
ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)

68

UDC 004.8: 629.7.05: 623.67 doi: 10.32620/reks.2025.3.05

Olga SOLOVEI, Tetyana HONCHARENKO

Kyiv National University of Construction and Architecture, Kyiv, Ukraine

A BAYESIAN-DRIVEN FEEDFORWARD NEURAL NETWORK MODEL

FOR KAFKA CLUSTER LATENCY FORECASTING

The subject matter of this article is the process of designing the architecture of a Feedforward neural network

model based on the discrete Bayesian Network and a new method for setting the initial weights that connect

neurons across layers. The goal of this study is to develop a Neural Network model designed to forecast end-to-

end latency in a Kafka cluster. The proposed model can be used as a tool to predict the end-to-end latency of

Kafka clusters based on the given configuration parameters and performance metrics. This study resolved the

following tasks: developed and validated a discrete Bayesian network to understand the factors influencing end-

to-end latency in Kafka clusters; conducted a sensitivity analysis on the discrete Bayesian network; created a

matrix with initial weights derived from the sensitivity analysis in the Bayesian network to initialize weights in
FFNN model; designed FFNN architecture for predicting the Kafka cluster end-to-end latency and configured

its parameters; trained and evaluated the designed FFNN model. Methods from theories were used to conduct

the research: big data processing, probabilistic graphical models and Bayesian inference theory, artificial neu-

ral networks and deep learning theories, graph theory, and machine learning optimization. The following results

were obtained: a trained FFNN model Mean Square Error showed consistent decrease across epochs, so we

concluded that the model can be deployed and used as a tool to forecast Apach Kafka latency for given config-

uration parameters and performance metrics. The comparison of the Mean Square Error values when FFNN

model is initialized with weights derived from the strength of influence in the Bayes Network and FFNN model

which is set the same initial weights but scaled by Kaiming He factor demonstrated that Kaiming He scaling

factor primarily improves the initial phase of training by stabilizing weight initialization. Therefore, we recom-

mend scaling the initial weights as specified in our method to optimize FFNN training process. Conclusions.
The scientific novelty of the results obtained is as follows: 1) a new methodology for defining the architecture of

a Feedforward Neural Network (FFNN) based on the discrete Bayesian network structure is introduced; 2) the

initial weights that connect neurons across layers are set.

Keywords: Kafka cluster latency; Bayes Network; Feedforward Neural network; strength of influence; initial

weights.

1. Introduction

IoT devices, sensors, and wearable sensing devices

have become data sources for construction-based infor-

mation systems [1]. Consequently, the architecture of

such systems has evolved to include streaming pro-

cessing engines, such as Apache Kafka, which serves as

a distributed storage system. This system consumes

streaming messages from Kafka producers and retains

them until they are retrieved by Kafka consumers. The

efficiency of a Kafka cluster is measured by its end-to-

end latency, which is the time between the moment when

an application that includes a Kafka producer sends event

data and the moment when the consumer logic of the

Kafka program receives the event [2]. Information sys-

tems for building construction projects rely heavily on

Kafka clusters’ low end-to-end latency, as such systems

require immediate decisions based on real-time data.

They also need real-time data to monitor site safety and

coordinate numerous teams in a timely manner [3].

1.1. Motivation

Given the limited formal methods available to pre-

dict Kafka cluster performance under different system

conditions, the Kafka cluster configuration is selected

based on the system’s performance tests. This may lead

to configuration changes post-deployment if Kafka clus-

ter performance is lower than expected, which may

breach the unavailability threshold, which must be

avoided. Therefore, when Kafka clusters are included in

information systems for building construction projects,

models and methods are required to diagnose and evalu-

ate their efficiency [4].

A neural network model to predict end-to-end la-

tency in a Kafka cluster can be an effective approach, lev-

eraging the capabilities of machine learning to model

complex non-linear relationships and interactions be-

tween various system parameters and performance met-

rics. However, the effectiveness of a neural network

model will depend on how well the network's architecture

 Creative Commons Attribution

NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

Machine learning and intelligent systems

69

and parameters, such as an initial weight between neu-

rons in different layers reflect the casual relations be-

tween various performance characteristics of Kafka clus-

ter [5]. At the same time, a Bayes network (Bayes Net)

has become a method for analyzing and diagnosing com-

plex systems, as it provides the ability to model causal

relationships and answer probabilistic queries. For exam-

ple, in research [6, 7] Bayes Networks (Bayes net) were

used to identify potential issues and prioritize mainte-

nance and repair needs in building condition assessment.

In this context, the Bayes Net was used to model the re-

lationships between building components and their con-

dition.

1.2. Motivating Use Case

This work is motivated by the challenge of real-time

data processing in large-scale urban infrastructure pro-

jects, specifically the construction of a new subway tun-

nel beneath a densely populated area [8]. In this high-risk

environment, modern civil engineering practices rely on

a dense network of Internet of Things (IoT) sensors to

mitigate geological risks and optimize the Tunnel Boring

Machine (TBM) operational efficiency. The integrity of

the project and personnel safety are directly dependent on

the timely and reliable processing of this sensor data. The

system architecture is a centralized, high-throughput

streaming platform. The primary data sources were het-

erogeneous IoT sensors deployed in and around the tun-

nel. All data streams are ingested into a central, fault-tol-

erant message queue that is implemented using an

Apache Kafka cluster. This cluster serves as the data

backbone, decoupling the sensors (producers) from the

various data analysis and storage systems (consumers).

The project’s real-time analytics platform is the primary

consumer, which is responsible for anomaly detection,

visualization for TBM operators, and long-term data ar-

chival.

The operational safety model is critically dependent

on low-latency data processing. Based on real-time feed-

back from the geotechnical sensors, TBM operators man-

ually and automatically adjust machine parameters. A

safety requirement is defined as follows: a sudden spike

in ground pressure detected by piezometers must be pro-

cessed and trigger a system-wide alert or an automated

partial TBM shutdown within a strict T-millisecond.

Problem Definition: a latency spike in the Kafka

pipeline could delay a critical alert, causing the TBM to

operate under unsafe geological pressures. This could fail

in the tunnel face, damage to the machine, and extreme

risk to personnel.

Proposed Solution in the current research: to ad-

dress this challenge, we propose employing a Feedfor-

ward Neural Network (FFNN) trained to forecast latency

spikes. The prediction of FFNN is fed into a decision pro-

cess. If the forecasted latency exceeds a predefined oper-

ational threshold, the system triggers an automated reme-

diation action before the actual latency becomes critical.

The action involves increasing the number of consumer

instances. This forces a partition rebalances within

Kafka, distributing the data load across more processing

units. The system reduces consumer lag and stabilizes the

pipeline latency by increasing parallel processing capac-

ity, ensuring the threshold safety requirement is consist-

ently met.

The goal of the current research is to propose a Neu-

ral Network model designed to forecast end-to-end la-

tency in a Kafka cluster, with a focus on enhancing pre-

diction accuracy, model trustworthiness, and model con-

vergence. The proposed model is intended to be a practi-

cal tool for predicting end-to-end latency in Kafka clus-

ters based on given configuration parameters and perfor-

mance metrics.

To achieve this goal, a new method is proposed for

defining the architecture of a Feedforward Neural Net-

work based on the discrete Bayesian Network structure

and for setting the initial weights that connect neurons

across layers.

1.3. State of the art

The Kafka cluster consists of servers, which are of-

ten referred to as brokers. In Kafka cluster, one server is

always assigned the “controller” role and the “leader”

role. The “controller” is responsible for administrative

tasks, while the “leader” is the server that first receives

streaming data. Kafka uses ZooKeeper as a centralized

service for managing and coordinating Kafka brokers in

the cluster. Each Kafka broker manages topics to which

producers send streaming data and where consumers tune

in. Kafka replicates data across various servers included

in the Kafka cluster to ensure high availability, durability,

and fault tolerance. The number of necessary copies is

determined by the topic configuration using the replica-

tion factor parameter. Apach Kafka documents [9] spec-

ify the end-to-end Kafka cluster event streaming process

through a sequence of steps (Fig. 1).

