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INTELLIGENT SYSTEM FOR REAL-TIME DETECTION  

AND CLASSIFICATION OF SOLAR PANEL DEFECTS 
 

The subject matter of the study in the article involves the process of detecting and classifying defects in solar 

panels in real-time using unmanned aerial vehicles (UAV) and artificial intelligence technologies. The goal of 

this study is to develop an intelligent system that combines an active monitoring methodology with Fuzzy BSB-

based model for real-time detection and classification of solar panel defects. This will allow for the timely 

detection of defects and reduce the costs of repairing or replacing solar panels. The tasks to be solved are: to 

develop a method for active monitoring of the condition of panels based on laser scanning; to integrate 

algorithms for data processing and classification of defects in real time; to investigate the application of the 
Fuzzy BSB (Braine-State-in-the-Box) model to increase the stability of classification under conditions of noise 

and incomplete data. The methods used are: active laser scanning from UAVs, fuzzy neural network algorithms, 

the Fuzzy BSB associative memory model, as well as methods for analyzing images and feature vectors. The 

following results were obtained. A methodology for detecting defects at the transportation stage and during the 

operation of solar panels is proposed. A Fuzzy BSB model is proposed for classifying detected defects, which is 

capable of providing an accuracy of about 80% even under conditions of significant noise and class overlap. It 

is found that the system effectively distinguishes the main types of defects, in particular cracks, contamination, 

shading, and mechanical damage, demonstrating competitive advantages compared to traditional passive 

methods. Conclusions. The scientific novelty of the results obtained is as follows: 1) adapting the combination 

of associative memory and fuzzy logic in the Fuzzy BSB model to the classification of solar panel defects, which 

allows to increase the reliability of this classification in conditions of incomplete or noisy data; 2) the concept 

of integrating active laser scanning with intelligent analysis algorithms is proposed, which opens up prospects 
for creating flexible and adaptive systems for monitoring the condition of solar power plants. 

 

Keywords: solar panels; defects; laser scanning; unmanned aerial vehicles; neural networks; intelligent system; 

Fuzzy BSB. 

 

1. Introduction 

 

1.1. Motivation  

 

Solar panels, or photovoltaic modules, play a key 

role in modern energy, as they allow direct conversion of 

solar radiation into electrical energy through the 

operation of photovoltaic cells made of silicon or other 

materials. Their use is an important factor in the 

transition to clean energy, as they reduce dependence on 

fossil fuels and reduce greenhouse gas emissions, which 

is confirmed by studies on the role of renewable 

technologies in combating climate change [1]. In 

addition, they ensure energy independence at the 

household and enterprise level, as they provide the 

opportunity to produce their own electricity and reduce 

the impact of energy crises. The economic benefit of 

using solar panels is manifested in reducing electricity 

costs and the ability to sell surpluses in countries with a 

green tariff system. Also, the development of solar 

energy infrastructure creates additional jobs and 

stimulates the development of related industries [2]. An 

important advantage is the flexibility of panel placement, 

as they can be installed on roofs, facades, or open areas, 

which allows for efficient use of available space. 

However, the efficiency of solar panels has certain 

limitations. Their operation depends on weather 

conditions and light intensity, which reduces electricity 

production in winter or during cloudy weather. The tilt 

angle and orientation of the modules relative to the 

cardinal points have a significant impact, as well as 

temperature, which in case of overheating can cause 

degradation of performance [3]. The energy efficiency of 

solar power plants largely depends on the condition of 
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their panels, which requires their appropriate 

maintenance. At the same time, panel defects can be both 

catastrophic (causing panel inoperability) and minor, 

which simply reduce the energy efficiency of the panels). 

Defects can be the result of damage or a consequence of 

normal operation (dust, fallen leaves). Thus, the problem 

of developing effective methods for detecting defects in 

solar panels arises. An analysis of existing works on the 

study of the problem has shown the importance of 

developing fast and reliable methods for detecting 

defects in solar energy facilities and classifying them 

using UAVs [4-6]. 

Known diagnostic methods are based on passive 

information collection, which requires high-quality 

equipment and significant amounts of data for training 

models. Therefore, the development of active control 

methods using laser scanning and intelligent data 

analysis is relevant. For this, the authors propose an 

approach based on the use of laser scanning using UAVs, 

as well as a method for classifying defects in solar panels 

based on a fuzzy neural network. 

