68 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)

UDC 004.8: 629.7.05: 623.67 doi: 10.32620/reks.2025.3.05

Olga SOLOVEI, Tetyana HONCHARENKO
Kyiv National University of Construction and Architecture, Kyiv, Ukraine

A BAYESIAN-DRIVEN FEEDFORWARD NEURAL NETWORK MODEL
FOR KAFKA CLUSTER LATENCY FORECASTING

The subject matter of this article is the process of designing the architecture of a Feedforward neural network
model based on the discrete Bayesian Network and a new method for setting the initial weights that connect
neurons across layers. The goal of this study is to develop a Neural Network model designed to forecast end-to-
end latency in a Kafka cluster. The proposed model can be used as a tool to predict the end-to-end latency of
Kafka clusters based on the given configuration parameters and performance metrics. This study resolved the
following tasks: developed and validated a discrete Bayesian network to understand the factors influencing end-
to-end latency in Kafka clusters; conducted a sensitivity analysis on the discrete Bayesian network; created a
matrix with initial weights derived from the sensitivity analysis in the Bayesian network to initialize weights in
FFNN model; designed FFNN architecture for predicting the Kafka cluster end-to-end latency and configured
its parameters; trained and evaluated the designed FFNN model. Methods from theories were used to conduct
the research: big data processing, probabilistic graphical models and Bayesian inference theory, artificial neu-
ral networks and deep learning theories, graph theory, and machine learning optimization. The following results
were obtained: a trained FFNN model Mean Square Error showed consistent decrease across epochs, so we
concluded that the model can be deployed and used as a tool to forecast Apach Kafka latency for given config-
uration parameters and performance metrics. The comparison of the Mean Square Error values when FFNN
model is initialized with weights derived from the strength of influence in the Bayes Network and FFNN model
which is set the same initial weights but scaled by Kaiming He factor demonstrated that Kaiming He scaling
factor primarily improves the initial phase of training by stabilizing weight initialization. Therefore, we recom-
mend scaling the initial weights as specified in our method to optimize FFNN training process. Conclusions.
The scientific novelty of the results obtained is as follows: 1) a new methodology for defining the architecture of
a Feedforward Neural Network (FFNN) based on the discrete Bayesian network structure is introduced; 2) the
initial weights that connect neurons across layers are set.

Keywords: Kafka cluster latency; Bayes Network; Feedforward Neural network; strength of influence; initial
weights.

1. Introduction 1.1. Motivation

0T devices, sensors, and wearable sensing devices
have become data sources for construction-based infor-
mation systems [1]. Consequently, the architecture of
such systems has evolved to include streaming pro-
cessing engines, such as Apache Kafka, which serves as
a distributed storage system. This system consumes
streaming messages from Kafka producers and retains
them until they are retrieved by Kafka consumers. The
efficiency of a Kafka cluster is measured by its end-to-
end latency, which is the time between the moment when
an application that includes a Kafka producer sends event
data and the moment when the consumer logic of the
Kafka program receives the event [2]. Information sys-
tems for building construction projects rely heavily on
Kafka clusters’ low end-to-end latency, as such systems
require immediate decisions based on real-time data.
They also need real-time data to monitor site safety and
coordinate numerous teams in a timely manner [3].

Given the limited formal methods available to pre-
dict Kafka cluster performance under different system
conditions, the Kafka cluster configuration is selected
based on the system’s performance tests. This may lead
to configuration changes post-deployment if Kafka clus-
ter performance is lower than expected, which may
breach the unavailability threshold, which must be
avoided. Therefore, when Kafka clusters are included in
information systems for building construction projects,
models and methods are required to diagnose and evalu-
ate their efficiency [4].

A neural network model to predict end-to-end la-
tency in a Kafka cluster can be an effective approach, lev-
eraging the capabilities of machine learning to model
complex non-linear relationships and interactions be-
tween various system parameters and performance met-
rics. However, the effectiveness of a neural network
model will depend on how well the network's architecture

Creative Commons Attribution
NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

Machine learning and intelligent systems

69

and parameters, such as an initial weight between neu-
rons in different layers reflect the casual relations be-
tween various performance characteristics of Kafka clus-
ter [5]. At the same time, a Bayes network (Bayes Net)
has become a method for analyzing and diagnosing com-
plex systems, as it provides the ability to model causal
relationships and answer probabilistic queries. For exam-
ple, in research [6, 7] Bayes Networks (Bayes net) were
used to identify potential issues and prioritize mainte-
nance and repair needs in building condition assessment.
In this context, the Bayes Net was used to model the re-
lationships between building components and their con-
dition.

1.2. Motivating Use Case

This work is motivated by the challenge of real-time
data processing in large-scale urban infrastructure pro-
jects, specifically the construction of a new subway tun-
nel beneath a densely populated area [8]. In this high-risk
environment, modern civil engineering practices rely on
a dense network of Internet of Things (IoT) sensors to
mitigate geological risks and optimize the Tunnel Boring
Machine (TBM) operational efficiency. The integrity of
the project and personnel safety are directly dependent on
the timely and reliable processing of this sensor data. The
system architecture is a centralized, high-throughput
streaming platform. The primary data sources were het-
erogeneous 10T sensors deployed in and around the tun-
nel. All data streams are ingested into a central, fault-tol-
erant message queue that is implemented using an
Apache Kafka cluster. This cluster serves as the data
backbone, decoupling the sensors (producers) from the
various data analysis and storage systems (consumers).
The project’s real-time analytics platform is the primary
consumer, which is responsible for anomaly detection,
visualization for TBM operators, and long-term data ar-
chival.

The operational safety model is critically dependent
on low-latency data processing. Based on real-time feed-
back from the geotechnical sensors, TBM operators man-
ually and automatically adjust machine parameters. A
safety requirement is defined as follows: a sudden spike
in ground pressure detected by piezometers must be pro-
cessed and trigger a system-wide alert or an automated
partial TBM shutdown within a strict T-millisecond.

Problem Definition: a latency spike in the Kafka
pipeline could delay a critical alert, causing the TBM to
operate under unsafe geological pressures. This could fail
in the tunnel face, damage to the machine, and extreme
risk to personnel.

Proposed Solution in the current research: to ad-
dress this challenge, we propose employing a Feedfor-
ward Neural Network (FFNN) trained to forecast latency
spikes. The prediction of FFNN is fed into a decision pro-
cess. If the forecasted latency exceeds a predefined oper-
ational threshold, the system triggers an automated reme-
diation action before the actual latency becomes critical.
The action involves increasing the number of consumer
instances. This forces a partition rebalances within
Kafka, distributing the data load across more processing
units. The system reduces consumer lag and stabilizes the
pipeline latency by increasing parallel processing capac-
ity, ensuring the threshold safety requirement is consist-
ently met.

The goal of the current research is to propose a Neu-
ral Network model designed to forecast end-to-end la-
tency in a Kafka cluster, with a focus on enhancing pre-
diction accuracy, model trustworthiness, and model con-
vergence. The proposed model is intended to be a practi-
cal tool for predicting end-to-end latency in Kafka clus-
ters based on given configuration parameters and perfor-
mance metrics.

To achieve this goal, a new method is proposed for
defining the architecture of a Feedforward Neural Net-
work based on the discrete Bayesian Network structure
and for setting the initial weights that connect neurons
across layers.

1.3. State of the art

The Kafka cluster consists of servers, which are of-
ten referred to as brokers. In Kafka cluster, one server is
always assigned the “controller” role and the “leader”
role. The “controller” is responsible for administrative
tasks, while the “leader” is the server that first receives
streaming data. Kafka uses ZooKeeper as a centralized
service for managing and coordinating Kafka brokers in
the cluster. Each Kafka broker manages topics to which
producers send streaming data and where consumers tune
in. Kafka replicates data across various servers included
in the Kafka cluster to ensure high availability, durability,
and fault tolerance. The number of necessary copies is
determined by the topic configuration using the replica-
tion factor parameter. Apach Kafka documents [9] spec-
ify the end-to-end Kafka cluster event streaming process
through a sequence of steps (Fig. 1).

When a producer sends event data on a topic with a
single partition, the event lands in the receive socket
buffer on the broker; from there, it is picked up by the
Network Thread and placed in the shared request queue.

