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AN INTEGRATED APPROACH TO FORECASTING SOFTWARE SYSTEM QUALITY
USING BAYESIAN CORRECTION, MULTI-CRITERIA OPTIMIZATION,
AND META-LEARNING

The aim of this study is to improve modern methods for forecasting the quantitative characteristics of software
system quality to enhance reliability, efficiency, and adaptability in dynamic IT environments. To achieve this,
an integrated forecasting approach was developed that combines adaptive Bayesian noise correction, probabil-
istic ensembles with weighted risk adjustment, hybrid multi-criteria optimization, graph models of metric inter-
dependencies, and meta-learning for forecast adaptation. The scientific novelty lies in the proposed ensemble
integration and adaptive mechanisms that increase forecasting robustness while accounting for uncertainty and
metric dependencies. The methods were validated on the GitLab CE system. The experimental results confirmed
measurable improvements: forecasting error was reduced from 18.7% to 4.2%, execution time decreased by
36.8%, CPU and memory consumption dropped by up to 20%, and system reliability indicators (downtime, fault
tolerance) improved by more than 60%. These metrics confirm that the proposed approach strengthens reliabil-
ity, efficiency, and adaptability of software quality forecasting compared to traditional methods.

Keywords: software quality prediction; probabilistic ensembles; Bayesian correction; meta-learning; multi-cri-

teria optimization.

1. Introduction

The quality of software systems is a determining
factor in their efficiency, reliability, and durability. In to-
day's conditions of rapid development of information
technologies, the requirements for software are con-
stantly increasing, which requires the use of more ad-
vanced methods for assessing and predicting its quality.
Accurate quantitative quality characteristics allow for
timely identification of potential problems, improve de-
velopment processes, and reduce risks associated with
the operation of software products. At the same time, ex-
isting forecasting methods are often not sufficiently
adaptive to changing development conditions, and also
do not take into account the complex relationships be-
tween quality metrics, which complicates their applica-
tion in complex software environments.

1.1. Motivation

The relevance of this study is driven by the increas-
ing complexity of modern software systems, which re-
quires more advanced approaches to forecasting their
quality. Traditional methods based on static models are
not sufficiently adaptive to the dynamic nature of soft-
ware development environments, leading to limited fore-
casting accuracy and poor adaptability to real operational

scenarios. As highlighted in [1], the integration of soft-
ware engineering and information systems theories is es-
sential to improve the reliability of quality assessment
tools. Recent studies also emphasize specific challenges,
including reliability issues in machine learning-based
systems [2], the need for continuous real-time monitoring
[3], and the adaptation of evaluation methods to emerg-
ing technologies such as cloud platforms and loT [4].
These works confirm the necessity of developing inte-
grated approaches that combine probabilistic modeling,
artificial intelligence, and mathematical optimization to
achieve higher accuracy, robustness, and efficiency in
software quality forecasting.

1.2. State of the art

Research on forecasting the quantitative character-
istics of software quality spans several complementary
directions. Probabilistic and statistical methods such
as Bayesian networks [5] and fuzzy logic [6] have been
widely applied to model uncertainty and causal depend-
encies. They provide interpretable results but face scala-
bility challenges and often require manually defined pri-
ors, which limits adaptability in large, dynamic environ-
ments.

With the rise of data-driven techniques, machine
learning and Al approaches have become dominant.
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Classifiers trained on code metrics, defect repositories, or
project histories considered in works [7,8] demonstrate
strong predictive power, while generative and deep mod-
els [9] enable automated feature extraction. Recent work
has extended this trend to transformer-based models for
defect prediction [10] and code smell detection [11].
However, such models often act as black boxes, raising
concerns about explainability and robustness across het-
erogeneous projects.

In parallel, hybrid and multi-criteria approaches
[12] seek to combine the strengths of statistical models,
expert judgment, and optimization [13]. Multi-objective
methods balance accuracy with cost, maintainability, or
risk, while hybrid neural-probabilistic ensembles im-
prove resilience. These methods enhance flexibility but
remain computationally intensive and are rarely bench-
marked on large-scale industrial systems [14].

Domain-specific adaptations [15] address quality
forecasting in specialized contexts such as cloud environ-
ments, cyber-physical and 10T systems, and military or
aerospace software [16]. These solutions demonstrate
how specific operational constraints can be incorporated
into quality models [17], but they are usually limited in
scope and difficult to generalize beyond their domains.

Alongside these methodological advances, interna-
tional standards such as ISO/IEC 25010, ISO/IEC
25023, ISO/IEC 5055, IEEE 730, and NIST SP 800-55
provide structured taxonomies of quality attributes and
metrics. Despite their widespread adoption in practice,
these frameworks are rarely integrated with predictive
methods, leaving a gap between theoretical quality defi-
nitions and applied forecasting models.

