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EMPIRICAL EVALUATION OF FEATURE SELECTION AND MACHINE LEARNING 

TECHNIQUES TO RECOMMEND CLONES FOR SOFTWARE REFACTORING  
 

The article’s subject matter deals with the management of software clones. Software clones are duplicate code 

fragments that can exist in the same or different software files. Software clone detection and management has 
become a well-established research area. Software clones should be managed to minimize their ill-effects, as the 

presence of clones can increase the software’s maintenance cost and resource requirements. Refactoring is a 

commonly used technique for managing clones. A software clone detection tool can detect many clones from the 

software, but not all detected clones are suitable for refactoring. A developer needs a subset of detected clones 

that can be easily refactored. This study aims to suggest software clones for refactoring using machine learning 

techniques. This study evaluates the performance of fourteen machine-learning algorithms and investigates the 

influence of three feature selection methods on clone recommendation accuracy. The tasks to be solved are as 

follows: selecting appropriate features from datasets, developing machine learning-based models that can sug-

gest suitable clones for refactoring, and selecting an effective machine learning and feature selection algorithm 

for recommending clones for refactoring. The methods used for feature selection are correlation, InfoGain, and 

ReliefF.  The study is conducted on datasets from six open-source software written in Java. The experimental 
results show that the Decision Tree and LogitBoost classifiers achieve the highest accuracy of 94.44 % on the 

Lucene dataset.  ReliefF yields the best performance among the feature selection methods, particularly when 

used with the Decision Tree algorithm. This study concludes that Random Committee, Random Forest, and 

Decision Tree perform best when paired with correlation, InfoGain, and ReliefF, respectively. Overall, the De-

cision Tree classifier, combined with the ReliefF feature selection method, delivers the highest average precision, 

recall, and F-score across datasets. 

 

Keywords: Software clones; Clone management; Clone recommendation, Clone refactoring, feature selection, 

machine learning. 

  

1. Introduction 
 

Software clones are duplicate code fragments in the 

same or different source code files. When a program-

mer/developer copies a piece of code and pastes it at var-

ious locations in the source code with or without modifi-

cation, software clones are generated in the software. 

Copying and pasting source code fragments is known as 

software cloning. The presence of such clones can in-

crease the maintenance of software. For example, soft-

ware cloning propagates the same bug at different loca-

tions if a bug exists in a copied code fragment. The pres-

ence of clones can also increase the size of the source 

code, which is a critical issue for devices with limited 

memory.  

Software clones can be of various types, as dis-

cussed below: 

­ Type-1 clones/ Exact clones: The duplicate code 

fragments with minor differences, such as changes in 

comments or whitespaces; 

­ Type-2 clones/Parameterised clones: The dupli-

cate code fragments with differences in variable and 

function names, comments, and whitespaces; 

­ Type-3 clones/ Near Miss clones: The duplicate 

code fragments with modifications, such as adding new 

source code lines or deleting existing source code; 

­ Type-4 clones/Semantic clones: The two code 

fragments are functionally similar but have different syn-

taxes. Such duplicate fragments are also known as 

semantic clones. 

In previous research, many techniques have been 

developed to detect various types of software clones. In-

terested readers can read previous surveys [1, 2] to un-

derstand the working principle of these techniques. Since 

clones in software can be harmful, clones must be man-

aged. Clones can be managed in several ways. Clone 

management refers to a group of activities that help to 

detect, remove, or avoid clones [3]. Such activities in-

clude clone detection [4], clone documentation, clone 

visualization [5], clone analysis [6], clone refactoring [7], 

and clone tracking [8]. 

 

1.1. Motivation and Objective 

 

Clone refactoring is a popular method for managing 

clones [9]. Various refactoring techniques [10, 11] such 
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as the extract method [12], extract class, and pull-up 

method help to manage clones. The major challenge is 

selecting a set of clones that can be managed through re-

factoring [13]. A clone detection tool can find many 

clones of different types and granularities in the software. 

Manually selecting suitable clones for applying any re-

factoring technique is difficult.  

To address this limitation, this study aims to evalu-

ate the effectiveness of multiple machine learning algo-

rithms along with three feature selection methods to au-

tomatically recommend suitable clones for refactoring. 

This approach not only reduces manual effort but also en-

hances clone management scalability. The novelty of our 

work lies in integrating and comparatively analyzing ma-

chine-learning based classification with feature selection 

methods to improve clone recommendations for refactor-

ing, which is an underexplored area in the current litera-

ture. 

 

1.2. Major Contribution of the Study 

 

The major contributions of this study toward ad-

vancing automated clone refactoring are as follows: 

­ Systematic feature selection:  This study applied 

three widely used feature selection methods: Correlation, 

InfoGain, and ReliefF, to identify the most relevant at-

tributes of the clone refactoring dataset, enabling more 

focused and efficient learning. 

­ Extensive model evaluation: A detailed perfor-

mance comparison is conducted using fourteen machine 

learning algorithms, each tested along with three feature 

selection methods. This provides a robust assessment of 

how various machine learning algorithm and feature-se-

lection pairs perform in recommending suitable clones 

for refactoring. 

­ Demonstration of the impact of feature selec-

tion: This study highlights how feature selection im-

proves classification accuracy, emphasizing its im-

portance in enhancing clone recommendation systems.  

This work fills a notable gap in existing research by 

combining and evaluating diverse machine learning mod-

els and feature selection methods in the context of clone 

refactoring, offering a practical and scalable solution for 

real-world software maintenance.  

 

1.3. Paper Organization 

 

The remainder of this paper is organized as follows. 

Section 2 discusses related work. This section elaborates 

on previous studies that proposed approaches for select-

ing suitable clones for refactoring. Section 2 also high-

lights the difference between our study and previous 

studies. The methodology is discussed in Section 3. Sec-

tion 3 elaborates in detail the study’s approach, including 

feature selection, datasets, machine learning algorithms, 

and evaluation metrics. Section 4 presents the results. 

The performance evaluation of various feature selection 

and ML algorithms is presented, and the results are com-

pared with those of existing approaches. Section 5 dis-

cusses the results, and Section 6 concludes and provides 

future directions. 

