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INTELLIGENT SYSTEM FOR REAL-TIME DETECTION
AND CLASSIFICATION OF SOLAR PANEL DEFECTS

The subject matter of the study in the article involves the process of detecting and classifying defects in solar
panels in real-time using unmanned aerial vehicles (UAV) and artificial intelligence technologies. The goal of
this study is to develop an intelligent system that combines an active monitoring methodology with Fuzzy BSB-
based model for real-time detection and classification of solar panel defects. This will allow for the timely
detection of defects and reduce the costs of repairing or replacing solar panels. The tasks to be solved are: to
develop a method for active monitoring of the condition of panels based on laser scanning; to integrate
algorithms for data processing and classification of defects in real time; to investigate the application of the
Fuzzy BSB (Braine-State-in-the-Box) model to increase the stability of classification under conditions of noise
and incomplete data. The methods used are: active laser scanning from UAVSs, fuzzy neural network algorithms,
the Fuzzy BSB associative memory model, as well as methods for analyzing images and feature vectors. The
following results were obtained. A methodology for detecting defects at the transportation stage and during the
operation of solar panels is proposed. A Fuzzy BSB model is proposed for classifying detected defects, which is
capable of providing an accuracy of about 80% even under conditions of significant noise and class overlap. It
is found that the system effectively distinguishes the main types of defects, in particular cracks, contamination,
shading, and mechanical damage, demonstrating competitive advantages compared to traditional passive
methods. Conclusions. The scientific novelty of the results obtained is as follows: 1) adapting the combination
of associative memory and fuzzy logic in the Fuzzy BSB model to the classification of solar panel defects, which
allows to increase the reliability of this classification in conditions of incomplete or noisy data; 2) the concept
of integrating active laser scanning with intelligent analysis algorithms is proposed, which opens up prospects
for creating flexible and adaptive systems for monitoring the condition of solar power plants.

Keywords: solar panels; defects; laser scanning; unmanned aerial vehicles; neural networks; intelligent system;
Fuzzy BSB.

using solar panels is manifested in reducing electricity
costs and the ability to sell surpluses in countries with a

1. Introduction

1.1. Motivation

Solar panels, or photovoltaic modules, play a key
role in modern energy, as they allow direct conversion of
solar radiation into electrical energy through the
operation of photovoltaic cells made of silicon or other
materials. Their use is an important factor in the
transition to clean energy, as they reduce dependence on
fossil fuels and reduce greenhouse gas emissions, which
is confirmed by studies on the role of renewable
technologies in combating climate change [1]. In
addition, they ensure energy independence at the
household and enterprise level, as they provide the
opportunity to produce their own electricity and reduce
the impact of energy crises. The economic benefit of

green tariff system. Also, the development of solar
energy infrastructure creates additional jobs and
stimulates the development of related industries [2]. An
important advantage is the flexibility of panel placement,
as they can be installed on roofs, facades, or open areas,
which allows for efficient use of available space.
However, the efficiency of solar panels has certain
limitations. Their operation depends on weather
conditions and light intensity, which reduces electricity
production in winter or during cloudy weather. The tilt
angle and orientation of the modules relative to the
cardinal points have a significant impact, as well as
temperature, which in case of overheating can cause
degradation of performance [3]. The energy efficiency of
solar power plants largely depends on the condition of
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their panels, which requires their appropriate The article [9] is devoted to localization of hot spots

maintenance. At the same time, panel defects can be both
catastrophic (causing panel inoperability) and minor,
which simply reduce the energy efficiency of the panels).
Defects can be the result of damage or a consequence of
normal operation (dust, fallen leaves). Thus, the problem
of developing effective methods for detecting defects in
solar panels arises. An analysis of existing works on the
study of the problem has shown the importance of
developing fast and reliable methods for detecting
defects in solar energy facilities and classifying them
using UAVs [4-6].

Known diagnostic methods are based on passive
information collection, which requires high-quality
equipment and significant amounts of data for training
models. Therefore, the development of active control
methods using laser scanning and intelligent data
analysis is relevant. For this, the authors propose an
approach based on the use of laser scanning using UAVS,
as well as a method for classifying defects in solar panels
based on a fuzzy neural network.

Diagnostics of photovoltaic module defects is
critical to maintaining the performance and reliability of
solar power plants. Traditional approaches include
electroluminescent and infrared imaging, current-voltage
characteristics analysis, and modern computer vision
algorithms. However, real-world operating conditions
such as variable illumination, temperature effects,
surface contamination, and module heterogeneity
introduce significant uncertainty and noise.