Taken together, prior research shows notable pro-
gress but also reveals persistent challenges: the fragmen-
tation of approaches, unresolved trade-offs between ac-
curacy, adaptability, efficiency, and interpretability, lim-
ited integration with recognized standards, and insuf-
ficient validation on large, real-world systems. These
shortcomings motivate the integrated approach proposed
in this work, which unifies ensemble learning, Bayesian
correction, hybrid optimization, graph modeling, and
meta-learning while explicitly aligning with international
quality models.

1.3. Objectives and tasks

The purpose of this study is to develop and validate
an integrated forecasting approach for quantitative soft-
ware quality characteristics, aimed at enhancing reliabil-
ity, efficiency, and adaptability in dynamic IT environ-
ments.

To achieve this purpose, the following objectives
are defined:

- analyze existing forecasting methods, identifying
their strengths and limitations in terms of accuracy,

adaptability, and efficiency;

- develop an integrated forecasting approach that
combines adaptive Bayesian correction, probabilistic en-
sembles with weighted risk adjustment, hybrid multi-cri-
teria optimization, graph models of metric interdepend-
encies, and meta-learning for forecast adaptation;

- validate the proposed approach on the GitLab CE
system, assessing forecasting performance under real op-
erating conditions;

- evaluate the effectiveness of the approach using
quantitative metrics (forecasting error, execution time,
resource consumption, and reliability indicators).

2. Materials and methods of research

In this section, the methodology is presented as an
integrated roadmap that combines conceptual principles
with a formal mathematical apparatus. The approach fol-
lows a sequential structure:

- first, the problem of forecasting software quality
characteristics is formulated;

- then, multiple forecasting models are constructed
and combined into ensembles;

- uncertainty is addressed through probabilistic de-
scriptions and adaptive Bayesian correction;

- hybrid multi-criteria optimization is applied to
balance conflicting quality indicators;

- graph models are introduced to capture interde-
pendencies among metrics; and finally, meta-learning
mechanisms are used to adapt forecasts under dynamic
conditions.

This step-by-step structure ensures that the princi-
ples, mathematical models, and algorithms are presented
in a unified and comprehensible manner, linking theoret-
ical formulations with practical implementation.

According to the work [5], the goal of the synthesis
of methods for predicting quantitative characteristics of
the quality of software systems is to find a forecast Y
quantitative quality characteristics Y based on input data

X, taking into account a set of criteria {C;}.,. This

problem is formulated as the expression (1):
Y =1(X;0), @

where f — forecasting model (or a combination of them),
X — vector of input characteristics (input metrics, e.g.,
number of defects, code complexity, test coverage, etc.),

0 — model parameters, Ci(X,\?) — criteria functions

(e.g., prediction accuracy, computational complexity,
consistency).

Instead, at the mathematical level, the integration of
methods for predicting quantitative characteristics of the
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quality of software systems is given as follows: Let there

K1’ each

be m different forecasting models {f, (X;0 )}
of which evaluates Y, . Then the combined estimate can

be found using ensemble methods, namely:
- Linear combination of forecasts [7] (2):

V=3 o (X)), @)
where: o, — weights that determine the importance of
each model. According to [7], the weights o, can be

found by solving the problem of minimizing the mean
square error (3):

min Y- Zk kfk XGk , 3)

@1, ,0Om

where X — vector of input characteristics (input metrics,
e.g., number of defects, code complexity, test coverage,
etc.),0 —model parameters.

- Bayesian approach [6] where the forecast is calcu-
lated as a weighted average of all models, taking into ac-
count their posterior probabilities (4):

V=Y P X)fic (X0 ) 4)

where P(fi |X) — probability of model adequacy fy,

which can be estimated based on historical data.
- Multi-criteria optimization [16] where a quality
function is introduced for each model

Qk =Q(f (X:8x ), which takes into account accuracy,

speed of execution, etc. In this case, the task is to find the
optimal model (5):

f=arg max Zin:lci (fi (X:6x)), (5)
k

where f, —a model that can be evaluated based on his-

torical data.

Since the processes described in (1-5) are stochas-
tic, to take into account uncertainties, we include a prob-
abilistic description (6):

Y =f(X;0)+s, 6)

where € ~ N(O,cz) —noise, or uncertainty. Forecasting

in this case may include interval estimation (7):

Ye [\?low,\?high J ) Y]

where the interval boundaries are calculated, through the
confidence intervals of the model.

According to [8], the use of a model ensemble im-
plies that different types of models are used for synthesis,
namely: regression models, decision trees and their en-
sembles (for example, gradient boosting, Random For-
est), Neural networks, and time series methods, if the
qualitative metrics depend on time.

In the generalized case, the condition for construct-
ing regression models is reduced to expression (8):

Y =Bo+ > BiXi, (®)

where X; —input characteristics for model construction.

According to [13], the generalized condition for the
neural network task is reduced to expression (9):

Y =£(X:0), ©)

where f —a function modeled by a multilayer neural net-
work.

Then the final model of the application of the model
ensemble takes the form of expression (10):

Y= Ensemble({fk (X; 6)}r=1) , (10)

where Ensemble — a synthesis function, such as
weighted combination, stacking, or blending.