When a producer sends event data on a topic with a

single partition, the event lands in the receive socket

buffer on the broker; from there, it is picked up by the

Network Thread and placed in the shared request queue.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)

70

Fig. 1. Kafka cluster event streaming process

Kafka’s IO thread picks up the event and registers it to a

commit log organized on disk in segments, where each

segment holds part of the log. The registered event data

from RAM is saved on the leader server’s disk and moved

to the "Purgatory Map" queue, where they are held until

copied to other servers in the Kafka cluster. These servers

send requests to the leader server to receive copying event

data. The leader server sends the event data in response

once it is copied to the disk. Until brokers do not complete

the copying process, they will continually send requests

to the leader.

After a broker completes replication, the pending

event data are removed from the Purgatory Map queue

and placed in the response queue. The Network Thread

then takes a response and sends it into Send socket buffer.

The Kafka producer receives confirmation from the

"leader server" that events have been securely stored after

being copied on all servers (when the "acks_config" pa-

rameter is set to "all"). The Kafka producer can also re-

ceive confirmation as soon as the data is added to the log-

ging journal on the server (when the "acks_config" pa-

rameter is set to "1") or may not expect any confirmation

at all if the "acks_config" parameter is set to "0". Using

the poll() function, Kafka consumers continuously send

requests to the leader server to retrieve data from the topic.

In response, they receive messages immediately after the

Kafka producer has received confirmation from the server

(in cases where the "acks_config" parameter is "1" or

"all") or as soon as the event is added to the logging jour-

nal on the leader server (when "acks_config" is "0"). From

Fig. 1 can be concluded that the end-to-end latency of the

Kafka event streaming process can be measured by time

TL, which equals the sum of the following time periods:

1. The time required to collect events into a batch

before sending them to the server is referred to as pro-

ducer time (Tproducer).

2. The time from when the event data are received

in the receive socket buffer to when they are saved on the

leader-server disk, referred to as the leader-server commit

time (Tleadercommit).

3. The time from when the message is saved on the

leader-server’s disk to the completion of its copying on

the servers included in the Kafka cluster, referred to as

replica time (Treplica).

Machine learning and intelligent systems

71

4. The time from when the Kafka producer receives

confirmation from the leader-server ("acks_config"=1 or

"acks_config"="all"), or when a certain amount of data is

saved on the disk of the leader-server ("acks_config"= 0),

to when the Kafka consumer receives the event data, re-

ferred to as consumer fetch time (Tfetch).

Therefore, the formal definition of the end-to-end la-

tency time (TL) of Kafka cluster is provided in equation

(1):

TL= Tproducer+ Tleadercommit+ Treplica+ Tfetch. (1)

A previous study [10] confirmed that the log-based

architecture of Kafka is optimal for scalable, durable, and

high-throughput data ingestion and predictive mainte-

nance in Condition Monitoring (CM). The study con-

cluded that Kafka outperforms RabbitMQ in producer

throughput, whereas RabbitMQ achieves higher con-

sumer throughput, demonstrating its superiority in rapid

message consumption scenarios.

Study [11] proposed a model for Kafka cluster con-

figuration comprising three subsystems in series: a pro-

ducer group, an Apache Kafka cluster, and a consumer

group, each containing three parallel units operating un-

der a 1-out-of-3 strategy. The created model has been

proven to improve system robustness and efficiency in

handling failures in streaming data.

In a previous study [12], Apache Kafka was used as

the backbone of the data ingestion layer to manage high-

throughput data streams in real time for an Internet bank-

ing system. The Apache Kafka cluster was configured

with multiple producers and consumers. This configura-

tion ensured scalability by dynamically adjusting the data

ingestion rate based on the number of active producers,

making it suitable for high-velocity Internet banking

data.

A latency-aware and resource-efficient approach to

dynamic event consumer provisioning in distributed

event queues for real-time cloud applications was ex-

plored in [13]. The proposed solution models consumer

provisioning as a two-dimensional bin packing problem

and addresses the challenge of blocking synchronization,

which affects high-percentile latency. An extension to the

bin-pack autoscaler is introduced to mitigate tail latency.

The experimental results provide insights into optimizing

the model for workloads with high variance in processing

time.

From our perspective, the Kafka cluster configura-

tion models proposed in [10-13] could further improve

performance predictability by incorporating a machine

learning model capable of forecasting Kafka cluster per-

formance based on configuration parameters and perfor-

mance metrics.

Feedforward Neural Networks (FFNNs), combined

with gradient descent optimization techniques such as

backpropagation and algorithms such as Adaptive Mo-

ment Estimation (Adam), are widely regarded as founda-

tional machine learning models for regression and classi-

fication tasks. FFNNs architecture includes one input

layer, one or more hidden layer(s), and a single output

layer. The number of neurons in the input and hidden lay-

ers and the number of hidden layers in a FFNN are criti-

cal architectural choices that significantly affect the net-

work’s performance [14]. If these parameters are incor-

rectly chosen, it can negatively impact the model's ability

to learn from the data and achieve high accuracy or gen-

eralization. Currently, there is no universally recom-

mended procedure to determine the optimal number of

units or layers in an FFNN architecture for forecasting

Kafka cluster performance. Therefore, in this study, we

propose a method that specifies how to define FFNN ar-

chitecture based on the Bayesian Network structure.

FFNN training begins by setting initial values for

the following parameters: weights and bias. A learning

rate that determines the step size for weight updates dur-

ing optimization must be specified as a hyperparame-

ter [15].

Numerous studies have discussed various weight

initialization methods for neural networks and empha-

sized their importance as weight start significantly influ-

ences neuron activation [16]. Orthogonal initialization is

a recent method that initializes weights as orthogonal ma-

trices, which helps preserve the norms of activations and

gradients, contributing to stable training dynamics.

Sparse initialization initializes weights with a sparse

structure, promoting sparsity in network activations and

facilitating efficient computation [17].

Kaiming Uniform initialization is designed to work

with Rectified Linear Unit (ReLU) activation function.

The weights of each layer are initialized from a uniform

distribution with zero mean and a variance calculated

based on the number of neurons n in the layer [18]:

σ2 = 2 n⁄ , or σ = √2 n⁄ . (2)

Once the variance σ2 is calculated according to (2),

the weights are sampled from a uniform distribution in

the range [−√3σ,√3σ].
Given that weights in a neural network dictate the

strength of the inputs in determining the output of a neu-

ron, we propose setting their initial values based on the

strength of influence obtained from a sensitivity analysis

on a Bayesian network. However, to keep the variance of

activations and gradients relatively constant across dif-

ferent layers of the network, we scale the values of the

strength of influence using the Kaiming He scale factor

(2), which is specifically designed for networks with

ReLU activation function.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)

72

1.4. Objectives and tasks

This study aims to design the architecture of a Feed-

forward neural network model based on the discrete

Bayesian Network and a new method for setting the ini-

tial weights that connect neurons across layers. The goal

of the neural network is to predict future latency issues

based on present and historical cluster configurations and

performance metrics. To achieve these objectives, the

following tasks must be completed:

1. A discrete Bayesian network was developed and

validated to diagnose and understand the factors influ-

encing end-to-end latency in Kafka clusters.

2. A sensitivity analysis was conducted on the dis-

crete Bayesian network to identify the strength of the fac-

tors influencing the Kafka cluster latency.

3. To initialize weights in FFNN, create a matrix

of initial weights derived from the sensitivity analysis in

the Bayesian network.

4. Design the FFNN architecture and configure its

parameters.

