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Traditional force-directed layout algorithms, such as the Kamada-Kawai (KK) method, are widely used for 

graph visualization due to their ability to produce aesthetically pleasing layouts. However, these algorithms can 

be computationally intensive for large graphs. The subject matter of the study is graph layout. The aim of this 

research is to explore the application of graph neural networks (GNNs) to improve the KK algorithm for graph 

layouts, resulting in a novel hybrid approach named KKNN. The key tasks addressed in this study include: 1. 

Development of the KKNN layout algorithm by integrating GNN-based reparameterization from the NeuLay-2 

approach with the KK algorithm. 2. Evaluation of computational efficiency by comparing the computational 
performance of KKNN with both the original KK algorithm and the NeuLay-2. 3. Assessment of layout quality, 

particularly by examining the symmetry preservation, energy minimization, and aesthetic criteria such as 

minimal edge crossings and balanced node placement. 4. Testing on various graph types, including both random 

and highly structured (symmetric) graphs. The methods used are: GNN-based layout reparameterization, 

inspired by NeuLay-2; Kamada-Kawai graph layout algorithm; performance metrics, including time-to-

convergence, energy minimization, and symmetry preservation. Our experiments demonstrate the following 

results: 1. KKNN converges to the energy minimum faster and achieves a lower energy state compared to the 

original KK. 2. KKNN not only reduces computational time but also better preserves graph symmetries compared 

to NeuLay-2. Conclusions. This study underscores the potential of integrating neural networks with traditional 

graph layout algorithms, presenting a promising approach for efficient and high-quality graph visualization. 

KKNN not only enhances computational performance but also ensures visually interpretable layouts. This hybrid 
approach offers a pathway for future research in graph visualization, where combining deep learning techniques 

with classical algorithms may open new possibilities for handling complex, large-scale graphs in a visually 

coherent and computationally efficient manner.  
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1. Introduction 

1.1. Motivation 

A network (or a graph) is a fundamental 

mathematical model that represents relationships 

between pairs of objects (nodes) connected by edges. 

Social, biological, information, transportation, and 

communication networks are the subjects of investigation 

across a wide range of scientific and engineering fields. 

Tackling data analysis challenges such as protein folding 

[1], information extraction [2], climate change [3], and 

COVID-19 forecasting [4, 5] and understanding [6] – 

requires the use of all modern algorithmic tools and 

machine learning techniques, including graph-theoretical 

methods. One key advantage of networks is their ability 

to be visualized. For instance, in data analysis, 

visualization transforms the data, given by a network, 

into an interpretable and insightful representation, 

enabling data analysts to leverage a powerful tool – 

namely, their own eyes.  

The primary benefits of visual network 

representation include: 

1. Understanding complex relationships, such as 

recognizing hidden patterns, detecting outliers, and 

revealing clusters, communities, and symmetries. 

2. Facilitating interactive exploration, including 

exploratory data analysis, hypothesis generation, and 

experiment planning. 

3. Simplifying massive and complicated datasets 

through dimensionality reduction, as most visualizations 

map network nodes to 2- or 3-dimensional space from a 

high-dimensional space. 

To get the "drawing" of the network, layout 

algorithms compute the coordinates of the nodes, i.e., put 

the nodes into some points on the plane (2D layout) or in 

space (3D layout). The common opinion is that there is 

no best way to draw a graph, as different layouts can 

highlight different graph features. However, there are 

state-of-the-art layout algorithms – force-directed layouts 

or FDL – based on some physical interpretations of the 

network, where nodes are modeled as particles with 

attractive and repulsive forces acting between them or as 

elastic rings connected by springs along the edges. 

The crucial aspects of layout algorithms are the 

computation time and the quality of the resulting 

drawing. High-quality layout criteria [7] include 

minimizing edge crossings; maintaining appropriate 
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distances between nodes (short for adjacent nodes and 

longer for non-adjacent ones), ensuring uniform node 

distribution, preserving inherent symmetries, and others. 