Diagnostics of photovoltaic module defects is 

critical to maintaining the performance and reliability of 

solar power plants. Traditional approaches include 

electroluminescent and infrared imaging, current-voltage 

characteristics analysis, and modern computer vision 

algorithms. However, real-world operating conditions 

such as variable illumination, temperature effects, 

surface contamination, and module heterogeneity 

introduce significant uncertainty and noise. 

The goal of this study is to develop an intelligent 

system that combines an active monitoring methodology 

with a Fuzzy BSB-based model for the real-time 

detection and classification of solar panel defects. 

 

1.2. State of the art  

 

As the number of solar power plants increases [7], 

there is a need for automated monitoring systems to 

detect and localize solar panel faults. The performance 

reduction can reach 50%, making early diagnosis 

critically important. The paper [8] analyzes a 

photovoltaic panel monitoring system for shading and 

fault detection using artificial neural networks (ANNs) 

and the Internet of Things (IoT). The main method is to 

use ANNs to model complex interactions between input 

and output data, which allows for accurate prediction of 

ideal panel performance and prompt detection of shading 

or other defects. IoT provides remote real-time 

monitoring, which reduces maintenance costs by timely 

detection and localization of problems. The advantages 

of this approach are high accuracy, adaptability, and 

reduced energy losses, but the system requires constant 

model updates and may therefore be dependent on an 

Internet connection. 

The article [9] is devoted to localization of hot spots 

on solar panels and classification of their faults using 

deep learning methods. Thermographic images taken by 

an infrared camera and two architectural solutions based 

on deep learning networks ResNet-50 and Faster R-CNN 

were used to detect faults. The proposed system allows 

to automate the fault detection process, which reduces the 

need for manual inspection, but requires a large sample 

for training the neural network and does not classify 

mechanical damage to solar panels. 

In [10], a photovoltaic panel monitoring system 

using ANN and IoT is considered. ANNs are used to 

accurately detect shading and other faults by modeling 

the interaction between input and output data, which 

allows predicting panel performance. The advantages of 

the approach are high accuracy and adaptability of the 

model. IoT provides real-time remote monitoring, 

allowing for timely detection of faults and reducing 

maintenance costs, although there is a dependence on the 

Internet connection and security issues. To optimize the 

operation, the "Perturb and Observe" method was used, 

which adjusts the panel parameters to achieve maximum 

power. This approach is simple and effective, although it 

may have temporary energy losses during sudden 

changes in illumination. It also requires frequent 

updating of the models to take into account new 

conditions. 

Panel fault detection methods [11-14] use artificial 

intelligence to process images. Infrared thermography 

allows for non-contact defect detection and provides 

rapid detection, but accuracy depends on the quality of 

the camera and the operator's experience. 

Electroluminescent testing, which uses infrared images 

to detect cracks and damage, uses deep learning models 

to automate the diagnostic process. Deep learning 

algorithms, CNN and Faster RCNN, provide high 

efficiency and accuracy in defect detection, but require 

large amounts of data for training, require sophisticated 

equipment and expert support [15-17]. 

The article [18] describes methods for detecting and 

diagnosing faults in solar power plants based on artificial 

intelligence algorithms for high accuracy of defect 

detection. In addition, the use of fuzzy logic and decision 

trees provides high-accuracy classification of faults, but 

requires significant expert training for tuning. The main 

disadvantage is the need for a large amount of data and 

memory for the functioning of the algorithms. 

A review of recent imaging work shows the rapid 

progress of deep models for module-level defect 

detection and segmentation, in particular variants of 

VarifocalNet class detectors, which increase accuracy 

and speed on visible images. At the same time, these 

methods require large labeled databases and controlled 

shooting conditions [19]. This creates space for 

alternatives that can work with scan-sensor features and 
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partially distorted input vectors without losing 

interpretability. Such approaches include the fuzzy 

associative memory Fuzzy BSB (Brain-State-in-a-Box), 

which combines the dynamics of standard recovery with 

fuzzy membership measures. 