According to [15], the prediction accuracy is as-
sessed using the MSE and MAE metrics. In addition, the
calculation speed and stability to changes in input data

are taken into account. To configure the parameters 6
and weights oy used methods for optimizing the param-
eters of the PS quality assessment model, namely: gradi-
ent descent, evolutionary algorithms (genetic algorithms)
for global optimization and Bayesian optimization for
hyperparameter tuning [17]. Mathematically, the applica-
tion of gradient descent is given in the form of expression
(12):

0« 0-1VoL(6), (11)

where L(6) —loss function.

According to the works [2], the synthesis of meth-
ods for predicting quantitative characteristics of the qual-
ity of PS is accompanied by a number of problems that
can be formalized mathematically. These problems arise
due to uncertainties, modeling complexity, multi-criteria
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nature of the problem, as well as due to limitations in
computational resources.

Next, we will consider each of these problems in
more detail.

Uncertainty of input data. Mathematically, uncer-
tainty in input data is described as stochastic nature, or
the presence of noise in the data [2] (12):

X =Xirge +EX (12)

where X — available input data set, X, —a true set of
characteristics that completely describes the system,

ex ~ N(O,GZ) —random noise that adds errors.

In this case, the problem boils down to the fact that
inaccuracy in the input data leads to an increase in the

forecast error Y , because the model f(X;0) depends on

distorted values X . Asaresult, it is necessary to take into
account the statistical characteristics of noise or use
noise-resistant modeling methods.
Model uncertainty. Let an ensemble of m models
m

i (X0 )}y
which can be described by expression [16] (13):

However, each model has an error,

fic (X3 0k ) = frrue (X) +ek (13)
where g, — systematic or random error of a particular

model. In this case, the problem is that there is uncer-
tainty in the choice of model f, , and errors in the models

themselves create the risk of inaccurate forecasting.
The mathematical formulation of risk takes the form
of expression (14):

(14)

Risk (i ) = E{(Y—fk (x;ek))2] ,

where Y —true quality characteristic. To solve this prob-
lem, according to [3], it is necessary to minimize the ag-
gregate risk for all models (15):

min Y oy -Risk(fy ), (15)
O -

where o, — weights that determine the significance of

each model in the ensemble.
Multi-criteria problem. Forecasting quality char-
acteristics involves taking into account several criteria

. n
simultaneously. {C;}._,, such as: forecast accuracy

(C1), execution speed (C,), resistance to changes in

data (C3), computational complexity (Cy).
Mathematical formulation of multi-criteria optimi-
zation: max {Cy (6),C5(0),....Cp ()} . In this case, the
0

problem is that the criteria may be conflicting, for exam-
ple, increasing the accuracy of the forecast (Cl) may in-

crease computational complexity (C4). To solve this

problem, in [16] it is proposed to use the construction of
a weighted function (16):

F(0)= .1 ]Ci(6),

(16)

where A; — weighting factors that determine priorities.

Instead, in [16] it is advised to use Pareto optimality
to find a compromise between criteria.
Interdependence of quality metrics. Quality met-

rics, such as defect count (D), productivity (P) and test

coverage (T) , can be nonlinearly related to each other
an:

Y =g(D,P,T), 17)

where g —a complex function that is difficult to identify
precisely. In this case, the problem boils down to the fact
that there are nonlinear or complex dependencies be-
tween metrics that may be unknown or incorrectly mod-
eled. The mathematical formulation of this problem is as-
sociated with the modeling error of relationships (18):

gg =Y -g(D,P,T), (18)

where gy — unaccounted for dependencies.

In [16], it is proposed to use models capable of ap-
proximating complex dependencies, for example, models
based on neural networks or gradient boosting, to solve
this problem.

Forecast uncertainty. Forecast Y always has un-
certainty (19):

Y =E[Y]zAY, (19)
where AY - the confidence interval of the forecast.

In this case, the problem is that the uncertainty of
the forecast can be significant due to low data quality,
imperfect models, or incorrect choice of parameters.
Then, according to [17], the confidence interval is calcu-
lated in accordance with expression (20):

AY =z, -6y, (20)
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where z,, — quantile of the normal distribution,

oy — standard deviation of the forecast.

In [17], it is proposed to use uncertainty reduction
through regularization of the model (21) to solve this
problem:

minL(6)+AR(6),

(21)
0

where R(6) — regularizer.

Computational complexity. The integration of
many forecasting methods requires large computational
resources, especially for complex models (e.g., ensem-
bles). The mathematical formulation of the above is as
follows: let the computational complexity of the model
be fy equal to O(Ty), then the total complexity of the

ensemble takes the form (22):

Ogeneral = Z?zlo(-rk) . (22)
In this case, the problem is that the complexity in-
creases with the number of models m and data volume
N . Common approach to solve this problem is to use
simplification of models without loss of accuracy (for ex-
ample, by reducing the dimensionality of the data) (23):

minX—Zz,
z

(23)

where ZeRVP p<<d.

Below, several improved approaches are proposed
that can be used to solve the above-mentioned basic prob-
lems of predicting quantitative quality characteristics of
software systems.

