHTAIIII
OUP®POBOTI'O 30BPA’KEHHSA PEI'TOHY

B. O.Yepanoscokuit, M. |. Muponenxo, C. O. Koganescokuii,
P. O. Kpackoecovkuit, M. C. Ompowenko

IIpeamerom mocaixkeHHsi € QyHKIIOHAIBHI KaTeropiiiHi Moseli iH(pOopMaliitHO-eKCTpeMaIbHOTO TIINOOKOT0
MAIIMHHOTO HAaBYaHHS 3a JHIHHOI Ta 1€papXivyHOI CTPYKTypaMH IaHUX, METOIM ONTHUMi3alii napaMeTpiB
MAaIIMHHOTO HaBYaHHA 3a iH(opMauiiHUM KpHUTEpieM Ta MOOYIOBH JEKYpCUBHOIO OIHAPHOTO JiepeBa AaHUX IS
3amaHoi abeTku KiaciB posmizHaBaHHsS. MeTol0 JIOCHIIKEHHS € TiJIBUINEHHS TOYHOCTI MAalIMHHOTO HaBYaHHS
aBroHoMHOro BIIJIA s ceMaHTHYHOI CerMeHTalii IUQPPOBOro 300paKCHHS pETiOHY, OTPHMAHOr0 33
OIITOGJIEKTPOHHUM KaHAJIOM cHocTepekeHHs. [locTaBieHa MeTa JOCATAaeThCs NULIXOM PO3POOJIEHHS METOAY
rIMOOKOro iH(pOpMaLifHO-eKCTPEMaIFHOrO MAIlIMHHOTO HaBYaHHS OOPTOBOi CHCTEMH PO3ITi3HABaHHS aBTOHOMHOTO
BIUTA 3a nekypcHBHOIO OiHAPHOK CTPYKTYPOK JaHUX. Po3po0iicHO HOBHiM MeTOH MIMOOKOro iHgopMariiHo-
€KCTPEMaJIbHOr0 MallMHHOTO HaB4YaHHS aBToHOMHOro BIIJIA 3a iepapXi4HOKO CTPYKTYpOIO IaHUX y BHIVISII
JeKypcuBHOro OiHapHOro nepeBa. HoBu3Ha Meromy monsrae B MakCHMi3allii cepelHbOi MIKKIACOBOi KOJOBOI
BiJICTaHi B 3aJdAHOMYy BHMIpl NPOCTOPY O3HAK ['eMMiHra INUIIXOM ONTUMI3allii piBHS CeJeKlii KOOpIMHAT
CTaTHCTHYHO YyCEpeJHEHHWX JBIHKOBHMX pealizallii KiaciB po3mi3HaBaHHsA. [Ip I1bOMy piBeHb TIIIMOWHU
iH(OpMaLifHO-eKCTPEMaIFHOTO MAIIMHHOTO HABYAHHS 3TiJHO 3 NMPHUHIMIIOM BiJKJIaJEHUX pIlIeHb BU3HAYAETHCS
KUJIBKICTIO TTapaMeTpiB GpyHKI[IOHYBaHHS CUCTEMH, 110 ONTHMI3YIOTECS 3a iHpOopMaliiHiIM KpuTepieM. Takuid miaxis
Ha BiAMIHY BiJl HEHpPOMOMIOHMX CTPYKTYp AO3BOJS€ HajaTH OOPTOBIH CHUCTEMi pO3IMi3HABAaHHS, IO HAaBYAETHCS,
THYYKOCTI NpY TIepEeHAaBYaHHI Y BHIAJKy PO3IIUpPEHHS abeTKH KiaciB posmizHaBaHHS. SIK KpuTepiil onmTumizarii
napaMeTpiB MAalIMHHOTO HaBYaHHsS pO3MIAacThesi MoaudikoBaHa aBTopaMu iH(opmaiiiiHa Mipa KynbOaka-
Jletibnepa. Kpim Toro, 3amnpornonoBanuii MeTo]1 iepeadadae TpaHcdopMallito BXiTHOT HaBYAIIbHOT MaTpUIll y 3aJaHy
B mpocropi ['eMMinra pobody OiHapHy MaTpHIIIO, sSKa B MpOLECI MAIIMHHOTO HABYAHHS aJanTyeThCs IO HOro
MaKCHMaJIbHOT TouHOCTI. Pe3yabraTn: 3a pesynbratamu nIMOOKOro iH(opmaiiiHO-eKCTPEeMaTbHOI0 MAIIHHHOTO
HaBYaHHS MOOYJOBAaHO y paMKax reOMETPUYHOrO MiIX01y OE3MOMMIKOBI 32 HABUAIBHOK MAaTPUIICIO BUPIIIYBaJIbHI
npasuia. [lokaszaHo, 110 npu rIMOOKOMY iH(OPMAIiITHO-eKCTpEeMaIbHOMY MAIIMHHOMY HaBYaHHI Ha OO TOYHICTh
BIUIMBAE IIOCHTIJOBHICTh ONTHMIi3allii mMapameTpiB (yHKIIOHYBaHHS CHUCTEMH pO3Ii3HaBaHHS. Pesymbratamu
(YHKI[IOHAJIBHOTO TECTYBAHHS Ta KPOC-Balijamii MiITBEPHKEHO BUCOKY TOYHICTh 1H()OPMAILiHHO-EKCTPEMaIbHOTO
MAaIlIMHHOTO HaBuaHHs aBTOHOMHOro BIIJIA Ha mnpuknani cemanTHyHOi cerMeHTalil HU(POBOro 300pakeHHS
periony. BucHoBkm: Bnepmie pospoOneHo wmerox riamubokoro iH(opMmaiiiHO-eKCTpEeMaIbHOrO MAIIMHHOTO
HaBYaHHS 33 1€PApXIYHOI0 CTPYKTYPOIO JAHUX Y BHUIJISAL JEKYPCHBHOrO OIHApHOro JepeBa, SKUil Ha BigMiHY BiJ
BIJOMHMX JOJATKOBO ONTHMI3y€ pIBEHb CeNeKIlii KOOpAWHAT JBIMKOBHX YCEpPEIHEHHUX BEKTOPIB O3HAK
PpO3ITi3HABaHHSL.

Karwuosi cioBa: inpopmaliitHo-ekcTpemMalibHe MalllMHHE HaBYaHHsI; 1HQOpMaLiiiHKiT KpUTepii; onTUMi3allis;
aBToHoMHu# BITJIA; nexypcuBHe OiHapHe AepeBo; LUPPOBE 300payKeHHS PETIOHY.
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