70 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)
-Broker
id=1
k Network ‘Socket -Shared : . ;
‘Producer Thread Receive Buffer —— -I0 Threads :Commit logs

i send event i i i i

pick event i i i

quene event—m! B pick event append event i

| retum event | | o commit log |

! data] index
| -
L] i complete i
Response |, ; -Purgatory ; Broker id=N|

queue ' Map i
i replicate :
—event (replica factor=1) :

quene
event
‘Socket
Send Buffer complete
! replication
pick !
! event :
pick P queue response -~ i
D< response | [remurn ;
i -t |
(acks_config = "all" fesponse
or "1

Fig. 1. Kafka cluster event streaming process

Kafka’s 10 thread picks up the event and registers it to a
commit log organized on disk in segments, where each
segment holds part of the log. The registered event data
from RAM is saved on the leader server’s disk and moved
to the "Purgatory Map" queue, where they are held until
copied to other servers in the Kafka cluster. These servers
send requests to the leader server to receive copying event
data. The leader server sends the event data in response
once it is copied to the disk. Until brokers do not complete
the copying process, they will continually send requests
to the leader.

After a broker completes replication, the pending
event data are removed from the Purgatory Map queue
and placed in the response queue. The Network Thread
then takes a response and sends it into Send socket buffer.
The Kafka producer receives confirmation from the
"leader server" that events have been securely stored after
being copied on all servers (when the "acks_config" pa-
rameter is set to "all"). The Kafka producer can also re-
ceive confirmation as soon as the data is added to the log-
ging journal on the server (when the "acks_config" pa-
rameter is set to "1') or may not expect any confirmation

at all if the "acks_config" parameter is set to "0". Using
the poll() function, Kafka consumers continuously send
requests to the leader server to retrieve data from the topic.
In response, they receive messages immediately after the
Kafka producer has received confirmation from the server
(in cases where the "acks_config" parameter is "1" or
"all") or as soon as the event is added to the logging jour-
nal on the leader server (when "acks_config"is "0"). From
Fig. 1 can be concluded that the end-to-end latency of the
Kafka event streaming process can be measured by time
T, which equals the sum of the following time periods:

1. The time required to collect events into a batch
before sending them to the server is referred to as pro-
ducer time (Tproducer)-

2. The time from when the event data are received
in the receive socket buffer to when they are saved on the
leader-server disk, referred to as the leader-server commit
time (Tleadercommit)-

3. The time from when the message is saved on the
leader-server’s disk to the completion of its copying on
the servers included in the Kafka cluster, referred to as
replica time (T replica)-

Machine learning and intelligent systems

71

4. Thetime from when the Kafka producer receives
confirmation from the leader-server ("acks_config"=1 or
"acks_config"="all"), or when a certain amount of data is
saved on the disk of the leader-server (“acks_config"= 0),
to when the Kafka consumer receives the event data, re-
ferred to as consumer fetch time (T etcn).

Therefore, the formal definition of the end-to-end la-
tency time (T.) of Kafka cluster is provided in equation

()
TL: Tproducer+ Tleadercommit+ Treplica"' Tfetch- (1)

A previous study [10] confirmed that the log-based
architecture of Kafka is optimal for scalable, durable, and
high-throughput data ingestion and predictive mainte-
nance in Condition Monitoring (CM). The study con-
cluded that Kafka outperforms RabbitMQ in producer
throughput, whereas RabbitMQ achieves higher con-
sumer throughput, demonstrating its superiority in rapid
message consumption scenarios.

Study [11] proposed a model for Kafka cluster con-
figuration comprising three subsystems in series: a pro-
ducer group, an Apache Kafka cluster, and a consumer
group, each containing three parallel units operating un-
der a 1-out-of-3 strategy. The created model has been
proven to improve system robustness and efficiency in
handling failures in streaming data.

In a previous study [12], Apache Kafka was used as
the backbone of the data ingestion layer to manage high-
throughput data streams in real time for an Internet bank-
ing system. The Apache Kafka cluster was configured
with multiple producers and consumers. This configura-
tion ensured scalability by dynamically adjusting the data
ingestion rate based on the number of active producers,
making it suitable for high-velocity Internet banking
data.

A latency-aware and resource-efficient approach to
dynamic event consumer provisioning in distributed
event queues for real-time cloud applications was ex-
plored in [13]. The proposed solution models consumer
provisioning as a two-dimensional bin packing problem
and addresses the challenge of blocking synchronization,
which affects high-percentile latency. An extension to the
bin-pack autoscaler is introduced to mitigate tail latency.
The experimental results provide insights into optimizing
the model for workloads with high variance in processing
time.

From our perspective, the Kafka cluster configura-
tion models proposed in [10-13] could further improve
performance predictability by incorporating a machine
learning model capable of forecasting Kafka cluster per-
formance based on configuration parameters and perfor-
mance metrics.

Feedforward Neural Networks (FFNNs), combined
with gradient descent optimization techniques such as

backpropagation and algorithms such as Adaptive Mo-
ment Estimation (Adam), are widely regarded as founda-
tional machine learning models for regression and classi-
fication tasks. FFNNs architecture includes one input
layer, one or more hidden layer(s), and a single output
layer. The number of neurons in the input and hidden lay-
ers and the number of hidden layers in a FFNN are criti-
cal architectural choices that significantly affect the net-
work’s performance [14]. If these parameters are incor-
rectly chosen, it can negatively impact the model's ability
to learn from the data and achieve high accuracy or gen-
eralization. Currently, there is no universally recom-
mended procedure to determine the optimal number of
units or layers in an FFNN architecture for forecasting
Kafka cluster performance. Therefore, in this study, we
propose a method that specifies how to define FFNN ar-
chitecture based on the Bayesian Network structure.

FFNN training begins by setting initial values for
the following parameters: weights and bias. A learning
rate that determines the step size for weight updates dur-
ing optimization must be specified as a hyperparame-
ter [15].

Numerous studies have discussed various weight
initialization methods for neural networks and empha-
sized their importance as weight start significantly influ-
ences neuron activation [16]. Orthogonal initialization is
a recent method that initializes weights as orthogonal ma-
trices, which helps preserve the norms of activations and
gradients, contributing to stable training dynamics.
Sparse initialization initializes weights with a sparse
structure, promoting sparsity in network activations and
facilitating efficient computation [17].

Kaiming Uniform initialization is designed to work
with Rectified Linear Unit (ReLU) activation function.
The weights of each layer are initialized from a uniform
distribution with zero mean and a variance calculated
based on the number of neurons n in the layer [18]:

0?2 =2/n,0rc=+2/n.)

Once the variance o is calculated according to (2),
the weights are sampled from a uniform distribution in
the range [—v/30,/30].

Given that weights in a neural network dictate the
strength of the inputs in determining the output of a neu-
ron, we propose setting their initial values based on the
strength of influence obtained from a sensitivity analysis
on a Bayesian network. However, to keep the variance of
activations and gradients relatively constant across dif-
ferent layers of the network, we scale the values of the
strength of influence using the Kaiming He scale factor
(2), which is specifically designed for networks with
ReLU activation function.

72

Radioelectronic and Computer Systems, 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

1.4. Objectives and tasks

This study aims to design the architecture of a Feed-
forward neural network model based on the discrete
Bayesian Network and a new method for setting the ini-
tial weights that connect neurons across layers. The goal
of the neural network is to predict future latency issues
based on present and historical cluster configurations and
performance metrics. To achieve these objectives, the
following tasks must be completed:

1. Adiscrete Bayesian network was developed and
validated to diagnose and understand the factors influ-
encing end-to-end latency in Kafka clusters.

2. A sensitivity analysis was conducted on the dis-
crete Bayesian network to identify the strength of the fac-
tors influencing the Kafka cluster latency.

3. To initialize weights in FFNN, create a matrix
of initial weights derived from the sensitivity analysis in
the Bayesian network.

4. Design the FFNN architecture and configure its
parameters.

5. Train and evaluate FFNN model.

Paper Structure. In Section 1 after the “Introduc-
tion” the “Motivation” formulates the challenges with
Kafka cluster performance predictability and specifies
how this study’s goal proposes to address those chal-
lenges. The “State of the art” provides the summaries of
the related research. The main tasks to be resolved in
achieving the current research goal are listed in the “Ob-
jectives and tasks” section.

Section?2. “Materials and Methods” includes the for-
mal specifications of the methods and models employed
in this study.

Section 3. “Development of Feedforward Neural

Network Model” details the steps taken to construct a dis-
crete Bayes network model to diagnose Kafka cluster
end-to-end latency. This section also describes the pro-
cess of deriving Feedforward Neural Network architec-
ture from to forecast Kafka cluster end-to-end latency.

Section 4. “Experimental Study” describes the steps
followed to gather the data required for learning the pa-
rameters of the Bayesian network and parameters to be
used to train a Feedforward neural network. Metrics for
evaluating the quality of a developed Bayesian Network.
Metrics for evaluating the proposed Feedforward Neural
Network model’s quality.

Section 5. “Results and Discussion” includes the
practical outcomes of these tests.

