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ON KAMADA-KAWAI GRAPH LAYOUT WITH GRAPH NEURAL NETWORKS

Traditional force-directed layout algorithms, such as the Kamada-Kawai (KK) method, are widely used for
graph visualization due to their ability to produce aesthetically pleasing layouts. However, these algorithms can
be computationally intensive for large graphs. The subject matter of the study is graph layout. The aim of this
research is to explore the application of graph neural networks (GNNSs) to improve the KK algorithm for graph
layouts, resulting in a novel hybrid approach named KKNN. The key tasks addressed in this study include: 1.
Development of the KKNN layout algorithm by integrating GNN-based reparameterization from the NeuLay-2
approach with the KK algorithm. 2. Evaluation of computational efficiency by comparing the computational
performance of KKNN with both the original KK algorithm and the NeuLay-2. 3. Assessment of layout quality,
particularly by examining the symmetry preservation, energy minimization, and aesthetic criteria such as
minimal edge crossings and balanced node placement. 4. Testing on various graph types, including both random
and highly structured (symmetric) graphs. The methods used are: GNN-based layout reparameterization,
inspired by NeulLay-2; Kamada-Kawai graph layout algorithm; performance metrics, including time-to-
convergence, energy minimization, and symmetry preservation. Our experiments demonstrate the following
results: 1. KKNN converges to the energy minimum faster and achieves a lower energy state compared to the
original KK. 2. KKNN not only reduces computational time but also better preserves graph symmetries compared
to NeuLay-2. Conclusions. This study underscores the potential of integrating neural networks with traditional
graph layout algorithms, presenting a promising approach for efficient and high-quality graph visualization.
KKNN not only enhances computational performance but also ensures visually interpretable layouts. This hybrid
approach offers a pathway for future research in graph visualization, where combining deep learning techniques
with classical algorithms may open new possibilities for handling complex, large-scale graphs in a visually
coherent and computationally efficient manner.
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recognizing hidden patterns, detecting outliers, and
revealing clusters, communities, and symmetries.

1. Introduction

1.1. Motivation

A network (or a graph) is a fundamental
mathematical model that represents relationships
between pairs of objects (nodes) connected by edges.
Social, biological, information, transportation, and
communication networks are the subjects of investigation
across a wide range of scientific and engineering fields.
Tackling data analysis challenges such as protein folding
[1], information extraction [2], climate change [3], and
COVID-19 forecasting [4, 5] and understanding [6] —
requires the use of all modern algorithmic tools and
machine learning techniques, including graph-theoretical
methods. One key advantage of networks is their ability
to be visualized. For instance, in data analysis,
visualization transforms the data, given by a network,
into an interpretable and insightful representation,
enabling data analysts to leverage a powerful tool —
namely, their own eyes.

The primary benefits
representation include:

1. Understanding complex relationships, such as

of visual network

2. Facilitating interactive exploration, including
exploratory data analysis, hypothesis generation, and
experiment planning.

3. Simplifying massive and complicated datasets
through dimensionality reduction, as most visualizations
map network nodes to 2- or 3-dimensional space from a
high-dimensional space.

To get the "drawing" of the network, layout
algorithms compute the coordinates of the nodes, i.e., put
the nodes into some points on the plane (2D layout) or in
space (3D layout). The common opinion is that there is
no best way to draw a graph, as different layouts can
highlight different graph features. However, there are
state-of-the-art layout algorithms — force-directed layouts
or FDL — based on some physical interpretations of the
network, where nodes are modeled as particles with
attractive and repulsive forces acting between them or as
elastic rings connected by springs along the edges.

The crucial aspects of layout algorithms are the
computation time and the quality of the resulting
drawing. High-quality layout criteria [7] include
minimizing edge crossings; maintaining appropriate
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distances between nodes (short for adjacent nodes and
longer for non-adjacent ones), ensuring uniform node
distribution, preserving inherent symmetries, and others.

Algorithms  based on  physical  network
interpretations can satisfy the aesthetic quality criteria by
minimizing the total energy or the total sum of forces of
the physical system. This makes FDL algorithms a
standard tool for drawing graphs with up to a few
thousand nodes (usually up to 1,000 nodes). For larger
graphs (with more than 10,000 nodes), edge-related
aesthetic criteria become less important due to the
reduced visibility of individual edges. Instead, the correct
placement of node communities and large topological
features (like cycles or flares) becomes more significant.
However, FDL algorithms are often time-consuming,
requiring  various  computational  improvement
techniques such as predefined initial positions, multi-
level approaches, or optimization tricks. Deep learning,
specifically neural networks (NN), demonstrates strong
potential for computing large graph layouts due to its
ability to learn, capture, and leverage the internal
structure of graphs. This paper contributes to the use of
NNs for layout computation.