Algorithms based on physical network 

interpretations can satisfy the aesthetic quality criteria by 

minimizing the total energy or the total sum of forces of 

the physical system. This makes FDL algorithms a 

standard tool for drawing graphs with up to a few 

thousand nodes (usually up to 1,000 nodes). For larger 

graphs (with more than 10,000 nodes), edge-related 

aesthetic criteria become less important due to the 

reduced visibility of individual edges. Instead, the correct 

placement of node communities and large topological 

features (like cycles or flares) becomes more significant. 

However, FDL algorithms are often time-consuming, 

requiring various computational improvement 

techniques such as predefined initial positions, multi-

level approaches, or optimization tricks. Deep learning, 

specifically neural networks (NN), demonstrates strong 

potential for computing large graph layouts due to its 

ability to learn, capture, and leverage the internal 

structure of graphs. This paper contributes to the use of 

NNs for layout computation. 

 

1.2. State of the Art 

Originating from [8], the problem of graph drawing 

has led to the formation of a substantial graph drawing 

community, with numerous papers devoted to the subject 

and an annual Graph Drawing and Network Visualization 

symposium [9]. The state-of-the-art in graph layout 

algorithms is presented in [10, 11]. 

Note that the problem we address involves general 

undirected connected graphs. For specific graph types 

(such as hierarchical trees, labeled diagrams, or electrical 

circuits), there are specialized methods (see e.g. [11]). 

Additionally, the layout of a disconnected graph is 

typically obtained by combining, in a compact manner, 

the layouts of its connected components (see e.g. [12]). 

Force-directed layout (FDL) algorithms, based on 

physical interpretations of graphs, are the most popular 

for general graph drawing. Two fundamental physical 

models within this category are the Kamada-Kawai (KK) 

spring model, considered in [13], and the force-directed 

placement (FDP) model, which originated from the 

Fruchterman and Reingold particle model, presented in 

[14]. The KK model treats the graph as a dynamically 

balanced system of rings (representing nodes) connected 

by springs of a specified length. Balancing the system 

minimizes its total energy, resulting in the optimal layout. 

The FDP model represents the network nodes as particles 

exerting attractive and repulsive forces on one another. 

The total energy of the physical system representing the 

network can be defined in various ways, leading to 

multiple FDL modifications. However, all these 

algorithms aim to compute the optimal layout by 

minimizing the total energy (or total force) of the system, 

via gradient descent or other optimization algorithms, 

often with techniques like Barnes-Hut optimization [15], 

simulated annealing [16, §10.9], or stress majorization 

[17]. One of the recent approaches to FDL optimization, 

based on the latent space model, is considered in [18]. 

Graph drawing with FDL is supported across 

various software tools designed for different tasks, 

including Gephi [19], igraph (in R) [20], GraphViz [21],  

NetworkX (in Python) [22], Cytoscape [23], and others. 

The successful application of neural networks to 

graph layouts initially stemmed from node embeddings –

algorithms designed to represent individual nodes within 

a graph as unique vectors in a vector space. These 

embeddings effectively capture both the relational and 

structural properties of the graph. Prominent node 

embedding algorithms include DeepWalk, Node2Vec, 

GraphSAGE, and Verse, among others [24]. Typically, 

these methods learn node representations from random 

walks (considered as the node’s "context") or by 

aggregating information from a node's local 

neighborhood.  

Node embeddings can be used to solve a variety of 

machine learning tasks, as well as to construct graph 

layouts. Efficient processing of networks with millions of 

nodes, leveraging node embeddings, is implemented in  

LargeVis and GraphVite approaches [25, 26].  To 

generate a graph layout, node embeddings can be 

combined with classical dimensionality reduction 

techniques (such as PCA, MDS, UMAP, or t-SNE) for 

high-dimensional embeddings, or integrated with FDL 

algorithms for low-dimensional ones [27]. 

Node embeddings were not designed exactly for 

visualization purposes. The direct NN application started 

in the late 1990s in [28], but progress stalled until Graph 

Neural Networks (GNNs) enabled better handling of 

graph data and layout criteria. 

