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EMPIRICAL EVALUATION OF FEATURE SELECTION AND MACHINE LEARNING
TECHNIQUES TO RECOMMEND CLONES FOR SOFTWARE REFACTORING

The article’s subject matter deals with the management of software clones. Software clones are duplicate code
fragments that can exist in the same or different software files. Software clone detection and management has
become a well-established research area. Software clones should be managed to minimize their ill-effects, as the
presence of clones can increase the software’s maintenance cost and resource requirements. Refactoring is a
commonly used technique for managing clones. A software clone detection tool can detect many clones from the
software, but not all detected clones are suitable for refactoring. A developer needs a subset of detected clones
that can be easily refactored. This study aims to suggest software clones for refactoring using machine learning
techniques. This study evaluates the performance of fourteen machine-learning algorithms and investigates the
influence of three feature selection methods on clone recommendation accuracy. The tasks to be solved are as
follows: selecting appropriate features from datasets, developing machine learning-based models that can sug-
gest suitable clones for refactoring, and selecting an effective machine learning and feature selection algorithm
for recommending clones for refactoring. The methods used for feature selection are correlation, InfoGain, and
ReliefF. The study is conducted on datasets from six open-source software written in Java. The experimental
results show that the Decision Tree and LogitBoost classifiers achieve the highest accuracy of 94.44 % on the
Lucene dataset. ReliefF yields the best performance among the feature selection methods, particularly when
used with the Decision Tree algorithm. This study concludes that Random Committee, Random Forest, and
Decision Tree perform best when paired with correlation, InfoGain, and ReliefF, respectively. Overall, the De-
cision Tree classifier, combined with the ReliefF feature selection method, delivers the highest average precision,
recall, and F-score across datasets.

Keywords: Software clones; Clone management; Clone recommendation, Clone refactoring, feature selection,
machine learning.

- Type-3 clones/ Near Miss clones: The duplicate
code fragments with modifications, such as adding new

1. Introduction

Software clones are duplicate code fragments in the
same or different source code files. When a program-
mer/developer copies a piece of code and pastes it at var-
ious locations in the source code with or without modifi-
cation, software clones are generated in the software.
Copying and pasting source code fragments is known as
software cloning. The presence of such clones can in-
crease the maintenance of software. For example, soft-
ware cloning propagates the same bug at different loca-
tions if a bug exists in a copied code fragment. The pres-
ence of clones can also increase the size of the source
code, which is a critical issue for devices with limited
memory.

Software clones can be of various types, as dis-
cussed below:

- Type-1 clones/ Exact clones: The duplicate code
fragments with minor differences, such as changes in
comments or whitespaces;

- Type-2 clones/Parameterised clones: The dupli-
cate code fragments with differences in variable and
function names, comments, and whitespaces;

source code lines or deleting existing source code;

- Type-4 clones/Semantic clones: The two code
fragments are functionally similar but have different syn-
taxes. Such duplicate fragments are also known as
semantic clones.

In previous research, many techniques have been
developed to detect various types of software clones. In-
terested readers can read previous surveys [1, 2] to un-
derstand the working principle of these techniques. Since
clones in software can be harmful, clones must be man-
aged. Clones can be managed in several ways. Clone
management refers to a group of activities that help to
detect, remove, or avoid clones [3]. Such activities in-
clude clone detection [4], clone documentation, clone
visualization [5], clone analysis [6], clone refactoring [7],
and clone tracking [8].

1.1. Motivation and Objective

Clone refactoring is a popular method for managing
clones [9]. Various refactoring techniques [10, 11] such
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as the extract method [12], extract class, and pull-up
method help to manage clones. The major challenge is
selecting a set of clones that can be managed through re-
factoring [13]. A clone detection tool can find many
clones of different types and granularities in the software.
Manually selecting suitable clones for applying any re-
factoring technique is difficult.

To address this limitation, this study aims to evalu-
ate the effectiveness of multiple machine learning algo-
rithms along with three feature selection methods to au-
tomatically recommend suitable clones for refactoring.
This approach not only reduces manual effort but also en-
hances clone management scalability. The novelty of our
work lies in integrating and comparatively analyzing ma-
chine-learning based classification with feature selection
methods to improve clone recommendations for refactor-
ing, which is an underexplored area in the current litera-
ture.

1.2. Major Contribution of the Study

The major contributions of this study toward ad-
vancing automated clone refactoring are as follows:

- Systematic feature selection: This study applied
three widely used feature selection methods: Correlation,
InfoGain, and ReliefF, to identify the most relevant at-
tributes of the clone refactoring dataset, enabling more
focused and efficient learning.

- Extensive model evaluation: A detailed perfor-
mance comparison is conducted using fourteen machine
learning algorithms, each tested along with three feature
selection methods. This provides a robust assessment of
how various machine learning algorithm and feature-se-
lection pairs perform in recommending suitable clones
for refactoring.

- Demonstration of the impact of feature selec-
tion: This study highlights how feature selection im-
proves classification accuracy, emphasizing its im-
portance in enhancing clone recommendation systems.

This work fills a notable gap in existing research by
combining and evaluating diverse machine learning mod-
els and feature selection methods in the context of clone
refactoring, offering a practical and scalable solution for
real-world software maintenance.

1.3. Paper Organization

The remainder of this paper is organized as follows.
Section 2 discusses related work. This section elaborates
on previous studies that proposed approaches for select-
ing suitable clones for refactoring. Section 2 also high-
lights the difference between our study and previous
studies. The methodology is discussed in Section 3. Sec-
tion 3 elaborates in detail the study’s approach, including
feature selection, datasets, machine learning algorithms,

and evaluation metrics. Section 4 presents the results.
The performance evaluation of various feature selection
and ML algorithms is presented, and the results are com-
pared with those of existing approaches. Section 5 dis-
cusses the results, and Section 6 concludes and provides
future directions.

2. Related Work

Higo et al. [14] designed a filter named CCShaper
to filter refactoring-oriented clones for the clone detec-
tion results of the CCFinder tool. CCShaper identified
structural blocks in the code clone that are easy to com-
bine and move. A tool Aries [15, 16] uses CCShaper to
find structural blocks of code clones and then uses met-
rics like DCH (Dispersion of class Hierarchy), NRV
(Number of Referred variables), or NAV (Number of As-
signed variables) to identify clones suitable for Pull-Up
method and Extract Method.

