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The subject matter of this article is the process of designing the architecture of a Feedforward neural network 

model based on the discrete Bayesian Network and a new method for setting the initial weights that connect 

neurons across layers. The goal of this study is to develop a Neural Network model designed to forecast end-to-

end latency in a Kafka cluster. The proposed model can be used as a tool to predict the end-to-end latency of 

Kafka clusters based on the given configuration parameters and performance metrics. This study resolved the 

following tasks: developed and validated a discrete Bayesian network to understand the factors influencing end-

to-end latency in Kafka clusters; conducted a sensitivity analysis on the discrete Bayesian network; created a 

matrix with initial weights derived from the sensitivity analysis in the Bayesian network to initialize weights in 
FFNN model; designed FFNN architecture for predicting the Kafka cluster end-to-end latency and configured 

its parameters; trained and evaluated the designed FFNN model. Methods from theories were used to conduct 

the research: big data processing, probabilistic graphical models and Bayesian inference theory, artificial neu-

ral networks and deep learning theories, graph theory, and machine learning optimization. The following results 

were obtained: a trained FFNN model Mean Square Error showed consistent decrease across epochs, so we 

concluded that the model can be deployed and used as a tool to forecast Apach Kafka latency for given config-

uration parameters and performance metrics. The comparison of the Mean Square Error values when FFNN 

model is initialized with weights derived from the strength of influence in the Bayes Network and FFNN model 

which is set the same initial weights but scaled by Kaiming He factor demonstrated that Kaiming He scaling 

factor primarily improves the initial phase of training by stabilizing weight initialization. Therefore, we recom-

mend scaling the initial weights as specified in our method to optimize FFNN training process. Conclusions. 
The scientific novelty of the results obtained is as follows: 1) a new methodology for defining the architecture of 

a Feedforward Neural Network (FFNN) based on the discrete Bayesian network structure is introduced; 2) the 

initial weights that connect neurons across layers are set. 

 

Keywords: Kafka cluster latency; Bayes Network; Feedforward Neural network; strength of influence; initial 

weights. 

 

1. Introduction 
 

IoT devices, sensors, and wearable sensing devices 

have become data sources for construction-based infor-

mation systems [1]. Consequently, the architecture of 

such systems has evolved to include streaming pro-

cessing engines, such as Apache Kafka, which serves as 

a distributed storage system. This system consumes 

streaming messages from Kafka producers and retains 

them until they are retrieved by Kafka consumers. The 

efficiency of a Kafka cluster is measured by its end-to-

end latency, which is the time between the moment when 

an application that includes a Kafka producer sends event 

data and the moment when the consumer logic of the 

Kafka program receives the event [2]. Information sys-

tems for building construction projects rely heavily on 

Kafka clusters’ low end-to-end latency, as such systems 

require immediate decisions based on real-time data. 

They also need real-time data to monitor site safety and 

coordinate numerous teams in a timely manner [3]. 

1.1. Motivation  
 

Given the limited formal methods available to pre-

dict Kafka cluster performance under different system 

conditions, the Kafka cluster configuration is selected 

based on the system’s performance tests. This may lead 

to configuration changes post-deployment if Kafka clus-

ter performance is lower than expected, which may 

breach the unavailability threshold, which must be 

avoided. Therefore, when Kafka clusters are included in 

information systems for building construction projects, 

models and methods are required to diagnose and evalu-

ate their efficiency [4].  

A neural network model to predict end-to-end la-

tency in a Kafka cluster can be an effective approach, lev-

eraging the capabilities of machine learning to model 

complex non-linear relationships and interactions be-

tween various system parameters and performance met-

rics. However, the effectiveness of a neural network 

model will depend on how well the network's architecture 
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and parameters, such as an initial weight between neu-

rons in different layers reflect the casual relations be-

tween various performance characteristics of Kafka clus-

ter [5]. At the same time, a Bayes network (Bayes Net) 

has become a method for analyzing and diagnosing com-

plex systems, as it provides the ability to model causal 

relationships and answer probabilistic queries. For exam-

ple, in research [6, 7] Bayes Networks (Bayes net) were 

used to identify potential issues and prioritize mainte-

nance and repair needs in building condition assessment. 

In this context, the Bayes Net was used to model the re-

lationships between building components and their con-

dition. 

 

1.2. Motivating Use Case 

 

This work is motivated by the challenge of real-time 

data processing in large-scale urban infrastructure pro-

jects, specifically the construction of a new subway tun-

nel beneath a densely populated area [8]. In this high-risk 

environment, modern civil engineering practices rely on 

a dense network of Internet of Things (IoT) sensors to 

mitigate geological risks and optimize the Tunnel Boring 

Machine (TBM) operational efficiency. The integrity of 

the project and personnel safety are directly dependent on 

the timely and reliable processing of this sensor data. The 

system architecture is a centralized, high-throughput 

streaming platform. The primary data sources were het-

erogeneous IoT sensors deployed in and around the tun-

nel. All data streams are ingested into a central, fault-tol-

erant message queue that is implemented using an 

Apache Kafka cluster. This cluster serves as the data 

backbone, decoupling the sensors (producers) from the 

various data analysis and storage systems (consumers). 

The project’s real-time analytics platform is the primary 

consumer, which is responsible for anomaly detection, 

visualization for TBM operators, and long-term data ar-

chival. 

The operational safety model is critically dependent 

on low-latency data processing. Based on real-time feed-

back from the geotechnical sensors, TBM operators man-

ually and automatically adjust machine parameters. A 

safety requirement is defined as follows: a sudden spike 

in ground pressure detected by piezometers must be pro-

cessed and trigger a system-wide alert or an automated 

partial TBM shutdown within a strict T-millisecond. 

Problem Definition: a latency spike in the Kafka 

pipeline could delay a critical alert, causing the TBM to 

operate under unsafe geological pressures. This could fail 

in the tunnel face, damage to the machine, and extreme 

risk to personnel. 

Proposed Solution in the current research: to ad-

dress this challenge, we propose employing a Feedfor-

ward Neural Network (FFNN) trained to forecast latency 

spikes. The prediction of FFNN is fed into a decision pro-

cess. If the forecasted latency exceeds a predefined oper-

ational threshold, the system triggers an automated reme-

diation action before the actual latency becomes critical. 

The action involves increasing the number of consumer 

instances. This forces a partition rebalances within 

Kafka, distributing the data load across more processing 

units. The system reduces consumer lag and stabilizes the 

pipeline latency by increasing parallel processing capac-

ity, ensuring the threshold safety requirement is consist-

ently met. 

The goal of the current research is to propose a Neu-

ral Network model designed to forecast end-to-end la-

tency in a Kafka cluster, with a focus on enhancing pre-

diction accuracy, model trustworthiness, and model con-

vergence. The proposed model is intended to be a practi-

cal tool for predicting end-to-end latency in Kafka clus-

ters based on given configuration parameters and perfor-

mance metrics. 