The goal of this study is to develop an intelligent
system that combines an active monitoring methodology
with a Fuzzy BSB-based model for the real-time
detection and classification of solar panel defects.

1.2. State of the art

As the number of solar power plants increases [7],
there is a need for automated monitoring systems to
detect and localize solar panel faults. The performance
reduction can reach 50%, making early diagnosis
critically important. The paper [8] analyzes a
photovoltaic panel monitoring system for shading and
fault detection using artificial neural networks (ANNS)
and the Internet of Things (1oT). The main method is to
use ANNSs to model complex interactions between input
and output data, which allows for accurate prediction of
ideal panel performance and prompt detection of shading
or other defects. loT provides remote real-time
monitoring, which reduces maintenance costs by timely
detection and localization of problems. The advantages
of this approach are high accuracy, adaptability, and
reduced energy losses, but the system requires constant
model updates and may therefore be dependent on an
Internet connection.

on solar panels and classification of their faults using
deep learning methods. Thermographic images taken by
an infrared camera and two architectural solutions based
on deep learning networks ResNet-50 and Faster R-CNN
were used to detect faults. The proposed system allows
to automate the fault detection process, which reduces the
need for manual inspection, but requires a large sample
for training the neural network and does not classify
mechanical damage to solar panels.

In [10], a photovoltaic panel monitoring system
using ANN and 10T is considered. ANNs are used to
accurately detect shading and other faults by modeling
the interaction between input and output data, which
allows predicting panel performance. The advantages of
the approach are high accuracy and adaptability of the
model. 10T provides real-time remote monitoring,
allowing for timely detection of faults and reducing
maintenance costs, although there is a dependence on the
Internet connection and security issues. To optimize the
operation, the "Perturb and Observe" method was used,
which adjusts the panel parameters to achieve maximum
power. This approach is simple and effective, although it
may have temporary energy losses during sudden
changes in illumination. It also requires frequent
updating of the models to take into account new
conditions.

Panel fault detection methods [11-14] use artificial
intelligence to process images. Infrared thermography
allows for non-contact defect detection and provides
rapid detection, but accuracy depends on the quality of
the camera and the operator's experience.
Electroluminescent testing, which uses infrared images
to detect cracks and damage, uses deep learning models
to automate the diagnostic process. Deep learning
algorithms, CNN and Faster RCNN, provide high
efficiency and accuracy in defect detection, but require
large amounts of data for training, require sophisticated
equipment and expert support [15-17].

The article [18] describes methods for detecting and
diagnosing faults in solar power plants based on artificial
intelligence algorithms for high accuracy of defect
detection. In addition, the use of fuzzy logic and decision
trees provides high-accuracy classification of faults, but
requires significant expert training for tuning. The main
disadvantage is the need for a large amount of data and
memory for the functioning of the algorithms.

A review of recent imaging work shows the rapid
progress of deep models for module-level defect
detection and segmentation, in particular variants of
VarifocalNet class detectors, which increase accuracy
and speed on visible images. At the same time, these
methods require large labeled databases and controlled
shooting conditions [19]. This creates space for
alternatives that can work with scan-sensor features and
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partially distorted input wvectors without losing
interpretability. Such approaches include the fuzzy
associative memory Fuzzy BSB (Brain-State-in-a-Box),
which combines the dynamics of standard recovery with
fuzzy membership measures.

At the level of formal decision-making systems in
photovoltaic installations, fuzzy logic is widely used for
classification of states and failures. Works on diagnostics
of hot-spots by several electrical indicators demonstrate
high accuracy even in field conditions, when fuzzy rules
are properly designed. It is significant that with sufficient
feature engineering, fuzzy systems achieve impressive
metrics, however, unlike associative memory, they
usually do not have a built-in “approximation” to the
standard when the input data is partially lost or
significantly noisy [20]. Fuzzy BSB here acts as a logical
continuation: the model stores prototypes of defects and
through iterative nonlinear dynamics delays observations
to the nearest prototype. The fuzzy component allows
you to additionally display the degrees of membership in
cases of class intersection. Unlike purely visual pipelines,
Fuzzy BSB organically works with aggregated sensory
features, including laser scanning data, and provides a
more transparent interpretation of the solution due to
distances to prototypes and state changes during the
convergence process. From the associative memory
theory perspective, work with optimal and robust
BSB/gBSB designs shows how the selection of the
weight matrix, prototype normalization, and activation
choice affect the size and homogeneity of the attraction
regions, ensuring global stability and robustness to
weight perturbations. These results directly support the
engineering solutions used in Fuzzy BSB for defect
classification.