1.2. State of the Art

Originating from [8], the problem of graph drawing
has led to the formation of a substantial graph drawing
community, with numerous papers devoted to the subject
and an annual Graph Drawing and Network Visualization
symposium [9]. The state-of-the-art in graph layout
algorithms is presented in [10, 11].

Note that the problem we address involves general
undirected connected graphs. For specific graph types
(such as hierarchical trees, labeled diagrams, or electrical
circuits), there are specialized methods (see e.g. [11]).
Additionally, the layout of a disconnected graph is
typically obtained by combining, in a compact manner,
the layouts of its connected components (see e.g. [12]).

Force-directed layout (FDL) algorithms, based on
physical interpretations of graphs, are the most popular
for general graph drawing. Two fundamental physical
models within this category are the Kamada-Kawai (KK)
spring model, considered in [13], and the force-directed
placement (FDP) model, which originated from the
Fruchterman and Reingold particle model, presented in
[14]. The KK model treats the graph as a dynamically
balanced system of rings (representing nodes) connected
by springs of a specified length. Balancing the system
minimizes its total energy, resulting in the optimal layout.
The FDP model represents the network nodes as particles
exerting attractive and repulsive forces on one another.
The total energy of the physical system representing the
network can be defined in various ways, leading to
multiple FDL modifications. However, all these

algorithms aim to compute the optimal layout by
minimizing the total energy (or total force) of the system,
via gradient descent or other optimization algorithms,
often with techniques like Barnes-Hut optimization [15],
simulated annealing [16, §10.9], or stress majorization
[17]. One of the recent approaches to FDL optimization,
based on the latent space model, is considered in [18].

Graph drawing with FDL is supported across
various software tools designed for different tasks,
including Gephi [19], igraph (in R) [20], GraphViz [21],
NetworkX (in Python) [22], Cytoscape [23], and others.

The successful application of neural networks to
graph layouts initially stemmed from node embeddings —
algorithms designed to represent individual nodes within
a graph as unique vectors in a vector space. These
embeddings effectively capture both the relational and
structural properties of the graph. Prominent node
embedding algorithms include DeepWalk, Node2Vec,
GraphSAGE, and Verse, among others [24]. Typically,
these methods learn node representations from random
walks (considered as the node’s "context™) or by
aggregating information from a node's local
neighborhood.

Node embeddings can be used to solve a variety of
machine learning tasks, as well as to construct graph
layouts. Efficient processing of networks with millions of
nodes, leveraging node embeddings, is implemented in
LargeVis and GraphVite approaches [25, 26]. To
generate a graph layout, node embeddings can be
combined with classical dimensionality reduction
techniques (such as PCA, MDS, UMAP, or t-SNE) for
high-dimensional embeddings, or integrated with FDL
algorithms for low-dimensional ones [27].

Node embeddings were not designed exactly for
visualization purposes. The direct NN application started
in the late 1990s in [28], but progress stalled until Graph
Neural Networks (GNNs) enabled better handling of
graph data and layout criteria.

Recent research explores the use of GNNs to
generate aesthetically pleasing layouts. In [29], a GNN is
used to produce layouts by balancing multiple pre-
specified aesthetic criteria. In [30], Graph Neural
Drawers are introduced — machines that can leverage
different GNNs and loss functions (including those based
on aesthetic criteria) to construct efficient layouts. The
DeepFD algorithm presented in [31] is based on a graph-
LSTM. It takes the FDL as the prototype to design the
loss function and is trained on a dataset split by the
Louvain community detection algorithm.

Another approach is discussed in [32], where a
graph layout is reparameterized using a GNN to optimize
the steps of an FDL algorithm on this transformed layout.