Adaptive correction of input data through
Bayesian noise protection. The idea of this proposal is
that to reduce the impact of noise in the input data, adap-
tive correction can be used by integrating the Bayesian
posterior estimate. Mathematical model: Let X — input
data that is distorted by noise €y . Instead of using direct

X, define adjusted data Xyop 1S (24):

XKOP = EI:X|XreSearCh:| = _[X ) p(x|xresearch )dX , (24)

where p(X|Xyesearch ) —aposterior probability, which is
determined by Bayes' theorem (25):

p(Xresearch |X) p(X)
(Xresearch |X> p(X)d

p(X|Xresearch): ip X' (25)

where p(X|X(esearch ) — aposterior probability. Table 1
considers adaptive correction of input data through

Bayesian noise protection.

Table 1

Adaptive input data correction via Bayesian

noise protection

Component
and its
description

Advantages

Disadvantages

Input data: Initial
observations,

Ensures accu-
racy of predic-

The need for
prior infor-

which may con- tions in the mation about
tain noise, are presence of the nature of
analyzed. noise. the noise.
Prior infor- Allows you to | It is difficult to
mation: improve accu- | obtain accurate
uses prior racy even on a priori infor-
knowledge about | small samples. mation.
the distribution
of the data.
Data correction: Ensures High
Automatically stability of computational
corrects data to results. complexity.
reduce the im-
pact of noise.
Component L
anz its Limitation Appllc_atlon
" limits
description
Input data: Noise should | Applicable for
The initial obser- | not exceed 30- | data with a sig-
vations with 40% of the nal-to-noise ra-
noise are ana- data values. tio (SNR) > 20
lyzed. dB.
Prior infor- The accuracy Works effec-
mation: of a priori in- tively if prior
uses knowledge | formation must | estimates are
of the prior dis- be at least available from
tribution of the 80%. other sources
data. or models.
Data correction: Sensitivity to | Recommended
Eliminating the large samples for small to
impact of noise | (>100000 rec- medium data
on the forecast. ords). volumes
(<100000 rec-
ords).

The novelty of this approach is that instead of clas-
sical filtering methods, adaptive corrections are used that
depend on the prior distributions of the input data.

The integration of the probabilistic ensemble
method with a weighted adaptive mechanism involves
proposing a probabilistic ensemble of models, where the
weights for each model are calculated adaptively based
on its current predictive risk.

Mathematical model of the developed approach.
The probabilistic ensemble of the forecast in the devel-
oped model has the form of expression (26):
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Y= Zk:lwk 'fk (X,Ok) , (26)
where o, —model weights, defined as (27):
—a- Risk (f
o er:(p( o-Ris (k)) | @)
zjzlexp(—a-Rlsk(fj))

where o — error sensitivity parameter, Risk(fy) —risk
for each model, defined as (28):

(28)

Risk () = E[(Y e (x;e))z} ,

where AY - the confidence interval of the forecast.

Advantages:

- Dynamic adaptation of model weights depending
on their current accuracy;

- Minimization of the impact of incorrect models on
the overall forecast.

Novelty: The use of a weight function based on an
exponential dependence on risk, which ensures rapid ad-
aptation of the system.

Hybrid multi-criteria optimization method
based on genetic algorithms and Pareto filtering. The
idea is to combine genetic algorithms (GA) with Pareto
filtering methods to find a compromise between conflict-
ing criteria. Mathematical model Multi-criteria optimiza-
tion problem (29):

Zopt =Max{Cy(0),C5(0).....CH ()}, (29)
0
where C; (6) — quality criteria.
Algorithm:

o o\
1. Population initialization {6. } .
i=1

t) ..
2. For everyone 6? ) criteria values are calculated

il

3. Pareto filtering is performed: are selected th) ,
which belong to the set of Pareto-optimal solutions.
4. Genetic operators (selection, crossover, muta-

. . (t+1) N
tion) create a new population {ei } .
i=1

5. The process is repeated until the specified stop-
ping criterion is reached.

Novelty: combining GA with Pareto filtering pro-
vides efficient finding of optimal solutions for problems

with a large number of criteria.

Building graph models for the interdependence
of quality metrics.

The idea is to describe the relationships between
quality metrics in the form of a graph model and use
graph learning algorithms for prediction. Let there be a

set of quality metrics {My, M, ...,My} , and their inter-
dependencies are described by a directed graph (30):

G=(V.E), (30)

where V ={M;,M,,...,M,} —graph nodes, E — edges

denoting dependencies between metrics. The depend-
ency model has the form of expression (31):

M, =f(|v|jl,|\/|j2,...,Mjp)+si, (31)

where g ~ N(O,ciz) . The graph neural network method

is used for prediction. (Graph Neural Networks, GNN)
(32):
M; = GNN(G, X), (32)

where X —matrix of metric characteristics.

Advantages:

- Takes into account complex interdependencies be-
tween metrics;

- Uses modern graph learning algorithms to im-
prove forecast accuracy.