Schulze et al. [17] provided guidelines for clone re-
factoring by adding additional information, such as the
clone location and the statement type of the code clones,
to clone detection results. This information is used to pro-
vide refactoring proposals; however, applying the sug-
gested refactoring for clone removal requires a separate
refactoring tool.

Choi et al. [18] proposed a technique that integrates
clone metrics to filter clones for refactoring. They used a
web application to conduct an empirical investigation.
They demonstrated that filtering clones for refactoring
via a combination of clone metrics is more efficient than
using a single clone metric.

Mondal et al. [19] developed a method for finding
clones that are important for refactoring. They suggested
that SPCP (Similarity Preserving Change Pattern) clones
be considered while making refactoring decisions. SPCP
clones are defined as two or more clone fragments from
the same clone class that preserve similarity during clone
evolution. They identified that SPCP clones with lower
change couplings with other classes are good candidates
for refactoring.

Wang and Godfrey [20], Rongrong et al. [21],
Sheneamer [22], and Yue et al. [23] used machine learn-
ing algorithms to identify clones for refactoring. Wang
and Godfrey [20] used the code, context, and history fea-
tures of code clones. They built a machine-learning
model to recommend clones for refactoring using a deci-
sion tree classifier. To prepare the dataset for training and
testing the classifier, 323 clone instances with refactoring
histories and 323 without refactoring histories were used.
The proposed machine learning-based model achieved
precision from 77.3% to 87.9% within-project testing,
whereas cross-project testing generated precision from
73.2% to 88.5%.
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Rongrong et al. [21] used various code clone fea-
tures, including 13 static features and three evolution fea-
tures, to build a method for identifying clones for refac-
toring. They employed Bayesian network, Naive Bayes,
and C4.5. Seven open-source projects written in C were
evaluated. They concluded that the decision tree-based
prediction model has higher accuracy than other models.

Sheneamer [22] proposed an approach to automati-
cally advise clone refactoring. The strategy is based on
AST features and uses K-nearest neighbor, Forest PA,
Bagging, and Random Forest. They observed that Ran-
dom Forest achieved better outcomes among all classifi-
ers.

Yue et al. [23] developed a refactoring clone recom-
mendation tool. The tool is based on 34 clone instances’
features extracted from open-source projects in Java.
They used AdaBoost to build a machine-learning-based
model that automatically recommends clones for refac-
toring. In both with-in-project and cross-project testing,
they concluded that AdaBoost recommended clones for
refactoring with improved accuracy.

Fanqgi [24] used SOM (Self-Organized Mapping)
clustering to find refactorable clones. They retrieved met-
rics like POP (number of clones in a clone group), NIF
(number of files in which clones of a clone group are dis-
tributed), LEN (length of code clone in terms of token),
etc using CCFinder. The metrics of selected refactorable
code clones were used to train the SOM model, which
was then used to categorize the unknown code clones.

While previous studies have attempted to fill the
gap between clone detection and meaningful recommen-
dation of clones for refactoring, most have notable limi-
tations. Recent studies have applied machine-learning al-
gorithms to classify clones as refactorable or not, yield-
ing promising results. However, these studies neither
considered the impact of feature selection on model per-
formance nor conducted broad comparisons among di-
verse algorithms. These existing studies used a limited
set of machine learning classifiers, which raises concerns
about the generalizability and robustness of their find-
ings. Despite the well-documented influence of feature
relevance on classification outcome in other domains, no
previous studies provide a comparative analysis and eval-
uation of feature selection methods in the context of
clone refactoring recommendations. These gaps high-
light the need for a comprehensive, scalable, and gener-
alizable framework that integrates a broad range of ma-
chine learning classifiers with diverse feature selection
methods. Motivated by this, the current study conducts a
large-scale empirical evaluation that not only evaluates
fourteen machine-learning classifiers across six datasets
but also integrates and compares three well-known fea-
ture selection methods: Correlation, Infogain, and Re-
liefF to generate accurate and generalizable clone recom-

mendations for refactoring. The goal is to identify opti-
mal combinations for accurately recommending clones
for refactoring.

3. Methodology

Figure 1 shows the workflow of the current study.
A labeled dataset related to clone refactoring was re-
quired to train the machine-learning models. Six open-
source projects [23] were used as the labeled dataset of
clone refactoring. Three feature subset selection methods
were employed to select optimal features from six clone
refactoring datasets and trained machine learning algo-
rithms to classify refactorable and non-refactorable
clones.

3.1. Feature selection

Feature selection algorithms are important in select-
ing the best features for machine learning algorithms.
The accuracy and execution speed of the machine learn-
ing algorithms may be enhanced by this feature subset
selection. There are two categories of feature selection
algorithms: wrapper techniques and filter methods.
While wrapper techniques use learning algorithms to se-
lect a subset of the best features, filter methods select fea-
tures based on their relationship to the target. Three fea-
ture selection techniques were employed in the current
work: Correlation, InfoGain, and ReliefF.

3.2. Datasets

The dataset used in this study comprises six open-
source subject systems [23]. The dataset includes 666
clone instances belonging to six open-source software in
Java (see Table 1). It consists of 333 clone refactoring
instances and 333 clone instances without refactoring
history. Each clone instance is represented in the form of
34 features. These 34 features belong to five types: code
features, history features, syntactic difference features,
relative location features, and co-change features among
clones.

Table 1
Clone refactoring dataset [23]
Subject ’;lelg::tt)g:ecg Number of Non-
System refactored clones
clones
AXis2 43 43
Eclipse. jdt. 106 106
core
Elastic 33 33
Search
JFreeChart 59 59
JRuby 65 65
Lucene 27 27
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Figure 1. Workflow of the proposed approach

3.3. Machine learning algorithms used

This experiment used the following machine learn-
ing algorithms [25]:

— Decision Tree,

— Random Forest,

— Random Tree,

— Decision Table,

— AdaBoost,

— Bagging,

— LogitBoost,

— MulticlassClassifier,

— RandomCommitte,

— Random Subspace,

- IBK,

- SMO,

— Naive Bayes,

— Multilayer Perceptron.

3.4. Evaluation Metrics

Many evaluation metrics exist to measure machine
learning models' performance [25, 26]. In this experi-
ment, the performance of different machine learning al-
gorithms was measured using the following metrics.