The reviewed literature highlights that node
embedding algorithms, such as DeepWalk, Node2Vec,
provide scalable ways of encoding structural and
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relational properties of nodes and inspiring neural layout
algorithms like NeuLay-2, which introduced GNN-based
reparameterization of FDL energy optimization,
achieving significant speedups compared to classical
FDL methods. This algorithm serves as a conceptual and
technical foundation for extending neural techniques to
other graph layout models. However, these advances
have not yet been systematically applied to the Kamada—
Kawai model, which is particularly well-suited for
capturing graph symmetries and flexible edge-length
requirements. This gap motivates our research, which
aims to extend neural reparameterization methods to the
KK algorithm, resulting in the hybrid KKNN approach.

1.3. Objectives and the Approach

The objective of this study is to explore and analyze
the Kamada-Kawai graph layout technique based on
neural network reparametrization (KKNN) to improve
the visualization and structural organization of graphs.
We extend the NeulLay-2 approach proposed by A.-L.
Barabasi and others in [32] to the KK algorithm. The
study aims to implement the KKNN algorithm, evaluate
its performance compared to the NeulLay-2 and KK,
assess its efficiency and readability, and propose
enhancements for better graphical representation. Our
motivation to explore the KK layout algorithm is
twofold:

- The KK algorithm allows for adjustment of edge
lengths enabling layouts with custom edge lengths, rather
than the near-uniform lengths typically produced by
other force-directed layout (FDL) algorithms.

- Experiments with NeulLay-2 have mostly been
conducted on random graph models. However, it is
important to evaluate if the layout algorithms accurately
reflect the structure of graphs with various types of
symmetries.

We use such quantitative metrics for layout
assessment as: average runtime of the layout algorithm as
well as ratios of running times for comparison; final
minimized energy of the system (loss function value) to
compare NN-parametrized and non-parametrized
versions of the KK algorithm; coefficient of variation for
edge length distribution to confirm uniformity of the
distribution; ratio of angles between adjacent edges close
to the expected theoretical values, quantifying how well
structural symmetries are retained.

This paper is organized as follows. Section 2 outlines
the problem, reviews the FDL and KK algorithms, and
introduces the idea of GNN reparametrization. Section 3
presents the experiment results and discusses them.
Section 4 presents the case study of cubic lattice layouts.
Section 5 provides a summary and a description of
further research steps.

2. Methods of Research

2.1. Framework for GNN-based
Layout Method

In this study, we propose a hybrid algorithm,
KKNN, which combines the Kamada-Kawai graph
layout technique with neural network reparameterization.
Our method is based on the idea of Barabasi and others
[32], which combines one of the FDL algorithms with
GNN reparameterization. In FDL algorithms, the nodes
of the graph are modeled as particles or bodies in a
system where forces are applied. Attractive forces are
acting between adjacent nodes, while all pairs of nodes

repel each other. The energy of the system is given by
ErpL =Ea +E; @

with the energy of attractive forces given by

Ea Z% z AIJ ||Xi —Xj||2, (2)
(vi,vj)

where xi represent the positions of graph nodes and A is
the adjacency matrix of the graph. The repulsive energy
E,in (1) is usually chosen as a rapidly decreasing

function, such as in the FDP algorithm from [14]:

E= Y o ©

(vi.vj) "Xi ‘XJ'”

or as considered in [32]:
(4)

where Iy is a constant parameter that regulates the

distance of the action of repulsive forces.

The main technique used in [32] is to express the
positions of the nodes as the output of a GNN. The
authors introduce the NeuLay-2 algorithm, which starts
with a high-dimensional embedding and passes it
through a Graph Convolutional Network (GCN).
Although GNN involves many more parameters than
FDL, it converges faster. The architecture of GNN is
presented in

Fig. 1.

NeulLay-2 uses two GCN layers of the form

G(X) = o(f(A)XW) ®)

where A is the adjacency matrix of a graph, f is the



104

Radioelectronic and Computer Systems, 2025, Ne 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

aggregation function, o=RelLU is the activation
function, and W is a matrix of trainable parameters. The
aggregation function f is given by a symmetrized degree-
normalized adjacency matrix

f=D12AD 1?2 (6)

where A=A+1 and D is the degree matrix of A with

d
@ GCN — P —Fc —
N

Layout

Fig. 1. NeyLay-2 architecture (represented from [32])

Initially, Z=Zn.m is the embedding (usually
random) of N points, corresponding to graph nodes, into
m-dimensional space. The first layer takes Z as input and

produces the output G; =o(f(A)ZW; ), which is then
passed to the second layer of GNN, producing the output
G, =o(f(A)G1W,). Here, matrices W, e R™M and

W, e R"*N2 are the weight matrices of the first and

second GCN layers.
Finally, the high-dimensional embedding Z, along
with the two-layer GCN outputs G; and G; are combined

asG3 =[ Z|G,|G, | e RN(MHH2) and passed to a

fully connected (FC) layer with a linear activation
function to project down to the d-dimensional layout

positions X e RN The matrix W=[Wz|W1|W>] from

R(MHMh2)xd o 4o \weight matrix of the FC layer.