Novelty: modeling quality through the graph struc-
ture of metric interdependencies.

Meta-learning for uncertainty prediction. The

idea is to use meta-learning to predict model uncertainty
based on historical data. Let there be a model base

: N
{f}y and their results on datasets {Dj}j:1' Meta-

model used g, which predicts uncertainty AY (33):
AY = g(X, {fk (X)}km=1 ,data characteristics) , (33)
where g learns to minimize the loss function (34):

L(g)= E[(AY—AYtruth )2] (34)

Advantages:

- Allows to accurately estimate forecast uncertainty
on new data;

- Increases the reliability of forecasting.

Novelty: Using meta-learning to estimate model
confidence intervals.
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3. Case Study: Application to GitLab CE

To validate the proposed integrated approach and
ensure its correspondence with the research goal of im-
proving forecasting accuracy, efficiency, and adaptabil-
ity, a case study was performed on the GitLab CE system.
This experiment directly addressed the objectives set in
Section 1.3: enhancing the precision of forecasts, opti-
mizing resource consumption, evaluating reliability un-
der real workloads, and confirming improvements by
quantitative metrics.

The study was conducted on GitLab CE version
16.0 deployed in an enterprise environment with inten-
sive use of repositories, CI/CD processes, and team de-
velopment. The infrastructure included the Ubuntu 22.04
operating system, an Intel Xeon 3.4 GHz processor with
8 cores, 16 GB of RAM, and a 512 GB SSD. The system
was actively used by 500 developers working with more
than 1,200 repositories through commits, merges,
pushes, and automated CI/CD pipelines.

The initial dataset for assessing system quality indi-
cators was collected from monitoring logs, resource us-
age reports, and CI/CD performance statistics. These
baseline values, covering performance, resource effi-
ciency, and reliability, are summarized in Table 2.

The case study procedure (Figure 1) included sev-
eral key stages:

- data preparation — historical metrics were filtered
using adaptive Bayesian correction (24-25) to minimize
the effect of anomalies and measurement errors;

- forecasting — multiple models (regression, deci-
sion tree ensembles, neural networks, and time series pre-
dictors) were combined into a probabilistic ensemble
with weighted adaptive mechanisms (26-28) to balance
accuracy and risk;

- optimization — hybrid multi-criteria optimization

Metrics from GitLab CE (defects,
complexity, test coverage, CI/CD
stats, CPU/RAM usage)

:

Step 1: Adaptive Bayesian noise

correction

with genetic algorithms and Pareto filtering (29) was ap-
plied to find a compromise between accuracy, speed of
computation, and computational costs;

- modeling dependencies — graph models (30-32)
were used to capture complex interdependencies among
metrics such as defect rates, build time, CPU utilization,
and memory consumption;

- forecast adaptation — a meta-learning layer ad-
justed forecasts using (33—-34) in real time based on past
errors, thereby reducing uncertainty and improving ro-
bustness.

Table 2
GitLab CE quality assessment metrics
Metrics Description Initial
value
Interface (UI) Average page load 750 ms
response time time (ms)
API request Average API re- 520 ms
execution sponse time (ms)
time
CI/CD build | Average pipeline ex- 120's
speed ecution time (s)
CPU usage | Average CPU utiliza- 85%
level tion during peak
loads (%)
RAM usage Average RAM 12.5GB
consumption (GB)
Fault Average number of 3 cases
tolerance bounces per month
Downtime Time the system was 2
unavailable hour/month
(hours/month)
Error rate Proportion of queries 1.2%
(500 errors) with errors (%)
Number of Unclosed tasks in the | 480 tasks
unfinished backlog
tasks

Step 2: Multiple forecasting models
(regression, decision trees, neural
networks, time series)

Step 4: Hybrid multi-criteria
optimization (accuracy, speed,
resources)

v

Step 3: Probabilistic ensemble with

adaptive weights

Step 5: Graph model of metric
interdependencies

1 Step 6: Meta-learning for forecast f;"

adaptation

uoneprea Apns 2sed I qEID «—

siojeotpur £1jenb pajseoaroq :nding

Figure 1. Case study procedure
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The main practical objective was to demonstrate
measurable improvements in forecasts of CI/CD execu-
tion time, resource utilization (CPU and RAM), fault fre-
quency, and delays in change integration. Initial bench-
marks included an average CI/CD pipeline duration of
15.2 seconds, CPU utilization of 70%, RAM utilization
of 80%, a 4.8% failure rate, and an average integration
latency of 12.4 seconds. These values served as reference
points for testing the proposed methods.

The expected outcomes of applying the integrated
approach were a significant reduction in forecast error
(by 15-20%), acceleration of forecast calculations (by up
to 35%), better handling of anomalous input data, and
measurable improvements in reliability, efficiency, and
adaptability of the GitLab CE system.

4. Results and Discussion

After implementing optimization strategies, includ-
ing API response caching, PostgreSQL database optimi-
zation, load balancing, parallel execution of CI/CD tasks,
and resource scaling, the corresponding results were ob-
tained and recorded in Table 3.