The Conclusion section outlines the recommenda-
tions drawn from this research.

2. Materials
and research methods

The defined tasks (1-6) will be addressed through se-
quential processes, where the results of the process "De-
sign Bayes Network Model" will serve as input data for
the subsequent process "Design Neural Network Model"
(Fig. 2). Each process is described in detail below.

1.1. Define Bayes Network structure. The structure
of the discrete Bayesian network that models the relation-
ship between X and Y is an acyclic graph where Y is a set
of hidden nodes Y_7 = {y;} that dependent on the set of
observed nodes X;_1x = {x;}, which serve as independent
parent nodes. The influence of the parent nodes X; on i is
expressed by the joint probability according to Bayes'

rule: P(y, vz, . yn) = [T, yilX.

1. Design Bayes Network Model

2. Design Neural Network Model

—D{ 1.1. Define Bayes Network structure ‘

.4
‘ 1.2. Data collection ‘

A J

1.3. Learn Bayes Network parameters

pd

1.4. Accept model,
Y/N?

1.5. Identify strength of influences

2.1. Define Neural Network
architecture

¥
2.2. Define training method

v

23 Define mnitialization weights
method

v

2.4. Train Neural Network

v

2.5, Accept model,
Y/N?

2.6. Deploy Neural Network model

Fig. 2. Method to define FFNN architecture based on Bayes Network

Machine learning and intelligent systems

73

The prior probabilities for x; € X are defined by parameter
0x (3) and the conditional probabilities of y; € Y are de-
fined by 6y (4).

Oy = {e L N M eka[sxk]}' ®3)

0, =

Oybass = Oty @

{GY1|X11’ o e}’1|X1N[sxl]' B

where N[s,_ |, N[sy,], N[sy, | - the number of states S that
are defined for x; € X.

When the observed data to train Bayes net exists
then 6X, Oy can be computed using the likelihood func-
tion L(8|D) (5) which represents the joint distribution of
the probabilities of the observed data D [18, 19].

L(e|D) =
[T, PX(®), Y(©)8) =TI, PX®|OPY®IX(1),0) =
oNIxaal | Meantsl] | el " XkN[SXk]]_ _
i O e O B
Nyailxial | | N[yi"‘lN[lel]_ gNmbaal |
V1lX11 Y1|X1N[Sx1] YmlX11 .
N[Ym|X1N[Sx1]] (5)

Ym|X1N[sX1]

where N [y1|X1N[sX1]];N [ymlxlN[le]] — the number of
Y111y, | is included in (5).

1.2. Data collection. Since the prior probabilities of
the observed variables X are unknown it is necessary to
create a data set D in order to calculate 0x, 6y. The data
will be collected by executing different scenarios created
to test Kafka cluster performance under different system
loads. The collected continuous values of performance
measures from Kafka Producers, Servers, and Consumers
must be discretized to be utilized in the discrete Bayesian
network model. Hierarchical clustering methods groups
data based on two criteria: distance metric and linkage
method, beginning when each data point is a separate
cluster and merging them until a single cluster is formed.
When the linkage method is "Ward" and the distance met-
ric is either "Euclidean" or "Manhattan," the resulting
clusters tend to be relatively compact, equally sized, and
more robust to outliers [20]. Therefore, hierarchical clus-
tering will be employed in this research to discretize the
continuous values.

1.3. Learn Bayes Network parameters. The task of
determining the network parameters is to find the solution
of equations (5) in partial derivatives.

1.4. Accept model. The data collected in step 1.2 in-
cludes the logged values of the end-to-end latency of
Kafka cluster for the given configuration parameters and

times 6

the observed performance metrics. These data will be
used to compare the evidence from the Bayes network.
The developed Bayes Network model will be accepted if
the expected test results match the actual results.

1.5. Identify the strength of influence. The posterior
probability P(Y|X)(p) of the child variable Y due to a
change in the parameters of the parent variable X is
expressed as the ratio of two linear functions of the pa-
rameter (p) (6)

ap+b
cp+1’

P(YIX)(p) = (6)
where a, ¢ — the angular coefficients in the linear equa-
tion;

b — the shift along the QY- axis;

p — is the probability that the network parameters will
take certain values.

The partial derivative of P(Y|X)(p) with respect to

p measures the sensitivity of child node y € Y to changes
in the parent node. The derivative is given by:

_oe(Y[X)®) _ _a-be
- ap T (cp+1)?

Dr)

The strength of the influence Ijj from changes in the
values of the parent node (i) on the posterior probability
(6) of the child node (j) is determined by the product of
parameter range’s interval width W; and the absolute
value of the derivative (7). It is calculated using the fol-
lowing expression [20]:

Iij = Wi - Dr. (8)

2.1. Define Neural Network architecture. Given that
the “Design Bayes Network” process is completed with
the validated model and the calculated strength of the in-
fluence Ijj as per (8). The architecture of Feedforward
fully connected Neural Network is defined by the follow-
ing design principles: X;_tx = {x;} neurons will form the
input layer; the neurons in the hidden layers correspond
to the hidden variable Y of Bayes net and the number of
hidden layers is derived from the structure of a Bayes
Network. A single neuron in the output layer will be
“end-to-end latency” as described by (1). Neurons be-
tween layers are fully connected; however, the initial
weights for connections that do not exist in the Bayes
Network model are set to 0.

2.2. Define the training method. For each hidden
layer (I) with weights W' and biases b', the output h' and
preactivation z' are calculated as follows:

h! = ReLu(W'h!=* + b, 9)

where ReLU is f(x)=max(0,x).

74

Radioelectronic and Computer Systems, 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

For the output layer L with weights W- and bias b*
predicted value § with linear activation function is as fol-
lows:

Y = Wkhl~1 + bt (10)

2.3 Define the initialization weights method. Given
an adjacency matrix of the Bayes Network Ay, has
;i=0; a;=1 when node i is connected to node j and a;=0
otherwise; m= |X|+|Y] is a total number of nodes in the
Bays Network. Then the corresponding initial weights
matrix W for FFNN is set as follows:

I;;, wherea;; <> 0’ (11)

{ 0,wherea; =0
Wi =
where I;is the strength of influence (8).

2.4. Train Neural Network. The training of the
FFNN will aim to minimize a loss function, such as Mean
Squared Error (MSE) for regression tasks.

2.5. Accept model. The proposed FFNN model will
be accepted when the number of epochs increases and the
value of MSE consistently decreases.

2.6. The accepted FFNN to be deployed and ready
to use with new datasets to forecast Kafka cluster end-to-
end latency.

3. Development of Feedforward
Neural Network Model

3.1. Design a discrete Bayes Network model
structure to diagnose Kafka
cluster end-to-end latency

A discrete Bayesian network to diagnose the growth
of end-to-end latency in an Apache Kafka cluster defines
the target node to be “end-to-end latency time (T.)”, and
the Kafka cluster configuration parameters are considered
as the observed variables, and the Kafka performance
metrics are treated as the hidden variables for each term
in equation (1). To describe causal dependencies using an
acyclic graph that represents the Bayes Net structure, we
employ a notation in which a set with a hidden node Y is
identified by the function f& This function includes pa-
rameters X, which are the observed nodes. Here, 'n' de-
notes the level of the node in the graph, and 'm' is the index
of the term in equation (1). The definitions for sets X and
Y are provided below.

The elements of set X1={ X11,...,x15} include:

x11="acks_config" configures the level of acknowledg-
ment required from the leader-server for producers, deter-
mining when a message write is considered successful. It

directly influences the trade-offs between message deliv-
ery durability and availability, thereby affecting the relia-
bility of data transmission within a Kafka cluster;

X12="buffer.memory” specifies the total amount of
memory that the producer can use for buffering. If the
buffer is completely filled, additional messages will be
blocked or discarded depending on the blocking policy;

X13 = “max.inflight.requests.per.connection” - defines
the maximum number of unacknowledged requests that
can be sent to the server on one connection. If this maxi-
mum is reached, the producer's batches will be blocked
until confirmation from the server is received;

X14="socket.receive.buffer.bytes” specifies the net-
work socket buffer size for receiving data. The chosen
buffer size can affect the server’s message processing
time;

X15 = “max.poll.records” defines the maximum number
of records that a Kafka consumer can handle in one call to
the poll() method.

A higher value can reduce queue times if the con-
sumer handles larger batches efficiently, thereby decreas-
ing response delays.

The elements of set Y1 = {yi11, Y12} are performance
measures as follows:

yi1=RequestQueueTimeMs (Request Queue Time
Milliseconds) measures the time a request spends waiting
in the request queue before being processed by the broker.
High values indicate that the broker is overloaded,

yi2=ResponseQueueTimeMs (Response Queue
Time Milliseconds) measures the time a response spends
in the response queue after being processed and before be-
ing sent back to the client. A high value indicates that the
broker struggles to promptly dispatch responses.