Precision: Ratio of relevant instances to retrieved
instances

TP(True Positives)

Precision= — —
TP(True Positives)+FP(False Positives)

Here, TP (True Positives) represents the correctly
identified refactorable clones. FP (False Positives) repre-
sents instances where the model incorrectly identifies a
clone as a refactorable clone.

Therefore, precision measures how many clones are
refactorable among all the recommended clones for re-
factoring.

Recall: Ratio of retrieved relevant instances to total
relevant instances

TP(True Positives)

Recall = .
TP(True Positives)+FN(False Negatives)

Here, TP (True Positives) represents the correctly
identified refactorable clones and FN (False Negatives)
represents instances where the model fails to identify a
refactorable clone, respectively.

Therefore, recall measures how many clones are
recommended for refactoring among all known refactor-
able clones.

F-Measure/ F1-score:
and precision values.

Weighted average recall

2x(Recall*Precision)

F1-Score =

(Recall+Precision)

F1-Measure provides a single measure for balanc-
ing precision and recall to check the model performance.

Accuracy: Ratio of correctly retrieved instances to
the total number of instances [27].
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_ TP+TN
Accuracy = TP+FP+TN+FN’

Here, TP (True Positives) represents the correctly
identified refactorable clones, TN(True Negatives) rep-
resents instances where the model correctly identifies the
clones which are not refactorable. FP (False Positives)
represents instances where the model incorrectly identi-
fies a clone as a refactorable clone and FN (False Nega-
tive) represents instances where the model fails to iden-
tify a refactorable clone.

Therefore, accuracy measures the proportion of cor-
rect predictions (both refactorable and non-refactorable
clones) made by the model out of total predictions

4. Results

4.1. Performance evaluation of different Feature
Selection (FS) techniques with various classifiers

Table 2 presents the evaluation of various feature
selection approaches with different classifiers for the
Axis2 dataset. For the correlation and ReliefF method,
the classifiers Decision Tree, Decision Table, AdaBoost,
Bagging, LogitBoost, MulticlassClassifier, RandomSub-
space, IBK, Naive Bayes, and MLP increase precision,
recall, and F-measure with top 70% features. Decision
Tree, Random Tree, Decision Table, AdaBoost,
LogitBoost, MulticlassClassifier, RandomSubspace,
IBK, and MLP provide better precision, recall, and F-
measure with top 70% features for the Infogain method.
The average performance of all classifiers increased with
the use of the correlation, Infogain, and ReliefF feature
selection methods for dataset Axis2.

As shown in Table 3, for the Eclipse.Jdt.core da-
taset, the performance of nine classifiers for the Infogain
method with the top 70% features increased. For the Re-
liefF and correlation method, the performance of seven
and four classifiers increased, respectively. The average
performance of all classifiers is higher in the Infogain se-
lection method than ReliefF and Correlation. In the case
of Infogain, average precision is 81.5, the average recall
is 81.21 and the average F-measure is 81.15. Random for-
est provides the highest performance in the
eclipse.jdt.core dataset. With all features, the F-measure
is 86.8. For Correlation and Infogain, it gives F-measure
of 87.3, and for ReliefF selection method, it achieves the
highest value for F-measure, i.e., 89.6.

As shown in Table 4, the performance of nine clas-
sifiers for the ReliefF method with top 70% features is
increased for the Elastic search dataset. For the correla-
tion and Infogain methods, the performance of eight and

seven classifiers increased, respectively. The SMO clas-
sifier achieved the highest F-Measure with all features.
After applying the feature selection method correlation
and Infogain, the classifier LogitBoost achieved an F-
Measure of 74.2, whereas the whereas with ReliefF, clas-
sifier AdaBoost achieved F-Measure of 74.2.

In dataset Jfreechart, after applying feature selec-
tion methods, the performance of six classifiers in-
creased, as shown in Table 5. For the correlation method,
the classifier Decision Table, LogitBoost, Bagging, Ada-
Boost, Random Subspace, and IBK show performance
improvement compared to their results with all features.
Similarly, classifier Bagging, Multiclassclassifier, Ran-
domCommittee, RandomSubspace, IBK, and Naive
Bayes performed better with Infogain selection method,
whereas Decision Tree, RandomForest, AdaBoost, Ran-
dom Subspace, IBK and Naive Bayes show better perfor-
mance with ReliefF selection method. As we observed,
the classifier Decision Tree achieved a maximum F-
Measure of 93.2 for all features; however, with the selec-
tion method relieffF, the classifier Decision Tree achieved
F-Measure of 94.1. In the correlation and Infogain selec-
tion method, the classifiers LogitBoost and Ran-
domCommittee respectively achieved an F-Measure of
94.1.

In dataset JRuby (see Table 6), with the feature se-
lection method Infogain, maximum performance im-
provement is achieved as seven classifiers, i.e., Random
Tree, AdaBoost, Bagging, Random Subspace, IBK, SMO
and Naive Bayes show an increase in Precision, Recall,
F-Measure. We observed that the classifier Random For-
est gave a maximum F-measure of 85.3 with all features
with dataset JRuby. In the case of correlation, the Ran-
domCommittee classifier gave a maximum F-Measure of
83.7. For the Infogain selection method, the Random-
Forest classifier achieved a maximum F-measure of 83.8,
whereas for the ReliefF selection method, the Random
Tree classifier achieved the highest F-measure of 85.4.

