
Machine learning and intelligent systems

53

UDC 004.42 : 005.3 doi: 10.32620/reks.2025.3.04

Manpreet KAUR1, Dhavleesh RATTAN2, Madan LAL2

1 Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib, Punjab, India
2 Punjabi University, Patiala, Punjab, India

EMPIRICAL EVALUATION OF FEATURE SELECTION AND MACHINE LEARNING

TECHNIQUES TO RECOMMEND CLONES FOR SOFTWARE REFACTORING

The article’s subject matter deals with the management of software clones. Software clones are duplicate code

fragments that can exist in the same or different software files. Software clone detection and management has
become a well-established research area. Software clones should be managed to minimize their ill-effects, as the

presence of clones can increase the software’s maintenance cost and resource requirements. Refactoring is a

commonly used technique for managing clones. A software clone detection tool can detect many clones from the

software, but not all detected clones are suitable for refactoring. A developer needs a subset of detected clones

that can be easily refactored. This study aims to suggest software clones for refactoring using machine learning

techniques. This study evaluates the performance of fourteen machine-learning algorithms and investigates the

influence of three feature selection methods on clone recommendation accuracy. The tasks to be solved are as

follows: selecting appropriate features from datasets, developing machine learning-based models that can sug-

gest suitable clones for refactoring, and selecting an effective machine learning and feature selection algorithm

for recommending clones for refactoring. The methods used for feature selection are correlation, InfoGain, and

ReliefF. The study is conducted on datasets from six open-source software written in Java. The experimental
results show that the Decision Tree and LogitBoost classifiers achieve the highest accuracy of 94.44 % on the

Lucene dataset. ReliefF yields the best performance among the feature selection methods, particularly when

used with the Decision Tree algorithm. This study concludes that Random Committee, Random Forest, and

Decision Tree perform best when paired with correlation, InfoGain, and ReliefF, respectively. Overall, the De-

cision Tree classifier, combined with the ReliefF feature selection method, delivers the highest average precision,

recall, and F-score across datasets.

Keywords: Software clones; Clone management; Clone recommendation, Clone refactoring, feature selection,

machine learning.

1. Introduction

Software clones are duplicate code fragments in the

same or different source code files. When a program-

mer/developer copies a piece of code and pastes it at var-

ious locations in the source code with or without modifi-

cation, software clones are generated in the software.

Copying and pasting source code fragments is known as

software cloning. The presence of such clones can in-

crease the maintenance of software. For example, soft-

ware cloning propagates the same bug at different loca-

tions if a bug exists in a copied code fragment. The pres-

ence of clones can also increase the size of the source

code, which is a critical issue for devices with limited

memory.

Software clones can be of various types, as dis-

cussed below:

­ Type-1 clones/ Exact clones: The duplicate code

fragments with minor differences, such as changes in

comments or whitespaces;

­ Type-2 clones/Parameterised clones: The dupli-

cate code fragments with differences in variable and

function names, comments, and whitespaces;

­ Type-3 clones/ Near Miss clones: The duplicate

code fragments with modifications, such as adding new

source code lines or deleting existing source code;

­ Type-4 clones/Semantic clones: The two code

fragments are functionally similar but have different syn-

taxes. Such duplicate fragments are also known as

semantic clones.

In previous research, many techniques have been

developed to detect various types of software clones. In-

terested readers can read previous surveys [1, 2] to un-

derstand the working principle of these techniques. Since

clones in software can be harmful, clones must be man-

aged. Clones can be managed in several ways. Clone

management refers to a group of activities that help to

detect, remove, or avoid clones [3]. Such activities in-

clude clone detection [4], clone documentation, clone

visualization [5], clone analysis [6], clone refactoring [7],

and clone tracking [8].

1.1. Motivation and Objective

Clone refactoring is a popular method for managing

clones [9]. Various refactoring techniques [10, 11] such

 Creative Commons Attribution

NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)
54

as the extract method [12], extract class, and pull-up

method help to manage clones. The major challenge is

selecting a set of clones that can be managed through re-

factoring [13]. A clone detection tool can find many

clones of different types and granularities in the software.

Manually selecting suitable clones for applying any re-

factoring technique is difficult.

To address this limitation, this study aims to evalu-

ate the effectiveness of multiple machine learning algo-

rithms along with three feature selection methods to au-

tomatically recommend suitable clones for refactoring.

This approach not only reduces manual effort but also en-

hances clone management scalability. The novelty of our

work lies in integrating and comparatively analyzing ma-

chine-learning based classification with feature selection

methods to improve clone recommendations for refactor-

ing, which is an underexplored area in the current litera-

ture.

1.2. Major Contribution of the Study

The major contributions of this study toward ad-

vancing automated clone refactoring are as follows:

­ Systematic feature selection: This study applied

three widely used feature selection methods: Correlation,

InfoGain, and ReliefF, to identify the most relevant at-

tributes of the clone refactoring dataset, enabling more

focused and efficient learning.