The elements of set Xo={X21, X22, X23} are the perfor-
mance measures:

X21="log.flush.interval.ms” specifies the maximum
time, in milliseconds, that a message can remain in the log
buffer before it is flushed to disk. Setting a lower value
for this parameter means that logs will be flushed to disk
more frequently, which could result in an increase in the
log flush rate but potentially decrease the flushing time
(log flush time) because the amount of data to be written
at each flush could be smaller. Conversely, a higher value
for this parameter could decrease the log flush rate while
increasing the log flush time as more data accumulates be-
fore each flush;

X2="replica factor" determines the number of data
copies (replicas) that will be maintained across different
brokers. A higher replica factor not only increases redun-
dancy and fault tolerance but also impacts log flush dy-
namics. More replicas mean that each message needs to
be flushed in multiple places, potentially increasing the
overall time taken for flush operations (as well as the sys-
tem's 1/0 overhead). This might lead to a decrease in the

Machine learning and intelligent systems

75

log flush rate because the system is managing more flush
operations across replicas;

xzs=replica.fetch.min.bytes indicates the minimum
amount of data that a follower replica must collect before
sending a fetch request to the leader replica. Increasing the
replica.fetch.min.bytes results in larger batch sizes being
fetched by each follower. Larger batch sizes can improve
throughput but might result in fewer fetch requests. If the
followers fetch data less frequently but in larger batches,
the leader might accumulate more unflushed data, poten-
tially increasing the amount of data to flush when the log
flush occurs. The impact on resource utilization might de-
crease the log flush rate.

The elements of set Y2 = {ya1} is a performance
measure: Yy»1="LogFlushRateAndTimeMs” (Log Flush
Rate Milliseconds) represents the rate and time taken to
flush log data from memory to disk. This metric is crucial
for understanding the performance and efficiency of data
durability and storage in your Kafka cluster.

The elements of set Xs={Xs1,...,X3s} are Kafka con-
figuration parameters:

Xz1= “linger.ms” - how long the producer will collect
event data to form a batch. If this parameter is set to a
value greater than zero, the producer will accumulate
messages in the buffer for a specified time;

X32 = “batch.size” the maximum batch size in bytes.
Once the batch reaches this size, it will be sent regardless
of whether the time specified by "linger.ms" has elapsed,;

Xaz = “compression.type” determines the message
compression type, which requires additional processing
time before being sent;

Xas = “fetch.min.bytes” defines the minimum num-
ber of bytes that must be copied to the disk of the leader-
server before becoming available for Kafka consumers to
fetch. If the threshold set by fetch.min.bytes is not
reached, the server leader will wait until a sufficient
amount of data accumulates before sending a response to
the consumer. The use of fetch.min.bytes can balance the
number of requests and the scale of transmitted data.

The elements of set Y3 = {ys1, Y32} are performance
measures as follows:

ys1=BytesInPerSec measures the total number of
bytes being received per second by a Kafka server from
all producers. High values may indicate the need to add
processing resources or adjust producer configurations;

y32=BytesOutPerSec — measures the rate at which
data are sent from the Kafka brokers to the consumers.
While high values can indicate good consumer through-
put, they can also signal that consumers are demanding
data at a rate that might strain the server, especially if
combined with high values in BytesInPerSec.

The elements of set X4={X15,X31, X32, X33, Xa1} are the
performance measures:

Xis, Xa1, X32, X33 are from sets Xy, X3 respectively;

Xa1= “the number of producers “ - the relationship
between the number of producers and the producer aver-
age batch size (batch.size.avg) can be influenced by the
configuration of the producers. As the number of produc-
ers increases, the contention for network and broker re-
sources can also increase, potentially leading to backpres-
sure and longer wait times for batch accumulation. In this
case, each producer might reach its batch.size limit more
frequently due to data sending delays, potentially reduc-
ing the batch.size.avg if not all producers are consistently
filling their batches to the maximum configured size.

The elements of set y4 = {ya} is a performance
measure: yai= "batch_size avg" a producer average
batch size measures the average size of message batches
sent by the producer to a Kafka broker. A larger average
batch size means that more records are sent per request,
which can improve throughput but may also result in
higher latencies.

The metric to evaluate a node “end-to-end Kafka
cluster latency time T, is equal to the sum of

Vi =1 V11, Y21, Y31, Y41): Y3 = 3 V12, Y21, Y32);
Y?1> = f?}(Y12'YZ1'Y32'Y41); Yi = fz}(Y11’Y12’Y21)1

where yi is TotalTimeMs, request=Produce which
equates to the total time taken to handle a Produce re-
quest. It is directly influenced by:

yi1, Where a long queue could increase the total han-
dling time;

Vo1, as frequent or slow log flushes can affect the
processing speed of a produce request;

ya1 since heavier incoming data rates might slow
down processing;

Ya1, as larger batch sizes might take longer to pro-
cess times.

y3 presents TotalTimeMs for the request=Fetch
which corresponds to the total time needed to complete a
fetch request. It is impacted by:

yi2, Where delays in response handling can extend
the total time;

Vo1, as, if data needs to be fetched from disk, flush
rate/times can play a significant role;

y32, where high output rates can indicate faster re-
trieval but also depend on network and broker load;

yi is TotalTimeMs, request=FetchConsumer - re-
lated to fetch requests initiated by consumers and can be
affected by the same factors as TotalTimeMs, re-
quest=Fetch but additionally by ya1 depending on how
quickly batches are gathered and sent to consumers, im-
pacting total fetch time for consumers;

yi represent TotalTimeMs, request=OffsetCommit
- time taken to commit offset details, is influenced by yi1;

yi2 as any queuing delays directly add to the total
commit time; y»1, where committing an offset might re-
quire log interactions, thereby affected by log operations.

76

Radioelectronic and Computer Systems, 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

With the above knowledge the structure of Bayes
Net is specified as follows:

Y, = f2(X0); Y, = £2(X5): Yz = £ (X3); Y, = £2(Xy);
Z=yi+y;+y3+yi

and it’s schema is illustrated on Fig. 3.

To describe Bayes Network (Fig. 3) with variables
in the study, the following notation is used:
<N, S, G(S)>, (12)
where N —name of variable;
S —a set of state S;_7x = {s;} expressed as linguistic
terms;
G(S) —a set of values for each state s; € S.

Fig. 3. Structure of a discrete Bayes Network for diagnosing Kafka cluster end-to-end latency

3.2 Design an architecture of Feedforward
Neural Network discrete Bayes Network model
structure to diagnose Kafka cluster
end-to-end latency

Based on the structure of Bayes Network (Fig. 3) an
architecture of fully connected FFNN is recorded in
Table 1 and illustrated on Fig. 4.

Equation (13) specifies the predicted value of the
Kafka cluster’s end-to-end latency corresponding to the
architecture outlined in Table 1.

§ = f(W3ReLU(W?ReLU(Wx,; + bl) + b2) + b3),
(13)

where f(z)=z; W, W?, W® — weights initialization matrix
(14) - (16).

Solid lines on Fig. 4 correspond to connections with
initial weights not equal to zero in matrices (15) — (17).
Dashed lines indicate connections for which no influence
was identified based on sensitivity analysis.

Table 1

An architecture of fully connected FFNN

Layer Layer neurons Initial weights scaled by Kaiming Bias
He scale factor

Input, k=13 Xpexc1 €X Wt = ({/2/K)WL,, bl <0

First hidden, {y11, Y12, y21, y13, Y23, Ya1 } w2 = (,/Z/n)WIfxn Bg <0

n=6

Second hidden, yLyliylyl W3 = (2/p)Wa., b2 « 0

p=4

Output Z

Machine learning and intelligent systems

7

w2 W3

Hidden Layers

Fig. 4. Fully connected FFNN to forecast Kafka cluster end-to-end latency

wi wi wi wi
wi wi wl wi wi
[1
w
1 - 11
W6><13_i
\ 1
Wio
2
w3
Wi, = |
4X6 W% Wz%
w§

W13><4 = (Wf

4. Experimental Study

4.1. Data Collection

The observed variables for Bayes Network with the
structure on Fig. 3 are defined according to (13) in Ta-
ble 2 and hidden variables are described by states {*“Low-
Time”, “MeanTime”, “HighTime”} and the set of values

1 |
2 Wi3
1 1 1 1 B (14)
Wis Wiz W3 W33 |
1 1 1 1
Wis Wig W31 Wi /
1 1 1 1
Wie Wig W33 W3s
2 2
Wio W13\
2
w
11 I: (15)
2 2
Wiz W14/
wi wi wi). (16)

for each state is identified programmatically by executing
hierarchical clustering.