5. Train and evaluate FFNN model.

Paper Structure. In Section 1 after the “Introduc-

tion” the “Motivation” formulates the challenges with

Kafka cluster performance predictability and specifies

how this study’s goal proposes to address those chal-

lenges. The “State of the art” provides the summaries of

the related research. The main tasks to be resolved in

achieving the current research goal are listed in the “Ob-

jectives and tasks” section.

Section2. “Materials and Methods” includes the for-

mal specifications of the methods and models employed

in this study.

Section 3. “Development of Feedforward Neural

Network Model” details the steps taken to construct a dis-

crete Bayes network model to diagnose Kafka cluster

end-to-end latency. This section also describes the pro-

cess of deriving Feedforward Neural Network architec-

ture from to forecast Kafka cluster end-to-end latency.

Section 4. “Experimental Study” describes the steps

followed to gather the data required for learning the pa-

rameters of the Bayesian network and parameters to be

used to train a Feedforward neural network. Metrics for

evaluating the quality of a developed Bayesian Network.

Metrics for evaluating the proposed Feedforward Neural

Network model’s quality.

Section 5. “Results and Discussion” includes the

practical outcomes of these tests.

The Conclusion section outlines the recommenda-

tions drawn from this research.

2. Materials

and research methods

The defined tasks (1-6) will be addressed through se-

quential processes, where the results of the process "De-

sign Bayes Network Model" will serve as input data for

the subsequent process "Design Neural Network Model"

(Fig. 2). Each process is described in detail below.

1.1. Define Bayes Network structure. The structure

of the discrete Bayesian network that models the relation-

ship between X and Y is an acyclic graph where Y is a set

of hidden nodes Yj=1,n̅̅ ̅̅ = {yj} that dependent on the set of

observed nodes Xi=1,k̅̅ ̅̅ = {xi}, which serve as independent

parent nodes. The influence of the parent nodes xi on yi is

expressed by the joint probability according to Bayes'

rule: P(y1,y2, … yn) = ∏ yi|X
n
i=1 .

Fig. 2. Method to define FFNN architecture based on Bayes Network

Machine learning and intelligent systems

73

The prior probabilities for xi ∈ X are defined by parameter

θX (3) and the conditional probabilities of yj ∈ Y are de-

fined by θy (4).

θX = {θx11 ,… , θx1N[sx1]
, … , θxk1 , … , θxkN[sxk]

}, (3)

θy =

{θy1|x11 , … , θy1|x1N[sx1]
, … , θym|x11 , … , θym|x1N[sx1]

}, (4)

where N[sx1],N[sx2], N[sxk] – the number of states S that

are defined for xi ∈ X.

When the observed data to train Bayes net exists

then θX, θy can be computed using the likelihood func-

tion L(θ|D) (5) which represents the joint distribution of

the probabilities of the observed data D [18, 19].

L(θ|D) =

 ∏ P(X(t), Y(t)|θ) =d
t=1 ∏ P(X(t)|θ)P(Y(t)|X(t), θ) =d

t=1

θx11
N[x11] ∙ … ∙ θx1N[sx1]

N[x1N[sx1]
]

∙ … ∙ θxk1
N[xk1] ∙ … ∙ θx

kN[sxk
]

N[x
kN[sxk

]
]

∙ … ∙

θy1|x11
N[y1|x11] ∙ … ∙ θ

y1|x1N[sx1]

N[y1|x1N[sx1]
]

∙ … ∙ θym|x11
N[ym|x11] ∙ … ∙

θ
ym|x1N[sx1]

N[ym|x1N[sx1]
]

, (5)

where N[y1|x1N[sx1]
] , N [ym|x1N[sx1]

] – the number of

times θy1|x1N[sx1]
 is included in (5).

1.2. Data collection. Since the prior probabilities of

the observed variables X are unknown it is necessary to

create a data set D in order to calculate θX, θy. The data

will be collected by executing different scenarios created

to test Kafka cluster performance under different system

loads. The collected continuous values of performance

measures from Kafka Producers, Servers, and Consumers

must be discretized to be utilized in the discrete Bayesian

network model. Hierarchical clustering methods groups

data based on two criteria: distance metric and linkage

method, beginning when each data point is a separate

cluster and merging them until a single cluster is formed.

When the linkage method is "Ward" and the distance met-

ric is either "Euclidean" or "Manhattan," the resulting

clusters tend to be relatively compact, equally sized, and

more robust to outliers [20]. Therefore, hierarchical clus-

tering will be employed in this research to discretize the

continuous values.

1.3. Learn Bayes Network parameters. The task of

determining the network parameters is to find the solution

of equations (5) in partial derivatives.

1.4. Accept model. The data collected in step 1.2 in-

cludes the logged values of the end-to-end latency of

Kafka cluster for the given configuration parameters and

the observed performance metrics. These data will be

used to compare the evidence from the Bayes network.

The developed Bayes Network model will be accepted if

the expected test results match the actual results.

1.5. Identify the strength of influence. The posterior

probability P(Y|X)(p) of the child variable Y due to a

change in the parameters of the parent variable X is

expressed as the ratio of two linear functions of the pa-

rameter (p) (6)

P(Y|X)(p) =
a∙p+b

c∙p+1
, (6)

where a, c – the angular coefficients in the linear equa-

tion;

b – the shift along the OY- axis;

p – is the probability that the network parameters will

take certain values.

The partial derivative of P(Y|X)(p) with respect to

p measures the sensitivity of child node y ∈ Y to changes

in the parent node. The derivative is given by:

Dr =
∂(P(Y|X)(p))

∂p
=

a−bc

(c∙p+1)2
 . (7)

The strength of the influence Іij from changes in the

values of the parent node (i) on the posterior probability

(6) of the child node (j) is determined by the product of

parameter range’s interval width Wi and the absolute

value of the derivative (7). It is calculated using the fol-

lowing expression [20]:

Iij = Wi ∙ Dr. (8)

2.1. Define Neural Network architecture. Given that

the “Design Bayes Network” process is completed with

the validated model and the calculated strength of the in-

fluence Іij as per (8). The architecture of Feedforward

fully connected Neural Network is defined by the follow-

ing design principles: Xi=1,k̅̅ ̅̅ = {xi} neurons will form the

input layer; the neurons in the hidden layers correspond

to the hidden variable Y of Bayes net and the number of

hidden layers is derived from the structure of a Bayes

Network. A single neuron in the output layer will be

“end-to-end latency” as described by (1). Neurons be-

tween layers are fully connected; however, the initial

weights for connections that do not exist in the Bayes

Network model are set to 0.

2.2. Define the training method. For each hidden

layer (l) with weights Wl and biases bl, the output hl and

preactivation zl are calculated as follows:

hl = ReLu(Wlhl−1 + bl), (9)

where ReLU is f(x)=max(0,x).

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)

74

For the output layer L with weights WL and bias bL

predicted value ŷ with linear activation function is as fol-

lows:

Ŷ = WLhL−1 + bL (10)

2.3 Define the initialization weights method. Given

an adjacency matrix of the Bayes Network Am×m, has

aii=0; aij=1 when node i is connected to node j and aij=0

otherwise; m= |X|+|Y| is a total number of nodes in the

Bays Network. Then the corresponding initial weights

matrix W for FFNN is set as follows:

wij = {
0, where aij = 0

Iij, where aij <> 0
, (11)

where Iij is the strength of influence (8).

2.4. Train Neural Network. The training of the

FFNN will aim to minimize a loss function, such as Mean

Squared Error (MSE) for regression tasks.

2.5. Accept model. The proposed FFNN model will

be accepted when the number of epochs increases and the

value of MSE consistently decreases.

2.6. The accepted FFNN to be deployed and ready

to use with new datasets to forecast Kafka cluster end-to-

end latency.