­ Extensive model evaluation: A detailed perfor-

mance comparison is conducted using fourteen machine

learning algorithms, each tested along with three feature

selection methods. This provides a robust assessment of

how various machine learning algorithm and feature-se-

lection pairs perform in recommending suitable clones

for refactoring.

­ Demonstration of the impact of feature selec-

tion: This study highlights how feature selection im-

proves classification accuracy, emphasizing its im-

portance in enhancing clone recommendation systems.

This work fills a notable gap in existing research by

combining and evaluating diverse machine learning mod-

els and feature selection methods in the context of clone

refactoring, offering a practical and scalable solution for

real-world software maintenance.

1.3. Paper Organization

The remainder of this paper is organized as follows.

Section 2 discusses related work. This section elaborates

on previous studies that proposed approaches for select-

ing suitable clones for refactoring. Section 2 also high-

lights the difference between our study and previous

studies. The methodology is discussed in Section 3. Sec-

tion 3 elaborates in detail the study’s approach, including

feature selection, datasets, machine learning algorithms,

and evaluation metrics. Section 4 presents the results.

The performance evaluation of various feature selection

and ML algorithms is presented, and the results are com-

pared with those of existing approaches. Section 5 dis-

cusses the results, and Section 6 concludes and provides

future directions.

2. Related Work

Higo et al. [14] designed a filter named CCShaper

to filter refactoring-oriented clones for the clone detec-

tion results of the CCFinder tool. CCShaper identified

structural blocks in the code clone that are easy to com-

bine and move. A tool Aries [15, 16] uses CCShaper to

find structural blocks of code clones and then uses met-

rics like DCH (Dispersion of class Hierarchy), NRV

(Number of Referred variables), or NAV (Number of As-

signed variables) to identify clones suitable for Pull-Up

method and Extract Method.

Schulze et al. [17] provided guidelines for clone re-

factoring by adding additional information, such as the

clone location and the statement type of the code clones,

to clone detection results. This information is used to pro-

vide refactoring proposals; however, applying the sug-

gested refactoring for clone removal requires a separate

refactoring tool.

Choi et al. [18] proposed a technique that integrates

clone metrics to filter clones for refactoring. They used a

web application to conduct an empirical investigation.

They demonstrated that filtering clones for refactoring

via a combination of clone metrics is more efficient than

using a single clone metric.

Mondal et al. [19] developed a method for finding

clones that are important for refactoring. They suggested

that SPCP (Similarity Preserving Change Pattern) clones

be considered while making refactoring decisions. SPCP

clones are defined as two or more clone fragments from

the same clone class that preserve similarity during clone

evolution. They identified that SPCP clones with lower

change couplings with other classes are good candidates

for refactoring.

Wang and Godfrey [20], Rongrong et al. [21],

Sheneamer [22], and Yue et al. [23] used machine learn-

ing algorithms to identify clones for refactoring. Wang

and Godfrey [20] used the code, context, and history fea-

tures of code clones. They built a machine-learning

model to recommend clones for refactoring using a deci-

sion tree classifier. To prepare the dataset for training and

testing the classifier, 323 clone instances with refactoring

histories and 323 without refactoring histories were used.

The proposed machine learning-based model achieved

precision from 77.3% to 87.9% within-project testing,

whereas cross-project testing generated precision from

73.2% to 88.5%.

Machine learning and intelligent systems

55

Rongrong et al. [21] used various code clone fea-

tures, including 13 static features and three evolution fea-

tures, to build a method for identifying clones for refac-

toring. They employed Bayesian network, Naïve Bayes,

and C4.5. Seven open-source projects written in C were

evaluated. They concluded that the decision tree-based

prediction model has higher accuracy than other models.

Sheneamer [22] proposed an approach to automati-

cally advise clone refactoring. The strategy is based on

AST features and uses K-nearest neighbor, Forest PA,

Bagging, and Random Forest. They observed that Ran-

dom Forest achieved better outcomes among all classifi-

ers.

Yue et al. [23] developed a refactoring clone recom-

mendation tool. The tool is based on 34 clone instances’

features extracted from open-source projects in Java.

They used AdaBoost to build a machine-learning-based

model that automatically recommends clones for refac-

toring. In both with-in-project and cross-project testing,

they concluded that AdaBoost recommended clones for

refactoring with improved accuracy.

Fanqi [24] used SOM (Self-Organized Mapping)

clustering to find refactorable clones. They retrieved met-

rics like POP (number of clones in a clone group), NIF

(number of files in which clones of a clone group are dis-

tributed), LEN (length of code clone in terms of token),

etc using CCFinder. The metrics of selected refactorable

code clones were used to train the SOM model, which

was then used to categorize the unknown code clones.