To achieve this goal, a new method is proposed for 

defining the architecture of a Feedforward Neural Net-

work based on the discrete Bayesian Network structure 

and for setting the initial weights that connect neurons 

across layers. 

 

1.3. State of the art  

 

The Kafka cluster consists of servers, which are of-

ten referred to as brokers. In Kafka cluster, one server is 

always assigned the “controller” role and the “leader” 

role. The “controller” is responsible for administrative 

tasks, while the “leader” is the server that first receives 

streaming data. Kafka uses ZooKeeper as a centralized 

service for managing and coordinating Kafka brokers in 

the cluster. Each Kafka broker manages topics to which 

producers send streaming data and where consumers tune 

in. Kafka replicates data across various servers included 

in the Kafka cluster to ensure high availability, durability, 

and fault tolerance. The number of necessary copies is 

determined by the topic configuration using the replica-

tion factor parameter. Apach Kafka documents [9] spec-

ify the end-to-end Kafka cluster event streaming process 

through a sequence of steps (Fig. 1). 

When a producer sends event data on a topic with a 

single partition, the event lands in the receive socket 

buffer on the broker; from there, it is picked up by the 

Network Thread and placed in the shared request queue. 
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Fig. 1. Kafka cluster event streaming process 

 

Kafka’s IO thread picks up the event and registers it to a 

commit log organized on disk in segments, where each 

segment holds part of the log. The registered event data 

from RAM is saved on the leader server’s disk and moved 

to the "Purgatory Map" queue, where they are held until 

copied to other servers in the Kafka cluster. These servers 

send requests to the leader server to receive copying event 

data. The leader server sends the event data in response 

once it is copied to the disk. Until brokers do not complete 

the copying process, they will continually send requests 

to the leader. 

After a broker completes replication, the pending 

event data are removed from the Purgatory Map queue 

and placed in the response queue. The Network Thread 

then takes a response and sends it into Send socket buffer. 

The Kafka producer receives confirmation from the 

"leader server" that events have been securely stored after 

being copied on all servers (when the "acks_config" pa-

rameter is set to "all"). The Kafka producer can also re-

ceive confirmation as soon as the data is added to the log-

ging journal on the server (when the "acks_config" pa-

rameter is set to "1") or may not expect any confirmation 

at all if the "acks_config" parameter is set to "0". Using 

the poll() function, Kafka consumers continuously send 

requests to the leader server to retrieve data from the topic. 

In response, they receive messages immediately after the 

Kafka producer has received confirmation from the server 

(in cases where the "acks_config" parameter is "1" or 

"all") or as soon as the event is added to the logging jour-

nal on the leader server (when "acks_config" is "0"). From 

Fig. 1 can be concluded that the end-to-end latency of the 

Kafka event streaming process can be measured by time 

TL, which equals the sum of the following time periods:  

1. The time required to collect events into a batch 

before sending them to the server is referred to as pro-

ducer time (Tproducer). 

2. The time from when the event data are received 

in the receive socket buffer to when they are saved on the 

leader-server disk, referred to as the leader-server commit 

time (Tleadercommit). 

3. The time from when the message is saved on the 

leader-server’s disk to the completion of its copying on 

the servers included in the Kafka cluster, referred to as 

replica time (Treplica).  
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4. The time from when the Kafka producer receives 

confirmation from the leader-server ("acks_config"=1 or 

"acks_config"="all"), or when a certain amount of data is 

saved on the disk of the leader-server ("acks_config"= 0), 

to when the Kafka consumer receives the event data, re-

ferred to as consumer fetch time (Tfetch). 

Therefore, the formal definition of the end-to-end la-

tency time (TL) of Kafka cluster is provided in equation 

(1): 

 

TL= Tproducer+ Tleadercommit+ Treplica+ Tfetch.        (1) 

 

A previous study [10] confirmed that the log-based 

architecture of Kafka is optimal for scalable, durable, and 

high-throughput data ingestion and predictive mainte-

nance in Condition Monitoring (CM). The study con-

cluded that Kafka outperforms RabbitMQ in producer 

throughput, whereas RabbitMQ achieves higher con-

sumer throughput, demonstrating its superiority in rapid 

message consumption scenarios. 

Study [11] proposed a model for Kafka cluster con-

figuration comprising three subsystems in series: a pro-

ducer group, an Apache Kafka cluster, and a consumer 

group, each containing three parallel units operating un-

der a 1-out-of-3 strategy. The created model has been 

proven to improve system robustness and efficiency in 

handling failures in streaming data. 

In a previous study [12], Apache Kafka was used as 

the backbone of the data ingestion layer to manage high-

throughput data streams in real time for an Internet bank-

ing system. The Apache Kafka cluster was configured 

with multiple producers and consumers. This configura-

tion ensured scalability by dynamically adjusting the data 

ingestion rate based on the number of active producers, 

making it suitable for high-velocity Internet banking 

data. 

A latency-aware and resource-efficient approach to 

dynamic event consumer provisioning in distributed 

event queues for real-time cloud applications was ex-

plored in [13]. The proposed solution models consumer 

provisioning as a two-dimensional bin packing problem 

and addresses the challenge of blocking synchronization, 

which affects high-percentile latency. An extension to the 

bin-pack autoscaler is introduced to mitigate tail latency. 

The experimental results provide insights into optimizing 

the model for workloads with high variance in processing 

time. 

From our perspective, the Kafka cluster configura-

tion models proposed in [10-13] could further improve 

performance predictability by incorporating a machine 

learning model capable of forecasting Kafka cluster per-

formance based on configuration parameters and perfor-

mance metrics. 

Feedforward Neural Networks (FFNNs), combined 

with gradient descent optimization techniques such as 

backpropagation and algorithms such as Adaptive Mo-

ment Estimation (Adam), are widely regarded as founda-

tional machine learning models for regression and classi-

fication tasks. FFNNs architecture includes one input 

layer, one or more hidden layer(s), and a single output 

layer. The number of neurons in the input and hidden lay-

ers and the number of hidden layers in a FFNN are criti-

cal architectural choices that significantly affect the net-

work’s performance [14]. If these parameters are incor-

rectly chosen, it can negatively impact the model's ability 

to learn from the data and achieve high accuracy or gen-

eralization. Currently, there is no universally recom-

mended procedure to determine the optimal number of 

units or layers in an FFNN architecture for forecasting 

Kafka cluster performance. Therefore, in this study, we 

propose a method that specifies how to define FFNN ar-

chitecture based on the Bayesian Network structure.  

FFNN training begins by setting initial values for 

the following parameters: weights and bias. A learning 

rate that determines the step size for weight updates dur-

ing optimization must be specified as a hyperparame-

ter [15]. 

Numerous studies have discussed various weight 

initialization methods for neural networks and empha-

sized their importance as weight start significantly influ-

ences neuron activation [16]. Orthogonal initialization is 

a recent method that initializes weights as orthogonal ma-

trices, which helps preserve the norms of activations and 

gradients, contributing to stable training dynamics. 