3. Development of Feedforward

Neural Network Model

3.1. Design a discrete Bayes Network model

structure to diagnose Kafka

cluster end-to-end latency

A discrete Bayesian network to diagnose the growth

of end-to-end latency in an Apache Kafka cluster defines

the target node to be “end-to-end latency time (TL)”, and

the Kafka cluster configuration parameters are considered

as the observed variables, and the Kafka performance

metrics are treated as the hidden variables for each term

in equation (1). To describe causal dependencies using an

acyclic graph that represents the Bayes Net structure, we

employ a notation in which a set with a hidden node Y is

identified by the function fm
n This function includes pa-

rameters X, which are the observed nodes. Here, 'n' de-

notes the level of the node in the graph, and 'm' is the index

of the term in equation (1). The definitions for sets X and

Y are provided below.

The elements of set X1={ x11,…,x15} include:

x11="acks_config" configures the level of acknowledg-

ment required from the leader-server for producers, deter-

mining when a message write is considered successful. It

directly influences the trade-offs between message deliv-

ery durability and availability, thereby affecting the relia-

bility of data transmission within a Kafka cluster;

x12=“buffer.memory” specifies the total amount of

memory that the producer can use for buffering. If the

buffer is completely filled, additional messages will be

blocked or discarded depending on the blocking policy;

x13 = “max.inflight.requests.per.connection” - defines

the maximum number of unacknowledged requests that

can be sent to the server on one connection. If this maxi-

mum is reached, the producer's batches will be blocked

until confirmation from the server is received;

x14=“socket.receive.buffer.bytes” specifies the net-

work socket buffer size for receiving data. The chosen

buffer size can affect the server’s message processing

time;

x15 = “max.poll.records” defines the maximum number

of records that a Kafka consumer can handle in one call to

the poll() method.

A higher value can reduce queue times if the con-

sumer handles larger batches efficiently, thereby decreas-

ing response delays.

The elements of set Y1 = {y11, y12} are performance

measures as follows:

y11=RequestQueueTimeMs (Request Queue Time

Milliseconds) measures the time a request spends waiting

in the request queue before being processed by the broker.

High values indicate that the broker is overloaded;

y12=ResponseQueueTimeMs (Response Queue

Time Milliseconds) measures the time a response spends

in the response queue after being processed and before be-

ing sent back to the client. A high value indicates that the

broker struggles to promptly dispatch responses.

The elements of set X2={x21, x22, x23} are the perfor-

mance measures:

x21=“log.flush.interval.ms” specifies the maximum

time, in milliseconds, that a message can remain in the log

buffer before it is flushed to disk. Setting a lower value

for this parameter means that logs will be flushed to disk

more frequently, which could result in an increase in the

log flush rate but potentially decrease the flushing time

(log flush time) because the amount of data to be written

at each flush could be smaller. Conversely, a higher value

for this parameter could decrease the log flush rate while

increasing the log flush time as more data accumulates be-

fore each flush;

x22="replica factor" determines the number of data

copies (replicas) that will be maintained across different

brokers. A higher replica factor not only increases redun-

dancy and fault tolerance but also impacts log flush dy-

namics. More replicas mean that each message needs to

be flushed in multiple places, potentially increasing the

overall time taken for flush operations (as well as the sys-

tem's I/O overhead). This might lead to a decrease in the

Machine learning and intelligent systems

75

log flush rate because the system is managing more flush

operations across replicas;

x23=replica.fetch.min.bytes indicates the minimum

amount of data that a follower replica must collect before

sending a fetch request to the leader replica. Increasing the

replica.fetch.min.bytes results in larger batch sizes being

fetched by each follower. Larger batch sizes can improve

throughput but might result in fewer fetch requests. If the

followers fetch data less frequently but in larger batches,

the leader might accumulate more unflushed data, poten-

tially increasing the amount of data to flush when the log

flush occurs. The impact on resource utilization might de-

crease the log flush rate.

The elements of set Y2 = {y21} is a performance

measure: y21=”LogFlushRateAndTimeMs” (Log Flush

Rate Milliseconds) represents the rate and time taken to

flush log data from memory to disk. This metric is crucial

for understanding the performance and efficiency of data

durability and storage in your Kafka cluster.

The elements of set X3={x31,...,x34} are Kafka con-

figuration parameters:

x31= “linger.ms” - how long the producer will collect

event data to form a batch. If this parameter is set to a

value greater than zero, the producer will accumulate

messages in the buffer for a specified time;

x32 = “batch.size” the maximum batch size in bytes.

Once the batch reaches this size, it will be sent regardless

of whether the time specified by "linger.ms" has elapsed;

x33 = “compression.type” determines the message

compression type, which requires additional processing

time before being sent;

x34 = “fetch.min.bytes” defines the minimum num-

ber of bytes that must be copied to the disk of the leader-

server before becoming available for Kafka consumers to

fetch. If the threshold set by fetch.min.bytes is not

reached, the server leader will wait until a sufficient

amount of data accumulates before sending a response to

the consumer. The use of fetch.min.bytes can balance the

number of requests and the scale of transmitted data.

The elements of set Y3 = {y31, y32} are performance

measures as follows:

y31=BytesInPerSec measures the total number of

bytes being received per second by a Kafka server from

all producers. High values may indicate the need to add

processing resources or adjust producer configurations;

y32=BytesOutPerSec – measures the rate at which

data are sent from the Kafka brokers to the consumers.

While high values can indicate good consumer through-

put, they can also signal that consumers are demanding

data at a rate that might strain the server, especially if

combined with high values in BytesInPerSec.

The elements of set X4={x15,x31, x32, x33, x41} are the

performance measures:

x15, x31, x32, x33 are from sets X1,X3 respectively;

x41= “the number of producers “ - the relationship

between the number of producers and the producer aver-

age batch size (batch.size.avg) can be influenced by the

configuration of the producers. As the number of produc-

ers increases, the contention for network and broker re-

sources can also increase, potentially leading to backpres-

sure and longer wait times for batch accumulation. In this

case, each producer might reach its batch.size limit more

frequently due to data sending delays, potentially reduc-

ing the batch.size.avg if not all producers are consistently

filling their batches to the maximum configured size.

The elements of set y4 = {y41} is a performance

measure: y41= "batch_size_avg" a producer average

batch size measures the average size of message batches

sent by the producer to a Kafka broker. A larger average

batch size means that more records are sent per request,

which can improve throughput but may also result in

higher latencies.

The metric to evaluate a node “end-to-end Kafka

cluster latency time TL” is equal to the sum of

y1
1 = f1

1(y11, y21, y31, y41); y2
1 = f2

1(y12, y21, y32);

 y3
1 = f3

1(y12, y21, y32, y41); y4
1 = f4

1(y11, y12, y21),

where 𝑦1
1 is TotalTimeMs, request=Produce which

equates to the total time taken to handle a Produce re-

quest. It is directly influenced by:

y11, where a long queue could increase the total han-

dling time;

y21, as frequent or slow log flushes can affect the

processing speed of a produce request;

y31 since heavier incoming data rates might slow

down processing;

y41, as larger batch sizes might take longer to pro-

cess times.

𝑦2
1 presents TotalTimeMs for the request=Fetch

which corresponds to the total time needed to complete a

fetch request. It is impacted by:

y12, where delays in response handling can extend

the total time;

y21, as, if data needs to be fetched from disk, flush

rate/times can play a significant role;

y32, where high output rates can indicate faster re-

trieval but also depend on network and broker load;

𝑦3
1 is TotalTimeMs, request=FetchConsumer - re-

lated to fetch requests initiated by consumers and can be

affected by the same factors as TotalTimeMs, re-

quest=Fetch but additionally by y41 depending on how

quickly batches are gathered and sent to consumers, im-

pacting total fetch time for consumers;

𝑦4
1 represent TotalTimeMs, request=OffsetCommit

- time taken to commit offset details, is influenced by y11;

 y12 as any queuing delays directly add to the total

commit time; y21, where committing an offset might re-

quire log interactions, thereby affected by log operations.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)

76

With the above knowledge the structure of Bayes

Net is specified as follows:

Y1 = f1
0(X1); Y2 = f2

0(X2); Y3 = f3
0(X3); Y4 = f4

0(X4);

Z = y1
1 + y2

1 + y3
1 + y4

1

and it’s schema is illustrated on Fig. 3.