In the Lucene dataset, as shown in Table 7, the In-
fogain feature selection method helps achieve better per-
formance of five classifiers, Random Tree, AdaBoost,
Multiclass, IBK and Naive Bayes as compared to the per-
formance of these classifiers with all features. With clas-
sifiers Decision Table, Bagging, Random Subspace and
MLP gave the same performance with all features of the
dataset and using the Infogain selection method with the
top 70% features. The highest F-Measure of 94.4 was
achieved with the classifier Decision Tree using all fea-
tures and ReliefF selection method. With the selection
method, correlation, the AdaBoost classifier achieved the
highest F-Measure of 90.7. With the Infogain selection
method, the Random Tree and AdaBoost classifiers
achieved a maximum F-Measure of 90.7



58

Radioelectronic and Computer Systems, 2025, no. 3(115)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Table 2

Performance evaluation of different FS techniques with various classifiers using dataset Axis2

All Features Correlation + Top 70% Infogain + Top 70% ReliefF+ Top 70%
Classifier 0 . Fea;ures Fea;ures Fea;ures

%) F (%) P (%) ) F (%) P (%) %) F (%) P (%) ) F (%)
Decision Tree 76.3 75.6 75.4 81.1 | 80.2 80.1 793 | 79.1 79 83.7 | 83.7 83.7
RandomForest 86.4 86 86 834 | 826 82.4 86.8 86 86 82.7 | 826 82.5
RandomTree 79.3 79.1 79 767 | 76.7 76.7 817 | 814 81.4 768 | 76.7 76.7
DecisionTable 84 | 826 | 824 873 | 86 85.9 87.3 | 86 85.9 87.3 | 86 85.9
AdaBoost 757 | 756 | 756 817 | 814 | 814 783 | 779 | 77.8 763 | 756 | 754
Bagging 81.6 | 80.2 80 83.2 | 81.4 81.1 823 | 802 79.9 825 | 81.4 81.2
LogitBoost 675 | 674 | 674 825 | 814 | 812 844 | 837 | 836 77 76.7 | 767
MulticlassClassifier | ¢15 | 616 | 615 69.8 | 69.8 | 69.8 721 | 721 | 721 71 | 709 | 70.9
RandomCommitte 84 | 83.7 | 837 844 | 837 | 836 83 | 826 | 825 817 | 814 | 814
RandomSubspace 80.7 79 78.8 84 82.6 82.4 832 | 814 81.1 83.4 | 82.6 82.4
1BK 759 | 756 | 755 77 | 767 | 767 783 | 779 | 77.8 791 | 791 | 791
SMo 739 | 733 | 731 763 | 756 | 754 702 | 69.8 | 69.6 725 | 721 72
NaiveBayes 72.4 | 709 70.4 79.6 | 79.1 79 68.9 | 67.4 66.8 74 72.1 71.5
mLp 734 | 733 73.2 83 826 | 825 86.1 86 86 80.2 | 80.2 80.2

Table 3

Performance evaluation of different FS techniques with various classifiers using dataset Eclipse.Jdt.core

Correlation + Top 70% Infogain + Top 70% ReliefF + Top 70%
All features
. Features Features Features
Classifier p R =
P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)
(%) (%) (%)

Decision Tree 81.9 81.6 81.6 81.7 81.1 81 79.5 79.2 79.2 81.5 81.1 81.1
RandomForest 86.8 | 86.8 | 86.8 87.3 87.3 87.3 87.3 87.3 87.3 89.6 89.6 89.6
RandomTree 80.8 | 80.7 | 80.6 78.1 77.8 77.8 80.4 80.2 80.2 79.8 79.7 79.7
DecisionTable 79 78.3 78.2 74.7 74.5 74.5 79.1 78.8 78.7 80.5 80.2 80.1
AdaBoost 77.4 77.4 77.4 76.9 76.9 76.9 78.8 78.8 78.8 77.4 77.4 77.3
Bagging 80.7 80.7 | 80.6 82.2 82.1 82.1 83 83 83 82.1 82.1 82.1
LogitBoost 82.3 82.1 82 81.7 81.6 81.6 83.1 83 83 84.5 84.4 84.4
MulticlassClassifier | 79.3 79.2 79.2 79.3 79.2 79.2 80.9 80.7 80.6 79.8 79.7 79.7
RandomCommitte 86.1 85.4 | 85.3 86.7 86.3 86.3 86.9 86.8 86.8 88.2 87.7 87.7
RandomSubspace 85 84.9 84.9 83.5 83.5 83.5 80.7 80.7 80.7 85.8 85.8 85.8
IBK 82.8 82.5 82.5 82.4 82.1 82 83 83 83 82.6 82.5 82.5
SMo 80.7 80.7 80.6 79.8 79.8 79.7 80.4 80.2 80.2 79.8 79.7 79.7
NaiveBayes 76 75.9 75.9 78.4 77.8 77.7 79.1 78.3 78.1 75.6 73.1 72.4
MLP 79 78.8 78.7 77 76.9 76.9 77.4 77.4 77.4 78.8 78.8 78.8
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Performance evaluation of different FS techniques with various classifiers using dataset Elastic search

Table 4

. All features Correlation + Top 70% features | Infogain + Top 70% features | ReliefF + Top 70% features

Classifier P(%) | R(%) | F(%) P (%) R (%) F (%) P (%) R (%) F (%) P(%) | R(%) F (%)
Decision Tree 70 69.7 69.6 73.5 72.7 72.5 75 72.7 72.1 74.8 74.2 74.1
RandomForest 68.6 68.2 68 66.9 66.7 66.5 72.2 71.2 70.9 714 71.2 71.2
RandomTree 59.3 59.1 58.9 74.8 74.2 74.1 59.2 59.1 59 59.1 59.1 59.1
DecisionTable 54.5 53 48.8 54.5 53 48.8 54.5 53 48.8 54.5 53 48.8
AdaBoost 71.7 71.2 71 72.7 72.7 72.7 73.1 72.7 72.6 74.4 74.2 74.2
Bagging 63.8 63.6 63.5 63.8 63.6 63.5 59.1 59.1 59.1 60.8 60.6 60.5
LogitBoost 65.2 65.2 65.1 74.4 74.2 74.2 74.3 74.2 74.2 69.8 69.7 69.7
MulticlassClassifier | 63.7 63.6 63.6 63.7 63.6 63.6 60.6 60.6 60.6 65.2 65.2 65.1
RandomCommitte 72.2 71.2 70.9 73.1 72.7 72.6 73.5 72.7 72,5 70 69.7 69.6
RandomSubspace 63.7 63.6 63.6 69.8 69.7 69.7 69.6 68.2 67.6 73.1 72.7 72.6

IBK 61 60.6 60.3 59.3 59.1 58.9 59.1 59.1 59.1 65.5 65.2 65
sMo 743 74.2 74.2 71.2 71.2 71.2 59.2 59.1 59 74.3 74.2 74.2
NaiveBayes 60.8 59.1 57.4 69.1 65.2 63.3 57.3 56.1 54.3 66.6 63.6 61.9
MLP 66.9 66.7 66.5 72.8 72.7 72,7 62.1 62.1 62.1 70 69.7 69.6