Sparse initialization initializes weights with a sparse 

structure, promoting sparsity in network activations and 

facilitating efficient computation [17]. 

Kaiming Uniform initialization is designed to work 

with Rectified Linear Unit (ReLU) activation function. 

The weights of each layer are initialized from a uniform 

distribution with zero mean and a variance calculated 

based on the number of neurons n in the layer [18]: 

 

σ2 = 2 n⁄ , or σ = √2 n⁄ .   (2) 

 

Once the variance σ2 is calculated according to (2), 

the weights are sampled from a uniform distribution in 

the range [−√3σ,√3σ]. 
Given that weights in a neural network dictate the 

strength of the inputs in determining the output of a neu-

ron, we propose setting their initial values based on the 

strength of influence obtained from a sensitivity analysis 

on a Bayesian network. However, to keep the variance of 

activations and gradients relatively constant across dif-

ferent layers of the network, we scale the values of the 

strength of influence using the Kaiming He scale factor 

(2), which is specifically designed for networks with 

ReLU activation function. 
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1.4. Objectives and tasks 

 

This study aims to design the architecture of a Feed-

forward neural network model based on the discrete 

Bayesian Network and a new method for setting the ini-

tial weights that connect neurons across layers. The goal 

of the neural network is to predict future latency issues 

based on present and historical cluster configurations and 

performance metrics. To achieve these objectives, the 

following tasks must be completed: 

1. A discrete Bayesian network was developed and 

validated to diagnose and understand the factors influ-

encing end-to-end latency in Kafka clusters. 

2. A sensitivity analysis was conducted on the dis-

crete Bayesian network to identify the strength of the fac-

tors influencing the Kafka cluster latency. 

3. To initialize weights in FFNN, create a matrix 

of initial weights derived from the sensitivity analysis in 

the Bayesian network. 

4. Design the FFNN architecture and configure its 

parameters. 

5. Train and evaluate FFNN model. 

Paper Structure. In Section 1 after the “Introduc-

tion” the “Motivation” formulates the challenges with 

Kafka cluster performance predictability and specifies 

how this study’s goal proposes to address those chal-

lenges. The “State of the art” provides the summaries of 

the related research. The main tasks to be resolved in 

achieving the current research goal are listed in the “Ob-

jectives and tasks” section.  

Section2. “Materials and Methods” includes the for-

mal specifications of the methods and models employed 

in this study.  

Section 3. “Development of Feedforward Neural 

Network Model” details the steps taken to construct a dis-

crete Bayes network model to diagnose Kafka cluster 

end-to-end latency. This section also describes the pro-

cess of deriving Feedforward Neural Network architec-

ture from to forecast Kafka cluster end-to-end latency.  

Section 4. “Experimental Study” describes the steps 

followed to gather the data required for learning the pa-

rameters of the Bayesian network and parameters to be 

used to train a Feedforward neural network. Metrics for 

evaluating the quality of a developed Bayesian Network. 

Metrics for evaluating the proposed Feedforward Neural 

Network model’s quality. 

Section 5. “Results and Discussion” includes the 

practical outcomes of these tests.  

The Conclusion section outlines the recommenda-

tions drawn from this research. 

 

2. Materials  

and research methods 
 

The defined tasks (1-6) will be addressed through se-

quential processes, where the results of the process "De-

sign Bayes Network Model" will serve as input data for 

the subsequent process "Design Neural Network Model" 

(Fig. 2). Each process is described in detail below. 

1.1. Define Bayes Network structure. The structure 

of the discrete Bayesian network that models the relation-

ship between X and Y is an acyclic graph where Y is a set 

of hidden nodes Yj=1,n̅̅ ̅̅ = {yj} that dependent on the set of 

observed nodes Xi=1,k̅̅ ̅̅ = {xi}, which serve as independent 

parent nodes. The influence of the parent nodes xi on yi is 

expressed by the joint probability according to Bayes' 

rule: P(y1,y2, … yn) = ∏ yi|X
n
i=1 . 

 

 

 
 

Fig. 2. Method to define FFNN architecture based on Bayes Network 
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The prior probabilities for xi ∈ X are defined by parameter 

θX (3) and the conditional probabilities of yj ∈ Y are de-

fined by θy (4). 

 

θX = {θx11 ,… , θx1N[sx1]
, … , θxk1 , … , θxkN[sxk]

},   (3) 

θy =

{θy1|x11 , … , θy1|x1N[sx1]
, … , θym|x11 , … , θym|x1N[sx1]

}, (4) 

 

where N[sx1],N[sx2], N[sxk] – the number of states S that 

are defined for xi ∈ X. 

When the observed data to train Bayes net exists 

then θX, θy can be computed using the likelihood func-

tion L(θ|D) (5) which represents the joint distribution of 

the probabilities of the observed data D [18, 19]. 

 

L(θ|D) =

 ∏ P(X(t), Y(t)|θ) =d
t=1 ∏ P(X(t)|θ)P(Y(t)|X(t), θ) =d

t=1

θx11
N[x11] ∙ … ∙ θx1N[sx1]

N[x1N[sx1]
]

∙ … ∙ θxk1
N[xk1] ∙ … ∙ θx

kN[sxk
]

N[x
kN[sxk

]
]

∙ … ∙

θy1|x11
N[y1|x11] ∙ … ∙ θ

y1|x1N[sx1]

N[y1|x1N[sx1]
]

∙ … ∙ θym|x11
N[ym|x11] ∙ … ∙

θ
ym|x1N[sx1]

N[ym|x1N[sx1]
]

,                                                           (5) 

 

where N[y1|x1N[sx1]
] , N [ym|x1N[sx1]

] – the number of 

times θy1|x1N[sx1]
 is included in (5). 

1.2. Data collection. Since the prior probabilities of 

the observed variables X are unknown it is necessary to 

create a data set D in order to calculate θX, θy. The data 

will be collected by executing different scenarios created 

to test Kafka cluster performance under different system 

loads. The collected continuous values of performance 

measures from Kafka Producers, Servers, and Consumers 

must be discretized to be utilized in the discrete Bayesian 

network model. Hierarchical clustering methods groups 

data based on two criteria: distance metric and linkage 

method, beginning when each data point is a separate 

cluster and merging them until a single cluster is formed. 

When the linkage method is "Ward" and the distance met-

ric is either "Euclidean" or "Manhattan," the resulting 

clusters tend to be relatively compact, equally sized, and 

more robust to outliers [20]. Therefore, hierarchical clus-

tering will be employed in this research to discretize the 

continuous values. 

1.3. Learn Bayes Network parameters. The task of 

determining the network parameters is to find the solution 

of equations (5) in partial derivatives. 

1.4. Accept model. The data collected in step 1.2 in-

cludes the logged values of the end-to-end latency of 

Kafka cluster for the given configuration parameters and 

the observed performance metrics. These data will be 

used to compare the evidence from the Bayes network. 

The developed Bayes Network model will be accepted if 

the expected test results match the actual results. 