At the level of formal decision-making systems in 

photovoltaic installations, fuzzy logic is widely used for 

classification of states and failures. Works on diagnostics 

of hot-spots by several electrical indicators demonstrate 

high accuracy even in field conditions, when fuzzy rules 

are properly designed. It is significant that with sufficient 

feature engineering, fuzzy systems achieve impressive 

metrics, however, unlike associative memory, they 

usually do not have a built-in “approximation” to the 

standard when the input data is partially lost or 

significantly noisy [20]. Fuzzy BSB here acts as a logical 

continuation: the model stores prototypes of defects and 

through iterative nonlinear dynamics delays observations 

to the nearest prototype. The fuzzy component allows 

you to additionally display the degrees of membership in 

cases of class intersection. Unlike purely visual pipelines, 

Fuzzy BSB organically works with aggregated sensory 

features, including laser scanning data, and provides a 

more transparent interpretation of the solution due to 

distances to prototypes and state changes during the 

convergence process. From the associative memory 

theory perspective, work with optimal and robust 

BSB/gBSB designs shows how the selection of the 

weight matrix, prototype normalization, and activation 

choice affect the size and homogeneity of the attraction 

regions, ensuring global stability and robustness to 

weight perturbations. These results directly support the 

engineering solutions used in Fuzzy BSB for defect 

classification. 

Empirical studies of non-photo-visual features 

show that well-designed indicators, such as aggregates 

from local scan zones, scattering statistics or deviations 

from the profile, are able to form individual prototypical 

“portraits” of defects in the feature space. In this way, a 

trained Fuzzy BSB can combine high selectivity with 

attraction to standards, while remaining operational in the 

presence of noise, when, say, the parameters are partially 

undermeasured and the class boundaries are not sharp. 

When the data come from temperature-unstable regimes, 

standard memoryless fuzzy systems usually lose 

stability, while the associative dynamics of the BSB 

stabilize the classification [21]. 

The prototype of the proposed research is a 

multilayer deep learning model [22], which is used to 

detect and localize defects in solar panels. The 

advantages include high accuracy (up to 97%) and the 

ability to simultaneously detect and localize different 

types of defects, such as microcracks, erosion, and dust. 

The disadvantages are the complexity of implementation 

and the need for large computational resources for image 

processing and model training. 

A common drawback of the considered methods is 

their passive nature. They do not use any active 

influences on the solar panels, and therefore have 

relatively low sensitivity and require high-quality 

equipment and significant amounts of data for training 

and defect recognition. 

 

1.3. Objectives and tasks 

 

This research aims to address the important 

scientific and applied problem of improving the 

operational safety, reliability and efficiency of solar 

power plants. This is achieved by developing an 

intelligent integrated monitoring and diagnostics system 

that provides rapid detection of panel defects, accurate 

classification of their causes and generation of 

recommendations for optimizing maintenance strategies. 

To achieve this goal, the following main tasks are 

solved in the work: 

1. Development of a comprehensive methodology 

for active data collection, based on the use of unmanned 

aerial vehicles equipped with video cameras and laser 

scanners, with subsequent combination of the results with 

sensor indicators of the energy characteristics of the 

panels, ensuring spatial resolution of about 1–2 mm per 

pixel and synchronization accuracy within 2–3 %. 

2. Formation of an experimental dataset of solar 

panel defects and use of convolutional neural networks 

for automated detection and initial localization of 

damage, achieving an average processing time of 

approximately 0.5 s per frame. 

3. Development of an intelligent classification 

model based on a Fuzzy BSB neural network, which 

provides high robustness of defect recognition in 

conditions of noise and incomplete measurements, 

maintaining classification accuracy close to 80 % and an 

F1-score of about 0.8 under cross-validation. 

4. Building an integrated decision support system 

that combines classification results allows for rapid 

assessment of defect criticality and the provision of 

maintenance scenarios, reducing false defect detections 

by roughly 15–20 % compared with rule-based 

diagnostic approaches. 

The paper is structured as follows. Section 1 

provides an overview of current research and methods for 

monitoring the condition of solar panels.  

Section 2 describes the data collection 

methodology, applied algorithms, and architecture of the 

proposed system.  

Section 3 presents the results of experimental 

studies and their analysis.  

Finally, Section 4 summarizes the conclusions and 

outlines the prospects for further research related to the 
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improvement of the Fuzzy BSB model and its integration 

with modern deep learning methods. 

 

2. Materials and methods of research 
 

The methodology used in the study involves the 

application of artificial intelligence to detect and classify 

defects in solar panels at different stages of their life 

cycle. It is needed to provide fast and accurate damage 

detection using unmanned aerial vehicles (UAVs), 

followed by data analysis using the combination of neural 

networks and fuzzy logic. 