The output of NeuLay-2, namely
X=G3W+b=ZWZ+G1VV1+62W2+b, (7)

is then used as the input of the FDL algorithm. Instead of
optimizing X directly, the NeulLay-2 parameters
{Z, W, b} are optimized.

2.2. KKNN Algorithm Description

In this research, we consider the Kamada-Kawai
graph model, which models node-edge connections as
rings connected by springs, instead of FDL, based on an
attractive-repulsive forces system. The length of the
spring between two nodes equals the graph-theoretic
distance between them, i.e., the length of the shortest

path. The total energy to be minimized is given by
2
Y kiffi-xi| =)@

where X; is the position of the ring corresponding to the
node v;, kj; is the constant strength of the spring between

Vi and vj, the length I;; of the spring between v; and

Vj

the drawing and is proportional to d;

corresponds to the deswable distance between them in
—the graph-theoretic
distance between nodes v; and v; in the graph.

Consider that the attractive forces energy term in
FDL-energy can be rewritten as

E, :%Tr[xTLx] )

where L=D—A is the Laplacian of the graph with the
degree matrix D and adjacency matrix A. While the
KK-energy from (8) can be transformed as

EKK‘% 2 kij' 2 ku'u"X' xj| +
v ) (10)
5 X kyxi-x
(V| Vi)

where the first term Z kijlﬁ is a constant for the
(vi, vj)

graph, independent of the layout, and the last term can be

presented as

Z k”"x. x| ——Tr[XTLkX}
(l i

1)

where L¥ is a weighted Laplacian with the ij-element
given by

—kij, 1#;

1k, i=]

i#t

(12)

Comparing energies to minimize in FDL and KK
algorithms, we conclude that they have similar quadratic
parts, containing (weighted) graph Laplacian, but KK-
energy has another linear term, while the additional
(repulsive) term of FDL-energy is not linear.

The hybrid approach KKNN is based on the same
GNN reparameterization as in (5) and (6), but computes
the layout positions using the KK model defined in (8),
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optimized via gradient descent. The constant strength of
2
ij »
it was suggested in [17] for better drawings. Also, we
consider both cases of unity edges (I;;=d;j=1 for

the spring between v; and v; istakenas kj =1/djj, as

adjacent v; and vjnon-adjacent) and weighted edges
with the [;; taken as multiples of d;;. Note that due to the
parameter l;; adjustments in (8) the KK algorithm is

capable to generate layouts with edges of the required
lengths.

The steps of layout computation are as follows:

1. Nodes embedding initialization. We use the
initialization of node positions in d -dimensional space (
d =2 for planar layouts and d =3 for spatial) within the
Kaiming uniform distribution.

2. GNN-based reparametrization as in (7).

3. KK energy model application by considering the
loss function as KK-energy (8).

4. Minimizing the KK energy function via gradient
descent with respect to GNN trainable parameters.

5. Evaluation and visualization.

3. Results and Discussion

In this section, we compare the performance of the
KKNN algorithm with the original KK layout algorithm
and NeuLay-2, both by speed and by performance.

The implementation of NeuLay-2 was taken from
[33]. The KK algorithm was implemented by the authors
based on [13] to ensure a fair comparison. Experiments
were performed on hardware equipped with a CPU (Intel
Core i5-9400F, 8GB of RAM). Due to hardware
limitations, the tests were restricted to graphs with up to
3300 nodes and 7000 edges. For the same reason, we
report only relative comparisons of running times,
omitting absolute values in seconds, since GPU
acceleration could potentially speed up the layout
calculations. The absolute values can be imagined by the
following: the running time ranged from 1.5-220 s for
KKNN and 1.9-840 s for NeulLay-2 (for 100-3300
nodes).