1.5. Identify the strength of influence. The posterior 

probability P(Y|X)(p) of the child variable Y due to a 

change in the parameters of the parent variable X is  

expressed as the ratio of two linear functions of the pa-

rameter (p) (6) 

 

P(Y|X)(p) =
a∙p+b

c∙p+1
,   (6) 

 

where a, c – the angular coefficients in the linear equa-

tion;  

b – the shift along the OY- axis;  

p – is the probability that the network parameters will 

take certain values. 

The partial derivative of P(Y|X)(p) with respect to 

p measures the sensitivity of child node y ∈ Y to changes 

in the parent node. The derivative is given by: 

 

Dr =
∂(P(Y|X)(p))

∂p
=

a−bc

(c∙p+1)2
 .                (7) 

 

The strength of the influence Іij from changes in the 

values of the parent node (i) on the posterior probability 

(6) of the child node (j) is determined by the product of 

parameter range’s interval width Wi and the absolute 

value of the derivative (7). It is calculated using the fol-

lowing expression [20]: 

 

Iij = Wi ∙ Dr.  (8) 

 

2.1. Define Neural Network architecture. Given that 

the “Design Bayes Network” process is completed with 

the validated model and the calculated strength of the in-

fluence Іij as per (8). The architecture of Feedforward 

fully connected Neural Network is defined by the follow-

ing design principles: Xi=1,k̅̅ ̅̅ = {xi} neurons will form the 

input layer; the neurons in the hidden layers correspond 

to the hidden variable Y of Bayes net and the number of 

hidden layers is derived from the structure of a Bayes 

Network. A single neuron in the output layer will be 

“end-to-end latency” as described by (1). Neurons be-

tween layers are fully connected; however, the initial 

weights for connections that do not exist in the Bayes 

Network model are set to 0. 

2.2. Define the training method. For each hidden 

layer (l) with weights Wl  and biases bl, the output hl and 

preactivation zl are calculated as follows: 

 

hl = ReLu(Wlhl−1 + bl),  (9) 

 

where ReLU is f(x)=max(0,x). 
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For the output layer L with weights WL  and bias bL 

predicted value ŷ with linear activation function is as fol-

lows: 

 

Ŷ = WLhL−1 + bL        (10) 

 

2.3 Define the initialization weights method. Given 

an adjacency matrix of the Bayes Network Am×m, has 

aii=0; aij=1 when node i is connected to node j and aij=0 

otherwise; m= |X|+|Y| is a total number of nodes in the 

Bays Network. Then the corresponding initial weights 

matrix W for FFNN is set as follows: 

 

wij = {
0, where aij  = 0 

Iij, where aij  <> 0
,   (11) 

 

where Iij is the strength of influence (8). 

2.4. Train Neural Network. The training of the 

FFNN will aim to minimize a loss function, such as Mean 

Squared Error (MSE) for regression tasks. 

2.5. Accept model. The proposed FFNN model will 

be accepted when the number of epochs increases and the 

value of MSE consistently decreases. 

2.6. The accepted FFNN to be deployed and ready 

to use with new datasets to forecast Kafka cluster end-to-

end latency. 

 

3. Development of Feedforward  

Neural Network Model 

 

3.1. Design a discrete Bayes Network model 

structure to diagnose Kafka  

cluster end-to-end latency 

 
A discrete Bayesian network to diagnose the growth 

of end-to-end latency in an Apache Kafka cluster defines 

the target node to be “end-to-end latency time (TL)”, and 

the Kafka cluster configuration parameters are considered 

as the observed variables, and the Kafka performance 

metrics are treated as the hidden variables for each term 

in equation (1). To describe causal dependencies using an 

acyclic graph that represents the Bayes Net structure, we 

employ a notation in which a set with a hidden node Y is 

identified by the function fm
n  This function includes pa-

rameters X, which are the observed nodes. Here, 'n' de-

notes the level of the node in the graph, and 'm' is the index 

of the term in equation (1). The definitions for sets X and 

Y are provided below. 

The elements of set X1={ x11,…,x15} include:  

x11="acks_config" configures the level of acknowledg-

ment required from the leader-server for producers, deter-

mining when a message write is considered successful. It 

directly influences the trade-offs between message deliv-

ery durability and availability, thereby affecting the relia-

bility of data transmission within a Kafka cluster;  

x12=“buffer.memory” specifies the total amount of 

memory that the producer can use for buffering. If the 

buffer is completely filled, additional messages will be 

blocked or discarded depending on the blocking policy;  

x13 = “max.inflight.requests.per.connection” - defines 

the maximum number of unacknowledged requests that 

can be sent to the server on one connection. If this maxi-

mum is reached, the producer's batches will be blocked 

until confirmation from the server is received;  

x14=“socket.receive.buffer.bytes” specifies the net-

work socket buffer size for receiving data. The chosen 

buffer size can affect the server’s message processing 

time;  

x15 = “max.poll.records” defines the maximum number 

of records that a Kafka consumer can handle in one call to 

the poll() method.  

A higher value can reduce queue times if the con-

sumer handles larger batches efficiently, thereby decreas-

ing response delays. 

The elements of set Y1 = {y11, y12} are performance 

measures as follows:  

y11=RequestQueueTimeMs (Request Queue Time 

Milliseconds) measures the time a request spends waiting 

in the request queue before being processed by the broker. 

High values indicate that the broker is overloaded;  

y12=ResponseQueueTimeMs (Response Queue 

Time Milliseconds) measures the time a response spends 

in the response queue after being processed and before be-

ing sent back to the client. A high value indicates that the 

broker struggles to promptly dispatch responses. 

The elements of set X2={x21, x22, x23} are the perfor-

mance measures:  

x21=“log.flush.interval.ms” specifies the maximum 

time, in milliseconds, that a message can remain in the log 

buffer before it is flushed to disk. Setting a lower value 

for this parameter means that logs will be flushed to disk 

more frequently, which could result in an increase in the 

log flush rate but potentially decrease the flushing time 

(log flush time) because the amount of data to be written 

at each flush could be smaller. Conversely, a higher value 

for this parameter could decrease the log flush rate while 

increasing the log flush time as more data accumulates be-

fore each flush;  

x22="replica factor" determines the number of data 

copies (replicas) that will be maintained across different 

brokers. A higher replica factor not only increases redun-

dancy and fault tolerance but also impacts log flush dy-

namics. More replicas mean that each message needs to 

be flushed in multiple places, potentially increasing the 

overall time taken for flush operations (as well as the sys-

tem's I/O overhead). This might lead to a decrease in the 
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log flush rate because the system is managing more flush 

operations across replicas;  

x23=replica.fetch.min.bytes indicates the minimum 

amount of data that a follower replica must collect before 

sending a fetch request to the leader replica. Increasing the 

replica.fetch.min.bytes results in larger batch sizes being 

fetched by each follower. Larger batch sizes can improve 

throughput but might result in fewer fetch requests. If the 

followers fetch data less frequently but in larger batches, 

the leader might accumulate more unflushed data, poten-

tially increasing the amount of data to flush when the log 

flush occurs. The impact on resource utilization might de-

crease the log flush rate. 

