
Machine learning and intelligent systems

101

UDC 519.178+004.032.26 doi: 10.32620/reks.2025.3.07

Olena LINNYK, Lyudmyla POLYAKOVA, Iryna ZARETSKA

V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

ON KAMADA-KAWAI GRAPH LAYOUT WITH GRAPH NEURAL NETWORKS

Traditional force-directed layout algorithms, such as the Kamada-Kawai (KK) method, are widely used for

graph visualization due to their ability to produce aesthetically pleasing layouts. However, these algorithms can

be computationally intensive for large graphs. The subject matter of the study is graph layout. The aim of this

research is to explore the application of graph neural networks (GNNs) to improve the KK algorithm for graph

layouts, resulting in a novel hybrid approach named KKNN. The key tasks addressed in this study include: 1.

Development of the KKNN layout algorithm by integrating GNN-based reparameterization from the NeuLay-2

approach with the KK algorithm. 2. Evaluation of computational efficiency by comparing the computational
performance of KKNN with both the original KK algorithm and the NeuLay-2. 3. Assessment of layout quality,

particularly by examining the symmetry preservation, energy minimization, and aesthetic criteria such as

minimal edge crossings and balanced node placement. 4. Testing on various graph types, including both random

and highly structured (symmetric) graphs. The methods used are: GNN-based layout reparameterization,

inspired by NeuLay-2; Kamada-Kawai graph layout algorithm; performance metrics, including time-to-

convergence, energy minimization, and symmetry preservation. Our experiments demonstrate the following

results: 1. KKNN converges to the energy minimum faster and achieves a lower energy state compared to the

original KK. 2. KKNN not only reduces computational time but also better preserves graph symmetries compared

to NeuLay-2. Conclusions. This study underscores the potential of integrating neural networks with traditional

graph layout algorithms, presenting a promising approach for efficient and high-quality graph visualization.

KKNN not only enhances computational performance but also ensures visually interpretable layouts. This hybrid
approach offers a pathway for future research in graph visualization, where combining deep learning techniques

with classical algorithms may open new possibilities for handling complex, large-scale graphs in a visually

coherent and computationally efficient manner.

Keywords: network analysis; graph; layout; force-directed layout; neural networks.

1. Introduction

1.1. Motivation

A network (or a graph) is a fundamental

mathematical model that represents relationships

between pairs of objects (nodes) connected by edges.

Social, biological, information, transportation, and

communication networks are the subjects of investigation

across a wide range of scientific and engineering fields.

Tackling data analysis challenges such as protein folding

[1], information extraction [2], climate change [3], and

COVID-19 forecasting [4, 5] and understanding [6] –

requires the use of all modern algorithmic tools and

machine learning techniques, including graph-theoretical

methods. One key advantage of networks is their ability

to be visualized. For instance, in data analysis,

visualization transforms the data, given by a network,

into an interpretable and insightful representation,

enabling data analysts to leverage a powerful tool –

namely, their own eyes.

The primary benefits of visual network

representation include:

1. Understanding complex relationships, such as

recognizing hidden patterns, detecting outliers, and

revealing clusters, communities, and symmetries.

2. Facilitating interactive exploration, including

exploratory data analysis, hypothesis generation, and

experiment planning.

3. Simplifying massive and complicated datasets

through dimensionality reduction, as most visualizations

map network nodes to 2- or 3-dimensional space from a

high-dimensional space.

To get the "drawing" of the network, layout

algorithms compute the coordinates of the nodes, i.e., put

the nodes into some points on the plane (2D layout) or in

space (3D layout). The common opinion is that there is

no best way to draw a graph, as different layouts can

highlight different graph features. However, there are

state-of-the-art layout algorithms – force-directed layouts

or FDL – based on some physical interpretations of the

network, where nodes are modeled as particles with

attractive and repulsive forces acting between them or as

elastic rings connected by springs along the edges.

The crucial aspects of layout algorithms are the

computation time and the quality of the resulting

drawing. High-quality layout criteria [7] include

minimizing edge crossings; maintaining appropriate

 Creative Commons Attribution

NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, № 3(115) ISSN 2663-2012 (online)
102

distances between nodes (short for adjacent nodes and

longer for non-adjacent ones), ensuring uniform node

distribution, preserving inherent symmetries, and others.

Algorithms based on physical network

interpretations can satisfy the aesthetic quality criteria by

minimizing the total energy or the total sum of forces of

the physical system. This makes FDL algorithms a

standard tool for drawing graphs with up to a few

thousand nodes (usually up to 1,000 nodes). For larger

graphs (with more than 10,000 nodes), edge-related

aesthetic criteria become less important due to the

reduced visibility of individual edges. Instead, the correct

placement of node communities and large topological

features (like cycles or flares) becomes more significant.

However, FDL algorithms are often time-consuming,

requiring various computational improvement

techniques such as predefined initial positions, multi-

level approaches, or optimization tricks. Deep learning,

specifically neural networks (NN), demonstrates strong

potential for computing large graph layouts due to its

ability to learn, capture, and leverage the internal

structure of graphs. This paper contributes to the use of

NNs for layout computation.

1.2. State of the Art

Originating from [8], the problem of graph drawing

has led to the formation of a substantial graph drawing

community, with numerous papers devoted to the subject

and an annual Graph Drawing and Network Visualization

symposium [9]. The state-of-the-art in graph layout

algorithms is presented in [10, 11].

Note that the problem we address involves general

undirected connected graphs. For specific graph types

(such as hierarchical trees, labeled diagrams, or electrical

circuits), there are specialized methods (see e.g. [11]).

Additionally, the layout of a disconnected graph is

typically obtained by combining, in a compact manner,

the layouts of its connected components (see e.g. [12]).