Recent research explores the use of GNNs to 

generate aesthetically pleasing layouts. In [29], a GNN is 

used to produce layouts by balancing multiple pre-

specified aesthetic criteria. In [30], Graph Neural 

Drawers are introduced – machines that can leverage 

different GNNs and loss functions (including those based 

on aesthetic criteria) to construct efficient layouts. The 

DeepFD algorithm presented in [31] is based on a graph-

LSTM. It takes the FDL as the prototype to design the 

loss function and is trained on a dataset split by the 

Louvain community detection algorithm.  

Another approach is discussed in [32], where a 

graph layout is reparameterized using a GNN to optimize 

the steps of an FDL algorithm on this transformed layout. 

The reviewed literature highlights that node 

embedding algorithms, such as DeepWalk, Node2Vec, 

provide scalable ways of encoding structural and 
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relational properties of nodes and inspiring neural layout 

algorithms like NeuLay-2, which introduced GNN-based 

reparameterization of FDL energy optimization, 

achieving significant speedups compared to classical 

FDL methods. This algorithm serves as a conceptual and 

technical foundation for extending neural techniques to 

other graph layout models. However, these advances 

have not yet been systematically applied to the Kamada–

Kawai model, which is particularly well-suited for 

capturing graph symmetries and flexible edge-length 

requirements. This gap motivates our research, which 

aims to extend neural reparameterization methods to the 

KK algorithm, resulting in the hybrid KKNN approach. 

  

1.3. Objectives and the Approach 

The objective of this study is to explore and analyze 

the Kamada-Kawai graph layout technique based on 

neural network reparametrization (KKNN) to improve 

the visualization and structural organization of graphs. 

We extend the NeuLay-2 approach proposed by A.-L. 

Barabási and others in [32] to the KK algorithm. The 

study aims to implement the KKNN algorithm, evaluate 

its performance compared to the NeuLay-2 and KK, 

assess its efficiency and readability, and propose 

enhancements for better graphical representation. Our 

motivation to explore the KK layout algorithm is 

twofold:  

­ The KK algorithm allows for adjustment of edge 

lengths enabling layouts with custom edge lengths, rather 

than the near-uniform lengths typically produced by 

other force-directed layout (FDL) algorithms.  

­ Experiments with NeuLay-2 have mostly been 

conducted on random graph models. However, it is 

important to evaluate if the layout algorithms accurately 

reflect the structure of graphs with various types of 

symmetries.  

We use such quantitative metrics for layout 

assessment as: average runtime of the layout algorithm as 

well as ratios of running times for comparison; final 

minimized energy of the system (loss function value) to 

compare NN-parametrized and non-parametrized 

versions of the KK algorithm; coefficient of variation for 

edge length distribution to confirm uniformity of the 

distribution; ratio of angles between adjacent edges close 

to the expected theoretical values, quantifying how well 

structural symmetries are retained. 

This paper is organized as follows. Section 2 outlines 

the problem, reviews the FDL and KK algorithms, and 

introduces the idea of GNN reparametrization. Section 3 

presents the experiment results and discusses them. 

Section 4 presents the case study of cubic lattice layouts. 

Section 5 provides a summary and a description of 

further research steps. 

 

2. Methods of Research 
 

2.1. Framework for GNN-based  

Layout Method 

In this study, we propose a hybrid algorithm, 

KKNN, which combines the Kamada-Kawai graph 

layout technique with neural network reparameterization. 

Our method is based on the idea of Barabási and others 

[32], which combines one of the FDL algorithms with 

GNN reparameterization. In FDL algorithms, the nodes 

of the graph are modeled as particles or bodies in a 

system where forces are applied. Attractive forces are 

acting between adjacent nodes, while all pairs of nodes 

repel each other. The energy of the system is given by  
 

 FDL a rE E E   (1) 

 

with the energy of attractive forces given by 
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where xi represent the positions of graph nodes and A  is 

the adjacency matrix of the graph. The repulsive energy 

rE in (1) is usually chosen as a rapidly decreasing 

function, such as in the FDP algorithm from [14]: 
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where 0r  is a constant parameter that regulates the 

distance of the action of repulsive forces.  