To describe Bayes Network (Fig. 3) with variables

in the study, the following notation is used:

<N, S, G(S)>, (12)

where N – name of variable;

S – a set of state Si=1,N̅̅ ̅̅ ̅ = {si} expressed as linguistic

terms;

G(S) –a set of values for each state si ∈ S.

Fig. 3. Structure of a discrete Bayes Network for diagnosing Kafka cluster end-to-end latency

3.2 Design an architecture of Feedforward

Neural Network discrete Bayes Network model

structure to diagnose Kafka cluster

end-to-end latency

Based on the structure of Bayes Network (Fig. 3) an

architecture of fully connected FFNN is recorded in

Table 1 and illustrated on Fig. 4.

Equation (13) specifies the predicted value of the

Kafka cluster’s end-to-end latency corresponding to the

architecture outlined in Table 1.

ŷ = f(W3ReLU(W2ReLU(W1xk×1 + b⃗ n
1) + b⃗ p

2) + b⃗ z
3),

(13)

where f(z)=z; W1, W2, W3 – weights initialization matrix

(14) - (16).

Solid lines on Fig. 4 correspond to connections with

initial weights not equal to zero in matrices (15) – (17).

Dashed lines indicate connections for which no influence

was identified based on sensitivity analysis.

Table 1

An architecture of fully connected FFNN

Layer Layer neurons
Initial weights scaled by Kaiming

He scale factor
Bias

Input, k=13 xk×1ϵX W1 = (√2/k)Wn×k
1 b⃗ n

1 ← 0

First hidden,

n=6

{y11, y12, y21, y13, y23, y41} W2 = (√2/n)Wp×n
2 b⃗ p

2 ← 0

Second hidden,

p=4

y1
1; y2

1; y3
1; y4

1 W3 = (√2/p)Wz×p
3 b⃗ z

3 ← 0

Output Z

Machine learning and intelligent systems

77

Fig. 4. Fully connected FFNN to forecast Kafka cluster end-to-end latency

W6×13
1 =

(

w1
1 w3

1 w5
1 w7

1

w2
1 w4

1 w6
1 w8

1 w9
1

w11
1 w12

1 w13
1

w14
1 w17

1 w20
1 w23

1

w14
1 w18

1 w21
1 w24

1

w10
1 w16

1 w19
1 w22

1 w25
1)

, (14)

W4×6
2 =

(

w1
2 w6

2 w10
2 w13

2

w3
2 w7

2 w11
2

w2
2 w4

2 w8
2

w5
2 w9

2 w12
2 w14

2
)

, (15)

W1×4
3 = (w1

3 w2
3 w3

3 w4
3). (16)

4. Experimental Study

4.1. Data Collection

The observed variables for Bayes Network with the

structure on Fig. 3 are defined according to (13) in Ta-

ble 2 and hidden variables are described by states {“Low-

Time”, “MeanTime”, “HighTime”} and the set of values

for each state is identified programmatically by executing

hierarchical clustering.

To collect a data to learn Bayes Network parameters

(5), (6) we designed scenarios to test different Kafka

cluster characteristics:

1. A scenario to measure a Kafka cluster latency

with high throughput emphasis with durability.

2. A scenario to measure a Kafka cluster latency

with low latency and average throughput.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)

78

Table 2

Specification of variable for Bayes network

Name of variable Set of states Set of values

acks “none”, “leader”,

”all”

0,1,”all”

batch.size “small”, “moderate”,

”large”

[1000..8192], (8192..16384],(16384..32768]

replica factor “no fault tolerance”, “fault

tolerance”

“1”,”2”

linger.ms “none”, “default”, “high” 0,[1..50),[50..100]

compression type “enable”, “disable” “none”,“gzip”,”snappy”

buffer.memory “small”,

”default”, “large”

[1MB..8MB],(8MB..50MB],(50MB..96MB]

max.inflight.requests.per.connect “single”, “moderate”,

“high”

1,(2..5],(5..15]

socket.receive.buffer.bytes “small”,

”default”, “large”

[100KB..500KB],(500KB..1MB),[1MB..2MB]

log.flush.interval.ms “frequent”, “less frequent”,

“not frequent”

[0..100),[100..500),[500..1000]

replica.fetch.min.bytes “frequent”, “less frequent”,
“not frequent”

[1KB..100KB],(100KB..50KB],(50KB..1MB]

max.poll.records small, moderate, large [100..300],(300..500],(500..2000]

fetch.min.bytes very frequent, frequent, not

frequent

[1KB..100KB],(100KB..50KB],(50KB..1MB]

number of producers small, moderate, large [0..5),[5..10),[10..15]

3. A scenario to measure a Kafka cluster latency

with a balanced throughput and latency with fault toler-

ance.

4. A scenario to measure a Kafka cluster latency

with a stress test.

5. A scenario to measure a Kafka cluster latency

with a high fetch size for Bulk Processing.
Table 3 lists the values of the observed variables for

each scenario. For each scenario Kafka producer will be

sent 400 messages making the final dataset to include

2000 observations.

The experiments will be conducted on a system

with processor 11th Gen Intel(R) Core(TM) i7-

1185G7@ 3.00GHz 3.00 GHz and 32 GB RAM. Apache

Kafka version: 3.8.1. Bayes Network construction, learn-

ing paraments and sensitivity analysis will be performed

in program GeNIe Academic. Development of FFNN

will be performed in Python.

Table 3

The values of the observed variables for scenario 1-5

Scenario №

Name of variable
1 2 3 4 5

acks all leader all none all

batch.size large small moderate large large

replica factor

fault toler-

ance

no fault tol-

erance Fault tolerance

no fault toler-

ance

Fault toler-

ance

linger.ms high none default none high

compression type enable disable enable disable enable

buffer.memory large default default small large

max.inflight.requests.per.con-

nect moderate single moderate high moderate

socket.receive.buffer.bytes large small small small large

log.flush.interval.ms less frequent frequent less frequent frequent not frequent

replica.fetch.min.bytes not frequent Frequent not frequent not frequent not frequent

max.poll.records large small small large large

fetch.min.bytes frequent

very fre-

quent frequent very frequent not frequent

number of producers large small large large small

Machine learning and intelligent systems

79

4.2. Metrics for evaluating the quality

of a developed Bayesian Network

The normalized log-likelihood is used as a metric to

evaluate how effectively the Bayesian Network has

learned patterns in a given dataset D:

ln(L)

n
=
1

n
∑ ln(P(xi))
n
i=1 , (17)

where P(xi) represents the joint probability of the i-th ob-

servation, calculated using the conditional probability ta-

bles (CPTs) learned from the dataset D, and n denotes the

total number of observations in D.

This metric,
ln(L)

n
 provides a normalized measure of

model fit by indicating the average log-probability as-

signed to each observation. A widely used set of practical

guidelines for interpreting the normalized log-likelihood

is provided within the documentation for the influential

Bayesian network software, Netica (Norsys, 2023).

These heuristics suggest:
ln(L)

n
> −0.5 the Bayesian network fits data with

high accuracy, and well-captured relationships. No fur-

ther revision is required.

−1.0 <
ln(L)

n
≤ −0.5 the Bayesian network effec-

tively captures key patterns and dependencies. The model

is deemed acceptable, and immediate structural improve-

ment is not required.

−1.5 <
ln(L)

n
≤ − 1.0 the Bayesian network has an

acceptable fit, however further refinement of the network

structure is recommended to improve its ability to model

the dataset.
ln(L)

n
≤ −1.5 – the Bayesian Network fails to ade-

quately explain the data, indicating a poor fit. The model

cannot be accepted and requires significant structural re-

vision or redevelopment.