 

2. Related Work 
 

Higo et al. [14] designed a filter named CCShaper 

to filter refactoring-oriented clones for the clone detec-

tion results of the CCFinder tool. CCShaper identified 

structural blocks in the code clone that are easy to com-

bine and move. A tool Aries [15, 16] uses CCShaper to 

find structural blocks of code clones and then uses met-

rics like DCH (Dispersion of class Hierarchy), NRV 

(Number of Referred variables), or NAV (Number of As-

signed variables) to identify clones suitable for Pull-Up 

method and Extract Method. 

Schulze et al. [17] provided guidelines for clone re-

factoring by adding additional information, such as the 

clone location and the statement type of the code clones, 

to clone detection results. This information is used to pro-

vide refactoring proposals; however, applying the sug-

gested refactoring for clone removal requires a separate 

refactoring tool. 

Choi et al. [18] proposed a technique that integrates 

clone metrics to filter clones for refactoring. They used a 

web application to conduct an empirical investigation. 

They demonstrated that filtering clones for refactoring 

via a combination of clone metrics is more efficient than 

using a single clone metric. 

Mondal et al. [19] developed a method for finding 

clones that are important for refactoring. They suggested 

that SPCP (Similarity Preserving Change Pattern) clones 

be considered while making refactoring decisions. SPCP 

clones are defined as two or more clone fragments from 

the same clone class that preserve similarity during clone 

evolution. They identified that SPCP clones with lower 

change couplings with other classes are good candidates 

for refactoring. 

Wang and Godfrey [20], Rongrong et al. [21], 

Sheneamer [22], and Yue et al. [23] used machine learn-

ing algorithms to identify clones for refactoring. Wang 

and Godfrey [20] used the code, context, and history fea-

tures of code clones. They built a machine-learning 

model to recommend clones for refactoring using a deci-

sion tree classifier. To prepare the dataset for training and 

testing the classifier, 323 clone instances with refactoring 

histories and 323 without refactoring histories were used. 

The proposed machine learning-based model achieved 

precision from 77.3% to 87.9% within-project testing, 

whereas cross-project testing generated precision from 

73.2% to 88.5%. 
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Rongrong et al. [21] used various code clone fea-

tures, including 13 static features and three evolution fea-

tures, to build a method for identifying clones for refac-

toring. They employed Bayesian network, Naïve Bayes, 

and C4.5. Seven open-source projects written in C were 

evaluated. They concluded that the decision tree-based 

prediction model has higher accuracy than other models. 

Sheneamer [22] proposed an approach to automati-

cally advise clone refactoring. The strategy is based on 

AST features and uses K-nearest neighbor, Forest PA, 

Bagging, and Random Forest. They observed that Ran-

dom Forest achieved better outcomes among all classifi-

ers. 

Yue et al. [23] developed a refactoring clone recom-

mendation tool. The tool is based on 34 clone instances’ 

features extracted from open-source projects in Java. 

They used AdaBoost to build a machine-learning-based 

model that automatically recommends clones for refac-

toring. In both with-in-project and cross-project testing, 

they concluded that AdaBoost recommended clones for 

refactoring with improved accuracy. 

Fanqi [24] used SOM (Self-Organized Mapping) 

clustering to find refactorable clones. They retrieved met-

rics like POP (number of clones in a clone group), NIF 

(number of files in which clones of a clone group are dis-

tributed), LEN (length of code clone in terms of token), 

etc using CCFinder. The metrics of selected refactorable 

code clones were used to train the SOM model, which 

was then used to categorize the unknown code clones. 

While previous studies have attempted to fill the 

gap between clone detection and meaningful recommen-

dation of clones for refactoring, most have notable limi-

tations. Recent studies have applied machine-learning al-

gorithms to classify clones as refactorable or not, yield-

ing promising results. However, these studies neither 

considered the impact of feature selection on model per-

formance nor conducted broad comparisons among di-

verse algorithms. These existing studies used a limited 

set of machine learning classifiers, which raises concerns 

about the generalizability and robustness of their find-

ings. Despite the well-documented influence of feature 

relevance on classification outcome in other domains, no 

previous studies provide a comparative analysis and eval-

uation of feature selection methods in the context of 

clone refactoring recommendations.  These gaps high-

light the need for a comprehensive, scalable, and gener-

alizable framework that integrates a broad range of ma-

chine learning classifiers with diverse feature selection 

methods. Motivated by this, the current study conducts a 

large-scale empirical evaluation that not only evaluates 

fourteen machine-learning classifiers across six datasets 

but also integrates and compares three well-known fea-

ture selection methods: Correlation, Infogain, and Re-

liefF to generate accurate and generalizable clone recom-

mendations for refactoring. The goal is to identify opti-

mal combinations for accurately recommending clones 

for refactoring. 

 

3. Methodology 
 

Figure 1 shows the workflow of the current study. 

A labeled dataset related to clone refactoring was re-

quired to train the machine-learning models. Six open-

source projects [23] were used as the labeled dataset of 

clone refactoring. Three feature subset selection methods 

were employed to select optimal features from six clone 

refactoring datasets and trained machine learning algo-

rithms to classify refactorable and non-refactorable 

clones. 

 

3.1. Feature selection 

 

Feature selection algorithms are important in select-

ing the best features for machine learning algorithms. 

The accuracy and execution speed of the machine learn-

ing algorithms may be enhanced by this feature subset 

selection. There are two categories of feature selection 

algorithms: wrapper techniques and filter methods. 

While wrapper techniques use learning algorithms to se-

lect a subset of the best features, filter methods select fea-

tures based on their relationship to the target. Three fea-

ture selection techniques were employed in the current 

work: Correlation, InfoGain, and ReliefF. 

 

3.2. Datasets 
 

The dataset used in this study comprises six open-

source subject systems [23]. The dataset includes 666 

clone instances belonging to six open-source software in 

Java (see Table 1). It consists of 333 clone refactoring 

instances and 333 clone instances without refactoring 

history. Each clone instance is represented in the form of 

34 features. These 34 features belong to five types: code 

features, history features, syntactic difference features, 

relative location features, and co-change features among 

clones.  