When solar panels are manufactured, they undergo 

a full inspection of their efficiency parameters. However, 

during transportation and storage in a warehouse, defects 

sometimes occur that significantly affect their 

performance or energy efficiency. Known methods for 

detecting defects in solar panels are either quite complex 

and require complex and expensive specialized 

equipment, or have low reliability of results. A simple 

research method is proposed that provides high 

reliability, requires a minimum of equipment and can be 

implemented in warehouse conditions. To do this, the 

panels are scanned using a hand-held scanner that creates 

a narrow light strip on the panel. At the same time, 

voltage drops are measured at a load resistance close to 

the nominal resistance of the panel. The power of the 

generated energy is calculated from these voltage drops, 

and the impact of transport defects on the energy 

efficiency of the panel is indicated by the relative change 

in the output power of the panel during the action of the 

light strip. Since the measurements are relative, there is 

no need for high-precision equipment and special 

research conditions. 

A similar method for examining solar panels is 

proposed to detect their defects during operation. The 

modification of the method consists in using a UAV to 

provide remote access to the panels and their scanning 

using a laser beam. The latter, due to the high energy 

efficiency of the laser beam, allows for relative 

measurements to be made during the study even in sunny 

weather. At the same time, it is proposed to achieve an 

increase in the accuracy of defect localization through 

joint intellectual processing of the results of 

measurement series in different directions of UAV 

movement. 

In this study, the concept of active laser scanning 

for photovoltaic module inspection is considered at the 

methodological level. To ensure reproducibility and 

provide physical grounding of the proposed approach, the 

basic instrumental parameters of the conceptual setup are 

presented below. The laser source operates at a 

wavelength of λ = 650 nm with an output power of 

approximately 10 mW, forming a scanning stripe of 1.2 

mm width and a scanning step of 0.5 mm. The data 

acquisition rate is 50 samples/s, which corresponds to the 

nominal scanning speed of 0.2 m/s. 

For the classification of solar panel defects, an 

intelligent joint processing of detailed local images of 

localized defect zones and energy spectra of output 

voltage and current obtained from UAVs is proposed. 

This processing for the detection and localization of solar 

panel defects is proposed to be carried out on the basis of 

convolutional neural networks, the result of which will 

be a number of defect feature vectors in the image. 

Initially, data is collected using UAVs that 

photograph solar panels. These images are transmitted to 

a fuzzy neural network for further analysis and fault 

detection. The resulting images are stored on cloud 

services or local servers with high power, adhering to 

standards for easy access. A convolutional neural 

network processes such images and forms a feature 

vector for each of them. A fuzzy neural network uses this 

data to quickly classify panel defects in real time. After 

that, the information can be used for further research or 

model improvement. Classification of solar panel defects 

is proposed to be carried out using a fuzzy neural 

network, which processes a set of feature vectors online 

and is trained on a small sample, unlike classical neural 

networks used for this class of tasks. The analyzed defect 

categories in this research are cracks, shading, soiling, 

and mechanical damage. They were chosen as they 

represent over 95% of real-world PV module failures [8, 

9]. Each defect alters the reflected laser profile and power 

response in specific ways, forming distinct clusters in the 

feature space processed by the Fuzzy BSB classifier. A 

fuzzy neural network guarantees high accuracy of 

analysis, which allows for rapid fault detection and 

improved monitoring of solar panels. 

The general scheme of the proposed system is 

shown in Figure 1. 

The proposed intelligent system integrates 

unmanned aerial vehicles (UAVs) equipped with active 

and passive sensors and a ground-based computing 

environment that performs neural-network data 

processing. The UAV subsystem consists of four 

functional modules: a localization tool for stabilizing the 

drone position and maintaining the correct scanning 

trajectory; a main sensor (video camera) that captures 

visual data of the solar panels; a main actuator (laser 

radiation unit) that performs active surface scanning and 

generates reflected signals for subsequent analysis; and 

an energy-measuring device that records the electrical 

response of the panels during laser illumination. All 

incoming sensor streams are pre-processed in real time 

by a mini-computer installed onboard the UAV, which 

performs primary noise filtering, coordinate alignment, 

and packet formation. The processed data are then 

transmitted via a radio channel to the computing 

environment on the ground station. 
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Fig. 1. General structure of solar panel defect detection 