Empirical studies of non-photo-visual features
show that well-designed indicators, such as aggregates
from local scan zones, scattering statistics or deviations
from the profile, are able to form individual prototypical
“portraits” of defects in the feature space. In this way, a
trained Fuzzy BSB can combine high selectivity with
attraction to standards, while remaining operational in the
presence of noise, when, say, the parameters are partially
undermeasured and the class boundaries are not sharp.
When the data come from temperature-unstable regimes,
standard memoryless fuzzy systems usually lose
stability, while the associative dynamics of the BSB
stabilize the classification [21].

The prototype of the proposed research is a
multilayer deep learning model [22], which is used to
detect and localize defects in solar panels. The
advantages include high accuracy (up to 97%) and the
ability to simultaneously detect and localize different
types of defects, such as microcracks, erosion, and dust.
The disadvantages are the complexity of implementation

and the need for large computational resources for image
processing and model training.

A common drawback of the considered methods is
their passive nature. They do not use any active
influences on the solar panels, and therefore have
relatively low sensitivity and require high-quality
equipment and significant amounts of data for training
and defect recognition.

1.3. Objectives and tasks

This research aims to address the important
scientific and applied problem of improving the
operational safety, reliability and efficiency of solar
power plants. This is achieved by developing an
intelligent integrated monitoring and diagnostics system
that provides rapid detection of panel defects, accurate
classification of their causes and generation of
recommendations for optimizing maintenance strategies.

To achieve this goal, the following main tasks are
solved in the work:

1. Development of a comprehensive methodology
for active data collection, based on the use of unmanned
aerial vehicles equipped with video cameras and laser
scanners, with subsequent combination of the results with
sensor indicators of the energy characteristics of the
panels, ensuring spatial resolution of about 1-2 mm per
pixel and synchronization accuracy within 2—-3 %.

2. Formation of an experimental dataset of solar
panel defects and use of convolutional neural networks
for automated detection and initial localization of
damage, achieving an average processing time of
approximately 0.5 s per frame.

3. Development of an intelligent classification
model based on a Fuzzy BSB neural network, which
provides high robustness of defect recognition in
conditions of noise and incomplete measurements,
maintaining classification accuracy close to 80 % and an
F1-score of about 0.8 under cross-validation.

4. Building an integrated decision support system
that combines classification results allows for rapid
assessment of defect criticality and the provision of
maintenance scenarios, reducing false defect detections
by roughly 15-20 % compared with rule-based
diagnostic approaches.

The paper is structured as follows. Section 1
provides an overview of current research and methods for
monitoring the condition of solar panels.

Section 2 describes the data collection
methodology, applied algorithms, and architecture of the
proposed system.

Section 3 presents the results of experimental
studies and their analysis.

Finally, Section 4 summarizes the conclusions and
outlines the prospects for further research related to the
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improvement of the Fuzzy BSB model and its integration
with modern deep learning methods.

2. Materials and methods of research

The methodology used in the study involves the
application of artificial intelligence to detect and classify
defects in solar panels at different stages of their life
cycle. It is needed to provide fast and accurate damage
detection using unmanned aerial vehicles (UAVS),
followed by data analysis using the combination of neural
networks and fuzzy logic.

When solar panels are manufactured, they undergo
a full inspection of their efficiency parameters. However,
during transportation and storage in a warehouse, defects
sometimes occur that significantly affect their
performance or energy efficiency. Known methods for
detecting defects in solar panels are either quite complex
and require complex and expensive specialized
equipment, or have low reliability of results. A simple
research method is proposed that provides high
reliability, requires a minimum of equipment and can be
implemented in warehouse conditions. To do this, the
panels are scanned using a hand-held scanner that creates
a narrow light strip on the panel. At the same time,
voltage drops are measured at a load resistance close to
the nominal resistance of the panel. The power of the
generated energy is calculated from these voltage drops,
and the impact of transport defects on the energy
efficiency of the panel is indicated by the relative change
in the output power of the panel during the action of the
light strip. Since the measurements are relative, there is
no need for high-precision equipment and special
research conditions.