While previous studies have attempted to fill the

gap between clone detection and meaningful recommen-

dation of clones for refactoring, most have notable limi-

tations. Recent studies have applied machine-learning al-

gorithms to classify clones as refactorable or not, yield-

ing promising results. However, these studies neither

considered the impact of feature selection on model per-

formance nor conducted broad comparisons among di-

verse algorithms. These existing studies used a limited

set of machine learning classifiers, which raises concerns

about the generalizability and robustness of their find-

ings. Despite the well-documented influence of feature

relevance on classification outcome in other domains, no

previous studies provide a comparative analysis and eval-

uation of feature selection methods in the context of

clone refactoring recommendations. These gaps high-

light the need for a comprehensive, scalable, and gener-

alizable framework that integrates a broad range of ma-

chine learning classifiers with diverse feature selection

methods. Motivated by this, the current study conducts a

large-scale empirical evaluation that not only evaluates

fourteen machine-learning classifiers across six datasets

but also integrates and compares three well-known fea-

ture selection methods: Correlation, Infogain, and Re-

liefF to generate accurate and generalizable clone recom-

mendations for refactoring. The goal is to identify opti-

mal combinations for accurately recommending clones

for refactoring.

3. Methodology

Figure 1 shows the workflow of the current study.

A labeled dataset related to clone refactoring was re-

quired to train the machine-learning models. Six open-

source projects [23] were used as the labeled dataset of

clone refactoring. Three feature subset selection methods

were employed to select optimal features from six clone

refactoring datasets and trained machine learning algo-

rithms to classify refactorable and non-refactorable

clones.

3.1. Feature selection

Feature selection algorithms are important in select-

ing the best features for machine learning algorithms.

The accuracy and execution speed of the machine learn-

ing algorithms may be enhanced by this feature subset

selection. There are two categories of feature selection

algorithms: wrapper techniques and filter methods.

While wrapper techniques use learning algorithms to se-

lect a subset of the best features, filter methods select fea-

tures based on their relationship to the target. Three fea-

ture selection techniques were employed in the current

work: Correlation, InfoGain, and ReliefF.

3.2. Datasets

The dataset used in this study comprises six open-

source subject systems [23]. The dataset includes 666

clone instances belonging to six open-source software in

Java (see Table 1). It consists of 333 clone refactoring

instances and 333 clone instances without refactoring

history. Each clone instance is represented in the form of

34 features. These 34 features belong to five types: code

features, history features, syntactic difference features,

relative location features, and co-change features among

clones.

Table 1

Clone refactoring dataset [23]

Subject

System

Number of

refactored

clones

Number of Non-

refactored clones

Axis2 43 43

Eclipse. jdt.
core

106 106

Elastic
Search

33 33

JFreeChart 59 59

JRuby 65 65

Lucene 27 27

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)
56

Figure 1. Workflow of the proposed approach

3.3. Machine learning algorithms used

This experiment used the following machine learn-

ing algorithms [25]:

 Decision Tree,

 Random Forest,

 Random Tree,

 Decision Table,

 AdaBoost,

 Bagging,

 LogitBoost,

 MulticlassClassifier,

 RandomCommitte,

 Random Subspace,

 IBK,

 SMO,

 Naïve Bayes,

 Multilayer Perceptron.

3.4. Evaluation Metrics

Many evaluation metrics exist to measure machine

learning models' performance [25, 26]. In this experi-

ment, the performance of different machine learning al-

gorithms was measured using the following metrics.

Precision: Ratio of relevant instances to retrieved

instances

Precision=
TP(True Positives)

 TP(True Positives)+FP(False Positives)
.

Here, TP (True Positives) represents the correctly

identified refactorable clones. FP (False Positives) repre-

sents instances where the model incorrectly identifies a

clone as a refactorable clone.

Therefore, precision measures how many clones are

refactorable among all the recommended clones for re-

factoring.

Recall: Ratio of retrieved relevant instances to total

relevant instances

Recall =
TP(True Positives)

 TP(True Positives)+FN(False Negatives)
.

Here, TP (True Positives) represents the correctly

identified refactorable clones and FN (False Negatives)

represents instances where the model fails to identify a

refactorable clone, respectively.

Therefore, recall measures how many clones are

recommended for refactoring among all known refactor-

able clones.

F-Measure/ F1-score: Weighted average recall

and precision values.

F1-Score =
2∗(Recall∗Precision)

(Recall+Precision)
.

F1-Measure provides a single measure for balanc-

ing precision and recall to check the model performance.

Accuracy: Ratio of correctly retrieved instances to

the total number of instances [27].

Machine learning and intelligent systems

57

Accuracy =
TP+TN

 TP+FP+TN+FN
.