 

The computing environment includes three 

interconnected intelligent modules. The detection tool, 

implemented as a convolutional neural network (CNN), 

automatically identifies and localizes potential defects on 

image frames, forming feature maps that reflect shading, 

cracks, contamination, or surface deformation. The 

extracted features are then analyzed by the defect 

classification tool, which uses a fuzzy associative neural 

network of the Fuzzy BSB type. This model combines 

associative memory dynamics with fuzzy membership 

logic, allowing stable classification even in the presence 

of noise or incomplete measurements. Finally, the 

decision-support system aggregates the classification 

outputs, evaluates the criticality of the detected defects, 

and generates maintenance recommendations for 

operators in near-real-time mode. 

The system operates in two primary modes: 

inspection mode (during which the UAV performs 

autonomous flight, laser scanning, and video data 

acquisition under real illumination conditions) and 

analytical mode (the computing environment processes 

the transmitted data through the CNN–Fuzzy BSB 

pipeline and makes the classification decision). 

The computing environment contains a tool for 

classifying defects in solar panels. It is proposed to use 

Fuzzy BSB [22, 23] for data processing. 

Fuzzy BSB (Brain-State-in-a-Box) combines the 

properties of associative memory with fuzzy clustering 

mechanisms, allowing data to be restored and classified 

even in the presence of partial information loss or noise. 

Due to its construction based on a hypercube and the 

ability to form fuzzy membership functions, the Fuzzy 

BSB model has high stability, generalization ability, and 

adaptive learning, which makes it promising for 

forecasting and monitoring tasks in photovoltaic 

installations. 

To use the BSB model, all data are normalized to 

the range [-1; 1], which allows us to place vectors in the 

hypercube spaces accordingly: 

 

min maxx x x

1 x 1

 

  

,  (1) 

 

where xmin is the smallest value of the input variable, xmax 

is the largest value of the input variable, x a bx  is the 

encoded value of the input variable. 

From here 

 

min min

max max

x 1 a bx ,

x 1 a bx .

  

  
  (2) 

 

Let's find the coefficients a and b: 

 

max

max min

min max

max min

a 1 bx

1 1 bx bx

2 b(x x )

2 b(x x )

 

   

  

 

 

 

Hence, 
max min

2
b

x x



 and therefore  

 

max max min max

max min max min

max min max min max min

max min max min min max

2x x x 2x
a 1

x x x x

x x (x x ) x x
.

x x x x x x

 
   

 

    
  

  

 (3) 

 

Therefore, the encoding of the value of the input 

variables into the interval [-1;1] occurs as follows: 
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max min

min max max min

max min

min max min max

max min

min max

x x 2x
x

x x x x

x x 2x

x x x x

x x 2x
.

x x


  

 


  

 

 




          (4) 

 

Let k nx R  be the input feature vector at iteration 

k, where n = 5 (which corresponds to the investigated 

number of classes of defects of solar panels). The 

network state is updated according to the rule:  
 

(k 1) (k) (k)x (x W x ),      (5) 

 

where α > 0 is the feedback coefficient, W is the (n×n) 

weight matrix, and ψ(·) is the piecewise linear activation 

function with saturation for the output variable y: 
 

i

i i i

i

1,  if y 1

(y ) y ,  if -1<y 1

1,  if y 1




  
  

.  (6) 

 

Although the classical BSB model operates in an n-

dimensional hypercube with 2ⁿ possible vertex states, in 

the this research, the system stores only five fuzzy 

prototype vectors corresponding to the identified defect 

types: normal, cracks, shading, contamination, and 

mechanical damage. Each prototype is associated with 

one class center in the feature space, and the hypercube 

formalism is used solely to define the distance metric and 

membership degree within this bounded state space. 

Thus, the number of functional clusters equals the 

number of defect classes (five), while the theoretical 2n 

vertices serve as a continuous representation domain for 

associative convergence. 

The BSB fuzzy model takes into account the 

distance between the current input and the vertices of the 

hypercube to calculate the membership function: 
 

n

q i qi

i 1

1
(x) 1 x x ,

n


      (7) 

 

where qx  is the q-th vertex of the hypercube. 