Table 1 

Clone refactoring dataset [23] 

Subject 

System 

Number of 

refactored 

clones 

Number of Non- 

refactored clones 

Axis2 43 43 

Eclipse. jdt. 
core 

106 106 

Elastic 
Search 

33 33 

JFreeChart 59 59 

JRuby 65 65 

Lucene 27 27 
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Figure 1. Workflow of the proposed approach 

 
  

3.3. Machine learning algorithms used 

 

This experiment used the following machine learn-

ing algorithms [25]: 

 Decision Tree, 

 Random Forest, 

 Random Tree, 

 Decision Table, 

 AdaBoost, 

 Bagging, 

 LogitBoost, 

 MulticlassClassifier, 

 RandomCommitte, 

 Random Subspace, 

 IBK, 

 SMO, 

 Naïve Bayes, 

 Multilayer Perceptron. 

 

3.4. Evaluation Metrics 
 

Many evaluation metrics exist to measure machine 

learning models' performance [25, 26]. In this experi-

ment, the performance of different machine learning al-

gorithms was measured using the following metrics.  

 

Precision: Ratio of relevant instances to retrieved 

instances 

 

Precision= 
TP(True Positives)

 TP(True Positives)+FP(False Positives)
. 

 

Here, TP (True Positives) represents the correctly 

identified refactorable clones. FP (False Positives) repre-

sents instances where the model incorrectly identifies a 

clone as a refactorable clone.  

Therefore, precision measures how many clones are 

refactorable among all the recommended clones for re-

factoring. 

 

Recall: Ratio of retrieved relevant instances to total 

relevant instances 

 

Recall = 
TP(True Positives)

 TP(True Positives)+FN(False Negatives)
. 

 

Here, TP (True Positives) represents the correctly 

identified refactorable clones and FN (False Negatives) 

represents instances where the model fails to identify a 

refactorable clone, respectively. 

Therefore, recall measures how many clones are 

recommended for refactoring among all known refactor-

able clones. 

 

F-Measure/ F1-score:  Weighted average recall 

and precision values.  

 

F1-Score = 
2∗(Recall∗Precision)

(Recall+Precision)
. 

 

F1-Measure provides a single measure for balanc-

ing precision and recall to check the model performance. 

 

Accuracy: Ratio of correctly retrieved instances to 

the total number of instances [27]. 
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Accuracy = 
TP+TN

 TP+FP+TN+FN
. 

 

Here, TP (True Positives) represents the correctly 

identified refactorable clones, TN(True Negatives) rep-

resents instances where the model correctly identifies the 

clones which are not refactorable. FP (False Positives) 

represents instances where the model incorrectly identi-

fies a clone as a refactorable clone and FN (False Nega-

tive) represents instances where the model fails to iden-

tify a refactorable clone. 

Therefore, accuracy measures the proportion of cor-

rect predictions (both refactorable and non-refactorable 

clones) made by the model out of total predictions 

 

4. Results 
 

4.1. Performance evaluation of different Feature  

Selection (FS) techniques with various classifiers 

 

Table 2 presents the evaluation of various feature 

selection approaches with different classifiers for the 

Axis2 dataset. For the correlation and ReliefF method, 

the classifiers Decision Tree, Decision Table, AdaBoost, 

Bagging, LogitBoost, MulticlassClassifier, RandomSub-

space, IBK, Naïve Bayes, and MLP increase precision, 

recall, and F-measure with top 70% features. Decision 

Tree, Random Tree, Decision Table, AdaBoost, 

LogitBoost, MulticlassClassifier, RandomSubspace, 

IBK, and MLP provide better precision, recall, and F-

measure with top 70% features for the Infogain method. 

The average performance of all classifiers increased with 

the use of the correlation, Infogain, and ReliefF feature 

selection methods for dataset Axis2.  

As shown in Table 3, for the Eclipse.Jdt.core da-

taset, the performance of nine classifiers for the Infogain 

method with the top 70% features increased. For the Re-

liefF and correlation method, the performance of seven 

and four classifiers increased, respectively. The average 

performance of all classifiers is higher in the Infogain se-

lection method than ReliefF and Correlation. In the case 

of Infogain, average precision is 81.5, the average recall 

is 81.21 and the average F-measure is 81.15. Random for-

est provides the highest performance in the 

eclipse.jdt.core dataset. With all features, the F-measure 

is 86.8. For Correlation and Infogain, it gives F-measure 

of 87.3, and for ReliefF selection method, it achieves the 

highest value for F-measure, i.e., 89.6. 

As shown in Table 4, the performance of nine clas-

sifiers for the ReliefF method with top 70% features is 

increased for the Elastic search dataset. For the correla-

tion and Infogain methods, the performance of eight and 

seven classifiers increased, respectively. The SMO clas-

sifier achieved the highest F-Measure with all features. 

After applying the feature selection method correlation 

and Infogain, the classifier LogitBoost achieved an F-

Measure of 74.2, whereas the whereas with ReliefF, clas-

sifier AdaBoost achieved F-Measure of 74.2. 

In dataset Jfreechart, after applying feature selec-

tion methods, the performance of six classifiers in-

creased, as shown in Table 5. For the correlation method, 

the classifier Decision Table, LogitBoost, Bagging, Ada-

Boost, Random Subspace, and IBK show performance 

improvement compared to their results with all features. 

Similarly, classifier Bagging, Multiclassclassifier, Ran-

domCommittee, RandomSubspace, IBK, and Naïve 

Bayes performed better with Infogain selection method, 

whereas Decision Tree, RandomForest, AdaBoost, Ran-

dom Subspace, IBK and Naïve Bayes show better perfor-

mance with ReliefF selection method. As we observed, 

the classifier Decision Tree achieved a maximum F-

Measure of 93.2 for all features; however, with the selec-

tion method reliefF, the classifier Decision Tree achieved 

F-Measure of 94.1. In the correlation and Infogain selec-

tion method, the classifiers LogitBoost and Ran-

domCommittee respectively achieved an F-Measure of 

94.1. 