The main technique used in [32] is to express the 

positions of the nodes as the output of a GNN. The 

authors introduce the NeuLay-2 algorithm, which starts 

with a high-dimensional embedding and passes it 

through a Graph Convolutional Network (GCN). 

Although GNN involves many more parameters than 

FDL, it converges faster. The architecture of GNN is 

presented in  

Fig. 1. 

NeuLay-2 uses two GCN layers of the form  
 

 G(X) (f (A)XW)   (5) 

 

where A is the adjacency matrix of a graph, f is the 
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aggregation function, ReLU   is the activation 

function, and W is a matrix of trainable parameters. The 

aggregation function f is given by a symmetrized degree-

normalized adjacency matrix  
 

 1/2 1/2f D A D   (6) 

 

where A A I   and D  is the degree matrix of A  with 

ii ijj
D A . 

 

 
 

Fig. 1. NeyLay-2 architecture (represented from [32]) 

Initially, Z=ZN×m is the embedding (usually 

random) of N points, corresponding to graph nodes, into 

m-dimensional space. The first layer takes Z as input and 

produces the output   1 1G σ f A ZW , which is then 

passed to the second layer of GNN, producing the output 

  2 1 2G σ f A G W . Here, matrices  1m h
1W


  and 

1 2h h
2W


  are the weight matrices of the first and 

second GCN layers.  

Finally, the high-dimensional embedding Z, along 

with the two-layer GCN outputs G1 and G2 are combined 

as
 1 2N m h h

3 1 2G Z G G  
  

      and passed to a 

fully connected (FC) layer with a linear activation 

function to project down to the d-dimensional layout 

positions 
N dX  . The matrix W=[WZ|W1|W2] from 

 1 2m h h d
  

  
is the weight matrix of the FC layer. 

The output of NeuLay-2, namely  

 

3 W 1 1 2 2X G b Z Z G ,W W G W b       (7) 

 

is then used as the input of the FDL algorithm. Instead of 

optimizing X directly, the NeuLay-2 parameters 

{Z,W,b} are optimized. 

 

2.2. KKNN Algorithm Description 

In this research, we consider the Kamada-Kawai 

graph model, which models node-edge connections as 

rings connected by springs, instead of FDL, based on an 

attractive-repulsive forces system. The length of the 

spring between two nodes equals the graph-theoretic 

distance between them, i.e., the length of the shortest 

path. The total energy to be minimized is given by 
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where ix  is the position of the ring corresponding to the 

node iv , ijk  is the constant strength of the spring between 

iv  and jv , the length ijl  of the spring between iv  and 

jv  corresponds to the desirable distance between them in 

the drawing and is proportional to ijd  – the graph-theoretic 

distance between nodes iv  and jv   in the graph.  

Consider that the attractive forces energy term in 

FDL-energy can be rewritten as  
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where L D A   is the Laplacian of the graph with the 

degree matrix D  and adjacency matrix A . While the 

KK-energy from (8) can be transformed as  
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where the first term 

 i j

2
ij ij

v , v

k l    is a constant for the 

graph, independent of the layout, and the last term can be 

presented as  
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where 
kL  is a weighted Laplacian with the ij-element 

given by  
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Comparing energies to minimize in FDL and KK 

algorithms, we conclude that they have similar quadratic 

parts, containing (weighted) graph Laplacian, but KK-

energy has another linear term, while the additional 

(repulsive) term of FDL-energy is not linear. 

The hybrid approach KKNN is based on the same 

GNN reparameterization as in (5) and (6), but computes 

the layout positions using the KK model defined in (8), 
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optimized via gradient descent. The constant strength of 

the spring between iv  and jv  is taken as  
2

ij ijk 1/ d , as 

it was suggested in [17] for better drawings. Also, we 

consider both cases of unity edges ( ij ijl d 1   for 

adjacent iv  and jv non-adjacent) and weighted edges 

with the ijl taken as multiples of ijd . Note that due to the 

parameter ijl  adjustments in (8) the KK algorithm is 

capable to generate layouts with edges of the required 

lengths.  