To collect a data to learn Bayes Network parameters
(5), (6) we designed scenarios to test different Kafka
cluster characteristics:

1. A scenario to measure a Kafka cluster latency
with high throughput emphasis with durability.

2. A scenario to measure a Kafka cluster latency
with low latency and average throughput.

78 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)
Table 2
Specification of variable for Bayes network
Name of variable Set of states Set of values
acks “none”, “leader”, 0,1,7all”
7’a1173
batch.size “small”, “moderate”, [1000..8192], (8192..16384],(16384..32768]
7’1arge7’

replica factor

“no fault tolerance”, “fault
tolerance”

“1” ”2”
>

linger.ms

“none”, “default”, “high”

0,[1..50),[50..100]

compression type

“enable”, “disable”

39 99

“none”,“gzip”,”’snappy”

”default”, “large”

buffer.memory “small”, [LMB..8MB],(8MB..50MB],(50MB..96 MB]
”default”, “large”

max.inflight.requests.per.connect | “single”, “moderate”, | 1,(2..5],(5..15]
‘Ghigh7’

socket.receive.buffer.bytes “small”, [100KB..500KB],(500KB..1MB),[1MB..2MB]

log.flush.interval.ms

“frequent”, “less frequent”,
“not frequent”

[0..100),[100..500),[500..1000]

replica.fetch.min.bytes

“frequent”, “less frequent”,
“not frequent”

[1KB..100KB],(100KB..50KB],(50KB..IMB]

max.poll.records

small, moderate, large

[100..300],(300..500],(500..2000]

fetch.min.bytes

very frequent, frequent, not
frequent

[1KB..100KB],(100KB..50KB],(50KB..IMB]

number of producers

small, moderate, large

[0..5),[5..10),[10..15]

3. A scenario to measure a Kafka cluster latency
with a balanced throughput and latency with fault toler-

ance.

4. A scenario to measure a Kafka cluster latency

with a stress test.

5. A scenario to measure a Kafka cluster latency
with a high fetch size for Bulk Processing.

Table 3 lists the values of the observed variables for
each scenario. For each scenario Kafka producer will be

sent 400 messages making the final dataset to include
2000 observations.

The experiments will be conducted on a system

with processor

11th Gen

Intel(R) Core(TM)

i7-

1185G7@ 3.00GHz 3.00 GHz and 32 GB RAM. Apache

Kafka version: 3.8.1. Bayes Network construction, learn-
ing paraments and sensitivity analysis will be performed
in program GeNle Academic. Development of FFNN
will be performed in Python.

Table 3
The values of the observed variables for scenario 1-5
Scenario Ne

Name of variable ! 2 3 4 >
acks all leader all none all
batch.size large small moderate large large

fault toler- | no fault tol- no fault toler- Fault toler-
replica factor ance erance Fault tolerance ance ance
linger.ms high none default none high
compression type enable disable enable disable enable
buffer.memory large default default small large
max.inflight.requests.per.con-
nect moderate single moderate high moderate
socket.receive.buffer.bytes large small small small large
log.flush.interval.ms less frequent frequent less frequent frequent not frequent
replica.fetch.min.bytes not frequent Frequent not frequent not frequent not frequent
max.poll.records large small small large large

very fre-

fetch.min.bytes frequent quent frequent very frequent | not frequent
number of producers large small large large small

Machine learning and intelligent systems

79

4.2. Metrics for evaluating the quality
of a developed Bayesian Network

The normalized log-likelihood is used as a metric to
evaluate how effectively the Bayesian Network has
learned patterns in a given dataset D:

InL) _ i it1 In(P(xy)), (0

n
where P(x;) represents the joint probability of the i-th ob-
servation, calculated using the conditional probability ta-
bles (CPTs) learned from the dataset D, and n denotes the
total number of observations in D.

. . In(L . .
This metric, % provides a normalized measure of

model fit by indicating the average log-probability as-
signed to each observation. A widely used set of practical
guidelines for interpreting the normalized log-likelihood
is provided within the documentation for the influential
Bayesian network software, Netica (Norsys, 2023).

These heuristics suggest:

% > —0.5 the Bayesian network fits data with

high accuracy, and well-captured relationships. No fur-

ther revision is required.

-1.0< % < —0.5 the Bayesian network effec-

tively captures key patterns and dependencies. The model
is deemed acceptable, and immediate structural improve-

ment is not required.

-15< % < — 1.0 the Bayesian network has an

acceptable fit, however further refinement of the network
structure is recommended to improve its ability to model

the dataset.

% < —1.5 — the Bayesian Network fails to ade-

quately explain the data, indicating a poor fit. The model
cannot be accepted and requires significant structural re-
vision or redevelopment.

4.3. Metrics for evaluating the quality
of a proposed FFNN model

The following evaluation metrics will be employed
to compare the quality of the feedforward neural network
(FFNN) with the proposed weight initialization method
and architecture (Fig. 4) against the quality of an FFNN
with the same architecture but initial weights set using
the Xavier/Glorot uniform initialization method and to
align with the evaluation framework in [21]:

Mean Absolute Error (MAE) measures how closely
the model's predicted Kafka cluster latency (L;) aligns
with the actual Kafka cluster latency (L) in the dataset:

MAE = =31, [L; - []. (18)

Root Mean Squared Error (RMSE) penalizes devi-
ations more heavily than MAE, as outliers have a squared
impact. It is useful for evaluating the accuracy of the
model in cases where large latency prediction errors are

significant:
n i=1 1 1

Coefficient of Determination R? to measure how
well the model learned patterns in the dataset. Measures
the proportion of variance in latency captured by the
model:

(19)

2 _ 1 _ Zha(Li-D)’
N e (20)
where L is the mean of the actual Kafka latencies.

Convergence speed measures how efficiently the
model reaches an acceptable loss threshold (T) during
training in terms of time:

S; = min{t;|Loss; < T}, (21)
Where t; is the training time at epoch i.

Alternatively, the convergence speed can be expressed in
terms of epoch as follows:

S; = min{i|Loss; < T}, (22)
where i is the epoch index, the Loss is calculated based
on Mean Squared Error (MSE).

Key Performance indicators to quantify the percent-
age improvement or degradation in key metrics such as
R? and MSE when comparing the proposed Bayesian-
guided weight initialization to the Xavier initialization,
the following indicators will be calculated:
Percentage change in R2:

R?-R%

Apz % = (R—%) x 100,

(23)
where R2, R are the coefficients of determination of the
models to be compared.

Percentage change in MSE:

MSE;-MSE,

e) x 100,

AMSE % = ((24)
MSE;, MSE; are the Mean Squared Errors of the models
for comparison.

Statistical significance test to quantify whether the
performance improvements are meaningful will be based

on paired t-test:

a

t:Sd/\/ﬁ’

(25)

80

Radioelectronic and Computer Systems, 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

where a — mean of differences; sy — Standard Deviation
of differences.

t- test’s the Null Hypothesis (Ho): no significant dif-
ference in performance between two FFNN models.

5. Results and Discussion

Because of executed scenarios 1-5, the values for
hidden variables yi;y3;y3;y1 of Bayes network from
Fig. 3 are recorded, and their values per scenario are il-
lustrated on Fig. 5.

The lowest end-to-end latency, equal to 9.44 ms,
was achieved in scenario 2 where only the leader replica
must acknowledge the messages. This speeds up the pro-
cess because acknowledgments from all replicas are not
required; the absence of multiple replicas removes the
overhead related to replicating data. Furthermore, disa-
bling compression type helped avoid the time and com-
putational power needed for data compression and de-
compression; the absence of multiple numbers for con-
current requests helped optimize the usage of resources.
As a result, the TotalTime metric for all types is low, so
their cumulative influence on end-to-end latency is min-
imal.

In scenario 4, the end-to-end latency was 13 ms,
which was a 37% increase compared to scenario 2. This
increase was due to allowing many numbers of
unacknowledged requests to be sent to the server on one
connection, which impacted the Total Time when the re-
quests were “Produce” and “OffsetCommit”. However,
as no acknowledgments are required, the TotalTime for
types “Fetch” and “FetchConsume” remained low, so
there was not a drastic effect on end-to-end latency.