A similar method for examining solar panels is
proposed to detect their defects during operation. The
modification of the method consists in using a UAV to
provide remote access to the panels and their scanning
using a laser beam. The latter, due to the high energy
efficiency of the laser beam, allows for relative
measurements to be made during the study even in sunny
weather. At the same time, it is proposed to achieve an
increase in the accuracy of defect localization through
joint intellectual processing of the results of
measurement series in different directions of UAV
movement.

In this study, the concept of active laser scanning
for photovoltaic module inspection is considered at the
methodological level. To ensure reproducibility and
provide physical grounding of the proposed approach, the
basic instrumental parameters of the conceptual setup are
presented below. The laser source operates at a
wavelength of A = 650 nm with an output power of
approximately 10 mW, forming a scanning stripe of 1.2
mm width and a scanning step of 0.5 mm. The data

acquisition rate is 50 samples/s, which corresponds to the
nominal scanning speed of 0.2 m/s.

For the classification of solar panel defects, an
intelligent joint processing of detailed local images of
localized defect zones and energy spectra of output
voltage and current obtained from UAVs is proposed.
This processing for the detection and localization of solar
panel defects is proposed to be carried out on the basis of
convolutional neural networks, the result of which will
be a number of defect feature vectors in the image.

Initially, data is collected using UAVs that
photograph solar panels. These images are transmitted to
a fuzzy neural network for further analysis and fault
detection. The resulting images are stored on cloud
services or local servers with high power, adhering to
standards for easy access. A convolutional neural
network processes such images and forms a feature
vector for each of them. A fuzzy neural network uses this
data to quickly classify panel defects in real time. After
that, the information can be used for further research or
model improvement. Classification of solar panel defects
is proposed to be carried out using a fuzzy neural
network, which processes a set of feature vectors online
and is trained on a small sample, unlike classical neural
networks used for this class of tasks. The analyzed defect
categories in this research are cracks, shading, soiling,
and mechanical damage. They were chosen as they
represent over 95% of real-world PV module failures [8,
9]. Each defect alters the reflected laser profile and power
response in specific ways, forming distinct clusters in the
feature space processed by the Fuzzy BSB classifier. A
fuzzy neural network guarantees high accuracy of
analysis, which allows for rapid fault detection and
improved monitoring of solar panels.

The general scheme of the proposed system is
shown in Figure 1.

The proposed intelligent system integrates
unmanned aerial vehicles (UAVSs) equipped with active
and passive sensors and a ground-based computing
environment that performs neural-network data
processing. The UAV subsystem consists of four
functional modules: a localization tool for stabilizing the
drone position and maintaining the correct scanning
trajectory; a main sensor (video camera) that captures
visual data of the solar panels; a main actuator (laser
radiation unit) that performs active surface scanning and
generates reflected signals for subsequent analysis; and
an energy-measuring device that records the electrical
response of the panels during laser illumination. All
incoming sensor streams are pre-processed in real time
by a mini-computer installed onboard the UAV, which
performs primary noise filtering, coordinate alignment,
and packet formation. The processed data are then
transmitted via a radio channel to the computing
environment on the ground station.
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Fig. 1. General structure of solar panel defect detection

The computing environment includes three
interconnected intelligent modules. The detection tool,
implemented as a convolutional neural network (CNN),
automatically identifies and localizes potential defects on
image frames, forming feature maps that reflect shading,
cracks, contamination, or surface deformation. The
extracted features are then analyzed by the defect
classification tool, which uses a fuzzy associative neural
network of the Fuzzy BSB type. This model combines
associative memory dynamics with fuzzy membership
logic, allowing stable classification even in the presence
of noise or incomplete measurements. Finally, the
decision-support system aggregates the classification
outputs, evaluates the criticality of the detected defects,
and generates maintenance recommendations for
operators in near-real-time mode.

The system operates in two primary modes:
inspection mode (during which the UAV performs
autonomous flight, laser scanning, and video data
acquisition under real illumination conditions) and
analytical mode (the computing environment processes
the transmitted data through the CNN-Fuzzy BSB
pipeline and makes the classification decision).

The computing environment contains a tool for
classifying defects in solar panels. It is proposed to use
Fuzzy BSB [22, 23] for data processing.