4.3. Metrics for evaluating the quality

of a proposed FFNN model

The following evaluation metrics will be employed

to compare the quality of the feedforward neural network

(FFNN) with the proposed weight initialization method

and architecture (Fig. 4) against the quality of an FFNN

with the same architecture but initial weights set using

the Xavier/Glorot uniform initialization method and to

align with the evaluation framework in [21]:

Mean Absolute Error (MAE) measures how closely

the model's predicted Kafka cluster latency (L̂i) aligns

with the actual Kafka cluster latency (L) in the dataset:

MAE =
1

n
∑ |Li − Lî|
n
i=1 . (18)

Root Mean Squared Error (RMSE) penalizes devi-

ations more heavily than MAE, as outliers have a squared

impact. It is useful for evaluating the accuracy of the

model in cases where large latency prediction errors are

significant:

RMSE = √
1

n
∑ (Li − Lî)

2n
i=1 (19)

Coefficient of Determination R2 to measure how

well the model learned patterns in the dataset. Measures

the proportion of variance in latency captured by the

model:

R2 = 1−
∑ (Li−Lî)

2n
i=1

∑ (Li−L̅)
2n

i=1
, (20)

where 𝐿̅ is the mean of the actual Kafka latencies.

Convergence speed measures how efficiently the

model reaches an acceptable loss threshold (T) during

training in terms of time:

St = min{ti|Lossi ≤ T}, (21)

Where 𝑡𝑖 is the training time at epoch i.

Alternatively, the convergence speed can be expressed in

terms of epoch as follows:

Si = min{i|Lossi ≤ T}, (22)

where i is the epoch index, the Loss is calculated based

on Mean Squared Error (MSE).

Key Performance indicators to quantify the percent-

age improvement or degradation in key metrics such as

R2 and MSE when comparing the proposed Bayesian-

guided weight initialization to the Xavier initialization,

the following indicators will be calculated:

Percentage change in R2:

△R2 % = (
R1
2−R2

2

R1
2)× 100, (23)

where R1
2, R2

2 are the coefficients of determination of the
models to be compared.

Percentage change in MSE:

△MSE % = (
MSE1−MSE2

MSE1
) × 100, (24)

MSE1, MSE2 are the Mean Squared Errors of the models

for comparison.

Statistical significance test to quantify whether the

performance improvements are meaningful will be based

on paired t-test:

t =
a̅

sd √n⁄
 , (25)

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)

80

where a̅ – mean of differences; sd – Standard Deviation

of differences.

t- test’s the Null Hypothesis (H0): no significant dif-

ference in performance between two FFNN models.

5. Results and Discussion

Because of executed scenarios 1-5, the values for

hidden variables y1
1; y2

1; y3
1; y4

1 of Bayes network from

Fig. 3 are recorded, and their values per scenario are il-

lustrated on Fig. 5.

The lowest end-to-end latency, equal to 9.44 ms,

was achieved in scenario 2 where only the leader replica

must acknowledge the messages. This speeds up the pro-

cess because acknowledgments from all replicas are not

required; the absence of multiple replicas removes the

overhead related to replicating data. Furthermore, disa-

bling compression type helped avoid the time and com-

putational power needed for data compression and de-

compression; the absence of multiple numbers for con-

current requests helped optimize the usage of resources.

As a result, the TotalTime metric for all types is low, so

their cumulative influence on end-to-end latency is min-

imal.

In scenario 4, the end-to-end latency was 13 ms,

which was a 37% increase compared to scenario 2. This

increase was due to allowing many numbers of

unacknowledged requests to be sent to the server on one

connection, which impacted the Total Time when the re-

quests were “Produce” and “OffsetCommit”. However,

as no acknowledgments are required, the TotalTime for

types “Fetch” and “FetchConsume” remained low, so

there was not a drastic effect on end-to-end latency.

In the scenario 1 and 3, the end-to-end latencies

were 40 ms and 43.38 ms, showing increases of 331%

and 359.5% compared to scenario 2, respectively. The

reasons for these increases include the requirement for

acknowledgments from all servers, which negatively im-

pacted the time it takes for each message to be considered

successfully sent. Along with infrequent flushes, this im-

pacted the TotalTime for requests labeled as “Produce”

and “OffsetCommit.” These last two factors contributed

to end-to-end latency growth.

In scenario 5, the end-to-end latency was 122.42

ms, showing an increase in 1196% due to the requirement

for acknowledgments from all replicas, which signifi-

cantly increased the waiting times. The overhead of man-

aging multiple replicas slowed down the data processing.

“not frequent” settings in log.flush.interval.ms and rep-

lica.fetch.min.bytes delayed data flushing and fetching,

contributing to increased response times, i.e., TotalTime,

for requests of the "Fetch" and "FetchConsumer" types.

Figure 6 shows the developed Bayesian Network,

which was constructed and trained using the parameters

learned from the collected dataset. The calculated log-

likelihood for the network is Ln(L)=-1785.6, and the cor-

responding normalized log-likelihood is
Ln(L)

𝑛
=

−1785.6

2000
~− 0.89, where n=2000 represents the total num-

ber of observations in the dataset. A normalized log-like-

lihood of −0.89 falls within the "Good" fit quality cate-

gory, indicating that the Bayesian Network is well-suited

to model the dataset, and can be used to perform sensitiv-

ity analysis to identify the strength of influences between

nodes in the network.

Fig. 5. Kafka Cluster performance metric values for the scenarios 1-5

Machine learning and intelligent systems

81

F
ig

.
6
.
B

ay
es

 N
et

w
o
rk

 t
o
 d

ia
g
n

o
se

 e
n

d
-t

o
-e

n
d

 l
at

en
cy

 o
f

K
af

k
a

cl
u

st
er

 w
it

h
 c

al
cu

la
te

d
 e

v
id

en
ce

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)

82

The states of the observed variables are set for test-

ing purposes according to scenario 5. The evidence ob-

tained from the Bayesian network is as follows: the "end-

to-end latency" of the Kafka cluster will be high when the

TotalTime for the "Fetch" request is high, with a proba-

bility of 72%; additionally, "BytesInPerSec" and

"BytesOutPerSec" are likely to be in a MeanTime state

with probabilities of 52% and 56% respectively.

These results correspond to the test results obtained

with scenario 5 and allow us to conclude on the capability

of the developed discrete Bayesian network to diagnose

growth in end-to-end latency in an Apache Kafka cluster

by simulating the effects of changes in cluster configura-

tion parameters.

The strength of the influences in the Bayes Network

was identified as a result of the completed sensitivity

analysis (Fig. 7). The different thicknesses of the network

arcs represent the magnitude of the influence strength,

which further indicates that the initial weights for FFNN

model sampled from, for example, uniform or random

distributions will not represent the connection influences

correctly. The nodes "Fetch" and "FetchConsumer” are

highlighted in red to emphasize their greater influence on

the target node, “End-to-end latency”, which aligns with

the test scenario 5 result.

On Fig. 8 (a) is visualized a convergence training

speed in terms of time and on Fig. 8 (b) – a convergence

training speed in terms of the epoch for FFNN model

with architecture according to Fig. 4 and weights initial-

ize based on (14)-(16) (denoted as “Bayesian-Guided

FFNN”) and FFNN model with architecture according to

Fig. 4 and weights initialized from a uniform distribution

and scaled using the Xavier/Glorot Uniform start method

(denoted as Standard FFNN). Bayesian-Guided FFNN

model converged within 7.78 s and 744 epochs compared

to 8.19 s and 943 epochs it took by Standard FFNN.