In dataset JRuby (see Table 6), with the feature se-

lection method Infogain, maximum performance im-

provement is achieved as seven classifiers, i.e., Random 

Tree, AdaBoost, Bagging, Random Subspace, IBK, SMO 

and Naïve Bayes show an increase in Precision, Recall,  

F-Measure. We observed that the classifier Random For-

est gave a maximum F-measure of 85.3 with all features 

with dataset JRuby. In the case of correlation, the Ran-

domCommittee classifier gave a maximum F-Measure of 

83.7. For the Infogain selection method, the Random-

Forest classifier achieved a maximum F-measure of 83.8, 

whereas for the ReliefF selection method, the Random 

Tree classifier achieved the highest F-measure of 85.4. 

In the Lucene dataset, as shown in Table 7, the In-

fogain feature selection method helps achieve better per-

formance of five classifiers, Random Tree, AdaBoost, 

Multiclass, IBK and Naïve Bayes as compared to the per-

formance of these classifiers with all features. With clas-

sifiers Decision Table, Bagging, Random Subspace and 

MLP gave the same performance with all features of the 

dataset and using the Infogain selection method with the 

top 70% features. The highest F-Measure of 94.4 was 

achieved with the classifier Decision Tree using all fea-

tures and ReliefF selection method. With the selection 

method, correlation, the AdaBoost classifier achieved the 

highest F-Measure of 90.7. With the Infogain selection 

method, the Random Tree and AdaBoost classifiers 

achieved a maximum F-Measure of 90.7  
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Table 2 

Performance evaluation of different FS techniques with various classifiers using dataset Axis2 

Classifier 

All Features 
Correlation + Top 70% 

Features 
Infogain + Top 70% 

Features 
ReliefF+ Top 70% 

Features 

P (%) R 

(%) 
F (%) P (%) 

R 

(%) 
F (%) P (%) 

R 

(%) 
F (%) P (%) 

R 

(%) 
F (%) 

Decision Tree 76.3 75.6 75.4 81.1 80.2 80.1 79.3 79.1 79 83.7 83.7 83.7 

RandomForest 86.4 86 86 83.4 82.6 82.4 86.8 86 86 82.7 82.6 82.5 

RandomTree 79.3 79.1 79 76.7 76.7 76.7 81.7 81.4 81.4 76.8 76.7 76.7 

DecisionTable 84 82.6 82.4 87.3 86 85.9 87.3 86 85.9 87.3 86 85.9 

AdaBoost 75.7 75.6 75.6 81.7 81.4 81.4 78.3 77.9 77.8 76.3 75.6 75.4 

Bagging 81.6 80.2 80 83.2 81.4 81.1 82.3 80.2 79.9 82.5 81.4 81.2 

LogitBoost 67.5 67.4 67.4 82.5 81.4 81.2 84.4 83.7 83.6 77 76.7 76.7 

MulticlassClassifier 61.8 61.6 61.5 69.8 69.8 69.8 72.1 72.1 72.1 71 70.9 70.9 

RandomCommitte 84 83.7 83.7 84.4 83.7 83.6 83 82.6 82.5 81.7 81.4 81.4 

RandomSubspace 80.7 79 78.8 84 82.6 82.4 83.2 81.4 81.1 83.4 82.6 82.4 

IBK 75.9 75.6 75.5 77 76.7 76.7 78.3 77.9 77.8 79.1 79.1 79.1 

SMO 73.9 73.3 73.1 76.3 75.6 75.4 70.2 69.8 69.6 72.5 72.1 72 

NaiveBayes 72.4 70.9 70.4 79.6 79.1 79 68.9 67.4 66.8 74 72.1 71.5 

MLP 73.4 73.3 73.2 83 82.6 82.5 86.1 86 86 80.2 80.2 80.2 

 

 

Table 3 

Performance evaluation of different FS techniques with various classifiers using dataset Eclipse.Jdt.core 

Classifier 
All features 

Correlation + Top 70% 

Features 

Infogain + Top 70% 

Features 

ReliefF + Top 70% 

Features 

P 

(%) 

R 

(%) 

F 

(%) 
P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%) 

Decision Tree 81.9 81.6 81.6 81.7 81.1 81 79.5 79.2 79.2 81.5 81.1 81.1 

RandomForest 86.8 86.8 86.8 87.3 87.3 87.3 87.3 87.3 87.3 89.6 89.6 89.6 

RandomTree 80.8 80.7 80.6 78.1 77.8 77.8 80.4 80.2 80.2 79.8 79.7 79.7 

DecisionTable 79 78.3 78.2 74.7 74.5 74.5 79.1 78.8 78.7 80.5 80.2 80.1 

AdaBoost 77.4 77.4 77.4 76.9 76.9 76.9 78.8 78.8 78.8 77.4 77.4 77.3 

Bagging 80.7 80.7 80.6 82.2 82.1 82.1 83 83 83 82.1 82.1 82.1 

LogitBoost 82.3 82.1 82 81.7 81.6 81.6 83.1 83 83 84.5 84.4 84.4 

MulticlassClassifier 79.3 79.2 79.2 79.3 79.2 79.2 80.9 80.7 80.6 79.8 79.7 79.7 

RandomCommitte 86.1 85.4 85.3 86.7 86.3 86.3 86.9 86.8 86.8 88.2 87.7 87.7 

RandomSubspace 85 84.9 84.9 83.5 83.5 83.5 80.7 80.7 80.7 85.8 85.8 85.8 

IBK 82.8 82.5 82.5 82.4 82.1 82 83 83 83 82.6 82.5 82.5 

SMO 80.7 80.7 80.6 79.8 79.8 79.7 80.4 80.2 80.2 79.8 79.7 79.7 

NaiveBayes 76 75.9 75.9 78.4 77.8 77.7 79.1 78.3 78.1 75.6 73.1 72.4 

MLP 79 78.8 78.7 77 76.9 76.9 77.4 77.4 77.4 78.8 78.8 78.8 
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Table 4 

Performance evaluation of different FS techniques with various classifiers using dataset Elastic search 

Classifier 
All features Correlation + Top 70% features Infogain + Top 70% features ReliefF + Top 70% features 

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%) 