Table 5
Performance evaluation of different FS techniques with various classifiers using dataset JFreechart
All features Correlation + Top 70% Infogain + Top 70% ReliefF + Top 70%
Classifier . . . features features features

%) %) %) P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)
Decision Tree 93.4 | 93.2 | 93.2 90.8 90.7 90.7 91.7 91.5 91.5 94.2 94.1 94.1
RandomForest 915 | 915 | 915 90.7 90.7 90.7 91.5 91.5 91.5 92.4 92.4 92.4
RandomTree 923 915 | 915 90.7 90.7 90.7 91.5 91.5 91.5 87.8 87.3 87.2
DecisionTable 87.4 | 856 | 85.4 91 89 88.8 87.4 85.6 85.4 87.4 85.6 85.4
AdaBoost 85.9 85.6 | 85.6 87.8 87.3 87.2 85.4 84.7 84.7 86.6 86.4 86.4
Bagging 87.8 87.3 87.2 88.3 88.1 88.1 90 89.8 89.8 87.8 87.3 87.2

LogitBoost 90.8 90.7 90.7 94.4 94.1 94.1 91 90.7 90.7 89.3 89 89

MulticlassClassifier 84.1 83.9 83.9 83.1 83.1 83 85.9 85.6 85.6 77.5 77.1 77
RandomCommitte 925 924 924 92.5 924 924 94.1 94.1 94.1 92.5 924 924
RandomSubspace 88.2 88.1 | 88.1 90.7 90.7 90.7 89 89 89 90.7 90.7 90.7
IBK 81.9 814 813 85.1 84.7 84.7 86.1 85.6 85.5 84.9 84.7 84.7
SMO 83.9 83.9 83.9 83.9 83.9 83.9 83.1 83.1 83 84 83.9 83.9
NaiveBayes 74.6 74.6 74.6 73.1 72.9 72.8 76.3 76.3 76.3 77.1 77.1 77.1
MLP 89.8 89.8 89.8 84.9 84.7 84.7 88.2 88.1 88.1 85.7 85.6 85.6
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Performance evaluation of different FS techniques with various classifiers using dataset JRuby

Table 6

Correlation + Top 70%

Infogain + Top 70%

ReliefF + Top 70%

All features
Classifier - A - features features features

%) %) %) P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)
Decision Tree 82.4 82.3 82.3 80.3 80 80 77.7 77.7 77.7 85.6 85.4 85.4
RandomForest 858 | 854 | 853 81.4 80.8 80.7 84.5 83.8 83.8 81.1 80.8 80.7
RandomTree 73.9 73.8 73.8 76.2 76.2 76.1 75.4 75.4 75.4 85.4 85.4 85.4
DecisionTable 81.5 80 79.8 79.2 76.2 75.5 81.5 80 79.8 84.7 82.3 82
AdaBoost 79.3 77.7 77.4 78.5 77.7 77.5 81.4 78.5 77.9 85.2 80.8 80.1
Bagging 82.1 | 80.8 | 80.6 83.1 81.5 81.3 83.7 82.3 82.1 82 79.2 78.8
LogitBoost 81.6 81.5 81.5 79.6 79.2 79.2 77.7 77.7 77.7 78.9 78.5 78.4
MulticlassClassifier | 64 63.8 | 63.7 66 65.4 65 62.8 62.3 61.9 61.8 61.5 61.3
RandomCommitte | 85.5 | 84.6 | 84.5 85.3 83.8 83.7 81.6 81.5 81.5 834 83.1 83
RandomSubspace 81.1 80 79.8 81.5 80 79.8 84.2 83.1 82.9 83 80.8 80.4
IBK 65.1 | 64.6 | 64.3 65.6 64.6 64.1 67.6 66.9 66.6 62.8 62.3 61.9
SMO 721 | 708 | 703 76.4 74.6 74.2 76.4 74.6 74.2 71.9 70 69.3
NaiveBayes 69.5 | 68.5 68 68.8 67.7 67.2 75.8 73.1 724 62.8 62.3 61.9
MLP 69 68.5 | 68.2 67.8 67.7 67.6 61.8 61.5 61.3 69 68.5 68.2

Table 7

Performance evaluation of different FS techniques with various classifiers using dataset Lucene

Correlation+ Top 70%

Infogain + Top 70%

ReliefF + Top 70%

All features
Classifier . - g features features features

%) %) %) P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)
Decision Tree 945 | 944 | 94.4 89.1 88.9 88.9 89.1 88.9 88.9 94.5 94.4 94.4
RandomForest 89.1 | 889 | 88.9 89.1 88.9 88.9 87.1 87 87 88.9 88.9 88.9
RandomTree 889 | 889 | 88.9 82.2 81.5 81.4 90.8 90.7 90.7 92.8 92.6 92.6
DecisionTable 87.1 87 87 87.1 87 87 87.1 87 87 87.1 87 87
AdaBoost 90.8 | 90.7 | 90.7 91.3 90.7 90.7 92.2 90.7 90.7 87.5 87 87
Bagging 89.8 | 889 | 88.8 89.8 88.9 88.8 89.8 88.9 88.8 89.8 88.9 88.8
LogitBoost 945 | 944 | 94.4 87.5 87 87 90.8 90.7 90.7 92.8 92.6 92.6
MulticlassClassifier | 72.5 | 72.2 | 72.1 725 72.2 721 77.8 75.9 75.5 723 72.2 72.2
RandomCommitte 90.8 | 90.7 | 90.7 89.1 88.9 88.9 89.8 88.9 88.8 89.1 88.9 88.9
RandomSubspace 92.2 90.7 90.7 89.8 88.9 88.8 92.2 90.7 90.7 92.2 90.7 90.7
IBK 77.8 77.8 77.8 77.9 77.8 77.7 81.7 81.5 81.5 81.7 81.5 81.5
SMO 723 72.2 72.2 74.2 74.1 74 70.5 70.4 70.3 70.5 70.4 70.3
NaiveBayes 65.3 64.8 64.5 71.4 70.4 70 69.2 68.5 68.2 71.4 70.4 70
MLP 81.5 815 815 78.4 77.8 77.7 81.5 81.5 81.5 76 75.9 75.9

4.2. Accuracy of different Feature Selection

techniques with various classifiers

Tables 8 and 9 report the accuracy of different fea-
ture selection techniques with various classifiers. On the
dataset, Axis2, Random Forest, Decision Table, and
MLP give the highest accuracy of 86.05. Random forest
gives the highest accuracy of 89.62 on the Eclipse.