Force-directed layout (FDL) algorithms, based on

physical interpretations of graphs, are the most popular

for general graph drawing. Two fundamental physical

models within this category are the Kamada-Kawai (KK)

spring model, considered in [13], and the force-directed

placement (FDP) model, which originated from the

Fruchterman and Reingold particle model, presented in

[14]. The KK model treats the graph as a dynamically

balanced system of rings (representing nodes) connected

by springs of a specified length. Balancing the system

minimizes its total energy, resulting in the optimal layout.

The FDP model represents the network nodes as particles

exerting attractive and repulsive forces on one another.

The total energy of the physical system representing the

network can be defined in various ways, leading to

multiple FDL modifications. However, all these

algorithms aim to compute the optimal layout by

minimizing the total energy (or total force) of the system,

via gradient descent or other optimization algorithms,

often with techniques like Barnes-Hut optimization [15],

simulated annealing [16, §10.9], or stress majorization

[17]. One of the recent approaches to FDL optimization,

based on the latent space model, is considered in [18].

Graph drawing with FDL is supported across

various software tools designed for different tasks,

including Gephi [19], igraph (in R) [20], GraphViz [21],

NetworkX (in Python) [22], Cytoscape [23], and others.

The successful application of neural networks to

graph layouts initially stemmed from node embeddings –

algorithms designed to represent individual nodes within

a graph as unique vectors in a vector space. These

embeddings effectively capture both the relational and

structural properties of the graph. Prominent node

embedding algorithms include DeepWalk, Node2Vec,

GraphSAGE, and Verse, among others [24]. Typically,

these methods learn node representations from random

walks (considered as the node’s "context") or by

aggregating information from a node's local

neighborhood.

Node embeddings can be used to solve a variety of

machine learning tasks, as well as to construct graph

layouts. Efficient processing of networks with millions of

nodes, leveraging node embeddings, is implemented in

LargeVis and GraphVite approaches [25, 26]. To

generate a graph layout, node embeddings can be

combined with classical dimensionality reduction

techniques (such as PCA, MDS, UMAP, or t-SNE) for

high-dimensional embeddings, or integrated with FDL

algorithms for low-dimensional ones [27].

Node embeddings were not designed exactly for

visualization purposes. The direct NN application started

in the late 1990s in [28], but progress stalled until Graph

Neural Networks (GNNs) enabled better handling of

graph data and layout criteria.

Recent research explores the use of GNNs to

generate aesthetically pleasing layouts. In [29], a GNN is

used to produce layouts by balancing multiple pre-

specified aesthetic criteria. In [30], Graph Neural

Drawers are introduced – machines that can leverage

different GNNs and loss functions (including those based

on aesthetic criteria) to construct efficient layouts. The

DeepFD algorithm presented in [31] is based on a graph-

LSTM. It takes the FDL as the prototype to design the

loss function and is trained on a dataset split by the

Louvain community detection algorithm.

Another approach is discussed in [32], where a

graph layout is reparameterized using a GNN to optimize

the steps of an FDL algorithm on this transformed layout.

The reviewed literature highlights that node

embedding algorithms, such as DeepWalk, Node2Vec,

provide scalable ways of encoding structural and

Machine learning and intelligent systems

103

relational properties of nodes and inspiring neural layout

algorithms like NeuLay-2, which introduced GNN-based

reparameterization of FDL energy optimization,

achieving significant speedups compared to classical

FDL methods. This algorithm serves as a conceptual and

technical foundation for extending neural techniques to

other graph layout models. However, these advances

have not yet been systematically applied to the Kamada–

Kawai model, which is particularly well-suited for

capturing graph symmetries and flexible edge-length

requirements. This gap motivates our research, which

aims to extend neural reparameterization methods to the

KK algorithm, resulting in the hybrid KKNN approach.

1.3. Objectives and the Approach

The objective of this study is to explore and analyze

the Kamada-Kawai graph layout technique based on

neural network reparametrization (KKNN) to improve

the visualization and structural organization of graphs.

We extend the NeuLay-2 approach proposed by A.-L.

Barabási and others in [32] to the KK algorithm. The

study aims to implement the KKNN algorithm, evaluate

its performance compared to the NeuLay-2 and KK,

assess its efficiency and readability, and propose

enhancements for better graphical representation. Our

motivation to explore the KK layout algorithm is

twofold:

­ The KK algorithm allows for adjustment of edge

lengths enabling layouts with custom edge lengths, rather

than the near-uniform lengths typically produced by

other force-directed layout (FDL) algorithms.

­ Experiments with NeuLay-2 have mostly been

conducted on random graph models. However, it is

important to evaluate if the layout algorithms accurately

reflect the structure of graphs with various types of

symmetries.

We use such quantitative metrics for layout

assessment as: average runtime of the layout algorithm as

well as ratios of running times for comparison; final

minimized energy of the system (loss function value) to

compare NN-parametrized and non-parametrized

versions of the KK algorithm; coefficient of variation for

edge length distribution to confirm uniformity of the

distribution; ratio of angles between adjacent edges close

to the expected theoretical values, quantifying how well

structural symmetries are retained.

This paper is organized as follows. Section 2 outlines

the problem, reviews the FDL and KK algorithms, and

introduces the idea of GNN reparametrization. Section 3

presents the experiment results and discusses them.

Section 4 presents the case study of cubic lattice layouts.

Section 5 provides a summary and a description of

further research steps.

2. Methods of Research

2.1. Framework for GNN-based

Layout Method

In this study, we propose a hybrid algorithm,

KKNN, which combines the Kamada-Kawai graph

layout technique with neural network reparameterization.