The steps of layout computation are as follows: 

1. Nodes embedding initialization. We use the 

initialization of node positions in d -dimensional space (

d 2  for planar layouts and d 3  for spatial) within the 

Kaiming uniform distribution. 

2. GNN-based reparametrization as in (7). 

3. KK energy model application by considering the 

loss function as KK-energy (8). 

4. Minimizing the KK energy function via gradient 

descent with respect to GNN trainable parameters. 

5. Evaluation and visualization. 

 

3. Results and Discussion 

In this section, we compare the performance of the 

KKNN algorithm with the original KK layout algorithm 

and NeuLay-2, both by speed and by performance.  

The implementation of NeuLay-2 was taken from 

[33]. The KK algorithm was implemented by the authors 

based on [13] to ensure a fair comparison. Experiments 

were performed on hardware equipped with a CPU (Intel 

Core i5-9400F, 8GB of RAM). Due to hardware 

limitations, the tests were restricted to graphs with up to 

3300 nodes and 7000 edges. For the same reason, we 

report only relative comparisons of running times, 

omitting absolute values in seconds, since GPU 

acceleration could potentially speed up the layout 

calculations. The absolute values can be imagined by the 

following: the running time ranged from 1.5–220 s for 

KKNN and 1.9–840 s for NeuLay-2 (for 100–3300 

nodes). 

To evaluate the algorithms’ running times, we used 

several graph generation models, including both random 

and highly symmetric graphs. The random models 

include the Barabási–Albert preferential attachment 

model [34] (denoted on figures as “ScaleFree”), Watts–

Strogatz small-world graphs [35] (denoted as 

“SmallWorld” ), Random Geometric Graphs [36] 

(denoted as “Geometric”), and Internet Autonomous 

System networks [37] (denoted as INet(Internet)). By 

varying parameters, we generate families of random 

graphs with node sets ranging from 100 to 3000 nodes 

and diverse topological properties. The symmetric graphs 

(denoted on figures as “Symmetric”) include planar 

quadratic and hexagonal lattices, balanced and binary 

trees, as well as cubic and pyramidal lattices, and a 

quadratic lattice folded into a tube, which is best 

represented using a 3D layout. Overall, more than 25 

graphs were included in the experiment. The realizations 

of these models are obtained from NetworkX [22] or 

created directly by the authors (pyramid, hexagonal 

lattices, tube graphs) and can be referenced in [38]. 

The layouts of symmetric graphs produced by 

KKNN are demonstrated in  

Fig. 2: a) Tube with 1000 nodes and 1980 edges; b) 

HGrid (hexagonal grid) with 930 nodes and 1350 edges; 

с) BalT (balanced tree) with 3280 nodes and 3279 edges; 

d) WeightedCone10 with 220 nodes and 990 edges. The 

edges of the last graph have decreasing lengths from top 

to bottom.  

In [32], it is stated that NeuLay-2 offers a 10- to 

100-fold improvement in speed compared to FDL. To 

assess the difference between KKNN and NeuLay-2 

speeds, we measured the average running time of both 

algorithms and evaluated the ratio of KKNN’s average 

running time (timeKKNN) to that of NeuLay-2 

(timeNeuLay2).  

 

 

a) b)  

c) d)  

 

Fig. 2. Layouts in 3D by KKNN obtained for  

a) Tube; b) HGrid; c) BalT(3,7); d)WeightedCone10 

 

The experiments demonstrate that the KKNN 

algorithm calculates layout faster than NeuLay-2, with a 

running time ratio ranging from 0.2 to 0.9 and a mean 

ratio value of 0.53. This means that KKNN computes the 

layout on average twice as fast. The relative running 

times for some of the experimental graphs are shown in 

Figure 3a. The points, labeled by graphs with different 

shapes, correspond to various graph types. The ratio of 
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KKNN execution time to Neulay-2 execution time is 

plotted along the ordinate axis. As can be seen, the ratio 

is less than 1 for all considered graphs. It may also be 

noted that speedup increases with the number of nodes. 