The elements of set Y2 = {y21} is a performance 

measure: y21=”LogFlushRateAndTimeMs” (Log Flush 

Rate Milliseconds ) represents the rate and time taken to 

flush log data from memory to disk. This metric is crucial 

for understanding the performance and efficiency of data 

durability and storage in your Kafka cluster. 

The elements of set X3={x31,...,x34} are Kafka con-

figuration parameters: 

x31= “linger.ms” - how long the producer will collect 

event data to form a batch. If this parameter is set to a 

value greater than zero, the producer will accumulate 

messages in the buffer for a specified time;  

x32 = “batch.size” the maximum batch size in bytes. 

Once the batch reaches this size, it will be sent regardless 

of whether the time specified by "linger.ms" has elapsed;  

x33 = “compression.type” determines the message 

compression type, which requires additional processing 

time before being sent;  

x34 = “fetch.min.bytes” defines the minimum num-

ber of bytes that must be copied to the disk of the leader-

server before becoming available for Kafka consumers to 

fetch. If the threshold set by fetch.min.bytes is not 

reached, the server leader will wait until a sufficient 

amount of data accumulates before sending a response to 

the consumer. The use of fetch.min.bytes can balance the 

number of requests and the scale of transmitted data. 

The elements of set Y3 = {y31, y32} are performance 

measures as follows:  

y31=BytesInPerSec measures the total number of 

bytes being received per second by a Kafka server from 

all producers. High values may indicate the need to add 

processing resources or adjust producer configurations;  

y32=BytesOutPerSec – measures the rate at which 

data are sent from the Kafka brokers to the consumers. 

While high values can indicate good consumer through-

put, they can also signal that consumers are demanding 

data at a rate that might strain the server, especially if 

combined with high values in BytesInPerSec. 

The elements of set X4={x15,x31, x32, x33, x41} are the 

performance measures:  

x15, x31, x32, x33 are from sets X1,X3 respectively; 

x41= “the number of producers “ - the relationship 

between the number of producers and the producer aver-

age batch size (batch.size.avg) can be influenced by the 

configuration of the producers. As the number of produc-

ers increases, the contention for network and broker re-

sources can also increase, potentially leading to backpres-

sure and longer wait times for batch accumulation. In this 

case, each producer might reach its batch.size limit more 

frequently due to data sending delays, potentially reduc-

ing the batch.size.avg if not all producers are consistently 

filling their batches to the maximum configured size. 

The elements of set y4 = {y41} is a performance 

measure: y41= "batch_size_avg" a producer average 

batch size measures the average size of message batches 

sent by the producer to a Kafka broker. A larger average 

batch size means that more records are sent per request, 

which can improve throughput but may also result in 

higher latencies.  

The metric to evaluate a node “end-to-end Kafka 

cluster latency time TL” is equal to the sum of  

 

y1
1 = f1

1(y11, y21, y31, y41); y2
1 = f2

1(y12, y21, y32); 

 y3
1 = f3

1(y12, y21, y32, y41); y4
1 = f4

1(y11, y12, y21), 

 

where 𝑦1
1 is TotalTimeMs, request=Produce which 

equates to the total time taken to handle a Produce re-

quest. It is directly influenced by:  

y11, where a long queue could increase the total han-

dling time;  

y21, as frequent or slow log flushes can affect the 

processing speed of a produce request;  

y31 since heavier incoming data rates might slow 

down processing;  

y41, as larger batch sizes might take longer to pro-

cess times. 

𝑦2
1 presents TotalTimeMs for the request=Fetch 

which corresponds to the total time needed to complete a 

fetch request. It is impacted by:  

y12, where delays in response handling can extend 

the total time;  

y21, as, if data needs to be fetched from disk, flush 

rate/times can play a significant role;  

y32, where high output rates can indicate faster re-

trieval but also depend on network and broker load; 

𝑦3
1 is TotalTimeMs, request=FetchConsumer - re-

lated to fetch requests initiated by consumers and can be 

affected by the same factors as TotalTimeMs, re-

quest=Fetch but additionally by y41 depending on how 

quickly batches are gathered and sent to consumers, im-

pacting total fetch time for consumers; 

𝑦4
1 represent TotalTimeMs, request=OffsetCommit 

- time taken to commit offset details, is influenced by y11; 

 y12 as any queuing delays directly add to the total 

commit time; y21, where committing an offset might re-

quire log interactions, thereby affected by log operations. 
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With the above knowledge the structure of Bayes 

Net is specified as follows: 

 

Y1 = f1
0(X1); Y2 = f2

0(X2); Y3 = f3
0(X3); Y4 = f4

0(X4); 

Z = y1
1 + y2

1 + y3
1 + y4

1 

 

and it’s schema is illustrated on Fig. 3. 

To describe Bayes Network (Fig. 3) with variables 

in the study, the following notation is used: 

<N, S, G(S)>,          (12) 

 

where N – name of variable;  

S – a set of state Si=1,N̅̅ ̅̅ ̅ = {si} expressed as linguistic 

terms; 

G(S) –a set of values for each state si ∈ S. 

 

   
 

Fig. 3. Structure of a discrete Bayes Network for diagnosing Kafka cluster end-to-end latency 

 

3.2 Design an architecture of Feedforward 

Neural Network discrete Bayes Network model 

structure to diagnose Kafka cluster  

end-to-end latency 

 

Based on the structure of Bayes Network (Fig. 3) an 

architecture of fully connected FFNN is recorded in 

Table 1 and illustrated on Fig. 4. 

Equation (13) specifies the predicted value of the 

Kafka cluster’s end-to-end latency corresponding to the 

architecture outlined in Table 1. 

 

ŷ = f(W3ReLU(W2ReLU(W1xk×1 + b⃗ n
1) + b⃗ p

2) + b⃗ z
3),  

(13) 

 

where f(z)=z; W1, W2, W3 – weights initialization matrix 

(14) - (16). 

Solid lines on Fig. 4 correspond to connections with 

initial weights not equal to zero in matrices (15) – (17). 

Dashed lines indicate connections for which no influence 

was identified based on sensitivity analysis. 