Our method is based on the idea of Barabási and others

[32], which combines one of the FDL algorithms with

GNN reparameterization. In FDL algorithms, the nodes

of the graph are modeled as particles or bodies in a

system where forces are applied. Attractive forces are

acting between adjacent nodes, while all pairs of nodes

repel each other. The energy of the system is given by

 FDL a rE E E  (1)

with the energy of attractive forces given by

i j

2

a ij i j
(v ,v)

1
E A x x ,

2
  (2)

where xi represent the positions of graph nodes and A is

the adjacency matrix of the graph. The repulsive energy

rE in (1) is usually chosen as a rapidly decreasing

function, such as in the FDP algorithm from [14]:

i j

0
r

(v ,v) i j

r
E ,

x x



 (3)

or as considered in [32]:

i j

2

i

0(v v
2

,)

j
r

x x
E exp ,

4r

 
 

 
 
 
 

 (4)

where 0r is a constant parameter that regulates the

distance of the action of repulsive forces.

The main technique used in [32] is to express the

positions of the nodes as the output of a GNN. The

authors introduce the NeuLay-2 algorithm, which starts

with a high-dimensional embedding and passes it

through a Graph Convolutional Network (GCN).

Although GNN involves many more parameters than

FDL, it converges faster. The architecture of GNN is

presented in

Fig. 1.

NeuLay-2 uses two GCN layers of the form

 G(X) (f (A)XW)  (5)

where A is the adjacency matrix of a graph, f is the

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, № 3(115) ISSN 2663-2012 (online)
104

aggregation function, ReLU  is the activation

function, and W is a matrix of trainable parameters. The

aggregation function f is given by a symmetrized degree-

normalized adjacency matrix

 1/2 1/2f D A D  (6)

where A A I  and D is the degree matrix of A with

ii ijj
D A .

Fig. 1. NeyLay-2 architecture (represented from [32])

Initially, Z=ZN×m is the embedding (usually

random) of N points, corresponding to graph nodes, into

m-dimensional space. The first layer takes Z as input and

produces the output   1 1G σ f A ZW , which is then

passed to the second layer of GNN, producing the output

  2 1 2G σ f A G W . Here, matrices 1m h
1W


 and

1 2h h
2W


 are the weight matrices of the first and

second GCN layers.

Finally, the high-dimensional embedding Z, along

with the two-layer GCN outputs G1 and G2 are combined

as
 1 2N m h h

3 1 2G Z G G
  

     and passed to a

fully connected (FC) layer with a linear activation

function to project down to the d-dimensional layout

positions
N dX  . The matrix W=[WZ|W1|W2] from

 1 2m h h d

  
is the weight matrix of the FC layer.

The output of NeuLay-2, namely

3 W 1 1 2 2X G b Z Z G ,W W G W b      (7)

is then used as the input of the FDL algorithm. Instead of

optimizing X directly, the NeuLay-2 parameters

{Z,W,b} are optimized.

2.2. KKNN Algorithm Description

In this research, we consider the Kamada-Kawai

graph model, which models node-edge connections as

rings connected by springs, instead of FDL, based on an

attractive-repulsive forces system. The length of the

spring between two nodes equals the graph-theoretic

distance between them, i.e., the length of the shortest

path. The total energy to be minimized is given by

  
i j

i

(v ,

i

v)

2

KK j j ij
1

E k x x l ,
2

   (8)

where ix is the position of the ring corresponding to the

node iv , ijk is the constant strength of the spring between

iv and jv , the length ijl of the spring between iv and

jv corresponds to the desirable distance between them in

the drawing and is proportional to ijd – the graph-theoretic

distance between nodes iv and jv in the graph.

Consider that the attractive forces energy term in

FDL-energy can be rewritten as

T

a
1

E Tr X LX ,
2

 
 

 (9)

where L D A  is the Laplacian of the graph with the

degree matrix D and adjacency matrix A . While the

KK-energy from (8) can be transformed as

i j i j

i j

2
KK ij ij ij i

(v ,v) (v ,v)

j

j

2

(v ,v)

j i

i i j

1
E k l k l x x

2

1
 k x x ,

2

   

 

 


 (10)

where the first term

 i j

2
ij ij

v , v

k l  is a constant for the

graph, independent of the layout, and the last term can be

presented as

i j

T k
ij i

2

(v ,v)

j
1 1

k x x Tr X L X ,
2 2

  
  (11)

where
kL is a weighted Laplacian with the ij-element

given by

ij

k
ij

it
i t

k , i j;

L k , i j.



 


  


 (12)

Comparing energies to minimize in FDL and KK

algorithms, we conclude that they have similar quadratic

parts, containing (weighted) graph Laplacian, but KK-

energy has another linear term, while the additional

(repulsive) term of FDL-energy is not linear.

The hybrid approach KKNN is based on the same

GNN reparameterization as in (5) and (6), but computes

the layout positions using the KK model defined in (8),

Machine learning and intelligent systems

105

optimized via gradient descent. The constant strength of

the spring between iv and jv is taken as
2

ij ijk 1/ d , as

it was suggested in [17] for better drawings. Also, we

consider both cases of unity edges (ij ijl d 1  for

adjacent iv and jv non-adjacent) and weighted edges

with the ijl taken as multiples of ijd . Note that due to the

parameter ijl adjustments in (8) the KK algorithm is

capable to generate layouts with edges of the required

lengths.

The steps of layout computation are as follows:

1. Nodes embedding initialization. We use the

initialization of node positions in d -dimensional space (

d 2 for planar layouts and d 3 for spatial) within the

Kaiming uniform distribution.

2. GNN-based reparametrization as in (7).

3. KK energy model application by considering the

loss function as KK-energy (8).

4. Minimizing the KK energy function via gradient

descent with respect to GNN trainable parameters.