For graphs with more than 1000 nodes, KKNN to 

NeuLay-2 average improvement becomes 0.45. The 

other observation is that average ratios in geometric and 

symmetric graphs are smaller than in ScaleFree, INet, 

and SmallWorld models: 0.49 vis 0.57. 

As shown above, FDL and KK energies have 

similar quadratic terms (see (9), (11)), but KK energy has 

an additional linear term, while FDL energy has a 

nonlinear one (see (3), (10)). This may cause faster 

processing of KK energy by the neural network.  

The reasons for the speed-up of NN algorithms 

compared to non-NN in calculating layouts for different 

random graph models are discussed for NeuLay in [32]. 

The authors analytically demonstrated that outlier 

eigenvalues of the adjacency matrix accelerate layout 

calculation. The same reasoning applies to the KKNN.  

To compare KKNN with the original KK, we 

investigate the behavior of the loss (energy) function 

depending on the number of iterations of the KK 

algorithm. The experiment demonstrates that KKNN 

converges to the energy minimum faster than KK, and 

the minimum achieved is deeper than that of KK. For all 

graphs, the final energy in the case of the KKNN layout 

was lower, on average by 10%. For all graphs with more 

than 300 nodes (except the Pyramid lattice with 680 

nodes), KKNN converged 1.2 to 7 times faster, on 

average by 3.4 times. An example plot of the energy 

descent process is demonstrated in Section 4. 

The running time comparison of KK and KKNN 

was made in the same manner as for KKNN and Neulay-

2. It indicates that for graphs with a small or medium 

number of nodes, the original KK algorithm has a shorter 

running time. However, for large graphs, neural network 

reparametrization in KKNN speeds up the layout 

calculation. Running time ratios for graphs with more 

than 500 nodes are all under 1 and have a mean value of 

0.45. The relative running time for some of the 

experimental graphs can be seen in Figure 3b). The 

graphs of type INet show consistent KKNN improvement 

with up to 10 times faster than KK. 

Next, we investigate the symmetry performance of 

the KKNN and NeuLay-2 algorithms. We consider graphs 

with different symmetries: square, cubic, hexagonal, and 

tetrahedral pyramid lattices, as well as regular polyhedra, 

and examine the distributions of edge lengths and angles 

between edges. The coefficient of variation CV





, 

where   is a mean value and   is a standard deviation 

for edge length distribution (ELCV) is used to measure the 

uniformity of the distribution. Also, we calculate the ratio 

of angles between adjacent edges close to the expected 

theoretical values (AR). The expected theoretical values 

for square and cubic lattices are multiples of 
090 , for 

tetrahedral pyramid and hexagonal lattices – the multiples 

of 
060 , for regular polyhedra 

0360 (n 2)

n

 
, where n is 

the number of face nodes. The tolerance was taken as 05 . 

Table 1 presents the results of measurements for some 

graphs: the cubical lattice (Cube06) with 2744 nodes, the 

square grid (Grid) with 900 nodes, the hexagonal grid 

(HGrid) with 930 nodes, which can be seen in Figure 2, b), 

and the tetrahedral pyramid (Pyramid) with 680 nodes. 

Overall, more than 10 graphs with up to 3000 nodes 

and up to 7000 edges were tested.  The results demonstrate 

that KKNN produces layouts with almost equal edges 

(ELCV is close to 0 for all experimental graphs), while the 

lengths of edges, generated by Neulay-2, vary a lot  

(0.2 < ELCV < 0.35). The angle distribution in the KKNN 

case is close to expected (AR is close to 1), but for Neulay-

2, angles are noisy (0.18 < AR < 0.4). 

a)  b) 

Fig. 3. KKNN compared with a) NeuLay-2 and b) KK by running time.  

The ratios of timeKKNN to timeNeuLay2 and timeKK are pointed out.  