To evaluate the algorithms’ running times, we used
several graph generation models, including both random
and highly symmetric graphs. The random models
include the Barabasi—Albert preferential attachment
model [34] (denoted on figures as “ScaleFree”), Watts—
Strogatz small-world graphs [35] (denoted as
“SmallWorld” ), Random Geometric Graphs [36]
(denoted as “Geometric”), and Internet Autonomous
System networks [37] (denoted as INet(Internet)). By
varying parameters, we generate families of random
graphs with node sets ranging from 100 to 3000 nodes
and diverse topological properties. The symmetric graphs

(denoted on figures as “Symmetric”) include planar
quadratic and hexagonal lattices, balanced and binary
trees, as well as cubic and pyramidal lattices, and a
quadratic lattice folded into a tube, which is best
represented using a 3D layout. Overall, more than 25
graphs were included in the experiment. The realizations
of these models are obtained from NetworkX [22] or
created directly by the authors (pyramid, hexagonal
lattices, tube graphs) and can be referenced in [38].

The layouts of symmetric graphs produced by
KKNN are demonstrated in

Fig. 2: a) Tube with 1000 nodes and 1980 edges; b)
HGrid (hexagonal grid) with 930 nodes and 1350 edges;
c) BalT (balanced tree) with 3280 nodes and 3279 edges;
d) WeightedConel0 with 220 nodes and 990 edges. The
edges of the last graph have decreasing lengths from top
to bottom.

In [32], it is stated that NeulLay-2 offers a 10- to
100-fold improvement in speed compared to FDL. To
assess the difference between KKNN and NeuLay-2
speeds, we measured the average running time of both
algorithms and evaluated the ratio of KKNN’s average
running time (timeKKNN) to that of NeulLay-2
(timeNeulLay?2).

Fig. 2. Layouts in 3D by KKNN obtained for
a) Tube; b) HGrid; c) BalT(3,7); d)WeightedConel0

The experiments demonstrate that the KKNN
algorithm calculates layout faster than NeulLay-2, with a
running time ratio ranging from 0.2 to 0.9 and a mean
ratio value of 0.53. This means that KKNN computes the
layout on average twice as fast. The relative running
times for some of the experimental graphs are shown in
Figure 3a. The points, labeled by graphs with different
shapes, correspond to various graph types. The ratio of
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KKNN execution time to Neulay-2 execution time is
plotted along the ordinate axis. As can be seen, the ratio
is less than 1 for all considered graphs. It may also be
noted that speedup increases with the number of nodes.
For graphs with more than 1000 nodes, KKNN to
NeulLay-2 average improvement becomes 0.45. The
other observation is that average ratios in geometric and
symmetric graphs are smaller than in ScaleFree, INet,
and SmallWorld models: 0.49 vis 0.57.

As shown above, FDL and KK energies have
similar quadratic terms (see (9), (11)), but KK energy has
an additional linear term, while FDL energy has a
nonlinear one (see (3), (10)). This may cause faster
processing of KK energy by the neural network.

The reasons for the speed-up of NN algorithms
compared to non-NN in calculating layouts for different
random graph models are discussed for NeuLay in [32].
The authors analytically demonstrated that outlier
eigenvalues of the adjacency matrix accelerate layout
calculation. The same reasoning applies to the KKNN.

To compare KKNN with the original KK, we
investigate the behavior of the loss (energy) function
depending on the number of iterations of the KK
algorithm. The experiment demonstrates that KKNN
converges to the energy minimum faster than KK, and
the minimum achieved is deeper than that of KK. For all
graphs, the final energy in the case of the KKNN layout
was lower, on average by 10%. For all graphs with more
than 300 nodes (except the Pyramid lattice with 680
nodes), KKNN converged 1.2 to 7 times faster, on
average by 3.4 times. An example plot of the energy
descent process is demonstrated in Section 4.

The running time comparison of KK and KKNN
was made in the same manner as for KKNN and Neulay-
2. It indicates that for graphs with a small or medium
number of nodes, the original KK algorithm has a shorter
running time. However, for large graphs, neural network
reparametrization in KKNN speeds up the layout

10 T Threshold =1
’ .Cub65 ¢ SmallWorld
~ Internet
E‘O.B B*AlOO * ScaleFree
2 e Pyramid 4 Geometric
2 RGG500 . e Symmetric
£0°® 8as00  ®rube 00 Moo m 13000
s % ube 12500
= .
0.4/ WS5004 .HGrld gk
£ 4o 1000
= ide A
02 Gri BalT
: *DGM
00% 500 1000 1500 2000 2500 3000
Number of nodes
a)

calculation. Running time ratios for graphs with more
than 500 nodes are all under 1 and have a mean value of
0.45. The relative running time for some of the
experimental graphs can be seen in Figure 3b). The
graphs of type INet show consistent KKNN improvement
with up to 10 times faster than KK.