Fuzzy BSB (Brain-State-in-a-Box) combines the
properties of associative memory with fuzzy clustering
mechanisms, allowing data to be restored and classified
even in the presence of partial information loss or noise.
Due to its construction based on a hypercube and the
ability to form fuzzy membership functions, the Fuzzy
BSB model has high stability, generalization ability, and
adaptive learning, which makes it promising for
forecasting and monitoring tasks in photovoltaic
installations.

To use the BSB model, all data are normalized to
the range [-1; 1], which allows us to place vectors in the
hypercube spaces accordingly:

: M)

where Xmin is the smallest value of the input variable, Xmax
is the largest value of the input variable, X =a+bx is the
encoded value of the input variable.

From here

Xmin = —1=2a+bXpin,

2
Xmax —>1=a+ DX @)
Let's find the coefficients a and b:
a=1-bXpax
—1=1—bXmax + X min
=2 =b(Xmin = Xmax)
2 =DB(Xmax = Xmin)
Hence, b= and therefore
Xmax ~ Xmin
a=1- 2Xmax — Xmax ~ Xmin ~ 2Xmax —
Xmax ~ Xmin Xmax ~ Xmin @3)
_ “Xmax ~Xmin _ ~(Xmax * Xmin) _ Xmax * Xmin _

Xmax ~ Xmin Xmax ~ Xmin Xmin ~ Xmax
Therefore, the encoding of the value of the input

variables into the interval [-1;1] occurs as follows:



116

Radioelectronic and Computer Systems, 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

. X + Xmi 2X
§ = Zmax min —
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Xmin = Xmax  Xmin ~ Xmax
_ Xmax * Xmin —2X

Xmin ~ Xmax

Let XK eR" be the input feature vector at iteration
k, where n = 5 (which corresponds to the investigated
number of classes of defects of solar panels). The
network state is updated according to the rule:

D) — gy (x4 o w0y, (5)
where a > 0 is the feedback coefficient, W is the (nxn)

weight matrix, and y(-) is the piecewise linear activation
function with saturation for the output variable y:

1, if yi >1
w(yi) =1Vi, if-1<y; <1. (6)
—1, if yi <-1

Although the classical BSB model operates in an n-
dimensional hypercube with 2» possible vertex states, in
the this research, the system stores only five fuzzy
prototype vectors corresponding to the identified defect
types: normal, cracks, shading, contamination, and
mechanical damage. Each prototype is associated with
one class center in the feature space, and the hypercube
formalism is used solely to define the distance metric and
membership degree within this bounded state space.
Thus, the number of functional clusters equals the
number of defect classes (five), while the theoretical 2"
vertices serve as a continuous representation domain for
associative convergence.

The BSB fuzzy model takes into account the
distance between the current input and the vertices of the
hypercube to calculate the membership function:

Mq(>~<)=1—1i|>~<i = Xqi | (M
nNia

where X is the g-th vertex of the hypercube.

The closer x is to the vertex, the larger the value of
the membership function pg. This allows partial

membership in multiple clusters and provides flexible
classification.
The initial weights are calculated using Hebb's rule:

W= i x() (x(NYT (8)
k=1

Further refinement of the weights is performed
according to the Widrow-Hoff rule:

WD Z w9 gz w500y NT - (g)

where 1) is the learning rate.
After training, the predicted value § for a new input
x is calculated as a weighted sum over the clusters:

9=2uq (X)'yq: (10)
q

where yq is the average output value, associated with
cluster g.

3. Results and Discussion

The data for the experiment were obtained by laser
scanning the surface of the solar panel. Each row in the
data set corresponds to a separate scan point. To ensure
representativeness and class balance, data from 155 real
scan points were augmented with simulated samples
based on variations in real parameters. The total training
and testing sample size was 700 and 300 examples. The
input variables describe the purity, centers of deviations
and total signals across the four scan zones. The output
variable is the real laser power (Plaser real), which is
used as an indicator of the panel state. The Fuzzy BSB
model, which combines associative memory and fuzzy
classification mechanisms, was used to build the
classifier.

The features of the variables well reflect typical
defects: high or low values of the centr parameter signal
surface curvature or the presence of cracks; low total
indicators or a low Plaser real value may indicate
shading, damage, or contamination. Classification labels
were generated by a combination of Plaser real's
automatic threshold analysis and expert assessment of the
panel condition. Power values below 80% of the
reference were considered a sign of a defect.