5. Evaluation and visualization.

3. Results and Discussion

In this section, we compare the performance of the

KKNN algorithm with the original KK layout algorithm

and NeuLay-2, both by speed and by performance.

The implementation of NeuLay-2 was taken from

[33]. The KK algorithm was implemented by the authors

based on [13] to ensure a fair comparison. Experiments

were performed on hardware equipped with a CPU (Intel

Core i5-9400F, 8GB of RAM). Due to hardware

limitations, the tests were restricted to graphs with up to

3300 nodes and 7000 edges. For the same reason, we

report only relative comparisons of running times,

omitting absolute values in seconds, since GPU

acceleration could potentially speed up the layout

calculations. The absolute values can be imagined by the

following: the running time ranged from 1.5–220 s for

KKNN and 1.9–840 s for NeuLay-2 (for 100–3300

nodes).

To evaluate the algorithms’ running times, we used

several graph generation models, including both random

and highly symmetric graphs. The random models

include the Barabási–Albert preferential attachment

model [34] (denoted on figures as “ScaleFree”), Watts–

Strogatz small-world graphs [35] (denoted as

“SmallWorld”), Random Geometric Graphs [36]

(denoted as “Geometric”), and Internet Autonomous

System networks [37] (denoted as INet(Internet)). By

varying parameters, we generate families of random

graphs with node sets ranging from 100 to 3000 nodes

and diverse topological properties. The symmetric graphs

(denoted on figures as “Symmetric”) include planar

quadratic and hexagonal lattices, balanced and binary

trees, as well as cubic and pyramidal lattices, and a

quadratic lattice folded into a tube, which is best

represented using a 3D layout. Overall, more than 25

graphs were included in the experiment. The realizations

of these models are obtained from NetworkX [22] or

created directly by the authors (pyramid, hexagonal

lattices, tube graphs) and can be referenced in [38].

The layouts of symmetric graphs produced by

KKNN are demonstrated in

Fig. 2: a) Tube with 1000 nodes and 1980 edges; b)

HGrid (hexagonal grid) with 930 nodes and 1350 edges;

с) BalT (balanced tree) with 3280 nodes and 3279 edges;

d) WeightedCone10 with 220 nodes and 990 edges. The

edges of the last graph have decreasing lengths from top

to bottom.

In [32], it is stated that NeuLay-2 offers a 10- to

100-fold improvement in speed compared to FDL. To

assess the difference between KKNN and NeuLay-2

speeds, we measured the average running time of both

algorithms and evaluated the ratio of KKNN’s average

running time (timeKKNN) to that of NeuLay-2

(timeNeuLay2).

a) b)

c) d)

Fig. 2. Layouts in 3D by KKNN obtained for

a) Tube; b) HGrid; c) BalT(3,7); d)WeightedCone10

The experiments demonstrate that the KKNN

algorithm calculates layout faster than NeuLay-2, with a

running time ratio ranging from 0.2 to 0.9 and a mean

ratio value of 0.53. This means that KKNN computes the

layout on average twice as fast. The relative running

times for some of the experimental graphs are shown in

Figure 3a. The points, labeled by graphs with different

shapes, correspond to various graph types. The ratio of

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, № 3(115) ISSN 2663-2012 (online)
106

KKNN execution time to Neulay-2 execution time is

plotted along the ordinate axis. As can be seen, the ratio

is less than 1 for all considered graphs. It may also be

noted that speedup increases with the number of nodes.

For graphs with more than 1000 nodes, KKNN to

NeuLay-2 average improvement becomes 0.45. The

other observation is that average ratios in geometric and

symmetric graphs are smaller than in ScaleFree, INet,

and SmallWorld models: 0.49 vis 0.57.

As shown above, FDL and KK energies have

similar quadratic terms (see (9), (11)), but KK energy has

an additional linear term, while FDL energy has a

nonlinear one (see (3), (10)). This may cause faster

processing of KK energy by the neural network.

The reasons for the speed-up of NN algorithms

compared to non-NN in calculating layouts for different

random graph models are discussed for NeuLay in [32].

The authors analytically demonstrated that outlier

eigenvalues of the adjacency matrix accelerate layout

calculation. The same reasoning applies to the KKNN.

To compare KKNN with the original KK, we

investigate the behavior of the loss (energy) function

depending on the number of iterations of the KK

algorithm. The experiment demonstrates that KKNN

converges to the energy minimum faster than KK, and

the minimum achieved is deeper than that of KK. For all

graphs, the final energy in the case of the KKNN layout

was lower, on average by 10%. For all graphs with more

than 300 nodes (except the Pyramid lattice with 680

nodes), KKNN converged 1.2 to 7 times faster, on

average by 3.4 times. An example plot of the energy

descent process is demonstrated in Section 4.

The running time comparison of KK and KKNN

was made in the same manner as for KKNN and Neulay-

2. It indicates that for graphs with a small or medium

number of nodes, the original KK algorithm has a shorter

running time. However, for large graphs, neural network

reparametrization in KKNN speeds up the layout

calculation. Running time ratios for graphs with more

than 500 nodes are all under 1 and have a mean value of

0.45. The relative running time for some of the

experimental graphs can be seen in Figure 3b). The

graphs of type INet show consistent KKNN improvement

with up to 10 times faster than KK.

Next, we investigate the symmetry performance of

the KKNN and NeuLay-2 algorithms. We consider graphs

with different symmetries: square, cubic, hexagonal, and

tetrahedral pyramid lattices, as well as regular polyhedra,

and examine the distributions of edge lengths and angles

between edges. The coefficient of variation CV





,

where  is a mean value and  is a standard deviation

for edge length distribution (ELCV) is used to measure the

uniformity of the distribution. Also, we calculate the ratio

of angles between adjacent edges close to the expected

theoretical values (AR). The expected theoretical values

for square and cubic lattices are multiples of
090 , for

tetrahedral pyramid and hexagonal lattices – the multiples

of
060 , for regular polyhedra

0360 (n 2)

n

 
, where n is

the number of face nodes. The tolerance was taken as 05 .