TotalTimeMs.request=Produce by
Scenario

TotalTimeMs.request=Fetch by
Scenario

20

'S
=]
(=]

TotalTime, Ms
N
=)
3

Total Time, Ms

Scenario Scenario

In the scenario 1 and 3, the end-to-end latencies
were 40 ms and 43.38 ms, showing increases of 331%
and 359.5% compared to scenario 2, respectively. The
reasons for these increases include the requirement for
acknowledgments from all servers, which negatively im-
pacted the time it takes for each message to be considered
successfully sent. Along with infrequent flushes, this im-
pacted the TotalTime for requests labeled as “Produce”
and “OffsetCommit.” These last two factors contributed
to end-to-end latency growth.

In scenario 5, the end-to-end latency was 122.42
ms, showing an increase in 1196% due to the requirement
for acknowledgments from all replicas, which signifi-
cantly increased the waiting times. The overhead of man-
aging multiple replicas slowed down the data processing.
“not frequent” settings in log.flush.interval.ms and rep-
lica.fetch.min.bytes delayed data flushing and fetching,
contributing to increased response times, i.e., Total Time,
for requests of the "Fetch™ and "FetchConsumer™ types.

Figure 6 shows the developed Bayesian Network,
which was constructed and trained using the parameters
learned from the collected dataset. The calculated log-
likelihood for the network is Ln(L)=-1785.6, and the cor-

responding normalized log-likelihood is o) —

__Z)Eié ~ — 0.89, where n=2000 represents the total num-

ber of observations in the dataset. A normalized log-like-
lihood of —0.89 falls within the "Good" fit quality cate-
gory, indicating that the Bayesian Network is well-suited
to model the dataset, and can be used to perform sensitiv-
ity analysis to identify the strength of influences between
nodes in the network.

TotalTimeMs.request=0ffsetCommit by
Scenario

TotalTimeMs,request=FetchConsumer
by Scenario

2.0

&
=]
(=}

1.5

TotalTime, Ms
N
=]
=)

Total Time, Ms

Scenario Scenario

End-to-End latency by Scenario

100

50

End-to-End latency. Ms

3 4 5
Scenario

Fig. 5. Kafka Cluster performance metric values for the scenarios 1-5

81

Machine learning and intelligent systems

B0UBPINS PaTRINIed UM JBISN|I BYJe J0 Aduale| pus-0)-pus asoubelp 01 yJomlsN saheg ‘9 ‘Bi4

-
o |
e) e pey
% WA g
COREETT
o OO - o
] Wiy sea -y -~
~ LU s [0];IE!..!
L Tl T ¥ A 1 [0
F I T L
7 -l -t - vy sy -
e “h .hh-h._ b St e |
W O — O e sdaedioy O ST Lamndunbeg
w0 o o Ieaebagis o resmbasiy "™ o0l
Wl ottt o s L - e
d "o e
wtepard o soques wepiiasis R nipmerpnropis . Of veseryagia O e WO

82

Radioelectronic and Computer Systems, 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

The states of the observed variables are set for test-
ing purposes according to scenario 5. The evidence ob-
tained from the Bayesian network is as follows: the "end-
to-end latency" of the Kafka cluster will be high when the
TotalTime for the "Fetch" request is high, with a proba-
bility of 72%; additionally, "BytesInPerSec" and
"BytesOutPerSec" are likely to be in a MeanTime state
with probabilities of 52% and 56% respectively.

These results correspond to the test results obtained
with scenario 5 and allow us to conclude on the capability
of the developed discrete Bayesian network to diagnose
growth in end-to-end latency in an Apache Kafka cluster
by simulating the effects of changes in cluster configura-
tion parameters.

The strength of the influences in the Bayes Network
was identified as a result of the completed sensitivity
analysis (Fig. 7). The different thicknesses of the network
arcs represent the magnitude of the influence strength,
which further indicates that the initial weights for FFNN
model sampled from, for example, uniform or random
distributions will not represent the connection influences
correctly. The nodes "Fetch" and "FetchConsumer” are
highlighted in red to emphasize their greater influence on
the target node, “End-to-end latency”, which aligns with
the test scenario 5 result.

On Fig. 8 (a) is visualized a convergence training
speed in terms of time and on Fig. 8 (b) — a convergence
training speed in terms of the epoch for FFNN model
with architecture according to Fig. 4 and weights initial-
ize based on (14)-(16) (denoted as ‘“Bayesian-Guided
FFNN”) and FFNN model with architecture according to
Fig. 4 and weights initialized from a uniform distribution
and scaled using the Xavier/Glorot Uniform start method
(denoted as Standard FFNN). Bayesian-Guided FFNN
model converged within 7.78 s and 744 epochs compared
to 8.19 s and 943 epochs it took by Standard FFNN.

On Fig.9. are collected key measures to compare
models’ performance: Bayesian-Guided FFNN achieved
an MSE of 186.12, a reduction of 18.14% relative to the
Standard FFNN (227.24). A lower RMSE value of 13.64
for Bayesian-Guided FFNN versus 15.07 showed RMSE
reduction by 9.48%. With a MAE of 10.89, the Bayesian-
Guided FFNN outperforms FFNN (12.1), showing
9.99% lower error in absolute prediction terms. The
Bayesian-Guided FFNN achieved a higher R? value of
0.96, demonstrating better predictive capability and ac-
curacy in explaining the variance in the dataset. Improve-
ment in R? 0.914% relative to the Standard FFNN.

MSE distributions on Fig.10 show consistent differ-
ences but R? distributions are less differentiable, indicat-
ing minimal variability between the models in terms of

variance explanation. The results of the statistical signif-
icance testing confirm that the Bayesian-Guided FFNN
significantly outperforms the Standard FFNN in reducing
the overall error (p=0.000003<0.05, t=—4.68). However,
no statistically significant difference was observed in the
ability of the models to explain variance
(p=0.491729>0.05, t=—0.69).

6. Conclusions

A feedforward neural network (FFNN) model is
proposed to forecast end-to-end latency in a Kafka clus-
ter. To address the problem where the effectiveness of a
neural network model depends on how well its architec-
ture and parameters are selected, we defined a new meth-
odology for designing the architecture of a FFNN model
based on the discrete Bayesian Network and a new
method for setting the initial weights that connect neu-
rons across layers.

The proposed method involves two sequential pro-
cesses. The results from the "Design Bayes Network”
process — a verified discrete Bayesian Model to diagnose
Kafka cluster latency and determine the strength of influ-
ence between nodes in the Bayes Network were used as
input parameters for "Design Neural Network™ process.
These inputs are used to design an architecture for FFNN
model and set the initial weights matrices based on the
strength of the influences received on Bayes Network.

The constructed Bayesian Network achieved a nor-
malized log-likelihood of — 0.89, which falls within the
"Good" fit quality range. This score confirms that the net-
work effectively models the collected dataset and cap-
tures the underlying probabilistic dependencies between
the Kafka configuration parameters and latency metrics.

The created FFNN model was tested with a dataset
collected from repeatedly executed scenarios in which
Kafka cluster works under different system loads.

The developed FFNN model achieves significant
improvements in prediction accuracy (reduction in MSE
by 18.14%, showing the ability to reduce overall predic-
tion errors more effectively than the Standard FFNN) and
training efficiency (faster training convergence with re-
duced training time by 5% (7.78 s vs. 8.19 s for Standard
FFNN); reduced the number of epochs to converge by
21% (744 epochs vs. 943 epochs), fulfilling the research
goal. However, its ability to better explain variance (as
reflected in R2) compared with the Standard FFNN re-
quires further investigation. Overall, the developed
FFNN model is a reliable and practical model for Kafka
cluster latency forecasting, leveraging domain-specific
knowledge for enhanced performance.