Table 3
Results of comparing initial
and optimized metric values
. Initial After Impro-
Metrics value optimization vement
(%)
Interface
(un 750 ms 480 ms 36%
response
time
API
request 520 m 310 ms 40%
execution
time
Cl/CD
build 120 s 85s 29%
speed
CPU
usage 85% 68% 20%
level
RAM 12.5GB 10.1GB 19%
usage
Fault 3 1 67%
tolerance | cases/month | cases/month
. 2 30
Downtime hour/month min/month 5%
Error rate
(500 1.2% 0.5% 58%
errors)
Number
.O.f 480 tasks 410 tasks 15%
unfinished
tasks

The results presented in Table 3 demonstrated a sig-
nificant improvement in performance, reliability, and re-
source efficiency. Due to caching and database query op-
timization, API checkers became 40% faster, while the
overall page load speed increased by 36%. The execution
time of CI/CD pipelines was reduced by 29%, which is
critically important for developers.

Server load optimization led to a 20% decrease in
CPU usage, allowing more users to be served without
hardware upgrades, while RAM consumption was re-
duced by 19%, lowering the need for additional servers.
System reliability also improved significantly, with the
number of critical failures decreasing by 67% and down-
time reduced by 75%, which is particularly crucial for
companies using GitLab for DevOps. Additionally, the
proportion of 500 errors dropped by 58% due to server
code optimization and load balancing.

Overall task management efficiency also improved,
as evidenced by a 15% reduction in the number of open
unresolved tasks.

In Table 4 presents the results of the analysis of the
influence of the proposed methods on the accuracy of
predicting the quality of the PS.

Table 4
The results of the analysis of the influence
of the proposed methods on the accuracy
of predicting the quality of the PS

Error (%)
After

Method

Initial Improvement

Without
correction
methods
Adaptive correc-
tion through
Bayesian noise
protection
Probabilistic en-
semble with
weighting mecha-
nism
Hybrid multi-
criteria
optimization
Graph models of
metric interde-
pendencies
Meta-learning for
forecast adapta-
tion

18.7 - -

18.7 45 1 12-15%

187 | 658 1 8-12%

187 | 6.3 1 12%

187 | 59 115%

187 | 42 | 14.5%

Table 4 shows that all the proposed methods signif-
icantly reduce the error in predicting quantitative charac-
teristics of the software system quality, compared to the
initial error of 18.7%, which was observed without the



96

Radioelectronic and Computer Systems, 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

use of correction approaches. Meta-learning for adapting
forecasts turned out to be the most effective, which re-
duced the error to 4.2%, providing an improvement of
approximately 14.5%.

Adaptive correction through Bayesian noise protec-
tion also showed high efficiency, reducing the error to
4.5% and improving the accuracy of forecasts by 12-
15%. Graph models of metric interdependencies made it
possible to reduce the error to 5.9%, which corresponds
to an improvement in accuracy by 15%.

The reduction of forecast error directly reflects the
minimization of aggregated risk defined in (14-16).
Probabilistic ensemble with a weighting mechanism also
demonstrated a positive effect, reducing the error to 6.8%
(an improvement of 8-12%). Hybrid multi-criteria opti-
mization allowed to achieve an error of 6.3% with an av-
erage improvement of 12%.

Thus, the use of an integrated approach to forecast-
ing, based on adaptive methods and meta-learning, al-
lows to achieve a significant increase in accuracy.

The best results were obtained when using meta-
learning and Bayesian noise protection, which indicates
the importance of adapting forecasts to current conditions
and filtering out anomalous data. Graph models also
proved to be effective, which confirms the feasibility of
taking into account dependencies between metrics in
forecasting.

In Table 5 shows the results of the influence of
methods on the speed of calculating PS quality forecasts
for Software Systems.

From Table 5 it follows that all the proposed opti-
mization methods significantly reduce the forecast exe-
cution time compared to the initial value of 15.2 seconds.
The best results were demonstrated by meta-learning,
which allowed to reduce the execution time to 9.6 sec-
onds, providing an acceleration of 36.8%. Hybrid multi-
criteria optimization also showed a significant increase in
performance, reducing the time to 9.8 seconds, which
corresponds to an acceleration of 35.5%.

Observed acceleration of calculations is consistent
with the computational complexity formulation (22-23).
Probabilistic ensemble with a weighting mechanism also
significantly accelerated the forecast calculation process,
reducing the execution time to 11.4 seconds, which pro-
vided a speed improvement of 25%. Graph models of
metric interdependencies showed an acceleration of
19.1%, reducing the forecasting time to 12.3 seconds.
Adaptive correction through Bayesian noise protection
showed the smallest, but still noticeable effect, reducing
the calculation time by only 2.6% (to 14.8 seconds). As a
result, the methods using model training and optimization
algorithms had the greatest impact on the calculation
speedup. Meta-learning and hybrid multi-criteria optimi-
zation provided the best results, confirming the effective-

ness of their application in improving forecasting perfor-
mance. Probabilistic ensemble also showed good perfor-
mance, indicating the benefit of a combined approach to
estimation. Graph models were effective, although some-
what less powerful in speeding up calculations. Adaptive
correction, on the other hand, was more useful in improv-
ing accuracy than in speed.