 
 

 

Table 1 

An architecture of fully connected FFNN 

Layer Layer neurons 
Initial weights scaled by Kaiming 

He scale factor 
Bias 

Input, k=13 xk×1ϵX W1 = (√2/k)Wn×k
1  b⃗ n

1 ← 0 

First hidden, 

n=6 

{y11, y12, y21, y13, y23, y41} W2 = (√2/n)Wp×n
2  b⃗ p

2 ← 0 

Second hidden, 

p=4 

y1
1; y2

1; y3
1; y4

1 W3 = (√2/p)Wz×p
3  b⃗ z

3 ← 0 

Output Z   
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Fig. 4. Fully connected FFNN to forecast Kafka cluster end-to-end latency 

W6×13
1 =

(

 
 
 
 

w1
1 w3

1 w5
1 w7

1

w2
1 w4

1 w6
1 w8

1 w9
1

w11
1 w12

1 w13
1

w14
1 w17

1 w20
1 w23

1

w14
1 w18

1 w21
1 w24

1

w10
1 w16

1 w19
1 w22

1 w25
1 )

 
 
 
 

,                (14) 

 

W4×6
2 =

(

 
 

w1
2 w6

2 w10
2 w13

2

w3
2 w7

2 w11
2

w2
2 w4

2 w8
2

w5
2 w9

2 w12
2 w14

2
)

 
 
,                                                 (15) 

 

W1×4
3 = (w1

3 w2
3 w3

3 w4
3).                                                         (16)

 

4. Experimental Study 

 

4.1. Data Collection 

 

The observed variables for Bayes Network with the 

structure on Fig. 3 are defined according to (13) in Ta-

ble 2 and hidden variables are described by states {“Low-

Time”, “MeanTime”, “HighTime”} and the set of values 

for each state is identified programmatically by executing 

hierarchical clustering. 

To collect a data to learn Bayes Network parameters 

(5), (6) we designed scenarios to test different Kafka 

cluster characteristics: 

1. A scenario to measure a Kafka cluster latency 

with high throughput emphasis with durability. 

2. A scenario to measure a Kafka cluster latency 

with low latency and average throughput. 
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Table 2 

Specification of variable for Bayes network 

Name of variable Set of states Set of values 

acks “none”, “leader”, 

”all” 

0,1,”all” 

batch.size “small”, “moderate”, 

”large” 

[1000..8192], (8192..16384],( 16384..32768] 

replica factor “no fault tolerance”, “fault 

tolerance” 

“1”,”2” 

linger.ms “none”, “default”, “high” 0,[1..50),[50..100] 

compression type “enable”, “disable” “none”,“gzip”,”snappy” 

buffer.memory “small”, 

”default”, “large” 

[1MB..8MB],(8MB..50MB],(50MB..96MB] 

max.inflight.requests.per.connect “single”, “moderate”, 

“high” 

1,(2..5],(5..15] 

socket.receive.buffer.bytes “small”, 

”default”, “large” 

[100KB..500KB],(500KB..1MB),[1MB..2MB] 

 

log.flush.interval.ms “frequent”, “less frequent”, 

“not frequent” 

[0..100),[100..500),[500..1000] 

replica.fetch.min.bytes “frequent”, “less frequent”, 
“not frequent” 

[1KB..100KB],(100KB..50KB],(50KB..1MB] 

max.poll.records small, moderate, large [100..300],(300..500],(500..2000] 

fetch.min.bytes very frequent, frequent, not 

frequent 

[1KB..100KB],(100KB..50KB],(50KB..1MB] 

number of producers small, moderate, large [0..5),[5..10),[10..15] 
 

3. A scenario to measure a Kafka cluster latency 

with a balanced throughput and latency with fault toler-

ance. 

4. A scenario to measure a Kafka cluster latency 

with a stress test. 

5. A scenario to measure a Kafka cluster latency 

with a high fetch size for Bulk Processing. 
Table 3 lists the values of the observed variables for 

each scenario. For each scenario Kafka producer will be 

sent 400 messages making the final dataset to include 

2000 observations. 

The experiments will be conducted on a system 

with processor 11th Gen Intel(R) Core(TM) i7-

1185G7@ 3.00GHz 3.00 GHz and 32 GB RAM. Apache 

Kafka version: 3.8.1. Bayes Network construction, learn-

ing paraments and sensitivity analysis will be performed 

in program GeNIe Academic. Development of FFNN 

will be performed in Python. 

 

Table 3 

The values of the observed variables for scenario 1-5 

Scenario № 
 

Name of variable 
1 2 3 4 5 

acks all leader all none all 

batch.size large small moderate large large 

replica factor 

fault toler-

ance 

no fault tol-

erance Fault tolerance 

no fault toler-

ance 

Fault toler-

ance 

linger.ms high none default none high 

compression type enable disable enable disable enable 

buffer.memory large default default small large 

max.inflight.requests.per.con-

nect moderate single moderate high moderate 

socket.receive.buffer.bytes large small small small large 

log.flush.interval.ms less frequent frequent less frequent frequent not frequent 

replica.fetch.min.bytes not frequent Frequent not frequent not frequent not frequent 

max.poll.records large small small large large 

fetch.min.bytes frequent 

very fre-

quent frequent very frequent not frequent 

number of producers large small large large small 
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4.2. Metrics for evaluating the quality  

of a developed Bayesian Network 

 

The normalized log-likelihood is used as a metric to 

evaluate how effectively the Bayesian Network has 

learned patterns in a given dataset D: 

 
ln(L)

n
=
1

n
∑ ln(P(xi))
n
i=1 ,                   (17) 

 

where P(xi) represents the joint probability of the i-th ob-

servation, calculated using the conditional probability ta-

bles (CPTs) learned from the dataset D, and n denotes the 

total number of observations in D. 

This metric, 
ln(L)

n
 provides a normalized measure of 

model fit by indicating the average log-probability as-

signed to each observation. A widely used set of practical 

guidelines for interpreting the normalized log-likelihood 

is provided within the documentation for the influential 

Bayesian network software, Netica (Norsys, 2023). 

These heuristics suggest: 
ln(L)

n
> −0.5 the Bayesian network fits data with 

high accuracy, and well-captured relationships. No fur-

ther revision is required. 

−1.0 <
ln(L)

n
≤ −0.5 the Bayesian network effec-

tively captures key patterns and dependencies. The model 

is deemed acceptable, and immediate structural improve-

ment is not required. 

−1.5 <
ln(L)

n
≤ − 1.0 the Bayesian network has an 

acceptable fit, however further refinement of the network 

structure is recommended to improve its ability to model 

the dataset. 
ln(L)

n
≤ −1.5 – the Bayesian Network fails to ade-

quately explain the data, indicating a poor fit. The model 

cannot be accepted and requires significant structural re-

vision or redevelopment. 

 

4.3. Metrics for evaluating the quality  

of a proposed FFNN model 

 

The following evaluation metrics will be employed 

to compare the quality of the feedforward neural network 

(FFNN) with the proposed weight initialization method 

and architecture (Fig. 4) against the quality of an FFNN 

with the same architecture but initial weights set using 

the Xavier/Glorot uniform initialization method and to 

align with the evaluation framework in [21]: 

Mean Absolute Error (MAE) measures how closely 

the model's predicted Kafka cluster latency (L̂i) aligns 

with the actual Kafka cluster latency (L) in the dataset: 

 

MAE =
1

n
∑ |Li − Lî|
n
i=1 .                (18) 

Root Mean Squared Error (RMSE) penalizes devi-

ations more heavily than MAE, as outliers have a squared 

impact. It is useful for evaluating the accuracy of the 

model in cases where large latency prediction errors are 

significant: 

 

RMSE = √
1

n
∑ (Li − Lî)

2n
i=1                (19) 

 

Coefficient of Determination R2 to measure how 

well the model learned patterns in the dataset. Measures 

the proportion of variance in latency captured by the 

model: 

 

R2 = 1−
∑ (Li−Lî)

2n
i=1

∑ (Li−L̅)
2n

i=1
,                         (20) 

 

where 𝐿̅ is the mean of the actual Kafka latencies. 