On Fig.9. are collected key measures to compare

models’ performance: Bayesian-Guided FFNN achieved

an MSE of 186.12, a reduction of 18.14% relative to the

Standard FFNN (227.24). A lower RMSE value of 13.64

for Bayesian-Guided FFNN versus 15.07 showed RMSE

reduction by 9.48%. With a MAE of 10.89, the Bayesian-

Guided FFNN outperforms FFNN (12.1), showing

9.99% lower error in absolute prediction terms. The

Bayesian-Guided FFNN achieved a higher R2 value of

0.96, demonstrating better predictive capability and ac-

curacy in explaining the variance in the dataset. Improve-

ment in R2 0.914% relative to the Standard FFNN.

MSE distributions on Fig.10 show consistent differ-

ences but R2 distributions are less differentiable, indicat-

ing minimal variability between the models in terms of

variance explanation. The results of the statistical signif-

icance testing confirm that the Bayesian-Guided FFNN

significantly outperforms the Standard FFNN in reducing

the overall error (p=0.000003<0.05, t=−4.68). However,

no statistically significant difference was observed in the

ability of the models to explain variance

(p=0.491729>0.05, t=−0.69).

6. Conclusions

A feedforward neural network (FFNN) model is

proposed to forecast end-to-end latency in a Kafka clus-

ter. To address the problem where the effectiveness of a

neural network model depends on how well its architec-

ture and parameters are selected, we defined a new meth-

odology for designing the architecture of a FFNN model

based on the discrete Bayesian Network and a new

method for setting the initial weights that connect neu-

rons across layers.

The proposed method involves two sequential pro-

cesses. The results from the "Design Bayes Network”

process – a verified discrete Bayesian Model to diagnose

Kafka cluster latency and determine the strength of influ-

ence between nodes in the Bayes Network were used as

input parameters for "Design Neural Network" process.

These inputs are used to design an architecture for FFNN

model and set the initial weights matrices based on the

strength of the influences received on Bayes Network.

The constructed Bayesian Network achieved a nor-

malized log-likelihood of − 0.89, which falls within the

"Good" fit quality range. This score confirms that the net-

work effectively models the collected dataset and cap-

tures the underlying probabilistic dependencies between

the Kafka configuration parameters and latency metrics.

The created FFNN model was tested with a dataset

collected from repeatedly executed scenarios in which

Kafka cluster works under different system loads.

The developed FFNN model achieves significant

improvements in prediction accuracy (reduction in MSE

by 18.14%, showing the ability to reduce overall predic-

tion errors more effectively than the Standard FFNN) and

training efficiency (faster training convergence with re-

duced training time by 5% (7.78 s vs. 8.19 s for Standard

FFNN); reduced the number of epochs to converge by

21% (744 epochs vs. 943 epochs), fulfilling the research

goal. However, its ability to better explain variance (as

reflected in R2) compared with the Standard FFNN re-

quires further investigation. Overall, the developed

FFNN model is a reliable and practical model for Kafka

cluster latency forecasting, leveraging domain-specific

knowledge for enhanced performance.

Machine learning and intelligent systems

83

F
ig

.
7

.
S

tr
en

g
th

 o
f

in
fl

u
en

ce
 f

ro
m

 p
ar

am
et

er
s

ch
an

g
es

 o
n

 e
n

d
-t

o
-e

n
d

 l
at

en
cy

 o
f

K
af

k
a

cl
u
st

er

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)

84

Fig. 8. (a) Convergence training speed in term of epochs; (b) convergence training speed in term of time

Fig. 9. Key measures to compare models’ performance MSE, RMSE, MAE, R2

Future work will focus on the refinement of the

Model Architecture, particularly by exploring the archi-

tecture that combines insights from Bayesian Networks

with Mutual Information (MI) scores to improve the

overall predictive performance in Kafka cluster latency

forecasting.

The current Bayesian-Guided FFNN leverages the

influence of the Bayesian Network to establish initial

weights, encoding domain-specific dependencies within

the model. While effective, further improvements can be

achieved by integrating Mutual Information (MI) scores

to quantify pairwise feature dependencies, providing an

additional signal for optimizing feature relationships.

This hybrid approach combines the probabilistic reason-

ing of Bayesian Networks with the statistical dependency

analysis of MI, resulting in richer representations of the

underlying structure of Kafka workload and configura-

tion data.

1

2

1
2

1

2

1
2

Machine learning and intelligent systems

85

Fig. 10. Statistical Comparison Bayesian-Guided vs Standard FNN:

(a) – MSE distributions comparison; (b) – R2 distributions comparison;

(c) – p-values of statistical significance testing for differences in MSE and R2

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)

86

Contributions of authors: Olga Solovei - concep-

tualization, methodology; formulation of tasks, analysis;

development of model, software, verification; analysis of

results, visualization; writing original draft preparation.

Tetiana Honcharenko - supervision, conceptualization,

review and editing.

Conflict of Interest

The authors declare that they have no conflict of in-

terest in relation to this research, whether financial, per-

sonal, author ship or otherwise, that could affect the re-

search and its results presented in this paper.

Financing

This study was conducted without financial support.

Data Availability

Data will be made available upon reasonable

request.

Use of Artificial Intelligence

The authors confirm that they did not use artificial

intelligence methods while creating the presented work.

All the authors have read and agreed to the pub-

lished version of this manuscript.

References

1. Honcharenko, T., Khrolenko, V., Gorbatyuk, I.,

Liashchenko, M., Bodnar, N., & Sherif, N. H. Smart In-

tegration of Information Technologies for City Digital

Twins. In 2024 35th Conference of Open Innovations As-

sociation (FRUCT), IEEE, 2024, pp. 253-258. DOI:

10.23919/FRUCT61870.2024.10516358.

2. Raptis, T. P., & Passarella, A. A survey on net-

worked data streaming with apache kafka. IEEE Access,

2023, vol. 11, pp. 85333-85350. DOI:
10.1109/ACCESS.2023.3303810.

3. Solovei, O., Honcharenko, T., & Fesan, A.

Tekhnolohiyi upravlinnya velykymy danymy proyektiv

misʹkoho budivnytstva [Technologies to manager big

data of urban building projects]. Upravlinnya rozvytkom

skladnykh system – Management of Development of

Complex Systems, 2024, no. 60, pp. 121–128, DOI:

10.32347/2412-9933.2024.60.121-128. (In Ukrainian).

4. Vogel, A., Henning, S., Ertl, O., & Rabiser, R.

A systematic mapping of performance in distributed

stream processing systems. In 2023 49th Euromicro Con-
ference on Software Engineering and Advanced Applica-

tions (SEAA), IEEE, 2023, pp. 293-300. DOI:

10.1109/SEAA60479.2023.00052.

5. Metta, C., Fantozzi, M., Papini, A., Amato, G.,

Bergamaschi, M., Galfrè, S. G., Marchetti, A., Veglio,

M., Parton, M., & Morandin, F. Increasing biases can be

more efficient than increasing weights. In Proceedings of

the 2024 IEEE/CVF Winter Conference on Applications

of Computer Vision (WACV), 2024, pp. 2810-2819. DOI:

10.1109/WACV57701.2024.00279.

6. Hosamo, H. H., Nielsen, H. K., Kraniotis, D.,

Svennevig, P. R., & Svidt, K. Improving building occu-

pant comfort through a digital twin approach: A Bayesian

network model and predictive maintenance method. En-

ergy and Buildings, 2023, vol. 288, article no. 112992.

DOI: 10.1016/j.enbuild.2023.112992.

7. Bortolini, R., & Forcada, N. A probabilistic per-

formance evaluation for buildings and constructed assets.

Building Research & Information, 2020, vol. 48, iss. 8,
pp. 838-855. DOI: 10.1080/09613218.2019.1704208.

8. Mousavi, M., Shen, X., Zhang, Z., Barati, K., &

Li, B. IoT-Bayes fusion: Advancing real-time environ-

mental safety risk monitoring in under-ground mining

and construction. Reliability Engineering & System

Safety, 2025, vol. 256, article no. 110760. DOI:

10.1016/j.ress.2024.110760.