The points are labeled by graphs and marked by different types 
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Table 1 

Edge length uniformity (ELCV) and angles preservation 

(AR) for NeuLay-2 and KKNN 

Graph 
ELCV AR 

NeyLay KKNN Neylay KKNN 

Cube14 0.35 0.03 0.10 0.94 

Grid 0.23 0.02 0.14 0.96 

HGrid 0.26 0.01 0.30 0.96 

Pyramid 0.21 0.03 0.40 0.99 
 

Example calculations of theoretical expected angle values, 

as well as histograms of edge length and angle 

distributions are demonstrated in Section 4.  

The effectiveness of KKNN in symmetry 

preservation may be caused by the fact that many 

distances between nodes in well-represented lattice-like 

layouts are measured along straight lines and are, in fact, 

equal to the graph-theoretic distances between these 

nodes, as assumed in the KK algorithm. 
 

 4. Case study 
 

Regular network and lattice layout computation is 

an important tool, e.g., for chemical compound or crystal 

lattice simulation tools (see [39]). In this section, we 

discuss in detail the layout of cubic lattices.  

An n -cubic lattice (Cube_n) may be defined as a 

graph whose nodes are integer points (i, j,k) with 

0 i, j,k n   and edges connecting each node to its 

immediate neighbor in one coordinate direction (i.e., a 

node (i, j,k)  is connected to the nodes obtained by 

increasing exactly one of its coordinates by 1). An n -

cubic lattice has 
3n nodes and 23n (n 1)  edges.  

A canonical symmetric 3D layout of a cube lattice 

may place the nodes into integer points (i, j,k) and draw 

edges along grid lines. Taking into account the boundary 

“faces” and “edges” of a cube lattice, one can 

immediately calculate the total number of angles in the 

canonical layout as 212n (n 1) for 090 and as 23n(n 1)

for 0180 . The numbers of nodes, edges, right and straight 

angles for cubic lattices are given in Table 2.  

We calculate the layouts of Cube_n (for 

n 6,8,10,12,14 ) and investigate the execution time, 

energy descent, and symmetry preservation, as well as 

give a visualization of layouts to compare the layout with 

a canonical one. 

The results of the KKNN, the NeuLay-2, and the 

KK layouts comparison for cubic lattice graphs are as 

follows. The KKNN converges faster to the energy 

minimum compared to KK (on average, iteration 200 vis 

450). KKNN achieves the lower minimum (10% lower 

on average) on cubic lattices. The example energy 

descent curves for Cube10 are shown in Figure 4.  
 

Table 2 

Characteristics of n -cubic lattices 

n  

Nodes 

number 

Edges 

number 

Number 

of 090

angles 

Number 

of 0180

angles 

6 216 540 3024 630 

8 512 1344 6912 1512 

10 1000 2700 13200 2970 

12 1728 4752 22464 5148 

14 2744 7644 35280 8190 

 

 
 

Fig. 4. KKNN compared with KK by energy descent 
 

 The KKNN to Neulay-2 improvement in running 

time is on average 70%. The length uniformity ELCV is 

0.03 on average compared to 0.26 for NeuLay-2, and the 

expected angles ratio AR is 0.98 on average compared to 

0.15 for NeuLay-2. The visual comparison of NeyLay-2 

and KKNN layout quality, as well as edge length and angle 

distributions, can be done in Figure 5.  

The results for cubic lattices confirm those obtained 

for other graphs. 

 

a) b) c) d) 

Fig.5. Symmetry performing by KKNN and NeuLay-2 for Cube10: a) KKNN layout; b) edge length distribution; 

c) angles between edges distribution; d) NeuLay-2 layout 
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5. Conclusions 
 

The main contribution of this research lies in the 

proposal, implementation, and assessment of the KKNN 

algorithm – a hybrid approach for graph layout 

calculation. The basis of the KKNN is the previously 

known NeuLay-2 algorithm, which was constructed to 

accelerate FDL algorithms. 