The closer x is to the vertex, the larger the value of 

the membership function q . This allows partial 

membership in multiple clusters and provides flexible 

classification. 

The initial weights are calculated using Hebb's rule: 

 

l
(k) (k) T

k 1

W x (x )



 .       (8) 

Further refinement of the weights is performed 

according to the Widrow-Hoff rule: 
 

(k 1) (k) (k) (k) (k) (k) TW W (x W x ) (x ) ,        (9) 
 

where η is the learning rate. 

After training, the predicted value ŷ for a new input 

x is calculated as a weighted sum over the clusters: 
 

q q

q

ŷ (x) y ,        (10) 

 

where yq is the average output value, associated with 

cluster q. 

 

3. Results and Discussion 
 

The data for the experiment were obtained by laser 

scanning the surface of the solar panel. Each row in the 

data set corresponds to a separate scan point. To ensure 

representativeness and class balance, data from 155 real 

scan points were augmented with simulated samples 

based on variations in real parameters. The total training 

and testing sample size was 700 and 300 examples. The 

input variables describe the purity, centers of deviations 

and total signals across the four scan zones. The output 

variable is the real laser power (Plaser real), which is 

used as an indicator of the panel state. The Fuzzy BSB 

model, which combines associative memory and fuzzy 

classification mechanisms, was used to build the 

classifier. 

The features of the variables well reflect typical 

defects: high or low values of the centr parameter signal 

surface curvature or the presence of cracks; low total 

indicators or a low Plaser real value may indicate 

shading, damage, or contamination. Classification labels 

were generated by a combination of Plaser real's 

automatic threshold analysis and expert assessment of the 

panel condition. Power values below 80% of the 

reference were considered a sign of a defect. 

Asymmetry between zones (for example, when the 

value for the first zone significantly exceeds the 

indicators of the third) indicates local structural 

violations. Negative center shifts can be interpreted as 

depressions, while positive ones can be interpreted as 

elevations or the presence of foreign objects on the 

surface. Shading was distinguished from soiling by the 

spatial extent and temporal persistence of the attenuation 

area: shading affected larger and stable regions, whereas 

soiling appeared as local and transient irregularities. The 

final labels were established through expert consensus, 

ensuring consistent and interpretable ground-truth 

categories for classification. 

Figure 2 shows a graphical representation of the 

distribution of feature vectors across the studied defects 

of solar panels. 
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Fig. 2. Distribution of feature vectors of the studied defects of solar panels 

 

To form the training sample, all features describing 

purity, centers of deviation and total zone values are 

usually taken, in total about eleven main parameters, 

which correspond to the cleaned data from 14 primary 

indicators. As a target variable, either the real laser power 

(Plaser real) can be used to predict quantitative values, 

or classification labels that reflect the type of defect. 

The data studied investigated typical defects of 

solar panels that affect reflectivity and light transmission. 

Based on the interpretation of the variables and the 

experimental setup, the following categories can be 

distinguished: 

0 Normal (no defect) – the panel is operating 

normally, the signal indicators are stable, the real laser 

power (Plaser real) is close to the expected one. 

1 Cracks – manifest as sharp changes in the centr 

parameter, indicating surface curvature; asymmetries 

between measurement zones may also be observed. 

2 Shading – characterized by a decrease in the 

total signals (sum1,2, sum3,4) and a drop in Plaser real; 

can be caused by dust, leaves, foreign objects, or partial 

overlap of the panel. 

3 Contamination is similar to shading, but is more 

local in nature: individual zones give a much lower signal 

compared to others. 

4 Mechanical damage (dents, scratches, surface 

deformations) - are displayed as persistent positive or 

negative center deviations (centr), indicating depressions 

or elevations on the panel surface. 

These data can be considered as multi-channel 

measurements reflecting the state of the solar panel 

surface at different points. The difference between the 

ideal and actual laser power allows us to assess the degree 

of defect: the greater this difference, the greater the 

impact of the damage on the reflective properties of the 

panel and its energy efficiency. 

Figure 3 shows the distribution of defect types in 

the real data. 

 

 
 

Fig. 3. Distribution of types of defects studied  

in solar panels 

 

Thus, the investigated defects include both 

structural damage (cracks, warping, dents) and 

operational problems (shading, dirt, foreign objects). All 

of them directly affect the panel's power output and can 

lead to significant energy losses. 