9. Kafka Producer Configuration Reference for

Confluent Platform. Available at: https://docs.conflu-

ent.io/platform/current/installation/configuration/pro-

ducer-configs.html. (accessed 12.01.2025).
10. Pacella, M., Papa, A., Papadia, G., & Fedeli, E.

A Scalable Framework for Sensor Data Ingestion and

Real-Time Processing in Cloud Manufacturing. Algo-

rithms, 2025, vol. 18, iss. 1, article no. 22. DOI:

10.3390/a18010022.

11. Elshoubary, E. E., & Radwan, T. Studying the

Efficiency of the Apache Kafka System Using the Re-

duction Method, and Its Effectiveness in Terms of Relia-

bility Metrics Subject to a Copula Approach. Applied Sci-

ences, 2024, vol. 14, iss. 15, article no. 6758. DOI:

10.3390/app14156758.

12. Sathupadi, K., Achar, S., Bhaskaran, S. V.,
Faruqui, N., & Uddin, J. BankNet: Real-Time Big Data

Analytics for Secure Internet Banking. Big Data and

Cognitive Computing, 2025, vol. 9, iss. 2, article no. 24.

DOI: 10.3390/bdcc9020024.

13. Ezzeddine, M., Baude, F., Huet, F., & Laaziz, F.

Latency Aware and Resource-Efficient Bin Pack Au-

toscaling for Distributed Event Queues: Parameters Im-

pact and Setting. SN Computer Science, 2025, vol. 6, ar-

ticle no. 219. DOI: 10.1007/s42979-025-03740-9.

14. Harle, S. M. Advancements and challenges in

the application of artificial intelligence in civil engineer-
ing: a comprehensive review. Asian Journal of Civil En-

gineering, 2024, vol. 25, iss. 1, pp.1061-1078. DOI:

10.1007/s42107-023-00760-9.

15. Moller, M. Efficient training of feed-forward

neural networks. DAIMI Report Series, 1993, no. 464, ar-

ticle no. PB-464. pp. 136-173. DOI:

10.7146/dpb.v22i464.6937.

16. Narkhede, M. V., Bartakke, P. P., & Sutaone, M.

S. A review on weight initialization strategies for neural

networks. Artificial intelligence review, 2022, vol. 55,

pp. 291-322. DOI: 10.1007/s10462-021-10033-z.

17. Ebid, S. E., El-Tantawy, S., Shawky, D., & Ab-
del-Malek, H. L. Correlation-based pruning algorithm

https://doi.org/10.32347/2412-9933.2024.60.121-128
https://doi.org/10.3390/a18010022
https://doi.org/10.1007/s10462-021-10033-z

Machine learning and intelligent systems

87

with weight compensation for feedforward neural net-

works. Neural Computing and Applications, 2025, vol.

37, pp. 6351-6367. DOI: 10.1007/s00521-024-10932-6.

18. Kitson, N. K., Constantinou, A. C., Guo, Z., Liu,

Y., & Chobtham, K. A survey of Bayesian Network

structure learning. Artificial Intelligence Review, 2023,

vol. 56, pp. 8721-8814. DOI: 10.1007/s10462-022-

10351-w.

19. Lu, N. Y., Zhang, K., & Yuan, C. Improving

causal discovery by optimal bayesian network learning.

Proceedings of the AAAI Conference on artificial intelli-
gence, 2021, vol. 35, iss. 10, pp. 8741-8748. DOI:

10.1609/aaai.v35i10.17059.

20. Tawakuli, A., & Engel, T. Make your data fair:

A survey of data preprocessing techniques that address

biases in data towards fair AI. Journal of Engineering

Research, 2024. DOI: 10.1016/j.jer.2024.06.016.

21. Kharchenko, V., Fesenko, H., & Illi-

ashenko, O. Quality models for artificial intelli-
gence systems: characteristic-based approach, de-

velopment and application. Sensors, 2022, vol. 22,

iss. 13, article no. 4865. DOI: 10.3390/s22134865.

Received 15.01.2025, Accepted 25.08.2025

МОДЕЛЬ НЕЙРОННОЇ МЕРЕЖІ ПРЯМОГО ПОШИРЕННЯ

ДЛЯ ПРОГНОЗУВАННЯ ЗАТРИМКИ KAFKA КЛАСТЕРА

О. Л. Соловей, Т. A. Гончаренко

Предметом вивчення в статті є процес проектування архітектури моделі нейронної мережі прямого по-

ширення (FFNN) на основі дискретної байєсівської мережі та методи визначення початкових ваг, які з’єдну-

ють нейрони між шарами нейронної мережі. Метою є розробка моделі нейронної мережі типу FFNN, призна-

ченої для прогнозування наскрізної затримки в Kafka кластері. Запропонована модель буде використовува-

тися як інструмент для прогнозування затримки кластера Kafka на основі заданих параметрів конфігурації та

показників продуктивності. Для досягнення мети в дослідженні вирішені завдання: розроблено та перевірено

дискретну байєсовську мережу для розуміння факторів, що впливають на затримку в кластері Kafka; прове-
дено аналіз чутливості дискретної байєсівської мережі на основі чого створив матрицю з початковими вагами,

для початкової ініціалізації вагових коефіцієнтів FFNN моделі; розроблено архітектуру FFNN моделі для про-

гнозування затримки Kafka кластера та визначені її параметри; виконано навчання розробленої FFNN моделі

і проведена оцінка здатності моделі прогнозувати потенційну затримку Kafka кластера. Для проведення дос-

лідження були використані методи з теорій: обробки великих даних; імовірнісні графічні моделі та байєсов-

ська теорія логічного висновку; штучні нейронні мережі та теорії глибокого навчання; теорія графів; оптимі-

зація машинного навчання. Отримані такі результати. Модель FFNN була протестована, і значення середньої

квадратичної помилки показали послідовне зниження протягом епох. Також були отримані результати які

демонструють, що коефіцієнт масштабування Kaiming He покращує початкову фазу тренування, стабілізуючи

ініціалізацію ваг. Висновки. Наукова новизна отриманих результатів полягає в наступному: 1) запропоновано

нову методологію визначення архітектури нейронної мережі типу FFNN на основі дискретної структури байє-
сівської мережі; 2) розроблено новий метод встановлення початкових ваг, які з’єднують нейрони між шарами.

Оскільки отримані значення середньої квадратичної помилки показали послідовне зниження протягом епох,

ми дійшли висновку, що розроблена модель FFNN може бути розгорнута та використана як інструмент для

прогнозування затримки Apach Kafka кластера. Запропонований в даній роботі метод визначення початкових

ваг для FFNN є корисним для оптимізації процесу тренування моделі типу FFNN.

Ключові слова: затримка Kafka кластера; мережа Байєса; нейронна мережа прямого поширення; сила

впливу; початкові ваги.

Соловей Ольга Леонідівна – докторантка каф. інформаційних технологій, канд. техн. наук, доц. каф.

інформаційних технологій проектування та прикладної математики, Київський національний університет

будівництва та архітектури, Київ, Україна.

Гончаренко Тетяна Андріївна – д-р техн. наук, доц., зав. каф. інформаційних технологій,
Київський національний університет будівництва та архітектури, Київ, Україна.

Olha Solovei – Doctoral Student of the Department of Information Technologies, Associate Professor

at the Department of Information Technologies of Design and Applied Mathematics, Kyiv National University

of Construction and Architecture, Kyiv, Ukraine,

e-mail: solovey.ol@knuba.edu.ua, ORCID: 0000-0001-8774-7243, Scopus Author ID: 58173727100.
Tetiana Honcharenko – Doctor of Technical Science, Associated Professor, Head of the Department

of Information Technologies, Kyiv National University of Construction and Architecture, Kyiv, Ukraine,

e-mail: goncharenko.ta@knuba.edu.ua, ORCID: 0000-0003-2577-6916, Scopus Author ID: 57204204504.

https://doi.org/10.1016/j.jer.2024.06.016