Decision Tree 70 69.7 69.6 73.5 72.7 72.5 75 72.7 72.1 74.8 74.2 74.1 

RandomForest 68.6 68.2 68 66.9 66.7 66.5 72.2 71.2 70.9 71.4 71.2 71.2 

RandomTree 59.3 59.1 58.9 74.8 74.2 74.1 59.2 59.1 59 59.1 59.1 59.1 

DecisionTable 54.5 53 48.8 54.5 53 48.8 54.5 53 48.8 54.5 53 48.8 

AdaBoost 71.7 71.2 71 72.7 72.7 72.7 73.1 72.7 72.6 74.4 74.2 74.2 

Bagging 63.8 63.6 63.5 63.8 63.6 63.5 59.1 59.1 59.1 60.8 60.6 60.5 

LogitBoost 65.2 65.2 65.1 74.4 74.2 74.2 74.3 74.2 74.2 69.8 69.7 69.7 

MulticlassClassifier 63.7 63.6 63.6 63.7 63.6 63.6 60.6 60.6 60.6 65.2 65.2 65.1 

RandomCommitte 72.2 71.2 70.9 73.1 72.7 72.6 73.5 72.7 72.5 70 69.7 69.6 

RandomSubspace 63.7 63.6 63.6 69.8 69.7 69.7 69.6 68.2 67.6 73.1 72.7 72.6 

IBK 61 60.6 60.3 59.3 59.1 58.9 59.1 59.1 59.1 65.5 65.2 65 

SMO 74.3 74.2 74.2 71.2 71.2 71.2 59.2 59.1 59 74.3 74.2 74.2 

NaiveBayes 60.8 59.1 57.4 69.1 65.2 63.3 57.3 56.1 54.3 66.6 63.6 61.9 

MLP 66.9 66.7 66.5 72.8 72.7 72.7 62.1 62.1 62.1 70 69.7 69.6 

  

 

Table 5 

Performance evaluation of different FS techniques with various classifiers using dataset JFreechart 

Classifier 

All features 
Correlation + Top 70% 

features 

Infogain + Top 70% 

features 

ReliefF + Top 70% 

features 

P 

(%) 

R 

(%) 

F 

(%) 
P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%) 

Decision Tree 93.4 93.2 93.2 90.8 90.7 90.7 91.7 91.5 91.5 94.2 94.1 94.1 

RandomForest 91.5 91.5 91.5 90.7 90.7 90.7 91.5 91.5 91.5 92.4 92.4 92.4 

RandomTree 92.3 91.5 91.5 90.7 90.7 90.7 91.5 91.5 91.5 87.8 87.3 87.2 

DecisionTable 87.4 85.6 85.4 91 89 88.8 87.4 85.6 85.4 87.4 85.6 85.4 

AdaBoost 85.9 85.6 85.6 87.8 87.3 87.2 85.4 84.7 84.7 86.6 86.4 86.4 

Bagging 87.8 87.3 87.2 88.3 88.1 88.1 90 89.8 89.8 87.8 87.3 87.2 

LogitBoost 90.8 90.7 90.7 94.4 94.1 94.1 91 90.7 90.7 89.3 89 89 

MulticlassClassifier 84.1 83.9 83.9 83.1 83.1 83 85.9 85.6 85.6 77.5 77.1 77 

RandomCommitte 92.5 92.4 92.4 92.5 92.4 92.4 94.1 94.1 94.1 92.5 92.4 92.4 

RandomSubspace 88.2 88.1 88.1 90.7 90.7 90.7 89 89 89 90.7 90.7 90.7 

IBK 81.9 81.4 81.3 85.1 84.7 84.7 86.1 85.6 85.5 84.9 84.7 84.7 

SMO 83.9 83.9 83.9 83.9 83.9 83.9 83.1 83.1 83 84 83.9 83.9 

NaiveBayes 74.6 74.6 74.6 73.1 72.9 72.8 76.3 76.3 76.3 77.1 77.1 77.1 

MLP 89.8 89.8 89.8 84.9 84.7 84.7 88.2 88.1 88.1 85.7 85.6 85.6 
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Table 6 

Performance evaluation of different FS techniques with various classifiers using dataset JRuby 

Classifier 
All features 

Correlation + Top 70% 
features 

Infogain + Top 70% 
features 

ReliefF + Top 70% 
features 

P 
(%) 

R 
(%) 

F 
(%) 

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%) 

Decision Tree 82.4 82.3 82.3 80.3 80 80 77.7 77.7 77.7 85.6 85.4 85.4 

RandomForest 85.8 85.4 85.3 81.4 80.8 80.7 84.5 83.8 83.8 81.1 80.8 80.7 

RandomTree 73.9 73.8 73.8 76.2 76.2 76.1 75.4 75.4 75.4 85.4 85.4 85.4 

DecisionTable 81.5 80 79.8 79.2 76.2 75.5 81.5 80 79.8 84.7 82.3 82 

AdaBoost 79.3 77.7 77.4 78.5 77.7 77.5 81.4 78.5 77.9 85.2 80.8 80.1 

Bagging 82.1 80.8 80.6 83.1 81.5 81.3 83.7 82.3 82.1 82 79.2 78.8 

LogitBoost 81.6 81.5 81.5 79.6 79.2 79.2 77.7 77.7 77.7 78.9 78.5 78.4 

MulticlassClassifier 64 63.8 63.7 66 65.4 65 62.8 62.3 61.9 61.8 61.5 61.3 

RandomCommitte 85.5 84.6 84.5 85.3 83.8 83.7 81.6 81.5 81.5 83.4 83.1 83 

RandomSubspace 81.1 80 79.8 81.5 80 79.8 84.2 83.1 82.9 83 80.8 80.4 

IBK 65.1 64.6 64.3 65.6 64.6 64.1 67.6 66.9 66.6 62.8 62.3 61.9 

SMO 72.1 70.8 70.3 76.4 74.6 74.2 76.4 74.6 74.2 71.9 70 69.3 

NaiveBayes 69.5 68.5 68 68.8 67.7 67.2 75.8 73.1 72.4 62.8 62.3 61.9 

MLP 69 68.5 68.2 67.8 67.7 67.6 61.8 61.5 61.3 69 68.5 68.2 

 

Table 7 

Performance evaluation of different FS techniques with various classifiers using dataset Lucene 

Classifier 

All features 
Correlation+ Top 70% 

features 

Infogain + Top 70% 

features 

ReliefF + Top 70% 

features 

P 

(%) 