83

121SN]9 BYJeY JO Aousie| pus-01-pus uo sabueyd sie1aweled wol) sausnjul Jo pbuans -/ B4

@ 7 ﬂ_ 7 _” _ .ﬂ..m.ew 73 ﬁ.uﬂ ~ abesany | A 1=buipH
< |

Fauanju|

o o : AES Tl SULYE
| [ws empmey

[W|20z 2wipuoq]

PRENRWLE]L O

] [ZET urt [T LET ur [4ETH]
)z ppom) [EET aun [5TH [T aun [8TH (] aun [ETH amn] meajy| A Jueajy|
qems| A [ueaRy AUy AU ULy atm [wor| amm J wor|
[Smpuoe AU o) AU [o]
fwams g (O SPINOsIE o wsegTaE O WPy O] spemranandyasuodsay (O s anandysaubay ()

Machine learning and intelligent systems

2 B B [o00T TRambaIpom) 44001 YosmbaIpon ETE e %0 73
epom| EN[0001 FUDAEON ETeup apqestp| | 00T e~ Ev00r W 030 Juanbaggssay| 10 Juanbagssay) %0 ynegRp| 04001 7EI2p0N
po = L
[w001 | %00 -hu-_—..oa [l 001 37gEne %0 Aerspoum %0 Imezp %50 yanbagy| [%001 UER[ORE %0 Juznbauy 00 [rens| 50 J[3urs
%0 pmmbagiia 20 il [qemrs %0 | N saydq uwonzaumoy.1ad
staanpoad jo saqunu () sadquprgey () | nopsseadmon O ey (O sweiy O saudquurgnarepdas O 103aey eaypdea [e) swiesdprgsng 3oy O) spaosarodxem () |sagngaspEoariagaos O .Emu_-_u.-.ﬁ—u.n_uﬁ.ﬂgo

84

Radioelectronic and Computer Systems, 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Training Convergence per epochs

10° 1

1 — Bayesian-Guided FFNN
2

Standard FFNN

lul <

Loss (MSE)

102 1

200

Loss (MSE)

Training Convergence per seconds

10° 1

1 — Bayesian-Guided FFNN
2

Standard FFNN

107 1

Training Time (seconds)

Fig. 8. (a) Convergence training speed in term of epochs; (b) convergence training speed in term of time

Model Performance Metrics

227.24

200
186.12

150 -

Metric Value

100 -

13.64 15.07

MSE

RMSE

Im Bayesian-Guided
mem standard FFNN

10.90 12.11

0.96 095

MAE R2

Fig. 9. Key measures to compare models’ performance MSE, RMSE, MAE, R?

Future work will focus on the refinement of the
Model Architecture, particularly by exploring the archi-
tecture that combines insights from Bayesian Networks
with Mutual Information (MI) scores to improve the
overall predictive performance in Kafka cluster latency
forecasting.

The current Bayesian-Guided FFNN leverages the
influence of the Bayesian Network to establish initial
weights, encoding domain-specific dependencies within

the model. While effective, further improvements can be
achieved by integrating Mutual Information (MI) scores
to quantify pairwise feature dependencies, providing an
additional signal for optimizing feature relationships.
This hybrid approach combines the probabilistic reason-
ing of Bayesian Networks with the statistical dependency
analysis of M, resulting in richer representations of the
underlying structure of Kafka workload and configura-
tion data.

Machine learning and intelligent systems

[a) - MSE Distribution Comparison

@ o
2000 1 @ &
o
o
Elm~ : !
& 1006 1
3
i
m-
ﬁ.
i"# ‘q}'&'
fﬁ #

[b) - R* Score Distribution Camparison

1 T

—Fo00

300

Lt

&

ic) - pwalues Heatmap
(Red=5ignificant, Green=Mot Significant)

=5 1

=1]

=X

pvalug

gt

=]

Fig. 10. Statistical Comparison Bayesian-Guided vs Standard FNN:
(a) — MSE distributions comparison; (b) — R? distributions comparison;
(c) — p-values of statistical significance testing for differences in MSE and R?

86

Radioelectronic and Computer Systems, 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Contributions of authors: Olga Solovei - concep-
tualization, methodology; formulation of tasks, analysis;
development of model, software, verification; analysis of
results, visualization; writing original draft preparation.
Tetiana Honcharenko - supervision, conceptualization,
review and editing.

Conflict of Interest
The authors declare that they have no conflict of in-
terest in relation to this research, whether financial, per-
sonal, author ship or otherwise, that could affect the re-
search and its results presented in this paper.

Financing
This study was conducted without financial support.

Data Availability
Data will be made available upon reasonable
request.

Use of Artificial Intelligence
The authors confirm that they did not use artificial
intelligence methods while creating the presented work.

All the authors have read and agreed to the pub-
lished version of this manuscript.

References

1. Honcharenko, T., Khrolenko, V., Gorbatyuk, .,
Liashchenko, M., Bodnar, N., & Sherif, N. H. Smart In-
tegration of Information Technologies for City Digital
Twins. In 2024 35th Conference of Open Innovations As-
sociation (FRUCT), IEEE, 2024, pp. 253-258. DOI:
10.23919/FRUCT61870.2024.10516358.

2. Raptis, T. P., & Passarella, A. A survey on net-
worked data streaming with apache kafka. IEEE Access,
2023, vol. 11, pp. 85333-85350. DOl:
10.1109/ACCESS.2023.3303810.

3. Solovei, O., Honcharenko, T., & Fesan, A.
Tekhnolohiyi upravlinnya velykymy danymy proyektiv
mis’koho budivnytstva [Technologies to manager big
data of urban building projects]. Upravlinnya rozvytkom
skladnykh system — Management of Development of
Complex Systems, 2024, no. 60, pp. 121-128, DOI:
10.32347/2412-9933.2024.60.121-128. (In Ukrainian).

4. Vogel, A., Henning, S., Ertl, O., & Rabiser, R.
A systematic mapping of performance in distributed
stream processing systems. In 2023 49th Euromicro Con-
ference on Software Engineering and Advanced Applica-
tions (SEAA), IEEE, 2023, pp. 293-300. DOI:
10.1109/SEAA60479.2023.00052.

5. Metta, C., Fantozzi, M., Papini, A., Amato, G.,
Bergamaschi, M., Galfre, S. G., Marchetti, A., Veglio,
M., Parton, M., & Morandin, F. Increasing biases can be
more efficient than increasing weights. In Proceedings of
the 2024 IEEE/CVF Winter Conference on Applications

of Computer Vision (WACV), 2024, pp. 2810-2819. DOI:
10.1109/WACV57701.2024.00279.

6. Hosamo, H. H., Nielsen, H. K., Kraniotis, D.,
Svennevig, P. R., & Svidt, K. Improving building occu-
pant comfort through a digital twin approach: A Bayesian
network model and predictive maintenance method. En-
ergy and Buildings, 2023, vol. 288, article no. 112992.
DOI: 10.1016/j.enbuild.2023.112992.

7. Bortolini, R., & Forcada, N. A probabilistic per-
formance evaluation for buildings and constructed assets.
Building Research & Information, 2020, vol. 48, iss. 8,
pp. 838-855. DOI: 10.1080/09613218.2019.1704208.

8. Mousavi, M., Shen, X., Zhang, Z., Barati, K., &
Li, B. loT-Bayes fusion: Advancing real-time environ-
mental safety risk monitoring in under-ground mining
and construction. Reliability Engineering & System
Safety, 2025, vol. 256, article no. 110760. DOI:
10.1016/j.ress.2024.110760.

9. Kafka Producer Configuration Reference for
Confluent Platform. Available at: https://docs.conflu-
ent.io/platform/current/installation/configuration/pro-
ducer-configs.html. (accessed 12.01.2025).

10. Pacella, M., Papa, A., Papadia, G., & Fedeli, E.
A Scalable Framework for Sensor Data Ingestion and
Real-Time Processing in Cloud Manufacturing. Algo-
rithms, 2025, vol. 18, iss. 1, article no. 22. DOI:
10.3390/a18010022.

11.Elshoubary, E. E., & Radwan, T. Studying the
Efficiency of the Apache Kafka System Using the Re-
duction Method, and Its Effectiveness in Terms of Relia-
bility Metrics Subject to a Copula Approach. Applied Sci-
ences, 2024, vol. 14, iss. 15, article no. 6758. DOI:
10.3390/app14156758.

12.Sathupadi, K., Achar, S., Bhaskaran, S. V.,
Faruqui, N., & Uddin, J. BankNet: Real-Time Big Data
Analytics for Secure Internet Banking. Big Data and
Cognitive Computing, 2025, vol. 9, iss. 2, article no. 24.
DOI: 10.3390/bdcc9020024.

13.Ezzeddine, M., Baude, F., Huet, F., & Laaziz, F.
Latency Aware and Resource-Efficient Bin Pack Au-
toscaling for Distributed Event Queues: Parameters Im-
pact and Setting. SN Computer Science, 2025, vol. 6, ar-
ticle no. 219. DOI: 10.1007/s42979-025-03740-9.

14.Harle, S. M. Advancements and challenges in
the application of artificial intelligence in civil engineer-
ing: a comprehensive review. Asian Journal of Civil En-
gineering, 2024, vol. 25, iss. 1, pp.1061-1078. DOI:
10.1007/s42107-023-00760-9.

15. Moller, M. Efficient training of feed-forward
neural networks. DAIMI Report Series, 1993, no. 464, ar-
ticle no. PB-464. pp. 136-173. DOl:
10.7146/dpb.v22i464.6937.

16. Narkhede, M. V., Bartakke, P. P., & Sutaone, M.
S. A review on weight initialization strategies for neural
networks. Artificial intelligence review, 2022, vol. 55,
pp. 291-322. DOI: 10.1007/s10462-021-10033-z.