Next, we investigate the symmetry performance of
the KKNN and NeuLay-2 algorithms. We consider graphs
with different symmetries: square, cubic, hexagonal, and
tetrahedral pyramid lattices, as well as regular polyhedra,
and examine the distributions of edge lengths and angles

between edges. The coefficient of variation cv=2,
n

where p is a mean value and o is a standard deviation

for edge length distribution (ELCV) is used to measure the
uniformity of the distribution. Also, we calculate the ratio
of angles between adjacent edges close to the expected
theoretical values (AR). The expected theoretical values

for square and cubic lattices are multiples of 900, for
tetrahedral pyramid and hexagonal lattices —the multiples

0 [—
360_(”2)’ where nis
n

of 600, for regular polyhedra
the number of face nodes. The tolerance was taken as 5° .
Table 1 presents the results of measurements for some
graphs: the cubical lattice (Cube06) with 2744 nodes, the
square grid (Grid) with 900 nodes, the hexagonal grid
(HGrid) with 930 nodes, which can be seen in Figure 2, b),
and the tetrahedral pyramid (Pyramid) with 680 nodes.

Overall, more than 10 graphs with up to 3000 nodes
and up to 7000 edges were tested. The results demonstrate
that KKNN produces layouts with almost equal edges
(ELCV is close to O for all experimental graphs), while the
lengths of edges, generated by Neulay-2, vary a lot
(0.2 <ELCV <0.35). The angle distribution in the KKNN
case is close to expected (AR is close to 1), but for Neulay-
2, angles are noisy (0.18 < AR < 0.4).

24/ ®Cubes Threshold = 1
Lol ews100 4 Smallworld
Internet
4 ScaleFri
T 147 *BA100 * Gcae f?
P S WSSO0 — s
s e Symmetric
0.4
¥ Pyramide ®Tube
£03
0.2 ®HGrid
RGG50D 11000 g 11500 ABinT 13000 ga|T
0.1] BAS00*  @chelp . | T 4
0 500 1000 1500 2000 2500 3000
Number of nodes
b)

Fig. 3. KKNN compared with a) NeuLay-2 and b) KK by running time.
The ratios of timeKKNN to timeNeuLay?2 and timeKK are pointed out.
The points are labeled by graphs and marked by different types
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Table 1
Edge length uniformity (ELCV) and angles preservation
(AR) for NeuLay-2 and KKNN

energy descent, and symmetry preservation, as well as
give a visualization of layouts to compare the layout with
a canonical one.

The results of the KKNN, the NeuLay-2, and the
KK layouts comparison for cubic lattice graphs are as

Graph ELCV AR
NeyLay | KKNN | Neylay | KKNN
Cubel4 035 | 003 | 010 | 0.94
Grid 023 | 002 | 014 | 0.96
HGrid 026 | 001 | 030 | 0.96
Pyramid 021 | 003 | 040 | 0.99

Example calculations of theoretical expected angle values,
as well as histograms of edge length and angle
distributions are demonstrated in Section 4.

The effectiveness of KKNN in symmetry
preservation may be caused by the fact that many
distances between nodes in well-represented lattice-like
layouts are measured along straight lines and are, in fact,
equal to the graph-theoretic distances between these
nodes, as assumed in the KK algorithm.

4. Case study

Regular network and lattice layout computation is
an important tool, e.g., for chemical compound or crystal
lattice simulation tools (see [39]). In this section, we
discuss in detail the layout of cubic lattices.

An n -cubic lattice (Cube_n) may be defined as a
graph whose nodes are integer points (i, j, k) with

0<i,j,k<n and edges connecting each node to its
immediate neighbor in one coordinate direction (i.e., a
node (i,j,k) is connected to the nodes obtained by
increasing exactly one of its coordinates by 1). An n -
cubic lattice has n®nodes and 3n?(n—-1) edges.