R 

(%) 

F 

(%) 
P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%) 

Decision Tree 94.5 94.4 94.4 89.1 88.9 88.9 89.1 88.9 88.9 94.5 94.4 94.4 

RandomForest 89.1 88.9 88.9 89.1 88.9 88.9 87.1 87 87 88.9 88.9 88.9 

RandomTree 88.9 88.9 88.9 82.2 81.5 81.4 90.8 90.7 90.7 92.8 92.6 92.6 

DecisionTable 87.1 87 87 87.1 87 87 87.1 87 87 87.1 87 87 

AdaBoost 90.8 90.7 90.7 91.3 90.7 90.7 92.2 90.7 90.7 87.5 87 87 

Bagging 89.8 88.9 88.8 89.8 88.9 88.8 89.8 88.9 88.8 89.8 88.9 88.8 

LogitBoost 94.5 94.4 94.4 87.5 87 87 90.8 90.7 90.7 92.8 92.6 92.6 

MulticlassClassifier 72.5 72.2 72.1 72.5 72.2 72.1 77.8 75.9 75.5 72.3 72.2 72.2 

RandomCommitte 90.8 90.7 90.7 89.1 88.9 88.9 89.8 88.9 88.8 89.1 88.9 88.9 

RandomSubspace 92.2 90.7 90.7 89.8 88.9 88.8 92.2 90.7 90.7 92.2 90.7 90.7 

IBK 77.8 77.8 77.8 77.9 77.8 77.7 81.7 81.5 81.5 81.7 81.5 81.5 

SMO 72.3 72.2 72.2 74.2 74.1 74 70.5 70.4 70.3 70.5 70.4 70.3 

NaiveBayes 65.3 64.8 64.5 71.4 70.4 70 69.2 68.5 68.2 71.4 70.4 70 

MLP 81.5 81.5 81.5 78.4 77.8 77.7 81.5 81.5 81.5 76 75.9 75.9 

4.2. Accuracy of different Feature Selection  

techniques with various classifiers 
 

Tables 8 and 9 report the accuracy of different fea-

ture selection techniques with various classifiers. On the 

dataset, Axis2, Random Forest, Decision Table, and 

MLP give the highest accuracy of 86.05. Random forest 

gives the highest accuracy of 89.62 on the Eclipse. 

Jdt.core dataset with the ReliefF feature selection algo-

rithm. For the dataset, Elastic Search,  Decision Tree, 

Random Tree, AdaBoost, LogitBoost and SMO give the 

highest accuracy of 74.24. On the dataset Jfreechart, De-

cision Tree, LogitBoost, and Random Committee 

achieve the highest accuracy of 94.07 using ReliefF, Cor-

relation, and  
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Table 8 

Accuracy of various classifiers on different datasets 

Classifier 

Axis2 Eclipse.Jdt.Core Elastic Search 

All features Correlation 

(Top 70%) 

Infoain 

(Top 70%) 

ReliefF 

(Top 70%) 
All features Correlation 

(Top 70%) 

Infogain 

(Top 70%) 

ReliefF 

(Top 70%) 
All features Correlation 

(Top 70%) 

Infogain 

(Top 70%) 

ReliefF 

(Top 70%) 

Decision Tree 75.58 80.23 79.07 83.72 81.6 81.13 79.25 81.13 69.7 72.73 72.73 74.24 

RandomForest 86.05 82.56 86.05 82.56 85.85 87.26 87.26 89.62 68.18 66.67 71.21 71.21 

RandomTree 79.07 76.74 81.4 76.74 78.77 77.83 80.19 79.72 59.09 74.24 59.09 59.09 

DecisionTable 82.56 86.05 86.05 86.05 78.3 74.53 78.77 80.19 53.03 53.03 53.03 53.03 

AdaBoost 75.58 81.4 77.91 75.58 77.36 76.89 78.77 77.36 71.21 72.73 72.73 74.24 

Bagging 80.23 81.4 80.23 81.4 80.66 82.08 83.02 82.08 63.64 63.64 59.09 60.61 

LogitBoost 67.44 81.4 83.72 76.74 82.08 81.6 83.02 84.43 65.15 74.24 74.24 69.7 

MulticlassClassifier 61.63 69.77 72.09 70.93 79.25 79.25 80.66 77.83 63.64 63.64 60.61 65.15 

RandomCommitte 83.72 83.72 82.56 81.4 85.85 86.32 86.79 87.74 71.21 72.73 72.73 69.7 

RandomSubspace 79.07 82.56 81.4 82.56 83.96 83.49 80.66 85.85 63.64 63.64 68.18 72.73 

IBK 75.58 76.74 77.91 79.07 82.55 82.08 83.02 82.55 60.61 59.09 59.09 65.15 

SMO 73.26 75.58 69.77 72.09 80.66 79.72 80.19 79.72 74.24 71.21 59.09 74.24 

NaiveBayes 70.93 79.07 67.44 72.09 75.94 77.83 78.3 73.11 59.09 65.15 56.06 63.64 

MLP 73.26 82.56 86.05 80.23 79.72 76.88 77.36 78.77 66.67 72.73 62.12 69.7 
 

Table 9 

Accuracy of various classifiers on different datasets 

Classifier 

JFreeChart JRuby Lucene 

All features 
Correlation 
(Top 70%) 

Infogain 
(Top 70%) 

ReliefF 
(Top 70%) 

All features 
Correlation 
(Top 70%) 

Infogain 
(Top 70%) 

ReliefF 
(Top 70%) 

All features 
Correlation 
(Top 70%) 

Infogain 
(Top70%) 

ReliefF 
(Top 70%) 

Decision Tree 93.22 90.68 91.53 94.07 82.31 80 77.69 85.38 94.44 88.89 88.89 94.44 

RandomForest 91.53 90.68 91.53 92.37 85.38 80.77 83.85 80.77 88.89 88.89 87.04 88.89 

RandomTree 91.53 90.68 91.53 87.29 73.85 76.15 75.38 85.38 88.89 81.48 90.74 92.59 