Here, TP (True Positives) represents the correctly

identified refactorable clones, TN(True Negatives) rep-

resents instances where the model correctly identifies the

clones which are not refactorable. FP (False Positives)

represents instances where the model incorrectly identi-

fies a clone as a refactorable clone and FN (False Nega-

tive) represents instances where the model fails to iden-

tify a refactorable clone.

Therefore, accuracy measures the proportion of cor-

rect predictions (both refactorable and non-refactorable

clones) made by the model out of total predictions

4. Results

4.1. Performance evaluation of different Feature

Selection (FS) techniques with various classifiers

Table 2 presents the evaluation of various feature

selection approaches with different classifiers for the

Axis2 dataset. For the correlation and ReliefF method,

the classifiers Decision Tree, Decision Table, AdaBoost,

Bagging, LogitBoost, MulticlassClassifier, RandomSub-

space, IBK, Naïve Bayes, and MLP increase precision,

recall, and F-measure with top 70% features. Decision

Tree, Random Tree, Decision Table, AdaBoost,

LogitBoost, MulticlassClassifier, RandomSubspace,

IBK, and MLP provide better precision, recall, and F-

measure with top 70% features for the Infogain method.

The average performance of all classifiers increased with

the use of the correlation, Infogain, and ReliefF feature

selection methods for dataset Axis2.

As shown in Table 3, for the Eclipse.Jdt.core da-

taset, the performance of nine classifiers for the Infogain

method with the top 70% features increased. For the Re-

liefF and correlation method, the performance of seven

and four classifiers increased, respectively. The average

performance of all classifiers is higher in the Infogain se-

lection method than ReliefF and Correlation. In the case

of Infogain, average precision is 81.5, the average recall

is 81.21 and the average F-measure is 81.15. Random for-

est provides the highest performance in the

eclipse.jdt.core dataset. With all features, the F-measure

is 86.8. For Correlation and Infogain, it gives F-measure

of 87.3, and for ReliefF selection method, it achieves the

highest value for F-measure, i.e., 89.6.

As shown in Table 4, the performance of nine clas-

sifiers for the ReliefF method with top 70% features is

increased for the Elastic search dataset. For the correla-

tion and Infogain methods, the performance of eight and

seven classifiers increased, respectively. The SMO clas-

sifier achieved the highest F-Measure with all features.

After applying the feature selection method correlation

and Infogain, the classifier LogitBoost achieved an F-

Measure of 74.2, whereas the whereas with ReliefF, clas-

sifier AdaBoost achieved F-Measure of 74.2.

In dataset Jfreechart, after applying feature selec-

tion methods, the performance of six classifiers in-

creased, as shown in Table 5. For the correlation method,

the classifier Decision Table, LogitBoost, Bagging, Ada-

Boost, Random Subspace, and IBK show performance

improvement compared to their results with all features.

Similarly, classifier Bagging, Multiclassclassifier, Ran-

domCommittee, RandomSubspace, IBK, and Naïve

Bayes performed better with Infogain selection method,

whereas Decision Tree, RandomForest, AdaBoost, Ran-

dom Subspace, IBK and Naïve Bayes show better perfor-

mance with ReliefF selection method. As we observed,

the classifier Decision Tree achieved a maximum F-

Measure of 93.2 for all features; however, with the selec-

tion method reliefF, the classifier Decision Tree achieved

F-Measure of 94.1. In the correlation and Infogain selec-

tion method, the classifiers LogitBoost and Ran-

domCommittee respectively achieved an F-Measure of

94.1.

In dataset JRuby (see Table 6), with the feature se-

lection method Infogain, maximum performance im-

provement is achieved as seven classifiers, i.e., Random

Tree, AdaBoost, Bagging, Random Subspace, IBK, SMO

and Naïve Bayes show an increase in Precision, Recall,

F-Measure. We observed that the classifier Random For-

est gave a maximum F-measure of 85.3 with all features

with dataset JRuby. In the case of correlation, the Ran-

domCommittee classifier gave a maximum F-Measure of

83.7. For the Infogain selection method, the Random-

Forest classifier achieved a maximum F-measure of 83.8,

whereas for the ReliefF selection method, the Random

Tree classifier achieved the highest F-measure of 85.4.

In the Lucene dataset, as shown in Table 7, the In-

fogain feature selection method helps achieve better per-

formance of five classifiers, Random Tree, AdaBoost,

Multiclass, IBK and Naïve Bayes as compared to the per-

formance of these classifiers with all features. With clas-

sifiers Decision Table, Bagging, Random Subspace and

MLP gave the same performance with all features of the

dataset and using the Infogain selection method with the

top 70% features. The highest F-Measure of 94.4 was

achieved with the classifier Decision Tree using all fea-

tures and ReliefF selection method. With the selection

method, correlation, the AdaBoost classifier achieved the

highest F-Measure of 90.7. With the Infogain selection

method, the Random Tree and AdaBoost classifiers

achieved a maximum F-Measure of 90.7

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)
58

Table 2

Performance evaluation of different FS techniques with various classifiers using dataset Axis2