Table 1 presents the results of measurements for some

graphs: the cubical lattice (Cube06) with 2744 nodes, the

square grid (Grid) with 900 nodes, the hexagonal grid

(HGrid) with 930 nodes, which can be seen in Figure 2, b),

and the tetrahedral pyramid (Pyramid) with 680 nodes.

Overall, more than 10 graphs with up to 3000 nodes

and up to 7000 edges were tested. The results demonstrate

that KKNN produces layouts with almost equal edges

(ELCV is close to 0 for all experimental graphs), while the

lengths of edges, generated by Neulay-2, vary a lot

(0.2 < ELCV < 0.35). The angle distribution in the KKNN

case is close to expected (AR is close to 1), but for Neulay-

2, angles are noisy (0.18 < AR < 0.4).

a) b)

Fig. 3. KKNN compared with a) NeuLay-2 and b) KK by running time.

The ratios of timeKKNN to timeNeuLay2 and timeKK are pointed out.

The points are labeled by graphs and marked by different types

Machine learning and intelligent systems

107

Table 1

Edge length uniformity (ELCV) and angles preservation

(AR) for NeuLay-2 and KKNN

Graph
ELCV AR

NeyLay KKNN Neylay KKNN

Cube14 0.35 0.03 0.10 0.94

Grid 0.23 0.02 0.14 0.96

HGrid 0.26 0.01 0.30 0.96

Pyramid 0.21 0.03 0.40 0.99

Example calculations of theoretical expected angle values,

as well as histograms of edge length and angle

distributions are demonstrated in Section 4.

The effectiveness of KKNN in symmetry

preservation may be caused by the fact that many

distances between nodes in well-represented lattice-like

layouts are measured along straight lines and are, in fact,

equal to the graph-theoretic distances between these

nodes, as assumed in the KK algorithm.

 4. Case study

Regular network and lattice layout computation is

an important tool, e.g., for chemical compound or crystal

lattice simulation tools (see [39]). In this section, we

discuss in detail the layout of cubic lattices.

An n -cubic lattice (Cube_n) may be defined as a

graph whose nodes are integer points (i, j,k) with

0 i, j,k n  and edges connecting each node to its

immediate neighbor in one coordinate direction (i.e., a

node (i, j,k) is connected to the nodes obtained by

increasing exactly one of its coordinates by 1). An n -

cubic lattice has
3n nodes and 23n (n 1) edges.

A canonical symmetric 3D layout of a cube lattice

may place the nodes into integer points (i, j,k) and draw

edges along grid lines. Taking into account the boundary

“faces” and “edges” of a cube lattice, one can

immediately calculate the total number of angles in the

canonical layout as 212n (n 1) for 090 and as 23n(n 1)

for 0180 . The numbers of nodes, edges, right and straight

angles for cubic lattices are given in Table 2.

We calculate the layouts of Cube_n (for

n 6,8,10,12,14) and investigate the execution time,

energy descent, and symmetry preservation, as well as

give a visualization of layouts to compare the layout with

a canonical one.

The results of the KKNN, the NeuLay-2, and the

KK layouts comparison for cubic lattice graphs are as

follows. The KKNN converges faster to the energy

minimum compared to KK (on average, iteration 200 vis

450). KKNN achieves the lower minimum (10% lower

on average) on cubic lattices. The example energy

descent curves for Cube10 are shown in Figure 4.

Table 2

Characteristics of n -cubic lattices

n

Nodes

number

Edges

number

Number

of 090

angles

Number

of 0180

angles

6 216 540 3024 630

8 512 1344 6912 1512

10 1000 2700 13200 2970

12 1728 4752 22464 5148

14 2744 7644 35280 8190

Fig. 4. KKNN compared with KK by energy descent

 The KKNN to Neulay-2 improvement in running

time is on average 70%. The length uniformity ELCV is

0.03 on average compared to 0.26 for NeuLay-2, and the

expected angles ratio AR is 0.98 on average compared to

0.15 for NeuLay-2. The visual comparison of NeyLay-2

and KKNN layout quality, as well as edge length and angle

distributions, can be done in Figure 5.

The results for cubic lattices confirm those obtained

for other graphs.

a) b) c) d)

Fig.5. Symmetry performing by KKNN and NeuLay-2 for Cube10: a) KKNN layout; b) edge length distribution;

c) angles between edges distribution; d) NeuLay-2 layout

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, № 3(115) ISSN 2663-2012 (online)
108

5. Conclusions

The main contribution of this research lies in the

proposal, implementation, and assessment of the KKNN

algorithm – a hybrid approach for graph layout

calculation. The basis of the KKNN is the previously

known NeuLay-2 algorithm, which was constructed to

accelerate FDL algorithms.

Our results demonstrate that KKNN improves the

efficiency of the traditional KK algorithm by reducing

the time required to reach the energy minimum and

achieving a lower overall energy state. Compared to

NeuLay-2, KKNN performs better in terms of speed and

the preservation of graph symmetries, especially for

relatively large and complex networks. The KKNN can

be used for calculating the layout of medium-sized

graphs (up to 10,000 nodes), especially those including

symmetrical structures (grids, regular networks, graphs

for chemical compounds, topological models of the data),

to reduce the layout algorithm's working time while

preserving the aesthetic and readability.