Table 5
Results of the influence of methods on the speed
of calculating PS quality forecasts for Software Systems

Execution time (sec)

Method Accelerati

on (%)

Wi/o

optimization After

Without
correction
methods
Adaptive cor-
rection
through
Bayesian
noise protec-
tion
Probabilistic
ensemble with
weighting
mechanism
Hybrid multi-
criteria
optimization
Graph models
of metric in-
terdependen-
cies
Meta-learning
for forecast
adaptation

15.2 15.2 0

15.2 14.8 12.6%

15.2 114 125%

15.2 98 | 1355%

15.2 12.3 119.1%

15.2 96 | 136.8%

Table 6 presents the results of the analysis of the
general impact of methods on the effectiveness of fore-
casting.

The improved reliability indicators confirm the ef-
fectiveness of modeling metric dependencies through the
graph-based framework (30-32). From Table 6 it is clear
that all the proposed methods improved the accuracy of
forecasts and reduced their calculation time, which in the
complex increases the overall efficiency of forecasting.
The best results in the ratio of accuracy and speed were
shown by meta-learning, which provided an increase in
accuracy by 14.5% and at the same time reduced the time
for calculating forecasts by 36.8%. This method also has
a high interpretability of forecasts, which facilitates the
analysis and implementation of the obtained data into real
processes.

Hybrid multi-criteria optimization demonstrated a
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similar increase in accuracy (+12%), but is somewhat
inferior to meta-learning in the speed of forecasts, reduc-
ing the time by 35.5%. At the same time, its high inter-
pretability makes this method attractive for systems
where the explanation of the forecast results is important.
Graph models also significantly increased the accuracy
of forecasts (+15%) and provided a reduction in forecast-
ing time by 19.1%, while their interpretability remained
high.

Table 6
Results of the analysis of the general impact of methods
on the effectiveness of forecasting

Interpreta
Method Accuracy | Speed bility
Without 0% 0% Low
correction
methods
Adaptive cor- +15% +2.6% Medium
rection
through
Bayesian
noise protec-
tion
Probabilistic +12% +25% Medium
ensemble with
weighting
mechanism
Hybrid multi- +12% +35.5 High
criteria %
optimization
Graph models +15% +19.1 High
of metric in- %
terdependen-
cies
Meta-learning +14.5% +36.8 High
for forecast %
adaptation

The probabilistic ensemble with a weighting mech-
anism demonstrated a 12% increase in accuracy and a
25% reduction in time, making it an effective compro-
mise between speed and quality of predictions. Adaptive
correction through Bayesian noise protection had the
smallest effect on speed (+2.6%), but improved the accu-
racy of predictions by 15%, which indicates its useful-
ness in situations where the priority is to reduce the error
rather than speed up calculations. Without the use of
methods, accuracy remained basic, forecasting time did
not decrease, and interpretability remained low, which
confirms the need to use the proposed approaches. The
most effective methods were meta-learning and hybrid
optimization, which demonstrated a balance between ac-
curacy, speed, and interpretability of predictions. Graph
models also proved to be effective, especially for increas-
ing the interpretability of results.

The most effective methods were meta-learning and
hybrid optimization, which demonstrated a balance be-
tween accuracy, speed, and interpretability of predic-
tions. Graph models also proved to be effective, espe-
cially for increasing the interpretability of results. The
probabilistic ensemble and adaptive Bayesian correction
further confirmed their role in reducing errors and stabi-
lizing forecasts.

The comparative analysis of existing forecasting
methods confirmed their limitations in terms of adapta-
bility and efficiency. The developed integrated forecast-
ing approach, which combines Bayesian noise correction,
probabilistic ensembles, hybrid optimization, graph mod-
eling, and meta-learning, was successfully validated on
the GitLab CE system. Experimental evaluation demon-
strated significant improvements in accuracy, execution
speed, and reliability, thus meeting the requirement to en-
hance forecasting robustness under real operational con-
ditions. These findings confirm that the proposed ap-
proach directly supports the main research goal —improv-
ing the reliability, efficiency, and adaptability of quanti-
tative quality forecasting for complex software systems.

5. Conclusions

This study proposes an integrated approach for the
synthesis and comparative evaluation of methods for as-
sessing and forecasting quantitative software quality
characteristics, ensuring consistency with the article’s ti-
tle and research objectives. The proposed framework uni-
fies adaptive Bayesian noise correction, probabilistic en-
sembles with weighted risk adjustment, hybrid multi-cri-
teria optimization, graph models of inter-metric depend-
encies, and meta-learning for forecast adaptation. The
scientific novelty lies in the ensemble integration and
adaptive mechanisms that jointly enhance robustness, in-
terpretability, and adaptability in dynamic IT environ-
ments. Thus, the experimental validation confirms the
theoretical framework (formulas 1-34), showing that
Bayesian correction (24-25), ensemble synthesis (26—
28), hybrid optimization (29), graph models (30-32), and
meta-learning (33-34) are not only mathematically
grounded but also practically effective.