The model was tested on a subset of the data with a 

70/30 split for training and testing. Figure 4 shows the 

confusion matrix of the training process, illustrating the 

classification quality. 

The training sample shows that classes 1–4 are 

identified almost without error: the model correctly 

classifies 135 objects of class 1, 132 objects of class 2, 

144 objects of class 3, and 150 objects of class 4. The 

main difficulties arise in class 0, where a significant 

"smearing" of predictions is observed: some objects were 

assigned to classes 1, 2, 3, and 4, and no example was 
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classified as belonging to class 0. This indicates that the 

prototypes of class 0 in the feature space overlap with 

other classes, which makes their differentiation difficult. 

 

 
 

Fig. 4. Fuzzy BSB training data confusion matrix 

 

The results on the test sample confirm this trend 

(Figure 5). 

 
 

Fig. 5. Confusion matrix of Fuzzy BSB testing data 

 

For classes 1–4, the model maintains high accuracy: 

all 65 examples of class 1, 68 examples of class 2, 56 

examples of class 3, and 50 examples of class 4 are 

classified absolutely correctly. Class 0 again shows 

significant problems - no correct prediction, and all 61 

examples were assigned to other categories, mainly 

classes 1 and 2. This indicates the difficulty of restoring 

the normal structure of type 0, i.e., without defect, by 

associative BSB dynamics. 

The model was studied in the Matlab environment. 

As a result of the study, the average F1-score was 0.79. 

For class 0, the accuracy was lower due to the partial 

overlap of features with class 1. A sensitivity analysis of 

the model was performed with respect to the parameter α 

(in the range 0.2–0.8), which showed that optimal results 

are achieved at α = 0.5 and gain = 1.2. Moreover, to 

evaluate the stability and generalization ability of the 

developed Fuzzy BSB model, a five-fold cross-validation 

procedure was applied. The entire dataset was randomly 

divided into five equal subsets, where each subset was 

used once as a test set while the remaining four served 

for training. The average classification accuracy across 

all folds reached 79.7% with a standard deviation of 

±2.3%, confirming the model’s robustness and consistent 

performance on unseen data. Comparative experiments 

showed that the Fuzzy BSB classifier achieved an 

average F1-score of 0.79, which is 14% higher than the 

baseline nearest-prototype method and only 17% lower 

than deep CNN-based models (0.96 F1-score [22]). 

However, the proposed system requires 4× less training 

data and operates 2× faster in inference, making it more 

suitable for real-time UAV deployment. 

The study makes some assumptions. For example, 

it is assumed that most defects occur during the 

transportation or storage of panels and are of a specific 

nature, such as cracks or dents. The use of relative stress 

measurements reduces the need for complex equipment, 

which simplifies the process. 

One potential difficulty may be limited accuracy in 

adverse weather conditions. To solve this problem, laser 

scanning will be used, which increases the efficiency of 

analysis regardless of lighting. Another problem may be 

the difficulty in training neural networks on small 

samples. This problem is solved by using fuzzy neural 

networks, which require a smaller amount of data for 

training. 

Compared to the passive methods described above, 

the proposed approach provides: 

 work in most lighting conditions (the method is 

validated for diffuse daylight and moderate reflection 

levels); 

 smaller requirements for the amount of training 

data; 

 the ability to localize defects without stopping 

the panels. 

The disadvantage of Fuzzy BSB is its lower 

classification accuracy compared to deep neural 

networks [22] (about 80% versus 97%). Limitations also 

include the dependence on the correct choice of 

parameters (α, gain) and relatively slow convergence in 

cases of high dimensionality of the data. These 

disadvantages can be overcome by: 

 hybridization with deep neural networks, where 

Fuzzy BSB is used as a pre-filter or interpretation 

module; 

 parameter optimization through evolutionary 

algorithms (e.g., genetic algorithms or particle swarm) to 

find the best values of α and gain; 
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 expanding the volume of training data using 

synthetic generation, which allows for increased 

classification accuracy; 

 parallel implementation of BSB dynamics to 

speed up calculations. 

Thus, Fuzzy BSB does not significantly lose to deep 

learning in accuracy, but is a valuable tool due to its 

reliability, simplicity, and ability to work in conditions of 

incomplete and noisy data. 