Asymmetry between zones (for example, when the
value for the first zone significantly exceeds the
indicators of the third) indicates local structural
violations. Negative center shifts can be interpreted as
depressions, while positive ones can be interpreted as
elevations or the presence of foreign objects on the
surface. Shading was distinguished from soiling by the
spatial extent and temporal persistence of the attenuation
area: shading affected larger and stable regions, whereas
soiling appeared as local and transient irregularities. The
final labels were established through expert consensus,
ensuring consistent and interpretable ground-truth
categories for classification.

Figure 2 shows a graphical representation of the
distribution of feature vectors across the studied defects
of solar panels.
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To form the training sample, all features describing
purity, centers of deviation and total zone values are
usually taken, in total about eleven main parameters,
which correspond to the cleaned data from 14 primary
indicators. As a target variable, either the real laser power
(Plaser real) can be used to predict quantitative values,
or classification labels that reflect the type of defect.

The data studied investigated typical defects of
solar panels that affect reflectivity and light transmission.
Based on the interpretation of the variables and the
experimental setup, the following categories can be
distinguished:

0 Normal (no defect) — the panel is operating
normally, the signal indicators are stable, the real laser
power (Plaser real) is close to the expected one.

1 Cracks — manifest as sharp changes in the centr
parameter, indicating surface curvature; asymmetries
between measurement zones may also be observed.

2 Shading — characterized by a decrease in the
total signals (sum1,2, sum3,4) and a drop in Plaser real;
can be caused by dust, leaves, foreign objects, or partial
overlap of the panel.

3 Contamination is similar to shading, but is more
local in nature: individual zones give a much lower signal
compared to others.

4 Mechanical damage (dents, scratches, surface
deformations) - are displayed as persistent positive or
negative center deviations (centr), indicating depressions
or elevations on the panel surface.

These data can be considered as multi-channel
measurements reflecting the state of the solar panel
surface at different points. The difference between the
ideal and actual laser power allows us to assess the degree
of defect: the greater this difference, the greater the
impact of the damage on the reflective properties of the

2 4
Fig. 2. Distribution of feature vectors of the studied defects of solar panels

panel and its energy efficiency.
Figure 3 shows the distribution of defect types in
the real data.

Number of Samples

[0

0 1

2
Defect type

Fig. 3. Distribution of types of defects studied
in solar panels

Thus, the investigated defects include both
structural damage (cracks, warping, dents) and
operational problems (shading, dirt, foreign objects). All
of them directly affect the panel's power output and can
lead to significant energy losses.

The model was tested on a subset of the data with a
70/30 split for training and testing. Figure 4 shows the
confusion matrix of the training process, illustrating the
classification quality.

The training sample shows that classes 1-4 are
identified almost without error: the model correctly
classifies 135 objects of class 1, 132 objects of class 2,
144 objects of class 3, and 150 objects of class 4. The
main difficulties arise in class 0, where a significant
"smearing" of predictions is observed: some objects were
assigned to classes 1, 2, 3, and 4, and no example was
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classified as belonging to class 0. This indicates that the
prototypes of class O in the feature space overlap with
other classes, which makes their differentiation difficult.
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Fig. 4. Fuzzy BSB training data confusion matrix

The results on the test sample confirm this trend
(Figure 5).
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Fig. 5. Confusion matrix of Fuzzy BSB testing data

For classes 1-4, the model maintains high accuracy:
all 65 examples of class 1, 68 examples of class 2, 56
examples of class 3, and 50 examples of class 4 are
classified absolutely correctly. Class 0 again shows
significant problems - no correct prediction, and all 61
examples were assigned to other categories, mainly
classes 1 and 2. This indicates the difficulty of restoring
the normal structure of type 0, i.e., without defect, by
associative BSB dynamics.

The model was studied in the Matlab environment.
As a result of the study, the average F1-score was 0.79.
For class 0, the accuracy was lower due to the partial
overlap of features with class 1. A sensitivity analysis of
the model was performed with respect to the parameter a

(in the range 0.2-0.8), which showed that optimal results
are achieved at a = 0.5 and gain = 1.2. Moreover, to
evaluate the stability and generalization ability of the
developed Fuzzy BSB model, a five-fold cross-validation
procedure was applied. The entire dataset was randomly
divided into five equal subsets, where each subset was
used once as a test set while the remaining four served
for training. The average classification accuracy across
all folds reached 79.7% with a standard deviation of
+2.3%, confirming the model’s robustness and consistent
performance on unseen data. Comparative experiments
showed that the Fuzzy BSB classifier achieved an
average F1-score of 0.79, which is 14% higher than the
baseline nearest-prototype method and only 17% lower
than deep CNN-based models (0.96 F1-score [22]).
However, the proposed system requires 4% less training
data and operates 2% faster in inference, making it more
suitable for real-time UAV deployment.