Future research directions are as follows:

­ exploring the application of different neural

network models and more advanced architectures for

layout optimization;

­ applying the mechanism of accelerating

convergence by NN-reparametrization to other

optimization problems on graphs (e.g., resource

balancing, optimal layouts in electric circuits and chip

designs, systems equilibrium positions determination);

­ investigating the effectiveness of NN layout

algorithms in presenting other graph properties, such as

cluster separation, preserving of community structure,

sparseness, or denseness visualization.

Overall, this research contributes to the growing

field of NN-based graph drawing and opens new avenues

for efficient and accurate visualization of networks.

Contributions of authors: conceptualization,

methodology – Lyudmyla Polyakova, Iryna Zaretska;

formulation of tasks, analysis of results – Lyudmyla

Polyakova; development of model, software,

verification, visualization – Olena Linnyk; writing –

Olena Linnyk, Lyudmyla Polyakova, Iryna Zaretska.

Conflict of Interest

The authors declare that they have no conflict of

interest in relation to this research, whether financial,

personal, authorship, or otherwise, that could affect the

research and its results presented in this paper.

Financing

This study was conducted without financial support.

Data Availability

All data supporting the plots presented in this paper,

other findings of the study, as well as the source code, are

available in the data repository [38].

Use of Artificial Intelligence

The authors confirm that they did not use artificial

intelligence methods while creating the presented work.

Acknowledgments

We thank Vadym Kaidalov for his help with

software adjustment and code optimization.

All the authors have read and agreed to the

published version of this manuscript.

References

1. Jumper, J., Evans, R., Pritzel, A., Green, P.,

Figurnov, D., Ronneberger, O., Tunyasuvunakool, K.,

Bates, R., Žídek, A., Potapenko, A., Bridgland, A.,

Meyer, C., Kohl, S., Ballard, A., Cowie, A., Romera-

Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, B.,
Petersen, S., Reiman, D., Clancy, E., Zielinski, M.,

Steinegger, M., Pacholska, M., Berghammer, T.,

Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W.,

Kavukcuoglu, K., Kohli, P., & Hassabis, D. Highly

accurate protein structure prediction with

AlphaFold. Nature, 2021, vol. 596, pp. 583–589. DOI:

10.1038/s41586-021-03819-2.

2. Zhou, D., Li, S., Dong, L., Chen, R., Peng, X., &

Yao, H. C-KGE: Curriculum learning-based Knowledge

Graph Embedding. Computer Speech & Language, 2025,

vol. 89, article no. 101689. DOI:
10.1016/j.csl.2024.101689.

3. Liu, Q., Kim, Y., & Hemsley, J. Climate Change

Skeptics and the Power of Negativity. Proceedings of the

Association for Information Science and Technology, 2024,

vol. 61, iss 1, pp. 999-1001. DOI: 10.1002/ pra2.1166.

4. Chumachenko, D., Meniailov, I., Bazilevych, K.,

Chumachenko, T., & Yakovlev, S. Investigation of

Statistical Machine Learning Models for COVID-19

Epidemic Process Simulation: Random Forest, K-

Nearest Neighbors, Gradient Boosting. Computation,

2022, vol. 10, no. 6, article no. 86. DOI: 10.3390/
computation10060086.

5. Mohammadi, A., Meniailov, I., Bazilevych, K.,

Yakovlev, S., & Chumachenko, D. Comparative study of

linear regression and SIR models of COVID-19

propagation in Ukraine before vaccination.

Radioelectronic and computer systems, 2021, no. 3, pp.

5–18. DOI: 10.32620/reks.2021.3.01.

6. Drach, K., Glushakov, S., & Kotenko, I.

Understanding the spread of COVID-19 in the United States

using topology and machine learning for time series.

Proceedings of the Pharmaceutical Users Software

Exchange 2020 (Phuse US Connect, November 8-11, 2020,
virtual). Available at lexjansen.com/

https://www.lexjansen.com/phuse/2020/rw/PAP_RW03.pdf

Machine learning and intelligent systems

109

phuse/2020/rw/PAP_RW03.pdf (accessed 31 August

2024).

7. Di Bartolomeo, S., Crnovrsanin, T., Saffo, D.,

Puerta, E., Wilson, C., & Dunne, C. Evaluating Graph

Layout Algorithms: A Systematic Review of Methods

and Best Practices. Computer Graphics forum, 2024, vol.

43, iss. 6, article no. e15073. DOI: 10.1111/cgf. 15073.

8. Tutte, T. W. How to draw a graph. Proc. London

Math. Soc., 1963, vol. 3, iss. 1, pp. 743-768. DOI:

10.1112/ PLMS/S3-13.1.743.

9. Drawing G.: Graph drawing website, 2024.
Available at: http://www.graphdrawing.org/ (accessed

31.08.2024).

10. Gibson, H., Faith, J., & Vickers, P. A survey of

two-dimensional graph layout techniques for information

visualization. Information Visualization, 2013, vol. 12,

pp. 324-357. DOI: 10.1177/ 1473871612455749.

11. Pinki, P., & Shekhawat, K. An annotated review

on graph drawing and its applications. AKCE Int. Journal

of Graphs and Combinatorics, 2023, vol. 20, iss. 3, pp.

258-281. DOI: 10.1080/09728600.2023. 2218459.

12. Freivalds, K., Dogrusoz, U., & Kikusts, P.
Disconnected graph layout and the polyomino packing

approach. Proc. Symp. Graph Drawing GD’01 in Lecture

Notes in Computer Science, 2002, vol. 2265, pp. 378-

391. Available at: https://link.springer.com/chapter/

10.1007/3-540-45848-4_30 (accessed 31.08.2024)

13. Kamada, T., & Kawai, S. An algorithm for

drawing general undirected graphs. Information

Processing Letters, 1989, vol. 31, iss. 1, pp. 7-15. DOI:

10.1016/0020-0190(89)90102-6.