 

4. Conclusions 
 

The study considered the problem of reducing the 

efficiency of solar panels due to defects on their surface 

and proposed an intelligent system for their detection and 

classification using the Fuzzy BSB model. The main 

contribution of this study lies in developing an integrated 

real-time monitoring and classification system that 

combines active laser scanning with Fuzzy BSB. The 

approach provides explainable fuzzy reasoning and 

robustness under incomplete data. Parameters suitable 

for optimization include the feedback coefficient, 

activation gain, and prototype normalization factors, 

which directly influence convergence speed and 

classification stability. The results of experiments with 

laser scanning data confirmed that this approach is 

capable of providing a sufficiently high accuracy of 

defect classification even in the presence of noise and 

incomplete measurements. Comparison with the basic 

method of the closest prototype demonstrated that 

although the latter achieves ideal accuracy indicators, it 

does not take into account fuzzy membership and does 

not have generalization mechanisms. The Fuzzy BSB 

model showed an accuracy of approximately 80%, which 

indicates its practical suitability for monitoring tasks. The 

proposed intelligent system is promising due to the 

combination of associative memory and fuzzy logic, 

which provides transparency of decision-making, 

flexibility, and adaptability.  

Future research will focus on optimizing model 

parameters and expanding the training dataset through 

evolutionary optimization methods, as well as integrating 

the Fuzzy BSB model with modern deep learning 

algorithms in a hybrid deep–fuzzy framework to further 

enhance accuracy, robustness, and the overall 

performance of the solar panel defect detection and 

classification system. 
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ІНТЕЛЕКТУАЛЬНА СИСТЕМА ВИЯВЛЕННЯ ТА КЛАСИФІКАЦІЇ ДЕФЕКТІВ 

СОНЯЧНИХ ПАНЕЛЕЙ У РЕАЛЬНОМУ ЧАСІ 

Л. О. Дубчак, Є. В. Бодянський, О. С. Савенко, В. В. Кочан, А. О. Саченко 

Предметом дослідження у статті є процес виявлення та класифікації дефектів сонячних панелей у 

режимі реального часу за допомогою безпілотних літальних апаратів (БПЛА) та технологій штучного 

інтелекту. Метою роботи є розробка інтелектуальної системи моніторингу, яка яка поєднує методологію 

активного моніторингу з моделлю на основі нечіткої BSB для виявлення та класифікації дефектів сонячних 

панелей у режимі реального часу. Це дозволить своєчасно виявляти дефекти та зменшити витрати на ремонт 

або заміну сонячних панелей. Завдання, що потребують вирішення: розробити метод активного моніторингу 
стану панелей на основі лазерного сканування; інтегрувати алгоритми обробки даних та класифікації дефектів 

у режимі реального часу; дослідити застосування моделі Fuzzy BSB (Braine-State-in-the-Box) для підвищення 

стабільності класифікації в умовах шуму та неповних даних. Використані методи: активне лазерне 

сканування з безпілотних літальних апаратів, алгоритми нечіткої нейронної мережі, модель асоціативної 

пам'яті Fuzzy BSB, а також методи аналізу зображень та векторів ознак. Були отримані наступні результати. 

Запропоновано методологію виявлення дефектів на етапі транспортування та під час експлуатації сонячних 

панелей. Запропоновано модель Fuzzy BSB для класифікації виявлених дефектів, яка здатна забезпечити 

точність близько 80% навіть в умовах значного шуму та перекриття класів. Встановлено, що система 

ефективно розрізняє основні типи дефектів, зокрема тріщини, забруднення, затінення та механічні 

пошкодження, демонструючи конкурентні переваги порівняно з традиційними пасивними методами. 

Висновки. Наукова новизна отриманих в процесі дослідження результатів полягає в наступному: 1) адаптація 
комбінації асоціативної пам'яті та нечіткої логіки в моделі Fuzzy BSB до класифікації дефектів сонячних 

панелей, що дозволяє підвищити достовірність цієї класифікації в умовах неповних або зашумлених даних; 

2) запропоновано концепцію інтеграції активного лазерного сканування з інтелектуальними алгоритмами 

аналізу, що відкриває перспективи для створення гнучких та адаптивних систем моніторингу стану сонячних 

електростанцій. 

Ключові слова: сонячні панелі; дефекти; лазерне сканування; безпілотні літальні апарати; нейронні 

мережі; інтелектуальна система; Fuzzy BSB. 
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