Our results demonstrate that KKNN improves the 

efficiency of the traditional KK algorithm by reducing 

the time required to reach the energy minimum and 

achieving a lower overall energy state. Compared to 

NeuLay-2, KKNN performs better in terms of speed and 

the preservation of graph symmetries, especially for 

relatively large and complex networks. The KKNN can 

be used for calculating the layout of medium-sized 

graphs (up to 10,000 nodes), especially those including 

symmetrical structures (grids, regular networks, graphs 

for chemical compounds, topological models of the data), 

to reduce the layout algorithm's working time while 

preserving the aesthetic and readability. 

Future research directions are as follows: 

­ exploring the application of different neural 

network models and more advanced architectures for 

layout optimization;  

­ applying the mechanism of accelerating 

convergence by NN-reparametrization to other 

optimization problems on graphs (e.g., resource 

balancing, optimal layouts in electric circuits and chip 

designs, systems equilibrium positions determination); 

­ investigating the effectiveness of NN layout 

algorithms in presenting other graph properties, such as 

cluster separation, preserving of community structure, 

sparseness, or denseness visualization. 

Overall, this research contributes to the growing 

field of NN-based graph drawing and opens new avenues 

for efficient and accurate visualization of networks. 
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ПРО УКЛАДАННЯ ГРАФІВ АЛГОРИТМОМ КАМАДА-КАВАЇ  

ЗА ДОПОМОГОЮ ГРАФОВИХ НЕЙРОННИХ МЕРЕЖ 

О. С. Лінник, Л. Ю. Полякова, І. Т. Зарецька 

Традиційні алгоритми силоспрямованого укладання, такі як метод Камада-Каваї (КК), широко 

використовуються для візуалізації графів завдяки їхній здатності створювати естетично привабливі 

зображення. Однак ці алгоритми можуть бути обчислювально складними для великих графів. Предметом 

цього дослідження є укладання графів. Метою цього дослідження є застосування графових нейронних мереж 

(GNN) для вдосконалення алгоритму KK для укладання графів, результатом чого є новий гібрідний підхід під 

назвою KKNN. Основні завдання цього дослідження включають: 1. Розробку алгоритму укладання KKNN 

шляхом інтеграції репараметризації на основі GNN з підходу NeuLay-2 з алгоритмом KK. 2. Оцінку 

обчислювальної ефективності через порівняння продуктивності KKNN та оригінального алгоритму KK, а 

також NeuLay-2. 3. Оцінку якості укладання, зокрема, аналіз збереження симетрії, мінімізації енергії та 
естетичних критеріїв, таких як мінімізація перетину ребер і збалансоване розташування вершин. 4. Тестування 

на різних типах графів, включаючи як випадкові, так і структуровані (симетричні) графи. Використані такі 

методи, як репараметризація укладання на основі GNN з алгоритму NeuLay-2; алгоритм укладання графа 

Камади-Каваї та визначення показників продуктивності, включаючи час досягнення мінімуму, мінімізацію 

енергії та збереження симетрії. Наші експерименти демонструють наступні результати: 1. KKNN швидше 

збігається до мінімуму енергії та досягає меншого локального мінімуму енергії порівняно з вихідним KK. 2. 

KKNN не тільки скорочує час обчислень, але й краще зберігає симетрії графів порівняно з NeuLay-2. 

Висновки. Це дослідження підкреслює потенціал інтеграції нейронних мереж з традиційними алгоритмами 

укладання графів, пропонуючи перспективний підхід для ефективної та високоякісної візуалізації графів. 

KKNN не тільки покращує обчислювальну продуктивність, але й забезпечує візуально інтерпретовані 

укладання. Цей гібридний підхід відкриває можливості для майбутніх досліджень у сфері візуалізації графів, 

де поєднання методів глибокого навчання з класичними алгоритмами може створити нові перспективи для 
обробки складних, великомасштабних графів у візуально узгодженій й обчислювально ефективній формі. 

Ключові слова: аналіз мереж; граф; укладання графу; силоспрямоване укладання; нейронні мережі. 
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