14. Fruchterman, T. J. & Reingold, E. M. Graph

drawing by force-directed placement. Software: Practice

and Experience, 1991, vol. 21, iss. 11, pp. 1129-1164.
DOI: 10.1002/spe.4380211102.

15. Barnes, J. & Hut, P. A hierarchical O(NlogN)

force-calculation algorithm. Nature, 1986, vol. 324, iss.

6096, pp. 446-449. DOI: 10.1038/324446A0.

16. Press, W. H., Teukolsky, S. A., & Flannery, B.

P. Numerical Recipes in C. Second ed. Cambridge, USA,

Cambridge University Press, 1992. 996 p.

17. Gansner, E. R., Koren, Y., & North, S. Graph

Drawing by Stress Majorization. In: J. Pach, ed. Graph

Drawing. Berlin, Heidelberg: Springer, 2005. pp. 239-

250. DOI: 10.1007/978-3-540-31843-9_25.
18. Gaisbauer, F., Pournaki, A., Banisch, S., &

Olbrich, E. Grounding force-directed network layouts

with latent space models. Journal of Computational

Social Science, 2023, vol. 6, iss 2, pp. 707-739. DOI:

10.1007/s42001-023-00207-w.

19. Bastian, M., Heymann, S., & Jacomy, M.

Gephi: An Open Source Software for Exploring and

Manipulating Networks. International AAAI Conference

on Weblogs and Social Media, 2009, vol. 3, iss. 1, pp.

361-362. DOI: 10.1609/icwsm.v3i1.13937

20. Csardi, G., & Nepusz, T. The igraph software

package for complex network research. InterJournal,
Complex Systems, 2006, vol. 1695, iss. 5., pp. 1-9.

Available at https://igraph.org/ (accessed 01.06.2024)

21. Ellson, J., Gansner, E., Koutsofios, L., North,

S., & Woodhull, G. Graphviz – Open Source Graph

Drawing Tools. In: P. Mutzel, M. Junger & S. Leipert,

eds. Graph Drawing, Springer Berlin Heidelberg, 2002,

pp. 483--484. Available at: https://graphviz.org/

(accessed 31.08.2024).

22. Hagberg, A., Swart, P., & Chult, D. Exploring

network structure, dynamics, and function using

NetworkX, Los Alamos National Lab. (LANL), Los

Alamos, NM (United States), 2008. Available at:

https://networkx.org/ (accessed 31.08.2024).
23. Shannon, P., & et al. Cytoscape: a software

environment for integrated models of biomolecular

interaction networks. Genome research, 2003, vol. 13,

iss. 11, pp. 2498-2504. Available at: https://

cytoscape.org/ (accessed 31.08.2024).

24. Khosla, M., Setty, V., & Anand, A. A

Comparative Study for Unsupervised Network

Representation Learning, 2020, Available at

https://arxiv.org/abs/1903.07902 (accessed 31.08.2024).

25. Tang, J., Liu, J., Zhang, M., & Mei, Q.

Visualizing Large-scale and High-dimensional Data,
2016. Available at https://arxiv.org/abs/1602.00370

(accessed 31.08.2024). DOI: 10.1145/2872427.

2883041.

26. Zhu, Z., Xu, S., Qu, M., & Tang, J. GraphVite:

A High-Performance CPU-GPU Hybrid System for

Node Embedding. In: The World Wide Web Conference,

2019, pp. 2494-2504. DOI: 10.1145/3308558.3313508.

27. Shen, L., Tai, Z., Shen, E., & Wang, J. Graph

Exploration with Embedding-Guided Layouts, 2023.

Available at: https://arxiv.org/abs/2208.13699 (accessed

31.08.2024).

28. Cimikowski, A., & Shope, P. A neural network
algorithm for a graph layout problem. IEEE Trans Neural

Netw., 1996, vol. 7, iss. 2, pp. 341-345. DOI: 10.1109/

72.485670.

29. Wang, X., Yen, K., Hu, Y., & Shen, H.-W.

DeepGD: A Deep Learning Framework for Graph

Drawing Using GNN, 2021. Available at

https://arxiv.org/abs/2106.15347 (accessed 01.06.2024).

30. Tiezzi, M., Ciravegna, G., & Gori, M. Graph

Neural Networks for Graph Drawing. IEEE Transactions

on Neural Networks and Learning Systems, 2024, vol. 35,

iss. 4, pp. 4668–4681. DOI: 10.1109/tnnls.2022.
3184967.

31. Zhang, S., Xu, R., Zhang, Q., Quan, Y., & Liu,

Q. DeepFD: a deep learning approach to fast generate

force-directed layout for large graphs. Journal of

Visualization, 2024, vol. 27, pp. 925–940. DOI:

10.1007/s12650-024-00991-1.

32. Both, C., Dehmamy, N., Yu, R., & Barabási, A.-

L. Accelerating network layouts using graph neural

networks. Nature Communications, 2023, vol. 14, article

no. 1560. DOI: 10.1038/s41467-023-37189-2.

33. Both, C. NeuLay, 2023. Available at:

https://github.com/csabath95/NeuLay (accessed 01.06.2024).
34. Barabási, A.-L., & Albert, R. Emergence of

Scaling in Random Networks. Science, 1999, vol. 286,

https://www.lexjansen.com/phuse/2020/rw/PAP_RW03.pdf
http://www.graphdrawing.org/
https://link.springer.com/chapter/%2010.1007/3-540-45848-4_30
https://link.springer.com/chapter/%2010.1007/3-540-45848-4_30
https://graphviz.org/
https://networkx.org/
https://arxiv.org/abs/1903.07902
https://arxiv.org/abs/1602.00370
https://arxiv.org/abs/2208.13699
https://arxiv.org/abs/2106.15347
https://github.com/csabath95/NeuLay

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, № 3(115) ISSN 2663-2012 (online)
110

iss. 5439, pp. 509-512. DOI: 10.1126/science.