The study makes some assumptions. For example,
it is assumed that most defects occur during the
transportation or storage of panels and are of a specific
nature, such as cracks or dents. The use of relative stress
measurements reduces the need for complex equipment,
which simplifies the process.

One potential difficulty may be limited accuracy in
adverse weather conditions. To solve this problem, laser
scanning will be used, which increases the efficiency of
analysis regardless of lighting. Another problem may be
the difficulty in training neural networks on small
samples. This problem is solved by using fuzzy neural
networks, which require a smaller amount of data for
training.

Compared to the passive methods described above,
the proposed approach provides:

— work in most lighting conditions (the method is
validated for diffuse daylight and moderate reflection
levels);

— smaller requirements for the amount of training
data;

— the ability to localize defects without stopping
the panels.

The disadvantage of Fuzzy BSB is its lower
classification accuracy compared to deep neural
networks [22] (about 80% versus 97%). Limitations also
include the dependence on the correct choice of
parameters (o, gain) and relatively slow convergence in
cases of high dimensionality of the data. These
disadvantages can be overcome by:

— hybridization with deep neural networks, where
Fuzzy BSB is used as a pre-filter or interpretation
module;

— parameter optimization through evolutionary
algorithms (e.g., genetic algorithms or particle swarm) to
find the best values of a and gain;
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— expanding the volume of training data using
synthetic generation, which allows for increased
classification accuracy;

— parallel implementation of BSB dynamics to
speed up calculations.

Thus, Fuzzy BSB does not significantly lose to deep
learning in accuracy, but is a valuable tool due to its
reliability, simplicity, and ability to work in conditions of
incomplete and noisy data.

4. Conclusions

The study considered the problem of reducing the
efficiency of solar panels due to defects on their surface
and proposed an intelligent system for their detection and
classification using the Fuzzy BSB model. The main
contribution of this study lies in developing an integrated
real-time monitoring and classification system that
combines active laser scanning with Fuzzy BSB. The
approach provides explainable fuzzy reasoning and
robustness under incomplete data. Parameters suitable
for optimization include the feedback -coefficient,
activation gain, and prototype normalization factors,
which directly influence convergence speed and
classification stability. The results of experiments with
laser scanning data confirmed that this approach is
capable of providing a sufficiently high accuracy of
defect classification even in the presence of noise and
incomplete measurements. Comparison with the basic
method of the closest prototype demonstrated that
although the latter achieves ideal accuracy indicators, it
does not take into account fuzzy membership and does
not have generalization mechanisms. The Fuzzy BSB
model showed an accuracy of approximately 80%, which
indicates its practical suitability for monitoring tasks. The
proposed intelligent system is promising due to the
combination of associative memory and fuzzy logic,
which provides transparency of decision-making,
flexibility, and adaptability.

Future research will focus on optimizing model
parameters and expanding the training dataset through
evolutionary optimization methods, as well as integrating
the Fuzzy BSB model with modern deep learning
algorithms in a hybrid deep—fuzzy framework to further
enhance accuracy, robustness, and the overall
performance of the solar panel defect detection and
classification system.
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IHTEJIEKTYAJIbHA CUCTEMA BUSIBJIEHHS TA KJTACU®IKAIIL JE®EKTIB
COHSIYHUX MAHEJIEH Y PEAJILHOMY YACI