Convergence speed measures how efficiently the 

model reaches an acceptable loss threshold (T) during 

training in terms of time: 

 

St = min{ti|Lossi ≤ T},                    (21) 

 

Where 𝑡𝑖 is the training time at epoch i. 

Alternatively, the convergence speed can be expressed in 

terms of epoch as follows: 

 

Si = min{i|Lossi ≤ T},                      (22) 

 

where i is the epoch index, the Loss is calculated based 

on Mean Squared Error (MSE). 

Key Performance indicators to quantify the percent-

age improvement or degradation in key metrics such as 

R2 and MSE when comparing the proposed Bayesian-

guided weight initialization to the Xavier initialization, 

the following indicators will be calculated: 

Percentage change in R2: 

 

△R2 % = (
R1
2−R2

2

R1
2 )× 100,                (23) 

 

where R1
2, R2

2  are the coefficients of determination of the 
models to be compared. 

Percentage change in MSE: 

 

△MSE % = (
MSE1−MSE2

MSE1
) × 100,         (24) 

 

MSE1, MSE2 are the Mean Squared Errors of the models 

for comparison. 

Statistical significance test to quantify whether the 

performance improvements are meaningful will be based 

on paired t-test: 

 

t =
a̅

sd √n⁄
 ,                             (25) 
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where a̅ – mean of differences; sd – Standard Deviation 

of differences. 

t- test’s the Null Hypothesis (H0): no significant dif-

ference in performance between two FFNN models. 
 

5. Results and Discussion 
 

Because of executed scenarios 1-5, the values for 

hidden variables y1
1; y2

1; y3
1; y4

1 of Bayes network from 

Fig. 3 are recorded, and their values per scenario are il-

lustrated on Fig. 5. 

The lowest end-to-end latency, equal to 9.44 ms, 

was achieved in scenario 2 where only the leader replica 

must acknowledge the messages. This speeds up the pro-

cess because acknowledgments from all replicas are not 

required; the absence of multiple replicas removes the 

overhead related to replicating data. Furthermore, disa-

bling compression type helped avoid the time and com-

putational power needed for data compression and de-

compression; the absence of multiple numbers for con-

current requests helped optimize the usage of resources. 

As a result, the TotalTime metric for all types is low, so 

their cumulative influence on end-to-end latency is min-

imal. 

In scenario 4, the end-to-end latency was 13 ms, 

which was a 37% increase compared to scenario 2. This 

increase was due to allowing many numbers of 

unacknowledged requests to be sent to the server on one 

connection, which impacted the Total Time when the re-

quests were “Produce” and “OffsetCommit”. However, 

as no acknowledgments are required, the TotalTime for 

types “Fetch” and “FetchConsume” remained low, so 

there was not a drastic effect on end-to-end latency. 

In the scenario 1 and 3, the end-to-end latencies 

were 40 ms and 43.38 ms, showing increases of 331% 

and 359.5% compared to scenario 2, respectively. The 

reasons for these increases include the requirement for 

acknowledgments from all servers, which negatively im-

pacted the time it takes for each message to be considered 

successfully sent. Along with infrequent flushes, this im-

pacted the TotalTime for requests labeled as “Produce” 

and “OffsetCommit.” These last two factors contributed 

to end-to-end latency growth. 

In scenario 5, the end-to-end latency was 122.42 

ms, showing an increase in 1196% due to the requirement 

for acknowledgments from all replicas, which signifi-

cantly increased the waiting times. The overhead of man-

aging multiple replicas slowed down the data processing. 

“not frequent” settings in log.flush.interval.ms and rep-

lica.fetch.min.bytes delayed data flushing and fetching, 

contributing to increased response times, i.e., TotalTime, 

for requests of the "Fetch" and "FetchConsumer" types. 

Figure 6 shows the developed Bayesian Network, 

which was constructed and trained using the parameters 

learned from the collected dataset. The calculated log-

likelihood for the network is Ln(L)=-1785.6, and the cor-

responding normalized log-likelihood is 
Ln(L)

𝑛
=

−1785.6

2000
~− 0.89, where n=2000 represents the total num-

ber of observations in the dataset. A normalized log-like-

lihood of −0.89 falls within the "Good" fit quality cate-

gory, indicating that the Bayesian Network is well-suited 

to model the dataset, and can be used to perform sensitiv-

ity analysis to identify the strength of influences between 

nodes in the network. 

 

 
 

Fig. 5. Kafka Cluster performance metric values for the scenarios 1-5 
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The states of the observed variables are set for test-

ing purposes according to scenario 5. The evidence ob-

tained from the Bayesian network is as follows: the "end-

to-end latency" of the Kafka cluster will be high when the 

TotalTime for the "Fetch" request is high, with a proba-

bility of 72%; additionally, "BytesInPerSec" and 

"BytesOutPerSec" are likely to be in a MeanTime state 

with probabilities of 52% and 56% respectively. 

These results correspond to the test results obtained 

with scenario 5 and allow us to conclude on the capability 

of the developed discrete Bayesian network to diagnose 

growth in end-to-end latency in an Apache Kafka cluster 

by simulating the effects of changes in cluster configura-

tion parameters. 

The strength of the influences in the Bayes Network 

was identified as a result of the completed sensitivity 

analysis (Fig. 7). The different thicknesses of the network 

arcs represent the magnitude of the influence strength, 

which further indicates that the initial weights for FFNN 

model sampled from, for example, uniform or random 

distributions will not represent the connection influences 

correctly. The nodes "Fetch" and "FetchConsumer” are 

highlighted in red to emphasize their greater influence on 

the target node, “End-to-end latency”, which aligns with 

the test scenario 5 result. 

On Fig. 8 (a) is visualized a convergence training 

speed in terms of time and on Fig. 8 (b) – a convergence 

training speed in terms of the epoch for FFNN model 

with architecture according to Fig. 4 and weights initial-

ize based on (14)-(16) (denoted as “Bayesian-Guided 

FFNN”) and FFNN model with architecture according to 

Fig. 4 and weights initialized from a uniform distribution 

and scaled using the Xavier/Glorot Uniform start method 

(denoted as Standard FFNN). Bayesian-Guided FFNN 

model converged within 7.78 s and 744 epochs compared 

to 8.19 s and 943 epochs it took by Standard FFNN. 