286.5439.509.

35. Watts, D. J., & Strogatz, S. H. Collective

dynamics of ‘small-world’ networks. Nature, 1998, vol.

393, pp. 440-442. DOI: 10.1038/30918.

36. Penrose, M. Random Geometric Graphs.

Oxford, Oxford University Press, 2003. 344 p.

37. Elmokashfi, A. M., Kvalbein, A., & Dovrolis,

C. On the Scalability of BGP: The Role of Topology

Growth. IEEE Journal on Selected Areas in

Communications, 2010, vol. 28, pp. 1250-1261. DOI:
10.1109/JSAC.2010.101003.

38. Linnyk, O. KamadaNN, 2024. Available at:

https://github.com/OlenaLinnyk/KamadaNN

(accessed 31 August 2024).

39. Thompson, A. P., Aktulga, H. M., Berger, R.,

Bolintineanu, D. S., Brown, W. M., Crozier, P. S., Veld,

P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D.,

Shan, R., Stevens, M. J., Tranchida, J., Trott, C., &

Plimpton, S. J. LAMMPS - a flexible simulation tool for

particle-based materials modeling at the atomic, meso,

and continuum scales. Comp Phys Comm, 2022, vol.

271, article no. 10817. DOI: 10.1016/j.cpc.2021.108171.

Received 01.10.2024, Accepted 25.08.2025

ПРО УКЛАДАННЯ ГРАФІВ АЛГОРИТМОМ КАМАДА-КАВАЇ

ЗА ДОПОМОГОЮ ГРАФОВИХ НЕЙРОННИХ МЕРЕЖ

О. С. Лінник, Л. Ю. Полякова, І. Т. Зарецька

Традиційні алгоритми силоспрямованого укладання, такі як метод Камада-Каваї (КК), широко

використовуються для візуалізації графів завдяки їхній здатності створювати естетично привабливі

зображення. Однак ці алгоритми можуть бути обчислювально складними для великих графів. Предметом

цього дослідження є укладання графів. Метою цього дослідження є застосування графових нейронних мереж

(GNN) для вдосконалення алгоритму KK для укладання графів, результатом чого є новий гібрідний підхід під

назвою KKNN. Основні завдання цього дослідження включають: 1. Розробку алгоритму укладання KKNN

шляхом інтеграції репараметризації на основі GNN з підходу NeuLay-2 з алгоритмом KK. 2. Оцінку

обчислювальної ефективності через порівняння продуктивності KKNN та оригінального алгоритму KK, а

також NeuLay-2. 3. Оцінку якості укладання, зокрема, аналіз збереження симетрії, мінімізації енергії та
естетичних критеріїв, таких як мінімізація перетину ребер і збалансоване розташування вершин. 4. Тестування

на різних типах графів, включаючи як випадкові, так і структуровані (симетричні) графи. Використані такі

методи, як репараметризація укладання на основі GNN з алгоритму NeuLay-2; алгоритм укладання графа

Камади-Каваї та визначення показників продуктивності, включаючи час досягнення мінімуму, мінімізацію

енергії та збереження симетрії. Наші експерименти демонструють наступні результати: 1. KKNN швидше

збігається до мінімуму енергії та досягає меншого локального мінімуму енергії порівняно з вихідним KK. 2.

KKNN не тільки скорочує час обчислень, але й краще зберігає симетрії графів порівняно з NeuLay-2.

Висновки. Це дослідження підкреслює потенціал інтеграції нейронних мереж з традиційними алгоритмами

укладання графів, пропонуючи перспективний підхід для ефективної та високоякісної візуалізації графів.

KKNN не тільки покращує обчислювальну продуктивність, але й забезпечує візуально інтерпретовані

укладання. Цей гібридний підхід відкриває можливості для майбутніх досліджень у сфері візуалізації графів,

де поєднання методів глибокого навчання з класичними алгоритмами може створити нові перспективи для
обробки складних, великомасштабних графів у візуально узгодженій й обчислювально ефективній формі.

Ключові слова: аналіз мереж; граф; укладання графу; силоспрямоване укладання; нейронні мережі.

Лінник Олена Степанівна – магістрантка каф. теоретичної і прикладної інформатики, Харківський

національний університет імені В.Н. Каразіна, Харків, Україна.
Полякова Людмила Юріївна – канд. фіз.-мат. наук, доц. каф. теоретичної і прикладної інформатики,

Харківський національний університет імені В.Н. Каразіна, Харків, Україна.

Зарецька Ірина Тимофіївна – канд. фіз.-мат. наук, доц. каф. теоретичної і прикладної інформатики,

Харківський національний університет імені В.Н. Каразіна, Харків, Україна.

Olena Linnyk – Student, Department of Theoretical and Applied Computer Science, V.N. Karazin Kharkiv
National University, Kharkiv, Ukraine, e-mail: linnyk2021mf12@student.karazin.ua.

Lyudmyla Polyakova – PhD in Physics and Mathematics, Associate Professor of the Department of Theoretical

and Applied Computer Science, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine,

e-mail: l.yu.polyakova@karazin.ua, ORCID: 0000-0002-6674-1958, Scopus Author ID: 23028761300.

Iryna Zaretska – PhD in Physics and Mathematics, Associate Professor of the Department of Theoretical and

Applied Computer Science, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine,

e-mail: zaretskaya@karazin.ua, ORCID: 0000-0001-8747-2737.

https://github.com/OlenaLinnyk/KamadaNN