Jdt.core dataset with the ReliefF feature selection algo-
rithm. For the dataset, Elastic Search, Decision Tree,
Random Tree, AdaBoost, LogitBoost and SMO give the
highest accuracy of 74.24. On the dataset Jfreechart, De-

cision Tree,

LogitBoost, and Random Committee

achieve the highest accuracy of 94.07 using ReliefF, Cor-
relation, and
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Table 8
Accuracy of various classifiers on different datasets
Axis2 Eclipse.Jdt.Core Elastic Search
Classifier All features | Correlation|  Infoain ReliefF ()l features | Correlation| Infogain ReliefF |a|| features | Correlation| Infogain ReliefF
(Top70%) | (Top70%) | (Top70%) (Top70%) | (Top70%) | (Top70%) (Top 70%) | (Top70%) | (Top 70%)
Decision Tree 75.58 | 80.23 | 79.07 | 83.72 81.6 81.13 | 79.25 | 81.13 69.7 7273 | 7273 | 74.24
RandomForest 86.05 | 8256 | 86.05 | 8256 | 85.85 | 87.26 | 87.26 | 89.62 | 68.18 | 66.67 | 71.21 | 71.21
RandomTree 79.07 | 76.74 81.4 7674 | 7877 | 77.83 | 80.19 | 79.72 | 59.09 | 74.24 | 59.09 | 59.09
DecisionTable 82.56 | 86.05 | 86.05 | 86.05 | 783 7453 | 78.77 | 80.19 | 53.03 | 53.03 | 53.03 | 53.03
AdaBoost 75.58 81.4 7791 | 7558 | 7736 | 76.89 | 78.77 | 7736 | 7121 | 7273 | 72.73 | 74.24
Bagging 80.23 81.4 80.23 81.4 80.66 | 82.08 | 83.02 | 8208 | 63.64 | 63.64 | 59.09 | 60.61
LogitBoost 67.44 81.4 83.72 | 76.74 | 82.08 81.6 83.02 | 8443 | 65.15 | 7424 | 7424 | 69.7
MulticlassClassifier | 6163 | 69.77 | 72.09 | 70.93 | 79.25 | 79.25 | 80.66 | 77.83 | 63.64 | 63.64 | 60.61 | 65.15
RandomCommitte | 8377 | 8372 | 82.56 81.4 85.85 | 8632 | 86.79 | 87.74 | 7121 | 72.73 | 72.73 69.7
RandomSubspace 79.07 | 82.56 81.4 82.56 | 8396 | 8349 | 80.66 | 85.85 | 63.64 | 63.64 | 68.18 | 72.73
IBK 7558 | 76.74 | 7791 | 79.07 | 8255 | 82.08 | 83.02 | 8255 | 60.61 | 59.09 | 59.09 | 65.15
SMo 73.26 | 7558 | 69.77 | 72.09 | 80.66 | 79.72 | 80.19 7972 | 7424 | 7121 | 59.09 | 74.24
NaiveBayes 7093 | 79.07 | 67.44 | 72.09 | 75.94 | 77.83 783 7311 | 59.09 | 65.15 | 56.06 | 63.64
MLP 73.26 | 8256 | 86.05 | 80.23 | 79.72 | 76.88 | 7736 | 78.77 | 66.67 | 7273 | 62.12 69.7
Table 9
Accuracy of various classifiers on different datasets
JFreeChart JRuby Lucene
Classifier Al features| Correlation| Infogain | ReliefF Al features Correlation| Infogain | ReliefF Al features Correlation| Infogain | ReliefF
(Top 70%) | (Top 70%) | (Top 70%) (Top 70%) | (Top 70%) | (Top 70%) (Top 70%) | (Top70%) | (Top 70%)
Decision Tree 93.22 | 90.68 | 91.53 | 94.07 | 8231 80 77.69 | 85.38 | 94.44 | 83.89 | 88.89 | 94.44
RandomForest 91.53 | 90.68 | 91.53 | 92.37 | 85.38 | 80.77 | 83.85 | 80.77 | 88.89 | 88.89 | 87.04 | 88.89
RandomTree 91.53 | 90.68 | 91.53 | 87.29 | 73.85 | 76.15 | 7538 | 85.38 | 88.89 | 81.48 | 90.74 | 92.59
DecisionTable 85.59 | 8898 | 8559 | 8559 80 76.15 80 8231 | 87.04 | 87.04 | 87.04 | 87.04
AdaBoost 85.59 | 87.29 | 84.75 | 86.44 | 77.69 | 77.69 | 78.46 | 80.77 | 90.74 | 90.74 | 90.74 | 87.04
Bagging 87.29 | 88.14 | 89.83 | 87.29 | 80.77 | 81.54 | 8231 | 79.23 | 88.89 | 8889 | 88.89 | 88.89
LogitBoost 90.68 | 94.07 | 90.68 | 88.98 | 81.54 | 79.23 | 77.69 | 78.46 | 94.44 | 87.04 | 90.74 | 92.59
MulticlassClassifier| g39 | 8305 | 8559 | 77.12 | 6385 | 6538 | 6231 | 6154 | 7222 | 7222 | 7593 | 7222
RandomCommitte | o537 | 9237 | 94.07 | 9237 | 8462 | 8385 | 8154 | 83.08 | 9074 | 8889 | 8889 | 88.89
RandomSubspace | gg14 | 9068 | 88.98 | 90.68 80 80 83.08 | 80.77 | 90.74 | 88.89 | 90.74 | 90.74
1BK 8136 | 8475 | 8559 | 8475 | 6462 | 64.62 | 6692 | 6231 | 77.78 | 77.78 | 81.48 | 81.48
smo 83.9 83.9 83.05 83.9 7077 | 74.62 | 74.62 70 7222 | 7407 | 7037 | 70.37
NaiveBayes 7458 | 72.88 | 7627 | 7712 | 6846 | 67.69 | 73.08 | 6231 | 64.81 | 70.37 | 6852 | 70.37
MmLp 89.83 | 84.75 | 88.14 | 8559 | 6846 | 67.69 | 6154 | 6846 | 81.48 | 77.78 | 81.48 | 75.93

Infogain feature selection methods respectively (see
Table 9). On dataset, JRuby, Decision Tree, and Random
Tree achieve the highest accuracy of 85.38 using the Re-
liefF selection method whereas Random Forest achieves
the same accuracy with all features. On dataset Lucene,
Decision Tree gives the highest accuracy of 94.44 with
all features and Relieff feature selection method whereas
LogitBoost gives the same accuracy with all features.