Classifier

All Features
Correlation + Top 70%

Features
Infogain + Top 70%

Features
ReliefF+ Top 70%

Features

P (%) R

(%)
F (%) P (%)

R

(%)
F (%) P (%)

R

(%)
F (%) P (%)

R

(%)
F (%)

Decision Tree 76.3 75.6 75.4 81.1 80.2 80.1 79.3 79.1 79 83.7 83.7 83.7

RandomForest 86.4 86 86 83.4 82.6 82.4 86.8 86 86 82.7 82.6 82.5

RandomTree 79.3 79.1 79 76.7 76.7 76.7 81.7 81.4 81.4 76.8 76.7 76.7

DecisionTable 84 82.6 82.4 87.3 86 85.9 87.3 86 85.9 87.3 86 85.9

AdaBoost 75.7 75.6 75.6 81.7 81.4 81.4 78.3 77.9 77.8 76.3 75.6 75.4

Bagging 81.6 80.2 80 83.2 81.4 81.1 82.3 80.2 79.9 82.5 81.4 81.2

LogitBoost 67.5 67.4 67.4 82.5 81.4 81.2 84.4 83.7 83.6 77 76.7 76.7

MulticlassClassifier 61.8 61.6 61.5 69.8 69.8 69.8 72.1 72.1 72.1 71 70.9 70.9

RandomCommitte 84 83.7 83.7 84.4 83.7 83.6 83 82.6 82.5 81.7 81.4 81.4

RandomSubspace 80.7 79 78.8 84 82.6 82.4 83.2 81.4 81.1 83.4 82.6 82.4

IBK 75.9 75.6 75.5 77 76.7 76.7 78.3 77.9 77.8 79.1 79.1 79.1

SMO 73.9 73.3 73.1 76.3 75.6 75.4 70.2 69.8 69.6 72.5 72.1 72

NaiveBayes 72.4 70.9 70.4 79.6 79.1 79 68.9 67.4 66.8 74 72.1 71.5

MLP 73.4 73.3 73.2 83 82.6 82.5 86.1 86 86 80.2 80.2 80.2

Table 3

Performance evaluation of different FS techniques with various classifiers using dataset Eclipse.Jdt.core

Classifier
All features

Correlation + Top 70%

Features

Infogain + Top 70%

Features

ReliefF + Top 70%

Features

P

(%)

R

(%)

F

(%)
P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

Decision Tree 81.9 81.6 81.6 81.7 81.1 81 79.5 79.2 79.2 81.5 81.1 81.1

RandomForest 86.8 86.8 86.8 87.3 87.3 87.3 87.3 87.3 87.3 89.6 89.6 89.6

RandomTree 80.8 80.7 80.6 78.1 77.8 77.8 80.4 80.2 80.2 79.8 79.7 79.7

DecisionTable 79 78.3 78.2 74.7 74.5 74.5 79.1 78.8 78.7 80.5 80.2 80.1

AdaBoost 77.4 77.4 77.4 76.9 76.9 76.9 78.8 78.8 78.8 77.4 77.4 77.3

Bagging 80.7 80.7 80.6 82.2 82.1 82.1 83 83 83 82.1 82.1 82.1

LogitBoost 82.3 82.1 82 81.7 81.6 81.6 83.1 83 83 84.5 84.4 84.4

MulticlassClassifier 79.3 79.2 79.2 79.3 79.2 79.2 80.9 80.7 80.6 79.8 79.7 79.7

RandomCommitte 86.1 85.4 85.3 86.7 86.3 86.3 86.9 86.8 86.8 88.2 87.7 87.7

RandomSubspace 85 84.9 84.9 83.5 83.5 83.5 80.7 80.7 80.7 85.8 85.8 85.8

IBK 82.8 82.5 82.5 82.4 82.1 82 83 83 83 82.6 82.5 82.5

SMO 80.7 80.7 80.6 79.8 79.8 79.7 80.4 80.2 80.2 79.8 79.7 79.7

NaiveBayes 76 75.9 75.9 78.4 77.8 77.7 79.1 78.3 78.1 75.6 73.1 72.4

MLP 79 78.8 78.7 77 76.9 76.9 77.4 77.4 77.4 78.8 78.8 78.8

Machine learning and intelligent systems

59

Table 4

Performance evaluation of different FS techniques with various classifiers using dataset Elastic search

Classifier
All features Correlation + Top 70% features Infogain + Top 70% features ReliefF + Top 70% features