JI. O. [Iyouak, €. B. booaucwvkuit, O. C. Casenko, B. B. Kouan, A. O. Cauenko

IIpeameTrom noCHiKEHHsSI Y CTaTTi € NPOLEC BHUSBJICHHA Ta Kinacu(ikamii nedekTiB COHAYHMX MaHenei y
PSKUMI peaNbHOr0 Yacy 3a JOMOMOror Oe3miyioTHHX ditanbHuX amapatiB (BILJIA) ta TexHomoriii mrydHoro
iHTenekTy. MeToio poboTH € po3poOKa IHTENEKTyalbHOI CHCTEMH MOHITOPHHTY, SIKa sIKa HOEJHYE METOIOJIOTIIO
AKTHBHOI'O MOHITOPHHT'Y 3 MOJICJUTIO Ha OCHOBI HeuiTKoi BSB st BusiBneHHs Ta kiacugikarii 1eeKTiB COHIIHUX
TaHeNnel y pexkuMi peanbHoro yacy. Lle 103BonuTh cBOEYacHO BUSIBISTH A€(EKTH Ta 3MEHIIUTH BUTPAaTH HA PEMOHT
a00 3aMiHy COHSIYHMX TaHenel. 3aBaAaHHsM, 1110 TOTPEOYIOTh BUPIIIEHHS: pO3pOOUTH METO ] aKTHBHOT'O MOHITOPUHTY
CTaHy ITaHeNel Ha OCHOBI JIa3€pPHOT0 CKaHYBaHHS; IHTETPYBATH aJITOPUTMHU 00POOKH JTaHWX Ta Kiacudikamnii nedexTis
y PeXHUMI peabHOro Yacy; TOCIiIUTH 3acTocyBaHHsa mozeli Fuzzy BSB (Braine-State-in-the-Box) s migBuimeHHs
crabimpbHOCTI Kiacuikamii B yMOBax IIyMy Ta HEMOBHUX JaHUX. BHKOpHCTaHi MeTOAM: aKTHUBHE Jia3epHe
CKaHyBaHHS 3 OE3IJIOTHUX JITAJbHUX anapariB, aIrOPUTMU HEYiTKOI HEWPOHHOI MepeKi, MOJENb aCOliaTHBHOI
nam'sti Fuzzy BSB, a Takoxx Meronu aHami3y 300paskeHb Ta BEKTOpIB 03HaK. bynu oTrpuMaHi HacTymHi pe3yJibTaTH.
3anpornoHoBaHO METOOJIOTII0 BUSBIICHHs 1e(EKTiB Ha eTari TPaHCIIOPTYBAaHHS Ta IMiJl Yac eKCILTyaTallii COHTYHUX
naHeneil. 3anporioHoBaHo Monenb Fuzzy BSB nnst knacudikanii BusiBIeHMX JeQeKTiB, sika 37aTHa 3a0e3MeYnTH
TOoYHICTh Onu3bKO 80% HaBITH B yMOBaxX 3HA4HOrO LIYMy Ta NEPEKPUTTS KiaciB. BcraHoBieHO, 1O cucrema
e(pEeKTUBHO pO3pi3Hsi€ OCHOBHI TUMU JedeKTiB, 30KpeMa TPIIIMHM, 3a0pyJAHEHHs, 3aTiHEHHS Ta MeEXaHi4Hi
NOIIKO/DKEHHSI, JIEMOHCTPYIOYM KOHKYPEHTHI TIepeBard MOpPIBHSHO 3 TPAAUIIMHUMU TMAaCUBHUMHU METOJAMHU.
BucHoBku. HaykoBa HOBU3HA OTPHMaHKX B MPOIIECT IOCHIIKEHHS pe3y/IbTaTiB MOJISrac B HACTYHOMY: 1) afanTartis
KOMOIHAIT acoliaTUBHOI Mmam'siTi Ta HewiTkoi Jioriku B Moxeni Fuzzy BSB no knacugikanii geekTiB COHSIMHUX
HaHeleH, 10 J03BOJISIE MiABMUIIUTH JTOCTOBIPHICTD i€l Kiacudikamii B yMOBaxX HEMOBHUX a00 3alllyMJICHUX NaHUX;
2) 3amlporoOHOBAHO KOHIICIIII0 IHTerpalii akTHBHOTO JIA3ePHOIO CKaHYBAaHHS 3 IHTENEKTYaJbHHUMHU ajJrOpUTMaMu
aHaJIi3y, 110 BiJIKPUBAE MEPCIEKTUBH U1l CTBOPEHHS THYYKHX Ta aJJAalITABHAX CHCTEM MOHITOPHUHTY CTaHY COHSYHUX
€JIEKTPOCTAHITIH.

KuiouoBi ciioBa: consuHi maHeni; AeeKTH; Ja3epHe CKaHyBaHHs; OE3MUIOTHI JITANbHI amapaTtH; HEWpOHHI
Mepexi; IHTeNeKTyajbHa cuctema; Fuzzy BSB.
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