4.3. Comparison with existing approaches

Table 10 compares the results of applying feature
selection methods to recommending clones for refactor-
ing with the existing machine learning-based approaches.
The performance of AdaBoost and Naive Bayes is im-
proved with all selection methods. Random Forest
achieves the same performance as the previous approach
with Infogain. The Decision Tree's performance in-
creased with ReliefF compared with the existing ap-
proach.
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Table 10
Comparison with the existing approaches in terms of F-score
Feature selection and Machine learning
20 23
[20] [23] Correlation Infogain ReliefF
AdaBoost -- 79.6 81.06 80.41 80.06
Random Forest -- 84.4 82.75 84.4 84.21
SMO - 75.71 76.4 72.71 74.9
Naive Bayes - 68.46 71.66 69.35 69
Decision Tree 72.8 82.75 82.22 81.4 85.46
5. Discussion — AdaBoost, Bagging, RandomCommittee,

This study shows how the integration of feature se-
lection methods enhances the performance of machine
learning algorithms in recommending clones for refactor-
ing. Experiments were conducted on datasets derived
from six open-source Java projects, applying a systematic
evaluation of three widely used feature selection meth-
ods: Correlation, Infogain, and ReliefF.

Initially, all classifiers were evaluated on the full
feature set (i.e., without feature selection). Decision Tree
and LogitBoost achieved the highest F-Measure of
94.4% on the Lucene dataset. Random Forest performed
best on the Axis2, Eclispse.jdt.core, and Jruby datasets
with F-measures of 86%, 86.8%, and 85.3%, respec-
tively. Subsequently, the three feature selection methods
were applied to assess their effect on classifier perfor-
mance. The Infogain method consistently improved the
performance of multiple classifiers across all datasets ex-
cept Axis2, where correlation-based selection led to bet-
ter results for eleven classifiers. We observed that the Re-
liefF method enables the Decision Tree classifier to
achieve the highest average performance i.e., precision
(85.71%), recall (85.48%), and F-score (85.46%).

Table 11 presents a detailed summary of the best-
performing classifiers for each dataset and feature selec-
tion method. Figures 2-5 show performance of different
classifiers for all features, correlation, Infogain, and Re-
liefF feature selection methods, respectively.

Our results indicate that the optimal choice of clas-
sifier and feature selection method varies depending on
the dataset characteristics. For instance:

— Random Committee achieved the highest aver-
age precision, recall and F-measure using all features and
correlation (see Figure 2 and Figure 3);

— Random Forest and Decision Tree were most
effective when paired with InfoGain and ReliefF respec-
tively (see Figure 4 and Figure 5);

SMO, Naive Bayes, and MLP achieved the highest av-
erage precision, recall, and F-measure using correlation
feature selection.

— Random Forest, LogitBoost, and Mul-
ticlassClassifier achieved the highest average precision,
recall, and F-Measure using Infogain feature selection;

— Decision Tree, Random Tree, Decision Table,
Random Subspace, and IBK achieved the highest aver-
age precision, recall and F-Measure using ReliefF feature
selection.

The superiority of the Decision Tree Classifier with
ReliefF suggests that tree-based models benefit from at-
tribute selection that emphasizes local instance-level rel-
evance. This combination can be useful for clone-related
tasks, where attribute behaviour varies across different
projects. Additionally, Random Forest and Random
Committee displayed robust performance across multiple
datasets and feature selection attributes, indicating their
resilience to noisy and redundant features.

These findings suggest that applying appropriate
feature selection methods can substantially improve the
performance of machine learning models for recom-
mending clones for refactoring. The results reveal that
feature selection is not merely a preprocessing step but a
decisive step in improving classifier performance for
clone recommendation systems. This has high practical
implications as it reduces manual effort and improves the
accuracy of identifying suitable clones for refactoring,
especially in large software. Furthermore, our compara-
tive evaluation offers a reproducible framework for fu-
ture studies in this area. The methodology, which consists
of clone data modeling, feature selection and classifier
evaluation can be generalized to other domains such as
bug-proneness prediction in cloned code, Test-case pri-
oritization for clone-heavy modules and cross-language
clone recommendation systems in Python and C++.
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Table 11
ML algorithms achieved the highest F-Measure on various datasets
Dataset All features Correlation Infogain ReliefF
AXis2 Random Forest Decision Table Random Forest Decision Table (85.9)
(86%) (85.9%) (86%)
Eclispe.jdt.core Random Forest Random Forest Random Forest Random Forest
(86.8%) (87.3%) (87.3%) (89.6%)
Elastic Search SMO (74.2%) LogitBoost LogitBoost (74.2%) AdaBoost, SMO
(74.2%) (74.2%)
JFreeChart Decision Tree LogitBoost (94.1%) | Random Committee | Decision Tree (94.1%)
(93.2%) (94.1%)
JRuby Random Forest Random Committee Random Forest Decision Tree and
(85.3%) (83.7%) (83.8%) Random tree (85.4%)
Lucene Decision Tree, AdaBoost Random Tree, Decision Tree
LogitBoost (94.4%) (90.7%) LogitBoost, (94.4%)
AdaBoost (90.7%)
90
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Fig. 2. Performance of different classifiers using all features
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Fig. 5. Performance of different classifiers using ReliefF feature selection

6. Conclusion

After detecting clones from software, clones suita-
ble for removal through refactoring must be filtered. The
manual selection of suitable clones can be tiring and
time-intensive. This study addresses this challenge by
systematically evaluating the effectiveness of various
machine learning algorithms in combination with three
feature selection methods- Correlation, Infogain and Re-
liefF for identifying suitable clones for refactoring.

A total of fourteen machine-learning classifiers
were analyzed across six open-source Java projects. The
results demonstrate that Decision Tree and LogitBoost
classifiers achieved the highest accuracy of 94.44% on
Lucene dataset with feature selection. Furthermore, De-
cision Tree when used with ReliefF, gives the highest av-
erage precision, recall, and F-measure across datasets,
underscoring the significant impact of applying suitable
feature selection techniques.