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

Decision Tree 70 69.7 69.6 73.5 72.7 72.5 75 72.7 72.1 74.8 74.2 74.1

RandomForest 68.6 68.2 68 66.9 66.7 66.5 72.2 71.2 70.9 71.4 71.2 71.2

RandomTree 59.3 59.1 58.9 74.8 74.2 74.1 59.2 59.1 59 59.1 59.1 59.1

DecisionTable 54.5 53 48.8 54.5 53 48.8 54.5 53 48.8 54.5 53 48.8

AdaBoost 71.7 71.2 71 72.7 72.7 72.7 73.1 72.7 72.6 74.4 74.2 74.2

Bagging 63.8 63.6 63.5 63.8 63.6 63.5 59.1 59.1 59.1 60.8 60.6 60.5

LogitBoost 65.2 65.2 65.1 74.4 74.2 74.2 74.3 74.2 74.2 69.8 69.7 69.7

MulticlassClassifier 63.7 63.6 63.6 63.7 63.6 63.6 60.6 60.6 60.6 65.2 65.2 65.1

RandomCommitte 72.2 71.2 70.9 73.1 72.7 72.6 73.5 72.7 72.5 70 69.7 69.6

RandomSubspace 63.7 63.6 63.6 69.8 69.7 69.7 69.6 68.2 67.6 73.1 72.7 72.6

IBK 61 60.6 60.3 59.3 59.1 58.9 59.1 59.1 59.1 65.5 65.2 65

SMO 74.3 74.2 74.2 71.2 71.2 71.2 59.2 59.1 59 74.3 74.2 74.2

NaiveBayes 60.8 59.1 57.4 69.1 65.2 63.3 57.3 56.1 54.3 66.6 63.6 61.9

MLP 66.9 66.7 66.5 72.8 72.7 72.7 62.1 62.1 62.1 70 69.7 69.6

Table 5

Performance evaluation of different FS techniques with various classifiers using dataset JFreechart

Classifier

All features
Correlation + Top 70%

features

Infogain + Top 70%

features

ReliefF + Top 70%

features

P

(%)

R

(%)

F

(%)
P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

Decision Tree 93.4 93.2 93.2 90.8 90.7 90.7 91.7 91.5 91.5 94.2 94.1 94.1

RandomForest 91.5 91.5 91.5 90.7 90.7 90.7 91.5 91.5 91.5 92.4 92.4 92.4

RandomTree 92.3 91.5 91.5 90.7 90.7 90.7 91.5 91.5 91.5 87.8 87.3 87.2

DecisionTable 87.4 85.6 85.4 91 89 88.8 87.4 85.6 85.4 87.4 85.6 85.4

AdaBoost 85.9 85.6 85.6 87.8 87.3 87.2 85.4 84.7 84.7 86.6 86.4 86.4

Bagging 87.8 87.3 87.2 88.3 88.1 88.1 90 89.8 89.8 87.8 87.3 87.2

LogitBoost 90.8 90.7 90.7 94.4 94.1 94.1 91 90.7 90.7 89.3 89 89

MulticlassClassifier 84.1 83.9 83.9 83.1 83.1 83 85.9 85.6 85.6 77.5 77.1 77

RandomCommitte 92.5 92.4 92.4 92.5 92.4 92.4 94.1 94.1 94.1 92.5 92.4 92.4

RandomSubspace 88.2 88.1 88.1 90.7 90.7 90.7 89 89 89 90.7 90.7 90.7

IBK 81.9 81.4 81.3 85.1 84.7 84.7 86.1 85.6 85.5 84.9 84.7 84.7

SMO 83.9 83.9 83.9 83.9 83.9 83.9 83.1 83.1 83 84 83.9 83.9

NaiveBayes 74.6 74.6 74.6 73.1 72.9 72.8 76.3 76.3 76.3 77.1 77.1 77.1

MLP 89.8 89.8 89.8 84.9 84.7 84.7 88.2 88.1 88.1 85.7 85.6 85.6

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)
60

Table 6

Performance evaluation of different FS techniques with various classifiers using dataset JRuby

Classifier
All features

Correlation + Top 70%
features

Infogain + Top 70%
features

ReliefF + Top 70%
features

P
(%)

R
(%)

F
(%)