The results of the GitLab CE case study confirmed
the effectiveness of the integrated approach through
measurable improvements: forecast error was reduced
from 18.7 % to 4.2 %, execution time decreased by up to
36.8 %, and system performance metrics (CPU/RAM uti-
lization, downtime, fault tolerance) improved between 20
% and 75 %. These findings demonstrate that the pro-
posed approach significantly strengthens the reliability,
efficiency, and adaptability of software quality forecast-
ing compared to traditional methods.

In addition, the approach is consistent with recent
research trends in software risk prediction using machine
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learning [10] and Al-based code quality analysis with
transformer models [11], which confirms the relevance
of integrating advanced statistical, Al, and optimization
techniques into a unified forecasting methodology. Fur-
thermore, the proposed approach aligns with modern
quality assessment standards such as ISO/IEC 25010
(quality models), ISO/IEC 25023 (measurement),
ISO/IEC 5055 (structural quality measures), IEEE 730
(software quality assurance), and NIST SP 800-55 (met-
rics governance), ensuring methodological rigor and in-
ternational applicability.

Future research should focus on extending adaptive
algorithms, refining graph-based dependency modeling,
and enhancing model interpretability to support wider ap-
plicability in cloud, 10T, and safety-critical domains.
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IHTET'POBAHMM IMIIAXIJI JJO TPOTHO3YBAHHSA SIKOCTI ITIPOTPAMHUX CUCTEM
I3 BUKOPUCTAHHSIM BAMECIBChKOI KOPEKIIII,
BATATOKPUTEPIAJIbHOI OIITUMIBAIIII TA META-HABUYAHHSI

A. C. lllanmup, O. B. 3inuenko, K. Il. Cmopuax,
B. B. Buwniecokuii, O. 1. Mopo3osa

MerToro IOCIIKEHHS € BIOCKOHAJICHHS Cy4acHHX METOJIIB MPOrHO3yBaHHS KUTbKICHUX XapaKTEPUCTUK SKOCTI
MPOrpaMHUX CHCTEM JUIsl IiJBHIICHHS iXHBbOI HaAiWHOCTI, eEeKTHBHOCTI Ta aJanTWBHOCTI B auHamiynux IT-
cepenoBuax. s mporo 0yno po3podieHo IHTErpoBaHu MiaXi, SIKH TOEIHYE aJanTHBHY 0aileCiBCbKY KOPEKIIFO
LIYMiB, IMOBIPHICHI aHCaMOlIli 3 BarOBMM PH3MKOBHM KOPUTYBaHHSIM, TiOpUIHY OaraToKpUTepialibHy ONTHMI3AIiIo,
rpadoBi MoJIeNi B3a€MO3aJIeKHOCTEI METPHK Ta MeTa-HaBYaHHs JUIs ajanraiii nporaosis. HaykoBa HOBU3HA poboTH
TIOJISITA€ y 3aIPONOHOBAHIHN iHTerpalii aHcaMOIeBHX 1 aJaITUBHUX MEXaHi3MiB, IIO MiIBUIIYIOTh CTIHKICTh MIPOTHO-
3YBaHHSI 3 ypaxyBaHHSIM HEBU3HAUEHOCTEH Ta CKIIAHUX 3aJIOKHOCTEH M MeTpukamu. EdekTuBHICTh METOIB Oyita
nepeBipena Ha npukiaa cucremMu GitLab CE. ExcriepumenTanbHi pe3ynbTaTH HiITBEPIMIN CYTTEBE MOKPAICHHS:
noxnOKa IporHo3y 3HmwkeHa 3 18,7% 1o 4,2%, dac BUKOHaHHS MPOTHO3Y CKOpo4eHO Ha 36,8%, criokuBaHH: 004nC-
moBanpHUX pecypciB (LI i mam’saTh) 3MeHmeHo 1o 20%, a TOKa3HUKK HAaIIHOCTI CHCTEMH (BiAMOBOCTIHKICTD, TpHU-
BaJIiCTh MIPOCTOI0) ITOKpAIIEHO 011 Hixk Ha 60%. OTpuMaHi METPUKH MiATBEPIKYIOTh, 1110 3aIIPOIIOHOBAHUH i IXi]
MIIBUIIYE HAIHHICTD, €(DEKTUBHICTh Ta aIANITUBHICTH MPOIIECY MPOTHO3YBAHHS SKOCTI MPOrPAMHUX CHUCTEM IOpIB-
HSHO 3 TPAIHLIIHHIMH METOIaMH.

Ki104o0Bi ci10Ba: porHO3yBaHHS SKOCTI POrpaMHOro 3a0e31edeHHs; IMOBipHiCcHI ancamb6ii; baifeciBchka Ko-
PEeKIis; MeTa-HaBYaHHA,; OaraTOKpHUTepiadhbHa ONTHMI3aIlis.
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