17.Ebid, S. E., El-Tantawy, S., Shawky, D., & Ab-
del-Malek, H. L. Correlation-based pruning algorithm

https://doi.org/10.32347/2412-9933.2024.60.121-128
https://doi.org/10.3390/a18010022
https://doi.org/10.1007/s10462-021-10033-z

Machine learning and intelligent systems

87

with weight compensation for feedforward neural net-
works. Neural Computing and Applications, 2025, vol.
37, pp. 6351-6367. DOI: 10.1007/s00521-024-10932-6.

18. Kitson, N. K., Constantinou, A. C., Guo, Z., Liu,
Y., & Chobtham, K. A survey of Bayesian Network
structure learning. Artificial Intelligence Review, 2023,
vol. 56, pp. 8721-8814. DOI: 10.1007/s10462-022-
10351-w.

20. Tawakuli, A., & Engel, T. Make your data fair:
A survey of data preprocessing techniques that address
biases in data towards fair Al. Journal of Engineering
Research, 2024. DOI: 10.1016/j.jer.2024.06.016.

21.Kharchenko, V., Fesenko, H., & Illi-
ashenko, O. Quality models for artificial intelli-
gence systems: characteristic-based approach, de-

velopment and application. Sensors, 2022, vol. 22,

19.Lu, N. Y., Zhang, K., & Yuan, C. Improving oc 13 article no. 4865. DOI: 10.3390/522134865.

causal discovery by optimal bayesian network learning.
Proceedings of the AAAI Conference on artificial intelli-
gence, 2021, vol. 35, iss. 10, pp. 8741-8748. DOI:
10.1609/aaai.v35i10.17059.

Received 15.01.2025, Accepted 25.08.2025

MOJIEJIb HEUPOHHOI MEPEXI ITPSIMOI'O IIOIIMPEHHS
JJIs1 TPOTHO3YBAHHSA 3ATPUMKHU KAFKA KJIACTEPA

0. JI. Conosen, T. A. I'onuapenxo

IIpenMeToM BUBUCHHS B CTATTi € MPOIIEC MPOSKTYBAHHS apXiTEKTYPH MOIENi HEHPOHHOT MEpexki MPSIMOro mo-
mupensst (FFNN) Ha ocHOBI AuCKpeTHOT 6alieCiBChKOI MEpEXi Ta METOAM BH3HAUCHHS MOYATKOBHX Bar, sKi 3’€/IHY-
I0Th HEHPOHU MiXk HIapaMU HEWPOHHOI Mepexi. MeToro € po3pobka Mozeni HeiipoHHoi Mepexi Tuy FFNN, npusHa-
YeHOl ISl IPOTrHO3yBaHHs HackpizHoi 3aTtpumMku B Kafka kmactepi. 3anporonoBana Mozens Oyjie BUKOPUCTOBYBa-
THCS SIK THCTPYMEHT /IS IPOTHO3YBaHHs 3aTpuMKu kinactepa Kafka Ha ocHoOBI 3amannx mapamerpiB KoHpiryparii ta
MIOKa3HHKIB MPOAYKTHBHOCTI. J{JIsl TOCSITHEHHS] METH B JOCITIDKEHH] BUPIIICH] 3aBIaHHsI: PO3pOOJICHO Ta ePeBipEeHO
JIMCKpPETHY 0affeCOBCHKY MEpexXy Ul po3yMiHHs (pakTopiB, 10 BIUIMBAIOTH Ha 3aTpuMKy B Kiactepi Kafka; mpose-
JICHO aHaJIi3 YyTJIMBOCTI TUCKPETHOI 0alieCiBChKOI MEPEeXi Ha OCHOBI YOT0 CTBOPHB MATPUIIIO 3 TOYATKOBUMH BaraM,
JUTs TOYaTKOBOI iHimiatizanii Baropux koedinientiB FFNN mozeni; po3pooneno apxitekrypy FFNN moneni muist mpo-
rao3yBanHs 3atpumkn Kafka kimacrepa ta BusHaueHi i mapamerpy; BUKOHaHO HaBuaHHs po3podieHoi FFNN momeri
i IpoBe/IeHa OITiHKA 37]ATHOCTI MOJIENTi TIPOTrHO3yBaTH moTeHilHy 3atpuMky Kafka kmacrepa. J{yns mpoBenenss moc-
JIpKeHHsT OYJIM BUKOPUCTaHI METO/M 3 Teopiii: 00poOKYU BEJIMKUX JaHUX; IMOBIpHICHI rpadidni Mozeni Ta GaitecoB-
CbKa Teopis JIOTTYHOTr0 BUCHOBKY; IITYYHI HEHPOHHI MEpEeXi Ta Teopil IIMOOKOro HaB4YaHHs; Teopis rpadiB; ONTUMI-
3allisi MalMHHOr 0 HaBuaHHs. OTprMaHi Taki pe3yabratu. Monens FFNN Oyna nporectoBana, 1 3HaUSHHS cepeIHbOT
KBaJPaTHYHOI [TOMUJIKU TTOKA3aJi MOCHIJJOBHE 3HIKEHHS MPOTATOM eroX. Takok OyJiu OTpuMaHi pe3ynbTaTu siKi
JIEMOHCTPYIOTh, 1110 KoedimieHT MacmtabyBanus Kaiming He mokpariye moqatkoBy a3y TpeHyBaHHsI, CTa0iTi3yrouH
iHimiaizamnito Bar. BucHoBku. HaykoBa HOBU3HA OTpUMaHHX PE3YJIbTATIB MOJSTa€E B HACTYITHOMY: 1) 3aIIpONIOHOBaHO
HOBY METOJIOJNIOTIF0 BU3HAUYCHHSI apXiTEKTYpH HelpoHHoi Mepexi Tuiry FFNN Ha ocHOBI TUCKpETHOI CTPYKTYpH Oaiie-
CIBCBKOT Mepexi; 2) po3po0iieHO HOBUIT METO/I BCTAHOBJICHHS IIOYaTKOBHX Bar, sIKi 3’€IHYIOTh HEHPOHH MiX LIapaMu.
OcCKiIBKY OTpUMaHI 3HaYeHHS cepeqHb0] KBapaTUYHOI MOMMIIKY ITOKA3aJI1 IOCIiIOBHE 3HIKEHHS [IPOTATOM €IIoX,
MU JIHILTH BUCHOBKY, 110 po3pobnena Monenb FFNN mMoxxe OyTi po3ropHyTa Ta BUKOPHCTaHA SIK IHCTPYMEHT JIJIsl
nporuo3ysaumst 3atpumku Apach Kafka kmacrepa. 3anpomnoHoBaHuii B qaHiit podOTi MeTO BU3HAUCHHS TOYATKOBHX
Bar uist FFNN e kopucHuM Juis ontumizaiii npotecy tpeHyBanHs Mozeni tumy FFNN.

Kumouosi cioBa: 3atpumka Kafka kiacrepa; mepexka Baiieca; HeifpoHHa Mepexa HPsSMOTO IOMIUPEHHS; CHIa
BIUTHBY; MIOYaTKOBI Barw.

CounoBeii Onbra JleoniniBHa — jgokTopanTka Kad. iHPOpMAIIMHIX TEXHONOrIH, KaHJ. TeXH. HAyK, JOI. Kad.
iHpOpMAIIMHIX TEXHOJIOTIH MPOEKTYBAaHHs Ta MPUKIATHOI MaTeMaTHKU, KUiBChKHMII HAlllOHATBHUN YHIBEPCHUTET
OyniBHHUIITBA Ta apxiTekTypH, KuiB, Ykpaina.

lonuapenko Tersina AmHapiiBHa — 1a-p TexH. HayK, [OI., 3aB. Kad. iH(opMamiiHUX TEXHOMIOTIH,
KuiBcpkuii HamioHaTPHUN yHIBEpCUTET OyAiBHHUIITBA Ta apxiTekTypH, Kuis, Ykpaina.

Olha Solovei — Doctoral Student of the Department of Information Technologies, Associate Professor
at the Department of Information Technologies of Design and Applied Mathematics, Kyiv National University
of Construction and Architecture, Kyiv, Ukraine,
e-mail: solovey.ol@knuba.edu.ua, ORCID: 0000-0001-8774-7243, Scopus Author I1D: 58173727100.

Tetiana Honcharenko — Doctor of Technical Science, Associated Professor, Head of the Department
of Information Technologies, Kyiv National University of Construction and Architecture, Kyiv, Ukraine,
e-mail: goncharenko.ta@knuba.edu.ua, ORCID: 0000-0003-2577-6916, Scopus Author I1D: 57204204504.

https://doi.org/10.1016/j.jer.2024.06.016