On Fig.9. are collected key measures to compare 

models’ performance: Bayesian-Guided FFNN achieved 

an MSE of 186.12, a reduction of 18.14% relative to the 

Standard FFNN (227.24). A lower RMSE value of 13.64 

for Bayesian-Guided FFNN versus 15.07 showed RMSE 

reduction by 9.48%. With a MAE of 10.89, the Bayesian-

Guided FFNN outperforms FFNN (12.1), showing 

9.99% lower error in absolute prediction terms. The 

Bayesian-Guided FFNN achieved a higher R2 value of 

0.96, demonstrating better predictive capability and ac-

curacy in explaining the variance in the dataset. Improve-

ment in R2 0.914% relative to the Standard FFNN. 

MSE distributions on Fig.10 show consistent differ-

ences but R2 distributions are less differentiable, indicat-

ing minimal variability between the models in terms of 

variance explanation. The results of the statistical signif-

icance testing confirm that the Bayesian-Guided FFNN 

significantly outperforms the Standard FFNN in reducing 

the overall error (p=0.000003<0.05, t=−4.68). However, 

no statistically significant difference was observed in the 

ability of the models to explain variance 

(p=0.491729>0.05, t=−0.69). 

 

6. Conclusions 
 

A feedforward neural network (FFNN) model is 

proposed to forecast end-to-end latency in a Kafka clus-

ter. To address the problem where the effectiveness of a 

neural network model depends on how well its architec-

ture and parameters are selected, we defined a new meth-

odology for designing the architecture of a FFNN model 

based on the discrete Bayesian Network and a new 

method for setting the initial weights that connect neu-

rons across layers. 

The proposed method involves two sequential pro-

cesses. The results from the "Design Bayes Network” 

process – a verified discrete Bayesian Model to diagnose 

Kafka cluster latency and determine the strength of influ-

ence between nodes in the Bayes Network were used as 

input parameters for "Design Neural Network" process. 

These inputs are used to design an architecture for FFNN 

model and set the initial weights matrices based on the 

strength of the influences received on Bayes Network. 

The constructed Bayesian Network achieved a nor-

malized log-likelihood of − 0.89, which falls within the 

"Good" fit quality range. This score confirms that the net-

work effectively models the collected dataset and cap-

tures the underlying probabilistic dependencies between 

the Kafka configuration parameters and latency metrics.  

The created FFNN model was tested with a dataset 

collected from repeatedly executed scenarios in which 

Kafka cluster works under different system loads. 

The developed FFNN model achieves significant 

improvements in prediction accuracy (reduction in MSE 

by 18.14%, showing the ability to reduce overall predic-

tion errors more effectively than the Standard FFNN) and 

training efficiency (faster training convergence with re-

duced training time by 5% (7.78 s vs. 8.19 s for Standard 

FFNN); reduced the number of epochs to converge by 

21% (744 epochs vs. 943 epochs), fulfilling the research 

goal. However, its ability to better explain variance (as 

reflected in R2) compared with the Standard FFNN re-

quires further investigation. Overall, the developed 

FFNN model is a reliable and practical model for Kafka 

cluster latency forecasting, leveraging domain-specific 

knowledge for enhanced performance. 
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Fig. 8. (a) Convergence training speed in term of epochs; (b) convergence training speed in term of time 

 

 

 
 

Fig. 9. Key measures to compare models’ performance MSE, RMSE, MAE, R2 

 

Future work will focus on the refinement of the 

Model Architecture, particularly by exploring the archi-

tecture that combines insights from Bayesian Networks 

with Mutual Information (MI) scores to improve the 

overall predictive performance in Kafka cluster latency 

forecasting. 

The current Bayesian-Guided FFNN leverages the 

influence of the Bayesian Network to establish initial 

weights, encoding domain-specific dependencies within 

the model. While effective, further improvements can be 

achieved by integrating Mutual Information (MI) scores 

to quantify pairwise feature dependencies, providing an 

additional signal for optimizing feature relationships. 

This hybrid approach combines the probabilistic reason-

ing of Bayesian Networks with the statistical dependency 

analysis of MI, resulting in richer representations of the 

underlying structure of Kafka workload and configura-

tion data. 
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Fig. 10. Statistical Comparison Bayesian-Guided vs Standard FNN: 

(a) – MSE distributions comparison; (b) – R2 distributions comparison;  

(c) – p-values of statistical significance testing for differences in MSE and R2  
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МОДЕЛЬ НЕЙРОННОЇ МЕРЕЖІ ПРЯМОГО ПОШИРЕННЯ  

ДЛЯ ПРОГНОЗУВАННЯ ЗАТРИМКИ KAFKA КЛАСТЕРА 

О. Л. Соловей, Т. A. Гончаренко 

Предметом вивчення в статті є процес проектування архітектури моделі нейронної мережі прямого по-

ширення (FFNN) на основі дискретної байєсівської мережі та методи визначення початкових ваг, які з’єдну-

ють нейрони між шарами нейронної мережі. Метою є розробка моделі нейронної мережі типу FFNN, призна-

ченої для прогнозування наскрізної затримки в Kafka кластері. Запропонована модель буде використовува-

тися як інструмент для прогнозування затримки кластера Kafka на основі заданих параметрів конфігурації та 

показників продуктивності. Для досягнення мети в дослідженні вирішені завдання: розроблено та перевірено 

дискретну байєсовську мережу для розуміння факторів, що впливають на затримку в кластері Kafka; прове-
дено аналіз чутливості дискретної байєсівської мережі на основі чого створив матрицю з початковими вагами, 

для початкової ініціалізації вагових коефіцієнтів FFNN моделі; розроблено архітектуру FFNN моделі для про-

гнозування затримки Kafka кластера та визначені її параметри; виконано навчання розробленої FFNN моделі 

і проведена оцінка здатності моделі прогнозувати потенційну затримку Kafka кластера. Для проведення дос-

лідження були використані методи з теорій: обробки великих даних; імовірнісні графічні моделі та байєсов-

ська теорія логічного висновку; штучні нейронні мережі та теорії глибокого навчання; теорія графів; оптимі-

зація машинного навчання. Отримані такі результати. Модель FFNN була протестована, і значення середньої 

квадратичної помилки показали послідовне зниження протягом епох. Також були отримані результати які 

демонструють, що коефіцієнт масштабування Kaiming He покращує початкову фазу тренування, стабілізуючи 

ініціалізацію ваг. Висновки. Наукова новизна отриманих результатів полягає в наступному: 1) запропоновано 

нову методологію визначення архітектури нейронної мережі типу FFNN на основі дискретної структури байє-
сівської мережі; 2) розроблено новий метод встановлення початкових ваг, які з’єднують нейрони між шарами. 

Оскільки отримані значення середньої квадратичної помилки показали послідовне зниження протягом епох, 

ми дійшли висновку, що розроблена модель FFNN може бути розгорнута та використана як інструмент для 

прогнозування затримки Apach Kafka кластера. Запропонований в даній роботі метод визначення початкових 

ваг для FFNN є корисним для оптимізації процесу тренування моделі типу FFNN. 

Ключові слова: затримка Kafka кластера; мережа Байєса; нейронна мережа прямого поширення; сила 

впливу; початкові ваги. 
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