The findings not only validate the use of automated
machine learning approaches in clone management but
also offer a scalable framework for real-world software
maintenance. This contributes both scientifically by in-
troducing a comparative evaluation methodology and
practically by reducing manual effort in clone filtering.

The results lead to the following general recommen-
dations:

ReliefF is highly effective when used with Decision
Tree models in clone recommendations for refactoring.

Infogain tends to benefit classifiers with structured fea-
ture dependencies whereas Correlation proves useful
when datasets are less complex but require basic rele-
vance filtering. Classifiers such as Random Forest, Ran-
dom Committee and Decision Tree are consistently reli-
able across various datasets making them suitable for
clone refactoring scenarios.

In the future, we aim to explore additional feature
selection methods and a broader set of machine learning
algorithms on a clone refactoring dataset that incorpo-
rates a cloned fragment's bug-proneness and developer’s
effort. Further, the applicability of deep learning tech-
niques for semantic feature extraction to build clone rec-
ommendation systems for refactoring can be explored in
future work.
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EMITIIPUYHA OILIHKA BUBOPY ®YHKIIIN TA TEXHIK MAIIIMHHOI'O HABYAHHS,
IIOb PEKOMEH/YBATHU KJIOHU UISA PE@AKTOPUHI'Y IPOI'PAMHOI'O 3ABE3ITEYEHHSA

Mannpim Kayp, /Ixaeniwu Paman, Maoan Jlan

[TpenmeroM CTaTTi € yrpaBIiHHHS IPOrPaMHUMU KJIIOHOBaHMMH (parmeHTamu. [IporpaMHi KjIoHM — 11e AyOumi-
KaTH KOJIOBUX (DparMeHTiB, SIKi MOXKYTh ICHYBaTH B OJJHOMY a0o0 pi3HuX (aiinax nporpamHoro 3abe3neveHHs. Buss-
JISHHSI Ta YIIPABJIiHHS POrPaMHUMU KJIIOHAMHM CTaJIO J00pe BCTAHOBJIEHOIO 00JIACTIO JA0CHTiKeHb. [IporpamMHi KIIOHK
TpaTH Ha 0OCITYrOBYBaHHS Ta BUMOTH JI0 PECYPCIB MPOrpamMHOro 3adesneueHHs. PeakTopuHT € MonmpeHo TeXHi-
KOIO YIPaBIIiHHS KJIOHAMU. [HCTpYMEHT /ISl BUSIBIICHHS IIPOrPaMHHX KJIOHIB MOYKE BUSIBUTH 0arato KJIOHIB y ITporpa-
MHOMY 3a0€3IIeUeHHi, OJJHaK He BCi BHSBJICHI KIOHW MOXYThb OYTH NMPUAATHUMU Ui pedakTopuHry. Po3poOHUKY
noTpiOeH IMiAMHOKMHA BHSBJICHHUX KIIOHIB, SIKi MOXKHA JIETKO BiJpehakTopuTi. MeTOo0 1IOro OCIIPKEHHS € IPOITo-
3MIIS IPOrPAMHUX KJIOHIB sl pe()aKTOPUHTY 3 BUKOPHCTaHHSIM METOJIB MALIMHHOTO HAaBYaHHs. Y CTaTTi OLiHIO-
€ThCS IPOAYKTHBHICTh YOTUPHAALSATH AJITOPUTMIB MAIIMHHOTO HAaBYaHHS Ta JOCIIUKYETHCS BIUIMB TPHOX METOIB
BiIOOPY O3HAK Ha TOYHICTh PEKOMEHJAlil KJIOHIB. 3aBJaHHs, sKi MOTPIOHO BHPIIIUTH, Iie: BUOpATH BiIIOBIIHI
03HaKHU 3 HA0OPIB IaHKX, PO3POOUTH MOJIEINI HA OCHOBI MallIMHHOI'O HABYAHHSI, SIKI MOXKYTh NPOIIOHYBATH i IX OISl
KJIOHHM JiJ1s1 pehakTOpuHry, 00paTth eheKTHBHUIA aJITOPUTM MAIIMHHOTO HABYAHHS Ta BiA0OPY O3HAK JJIsl pEKOMEH1a-
wii KIOHIB i pedakropuHry. Metomu, siki BUKOPHUCTOBYIOTBCS Ul BiI0OOPY O3HAK, BKIIOYAIOTH KOPEISLIO,
InfoGain ta ReliefF. JlocmipkeHHsT TpOBOIUTHCS HAa HAOOpax JaHWX 3 MIECTH BIAKPUTUX MPOrPAMHUX HPOIYKTIB,
HanucaHux Ha Java. ExcriepuMeHTanbHi pe3yabTaTH MOoKa3yIoTh, 1o kiacudikatopu Jepeso Pimens Ta LogitBoost
J0CATAIOTh HaiBUINOI ToUHOCTI 94,44% Ha nataceti Lucene. Cepen MetoniB Binboopy o3Hak, ReliefF 3abe3neuye Haii-
Kpaly IpoJyKTHBHICTh, 0COOIMBO KOJIM BUKOPHCTOBYEThCs 3 anroputMoM JlepeBo Pimens. Lle mocnimkeHHs: poOUTh
BHCHOBOK, 1110 BunankoBuii Komiter, Bunagkoswuit Jlic Ta [lepeBo PitieHp nmoka3yroTh HalKkpalili pe3yJabTaTH y Mo-
enHaHHI 3 kopemsuieto, InfoGain Ta ReliefF BiamoigHo. 3aranom, knacugikatop Jlepeso Piiens, komOiHOBaHMiT 13
MeTonoM Binbopy o3Hak ReliefF, 3a0e3meuye HaliBHIILY cepeHIO TOYHICTD, BiAryk Ta F-mMipy Ha pi3HHX JaTaceTax.

Kunro4oBi cjioBa: K1oHM IporpaMHOro 3a0e3IeueHHsT; YIPAaBIiHHS KIIOHAMH; PeKOMEHALIs 100 KIOHYBaHHS,
pedakropuHr KIOHYBaHHS, BUOIp (QYHKIIH, MAllIMHHE HABYAHHSI.
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