DecisionTable 85.59 88.98 85.59 85.59 80 76.15 80 82.31 87.04 87.04 87.04 87.04 

AdaBoost 85.59 87.29 84.75 86.44 77.69 77.69 78.46 80.77 90.74 90.74 90.74 87.04 

Bagging 87.29 88.14 89.83 87.29 80.77 81.54 82.31 79.23 88.89 88.89 88.89 88.89 

LogitBoost 90.68 94.07 90.68 88.98 81.54 79.23 77.69 78.46 94.44 87.04 90.74 92.59 

MulticlassClassifier 83.9 83.05 85.59 77.12 63.85 65.38 62.31 61.54 72.22 72.22 75.93 72.22 

RandomCommitte 92.37 92.37 94.07 92.37 84.62 83.85 81.54 83.08 90.74 88.89 88.89 88.89 

RandomSubspace 88.14 90.68 88.98 90.68 80 80 83.08 80.77 90.74 88.89 90.74 90.74 

IBK 81.36 84.75 85.59 84.75 64.62 64.62 66.92 62.31 77.78 77.78 81.48 81.48 

SMO 83.9 83.9 83.05 83.9 70.77 74.62 74.62 70 72.22 74.07 70.37 70.37 

NaiveBayes 74.58 72.88 76.27 77.12 68.46 67.69 73.08 62.31 64.81 70.37 68.52 70.37 

MLP 89.83 84.75 88.14 85.59 68.46 67.69 61.54 68.46 81.48 77.78 81.48 75.93 
 

 

Infogain feature selection methods respectively (see 

Table 9).  On dataset, JRuby, Decision Tree, and Random 

Tree achieve the highest accuracy of 85.38 using the Re-

liefF selection method whereas Random Forest achieves 

the same accuracy with all features. On dataset Lucene, 

Decision Tree gives the highest accuracy of 94.44 with 

all features and ReliefF feature selection method whereas 

LogitBoost gives the same accuracy with all features. 

 

4.3. Comparison with existing approaches 
 

Table 10 compares the results of applying feature 

selection methods to recommending clones for refactor-

ing with the existing machine learning-based approaches. 

The performance of AdaBoost and Naïve Bayes is im-

proved with all selection methods. Random Forest 

achieves the same performance as the previous approach 

with Infogain. The Decision Tree's performance in-

creased with ReliefF compared with the existing ap-

proach. 
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Table 10 

 Comparison with the existing approaches in terms of F-score 

 
Wang et. al 

[20] 

Yue et. al 

[23] 

Feature selection and Machine learning 

(Current Work) 

Correlation Infogain ReliefF 

AdaBoost -- 79.6 81.06 80.41 80.06 

Random Forest  -- 84.4 82.75 84.4 84.21 

SMO  -- 75.71 76.4 72.71 74.9 

Naive Bayes -- 68.46 71.66 69.35 69 

Decision Tree 72.8 82.75 82.22 81.4 85.46 

 

 

5. Discussion 

 

This study shows how the integration of feature se-

lection methods enhances the performance of machine 

learning algorithms in recommending clones for refactor-

ing.  Experiments were conducted on datasets derived 

from six open-source Java projects, applying a systematic 

evaluation of three widely used feature selection meth-

ods: Correlation, Infogain, and ReliefF. 

Initially, all classifiers were evaluated on the full 

feature set (i.e., without feature selection). Decision Tree 

and LogitBoost achieved the highest F-Measure of 

94.4% on the Lucene dataset. Random Forest performed 

best on the Axis2, Eclispse.jdt.core, and Jruby datasets 

with F-measures of 86%, 86.8%, and 85.3%, respec-

tively. Subsequently, the three feature selection methods 

were applied to assess their effect on classifier perfor-

mance. The Infogain method consistently improved the 

performance of multiple classifiers across all datasets ex-

cept Axis2, where correlation-based selection led to bet-

ter results for eleven classifiers. We observed that the Re-

liefF method enables the Decision Tree classifier to 

achieve the highest average performance i.e., precision  

(85.71%), recall (85.48%), and F-score (85.46%). 

Table 11 presents a detailed summary of the best-

performing classifiers for each dataset and feature selec-

tion method. Figures 2-5 show performance of different 

classifiers for all features, correlation, Infogain, and Re-

liefF feature selection methods, respectively. 

Our results indicate that the optimal choice of clas-

sifier and feature selection method varies depending on 

the dataset characteristics. For instance: 

 Random Committee achieved the highest aver-

age precision, recall and F-measure using all features and 

correlation (see Figure 2 and Figure 3); 

 Random Forest and Decision Tree were most 

effective when paired with InfoGain and ReliefF respec-

tively (see Figure 4 and Figure 5); 

 AdaBoost, Bagging, RandomCommittee, 

SMO, Naïve Bayes, and MLP achieved the highest av-

erage precision, recall, and F-measure using correlation 

feature selection. 

 Random Forest, LogitBoost, and Mul-

ticlassClassifier achieved the highest average precision, 

recall, and F-Measure using Infogain feature selection;  

 Decision Tree, Random Tree, Decision Table, 

Random Subspace, and IBK achieved the highest aver-

age precision, recall and F-Measure using ReliefF feature 

selection. 

The superiority of the Decision Tree Classifier with 

ReliefF suggests that tree-based models benefit from at-

tribute selection that emphasizes local instance-level rel-

evance. This combination can be useful for clone-related 

tasks, where attribute behaviour varies across different 

projects. Additionally, Random Forest and Random 

Committee displayed robust performance across multiple 

datasets and feature selection attributes, indicating their 

resilience to noisy and redundant features. 