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

Decision Tree 82.4 82.3 82.3 80.3 80 80 77.7 77.7 77.7 85.6 85.4 85.4

RandomForest 85.8 85.4 85.3 81.4 80.8 80.7 84.5 83.8 83.8 81.1 80.8 80.7

RandomTree 73.9 73.8 73.8 76.2 76.2 76.1 75.4 75.4 75.4 85.4 85.4 85.4

DecisionTable 81.5 80 79.8 79.2 76.2 75.5 81.5 80 79.8 84.7 82.3 82

AdaBoost 79.3 77.7 77.4 78.5 77.7 77.5 81.4 78.5 77.9 85.2 80.8 80.1

Bagging 82.1 80.8 80.6 83.1 81.5 81.3 83.7 82.3 82.1 82 79.2 78.8

LogitBoost 81.6 81.5 81.5 79.6 79.2 79.2 77.7 77.7 77.7 78.9 78.5 78.4

MulticlassClassifier 64 63.8 63.7 66 65.4 65 62.8 62.3 61.9 61.8 61.5 61.3

RandomCommitte 85.5 84.6 84.5 85.3 83.8 83.7 81.6 81.5 81.5 83.4 83.1 83

RandomSubspace 81.1 80 79.8 81.5 80 79.8 84.2 83.1 82.9 83 80.8 80.4

IBK 65.1 64.6 64.3 65.6 64.6 64.1 67.6 66.9 66.6 62.8 62.3 61.9

SMO 72.1 70.8 70.3 76.4 74.6 74.2 76.4 74.6 74.2 71.9 70 69.3

NaiveBayes 69.5 68.5 68 68.8 67.7 67.2 75.8 73.1 72.4 62.8 62.3 61.9

MLP 69 68.5 68.2 67.8 67.7 67.6 61.8 61.5 61.3 69 68.5 68.2

Table 7

Performance evaluation of different FS techniques with various classifiers using dataset Lucene

Classifier

All features
Correlation+ Top 70%

features

Infogain + Top 70%

features

ReliefF + Top 70%

features

P

(%)

R

(%)

F

(%)
P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

Decision Tree 94.5 94.4 94.4 89.1 88.9 88.9 89.1 88.9 88.9 94.5 94.4 94.4

RandomForest 89.1 88.9 88.9 89.1 88.9 88.9 87.1 87 87 88.9 88.9 88.9

RandomTree 88.9 88.9 88.9 82.2 81.5 81.4 90.8 90.7 90.7 92.8 92.6 92.6

DecisionTable 87.1 87 87 87.1 87 87 87.1 87 87 87.1 87 87

AdaBoost 90.8 90.7 90.7 91.3 90.7 90.7 92.2 90.7 90.7 87.5 87 87

Bagging 89.8 88.9 88.8 89.8 88.9 88.8 89.8 88.9 88.8 89.8 88.9 88.8

LogitBoost 94.5 94.4 94.4 87.5 87 87 90.8 90.7 90.7 92.8 92.6 92.6

MulticlassClassifier 72.5 72.2 72.1 72.5 72.2 72.1 77.8 75.9 75.5 72.3 72.2 72.2

RandomCommitte 90.8 90.7 90.7 89.1 88.9 88.9 89.8 88.9 88.8 89.1 88.9 88.9

RandomSubspace 92.2 90.7 90.7 89.8 88.9 88.8 92.2 90.7 90.7 92.2 90.7 90.7

IBK 77.8 77.8 77.8 77.9 77.8 77.7 81.7 81.5 81.5 81.7 81.5 81.5

SMO 72.3 72.2 72.2 74.2 74.1 74 70.5 70.4 70.3 70.5 70.4 70.3

NaiveBayes 65.3 64.8 64.5 71.4 70.4 70 69.2 68.5 68.2 71.4 70.4 70

MLP 81.5 81.5 81.5 78.4 77.8 77.7 81.5 81.5 81.5 76 75.9 75.9

4.2. Accuracy of different Feature Selection

techniques with various classifiers

Tables 8 and 9 report the accuracy of different fea-

ture selection techniques with various classifiers. On the

dataset, Axis2, Random Forest, Decision Table, and

MLP give the highest accuracy of 86.05. Random forest

gives the highest accuracy of 89.62 on the Eclipse.

Jdt.core dataset with the ReliefF feature selection algo-

rithm. For the dataset, Elastic Search, Decision Tree,

Random Tree, AdaBoost, LogitBoost and SMO give the

highest accuracy of 74.24. On the dataset Jfreechart, De-

cision Tree, LogitBoost, and Random Committee

achieve the highest accuracy of 94.07 using ReliefF, Cor-

relation, and

Machine learning and intelligent systems

61

Table 8

Accuracy of various classifiers on different datasets

Classifier

Axis2 Eclipse.Jdt.Core Elastic Search

All features Correlation

(Top 70%)

Infoain

(Top 70%)

ReliefF

(Top 70%)
All features Correlation

(Top 70%)

Infogain

(Top 70%)

ReliefF

(Top 70%)
All features Correlation

(Top 70%)

Infogain

(Top 70%)

ReliefF

(Top 70%)

Decision Tree 75.58 80.23 79.07 83.72 81.6 81.13 79.25 81.13 69.7 72.73 72.73 74.24

RandomForest 86.05 82.56 86.05 82.56 85.85 87.26 87.26 89.62 68.18 66.67 71.21 71.21

RandomTree 79.07 76.74 81.4 76.74 78.77 77.83 80.19 79.72 59.09 74.24 59.09 59.09

DecisionTable 82.56 86.05 86.05 86.05 78.3 74.53 78.77 80.19 53.03 53.03 53.03 53.03