A canonical symmetric 3D layout of a cube lattice
may place the nodes into integer points (i, j, k) and draw
edges along grid lines. Taking into account the boundary

“faces” and “edges” of a cube lattice, one can
immediately calculate the total number of angles in the

canonical layout as 12n?(n +1) for 90% and as 3n(n? -1)

for 180° . The numbers of nodes, edges, right and straight
angles for cubic lattices are given in Table 2.

We calculate the layouts of Cube n (for
n=6,8,10,12,14) and investigate the execution time,

follows. The KKNN converges faster to the energy
minimum compared to KK (on average, iteration 200 vis
450). KKNN achieves the lower minimum (10% lower
on average) on cubic lattices. The example energy
descent curves for Cubel10 are shown in Figure 4.

S 40 Neulay
X35 mmm KKNN
430
225
220
°1s
210
Es
= 0 | —
0. 0.2 0.4 0.6 0.8
A8 Intervals
a) b)

Table 2
Characteristics of n -cubic lattices
Number Number
Nodes Edges of 90° of 180°
n | number number angles angles
6 216 540 3024 630
8 512 1344 6912 1512
10 1000 2700 13200 2970
12 1728 4752 22464 5148
14 2744 7644 35280 8190
12 —— KKNN
----- KK
a10 L
S - o—
X 8
Q
3
= 6
>
4
2 200 300 400 500 600 700 800
Iteration

Fig. 4. KKNN compared with KK by energy descent

The KKNN to Neulay-2 improvement in running
time is on average 70%. The length uniformity ELCV is
0.03 on average compared to 0.26 for NeuLay-2, and the
expected angles ratio AR is 0.98 on average compared to
0.15 for NeulLay-2. The visual comparison of NeyLay-2
and KKNN layout quality, as well as edge length and angle
distributions, can be done in Figure 5.

The results for cubic lattices confirm those obtained
for other graphs.

4
Neulay
mEE KKNN 5

L8]
KKNN (x107%)

-

I
90 120 150 1800
Intervals

0) d)

30 60

Fig.5. Symmetry performing by KKNN and Neulay-2 for Cubel0: a) KKNN layout; b) edge length distribution;
c) angles between edges distribution; d) NeuLay-2 layout
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5. Conclusions

The main contribution of this research lies in the
proposal, implementation, and assessment of the KKNN
algorithm — a hybrid approach for graph layout
calculation. The basis of the KKNN is the previously
known NeulLay-2 algorithm, which was constructed to
accelerate FDL algorithms.

Our results demonstrate that KKNN improves the
efficiency of the traditional KK algorithm by reducing
the time required to reach the energy minimum and
achieving a lower overall energy state. Compared to
NeulLay-2, KKNN performs better in terms of speed and
the preservation of graph symmetries, especially for
relatively large and complex networks. The KKNN can
be used for calculating the layout of medium-sized
graphs (up to 10,000 nodes), especially those including
symmetrical structures (grids, regular networks, graphs
for chemical compounds, topological models of the data),
to reduce the layout algorithm's working time while
preserving the aesthetic and readability.

Future research directions are as follows:

- exploring the application of different neural
network models and more advanced architectures for
layout optimization;

- applying the mechanism of accelerating
convergence by NN-reparametrization to other
optimization problems on graphs (e.g., resource

balancing, optimal layouts in electric circuits and chip
designs, systems equilibrium positions determination);

- investigating the effectiveness of NN layout
algorithms in presenting other graph properties, such as
cluster separation, preserving of community structure,
sparseness, or denseness visualization.

Overall, this research contributes to the growing
field of NN-based graph drawing and opens new avenues
for efficient and accurate visualization of networks.
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ITPO YKJIAJAHHS I'PA®IB AJITOPUTMOM KAMAJIA-KABAI
3A TOIIOMOT OIO I'PA®OBUX HEUPOHHUX MEPEX