These findings suggest that applying appropriate 

feature selection methods can   substantially improve the 

performance of machine learning models for recom-

mending clones for refactoring. The results reveal that 

feature selection is not merely a preprocessing step but a 

decisive step in improving classifier performance for 

clone recommendation systems. This has high practical 

implications as it reduces manual effort and improves the 

accuracy of identifying suitable clones for refactoring, 

especially in large software. Furthermore, our compara-

tive evaluation offers a reproducible framework for fu-

ture studies in this area. The methodology, which consists 

of clone data modeling, feature selection and classifier 

evaluation can be generalized to other domains such as 

bug-proneness prediction in cloned code, Test-case pri-

oritization for clone-heavy modules and cross-language 

clone recommendation systems in Python  and C++.
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Table 11 

ML algorithms achieved the highest F-Measure on various datasets 

Dataset All features Correlation Infogain ReliefF 

Axis2 Random Forest 

(86%) 

Decision Table 

(85.9%) 

Random Forest 

(86%) 

Decision Table (85.9) 

Eclispe.jdt.core Random Forest 

(86.8%) 

Random Forest 

(87.3%) 

Random Forest 

(87.3%) 

Random Forest 

(89.6%) 

Elastic Search SMO (74.2%) LogitBoost  

(74.2%) 

LogitBoost  (74.2%) AdaBoost, SMO 

(74.2%) 

JFreeChart Decision Tree 

(93.2%) 

LogitBoost (94.1%) Random Committee 

(94.1%) 

Decision Tree (94.1%) 

JRuby Random Forest 

(85.3%) 

Random Committee 

(83.7%) 

Random Forest 

(83.8%) 

Decision Tree and 

Random tree (85.4%) 

Lucene Decision Tree, 

LogitBoost (94.4%) 

AdaBoost 

(90.7%) 

Random Tree, 

LogitBoost, 

AdaBoost (90.7%) 

Decision Tree 

(94.4%) 

 

 

 

 
Fig. 2. Performance of different classifiers using all features 
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Fig. 3. Performance of different classifiers using correlation feature selection 

 

 

 

 
Fig. 4. Performance of different classifiers using Infogain feature selection 
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Fig. 5. Performance of different classifiers using ReliefF feature selection 

6. Conclusion 
 

 

After detecting clones from software, clones suita-

ble for removal through refactoring must be filtered. The 

manual selection of suitable clones can be tiring and 

time-intensive. This study addresses this challenge by 

systematically evaluating the effectiveness of various 

machine learning algorithms in combination with three 

feature selection methods- Correlation, Infogain and Re-

liefF for identifying suitable clones for refactoring.  

A total of fourteen machine-learning classifiers 

were analyzed across six open-source Java projects. The 

results demonstrate that Decision Tree and LogitBoost 

classifiers achieved the highest accuracy of 94.44% on 

Lucene dataset with feature selection. Furthermore, De-

cision Tree when used with ReliefF, gives the highest av-

erage precision, recall, and F-measure across datasets, 

underscoring the significant impact of applying suitable 

feature selection techniques.  

The findings not only validate the use of automated 

machine learning approaches in clone management but 

also offer a scalable framework for real-world software 

maintenance. This contributes both scientifically by in-

troducing a comparative evaluation methodology and 

practically by reducing manual effort in clone filtering. 

The results lead to the following general recommen-

dations: 

ReliefF is highly effective when used with Decision 

Tree models in clone recommendations for refactoring. 

Infogain tends to benefit classifiers with structured fea-

ture dependencies whereas Correlation proves useful 

when datasets are less complex but require basic rele-

vance filtering. Classifiers such as Random Forest, Ran-

dom Committee and Decision Tree are consistently reli-

able across various datasets making them suitable for 

clone refactoring scenarios. 

In the future, we aim to explore additional feature 

selection methods and a broader set of machine learning 

algorithms on a clone refactoring dataset that incorpo-

rates a cloned fragment's bug-proneness and developer’s 

effort. Further, the applicability of deep learning tech-

niques for semantic feature extraction to build clone rec-

ommendation systems for refactoring can be explored in 

future work. 
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ЕМПІРИЧНА ОЦІНКА ВИБОРУ ФУНКЦІЙ ТА ТЕХНІК МАШИННОГО НАВЧАННЯ,  

ЩОБ РЕКОМЕНДУВАТИ КЛОНИ ДЛЯ РЕФАКТОРИНГУ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ 

Манпріт Каур, Дхавліш Ратан, Мадан Лал 

Предметом статті є управлінння програмними клонованими фрагментами. Програмні клони – це дублі-

кати кодових фрагментів, які можуть існувати в одному або різних файлах програмного забезпечення. Вияв-
лення та управління програмними клонами стало добре встановленою областю досліджень. Програмні клони 

повинні бути керовані для мінімізації їх негативних впливів, оскільки наявність клонів може збільшити ви-

трати на обслуговування та вимоги до ресурсів програмного забезпечення. Рефакторинг є поширеною техні-

кою управління клонами. Інструмент для виявлення програмних клонів може виявити багато клонів у програ-

мному забезпеченні, однак не всі виявлені клони можуть бути придатними для рефакторингу. Розробнику 

потрібен підмножина виявлених клонів, які можна легко відрефакторити.Метою цього дослідження є пропо-

зиція програмних клонів для рефакторингу з використанням методів машинного навчання. У статті оціню-

ється продуктивність чотирнадцяти алгоритмів машинного навчання та досліджується вплив трьох методів 

відбору ознак на точність рекомендацій клонів. Завдання, які потрібно вирішити, це: вибрати відповідні 

ознаки з наборів даних, розробити моделі на основі машинного навчання, які можуть пропонувати підходящі 

клони для рефакторингу, обрати ефективний алгоритм машинного навчання та відбору ознак для рекоменда-

ції клонів для рефакторингу. Методи, які використовуються для відбору ознак, включають кореляцію, 
InfoGain та ReliefF. Дослідження проводиться на наборах даних з шести відкритих програмних продуктів, 

написаних на Java. Експериментальні результати показують, що класифікатори Дерево Рішень та LogitBoost 

досягають найвищої точності 94,44% на датасеті Lucene. Серед методів відбору ознак, ReliefF забезпечує най-

кращу продуктивність, особливо коли використовується з алгоритмом Дерево Рішень. Це дослідження робить 

висновок, що Випадковий Комітет, Випадковий Ліс та Дерево Рішень показують найкращі результати у по-

єднанні з кореляцією, InfoGain та ReliefF відповідно. Загалом, класифікатор Дерево Рішень, комбінований із 

методом відбору ознак ReliefF, забезпечує найвищу середню точність, відгук та F-міру на різних датасетах. 

Ключові слова: клони програмного забезпечення; управління клонами; рекомендація щодо клонування, 

рефакторинг клонування, вибір функцій, машинне навчання. 
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