0. C. Jlinnuk, JI. IO. Ilonaxoea, I. T. 3apeybka

TpaauuiiiHi ajaropuT™MH CHJIOCIIPIMOBAaHOTO YKIajaHHs, Taki sik Meron Kamana-Kasai (KK), mmpoko
BHUKOPHCTOBYIOThCS sl Bisyardizamii rpadiB 3aBOsKku iXHIM 31aTHOCTI CTBOPIOBATH €CTETHYHO IPHUBAOJIMBI
300paxkeHHs. OfiHAK 11l alrOPUTMU MOXYTh OYTH OOYKCIIOBAJIBLHO CKIaJHUMK Juisi Benukux rpadis. Ilpenverom
IIbOTO JIOCTIDKEHHSI € yKiIaaaHHs rpadis. MeToro 11b0ro TOCIiKEHHS € 3aCTOCYBaHHS rpadOBUX HEHPOHHHUX MEPExX
(GNN) nns Brockonanenns anropurmy KK niist ykinanauss rpagis, pe3ysbTaToM 4Oro € HOBUH TiOpiAHUA MiaXid i
Ha3Bor0 KKNN. OcHOBHi 3aBJaHHsl L[bOTO JOCTIDKEHHS BKIIOYaIOTh: 1. Po3pobOky anropurmy yxnamanas KKNN
uuIsixoM iHTerpauii penapamerpusanii Ha ocHoBi GNN 3 minxomy Neulay-2 3 amroputmom KK. 2. Ominky
obuucmoBalibHOI edektuBHOCTI Yepe3 nopiBHsaHHS npoayktuBHocti KKNN ta opurinansaoro anroputmy KK, a
takoxx NeulLay-2. 3. OmiHky sKOCTi yKJIaJaHHs, 30KpeMa, aHaJli3 30epeeHHs CUMeTpii, MiHiMi3alii eHeprii Ta
€CTEeTUYHUX KPUTEPiiB, TAKKX SIK MiHiMi3allisl iepeTrHy pebep i30aaHcoBaHe po3TairyBaHHs BepiinH. 4. TecTyBaHHs
Ha pI3HUX THNax rpadis, BKIIOYAIOYH SK BHUIAJIKOBI, TaK 1 CTPYKTypoBaHi (cumerpuyHi) rpadu. Bukopucrani taki
MeToaH, SIK penapamerpusanis yknaiaanas Ha ocHoBi GNN 3 anropurmy Neulay-2; anroput™ ykiaaaHus rpada
Kamanu-Kagai Ta BHM3HauY€HHS MIOKa3HHUKIB MTPOJYKTHBHOCTI, BKJIIOYAIOYN Yac JOCATHEHHS MIHIMyMY, MIiHIMi3allio
eHeprii Ta 30epexxeHHs1 cumerpii. Hanni excriepumenTu aeMoHCTpytoTh HactynHi pedyastatu: 1. KKNN mBumie
30iraeTbesi 10 MiHIMYMY €HEprii Ta J0ocsrae MEHILIOTO JIOKaJIbHOr0 MiHIMYMY eHeprii nmopiBHsHO 3 Buximaum KK. 2.
KKNN He TiibKM CKOpouye 4ac oO4YMCIieHb, ajne W Kpaiie 30epirae cumerpii rpadiB mopiBasHo 3 Neulay-2.
BucnoBku. Lle nociimkeHHs miAKpecIoe MOTeHIiaN IHTerpalii HeHPOHHUX MEPeX 3 TPAAUIIHHUMH alropuTMaMu
ykiaiaHHas rpadiB, OPONOHYIOUM MEPCIEKTUBHUEN MiAXia Juisi eeKTUBHOI Ta BHUCOKOSIKICHOI Bi3yamizawii rpadis.
KKNN He Tijgbku MOKpailye OOYMCIIIOBAIBHY HPOAYKTHBHICTh, aine i 3a0e3mnedye Bi3yaJbHO IHTEPIPETOBaHI
yknananas. [eit riOpuaHuii miaxia BiIKpUBaE MOXKIIMBOCTI JJIsl MaifOyTHIX JOCIimKeHs y chepi Bizyanisarii rpadis,
Jie TIO€THAHHS METOZIB ITIMOOKOr0 HAaBYAHHS 3 KJIACHYHUMHM aJTOPUTMAaMH MOXKE CTBOPUTH HOBI NEPCIIEKTUBH VIS
00pOOKH CKJIaTHHUX, BEIMKOMACIITAOHUX rpadiB y Bi3yallbHO Y3TODKEHIH i 004nCTOBANILHO eheKTHBHIH (opmi.

Koarwuosi ciioBa: aHani3 Mepesx; rpad; ykiaganus rpady; CHIOCHPSIMOBaHe YKIaJaHHs; HEHPOHHI Mepexi.
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