AdaBoost 75.58 81.4 77.91 75.58 77.36 76.89 78.77 77.36 71.21 72.73 72.73 74.24

Bagging 80.23 81.4 80.23 81.4 80.66 82.08 83.02 82.08 63.64 63.64 59.09 60.61

LogitBoost 67.44 81.4 83.72 76.74 82.08 81.6 83.02 84.43 65.15 74.24 74.24 69.7

MulticlassClassifier 61.63 69.77 72.09 70.93 79.25 79.25 80.66 77.83 63.64 63.64 60.61 65.15

RandomCommitte 83.72 83.72 82.56 81.4 85.85 86.32 86.79 87.74 71.21 72.73 72.73 69.7

RandomSubspace 79.07 82.56 81.4 82.56 83.96 83.49 80.66 85.85 63.64 63.64 68.18 72.73

IBK 75.58 76.74 77.91 79.07 82.55 82.08 83.02 82.55 60.61 59.09 59.09 65.15

SMO 73.26 75.58 69.77 72.09 80.66 79.72 80.19 79.72 74.24 71.21 59.09 74.24

NaiveBayes 70.93 79.07 67.44 72.09 75.94 77.83 78.3 73.11 59.09 65.15 56.06 63.64

MLP 73.26 82.56 86.05 80.23 79.72 76.88 77.36 78.77 66.67 72.73 62.12 69.7

Table 9

Accuracy of various classifiers on different datasets

Classifier

JFreeChart JRuby Lucene

All features
Correlation
(Top 70%)

Infogain
(Top 70%)

ReliefF
(Top 70%)

All features
Correlation
(Top 70%)

Infogain
(Top 70%)

ReliefF
(Top 70%)

All features
Correlation
(Top 70%)

Infogain
(Top70%)

ReliefF
(Top 70%)

Decision Tree 93.22 90.68 91.53 94.07 82.31 80 77.69 85.38 94.44 88.89 88.89 94.44

RandomForest 91.53 90.68 91.53 92.37 85.38 80.77 83.85 80.77 88.89 88.89 87.04 88.89

RandomTree 91.53 90.68 91.53 87.29 73.85 76.15 75.38 85.38 88.89 81.48 90.74 92.59

DecisionTable 85.59 88.98 85.59 85.59 80 76.15 80 82.31 87.04 87.04 87.04 87.04

AdaBoost 85.59 87.29 84.75 86.44 77.69 77.69 78.46 80.77 90.74 90.74 90.74 87.04

Bagging 87.29 88.14 89.83 87.29 80.77 81.54 82.31 79.23 88.89 88.89 88.89 88.89

LogitBoost 90.68 94.07 90.68 88.98 81.54 79.23 77.69 78.46 94.44 87.04 90.74 92.59

MulticlassClassifier 83.9 83.05 85.59 77.12 63.85 65.38 62.31 61.54 72.22 72.22 75.93 72.22

RandomCommitte 92.37 92.37 94.07 92.37 84.62 83.85 81.54 83.08 90.74 88.89 88.89 88.89

RandomSubspace 88.14 90.68 88.98 90.68 80 80 83.08 80.77 90.74 88.89 90.74 90.74

IBK 81.36 84.75 85.59 84.75 64.62 64.62 66.92 62.31 77.78 77.78 81.48 81.48

SMO 83.9 83.9 83.05 83.9 70.77 74.62 74.62 70 72.22 74.07 70.37 70.37

NaiveBayes 74.58 72.88 76.27 77.12 68.46 67.69 73.08 62.31 64.81 70.37 68.52 70.37

MLP 89.83 84.75 88.14 85.59 68.46 67.69 61.54 68.46 81.48 77.78 81.48 75.93

Infogain feature selection methods respectively (see

Table 9). On dataset, JRuby, Decision Tree, and Random

Tree achieve the highest accuracy of 85.38 using the Re-

liefF selection method whereas Random Forest achieves

the same accuracy with all features. On dataset Lucene,

Decision Tree gives the highest accuracy of 94.44 with

all features and ReliefF feature selection method whereas

LogitBoost gives the same accuracy with all features.

4.3. Comparison with existing approaches

Table 10 compares the results of applying feature

selection methods to recommending clones for refactor-

ing with the existing machine learning-based approaches.

The performance of AdaBoost and Naïve Bayes is im-

proved with all selection methods. Random Forest

achieves the same performance as the previous approach

with Infogain. The Decision Tree's performance in-

creased with ReliefF compared with the existing ap-

proach.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)
62

Table 10

 Comparison with the existing approaches in terms of F-score

Wang et. al

[20]

Yue et. al

[23]

Feature selection and Machine learning

(Current Work)

Correlation Infogain ReliefF

AdaBoost -- 79.6 81.06 80.41 80.06

Random Forest -- 84.4 82.75 84.4 84.21

SMO -- 75.71 76.4 72.71 74.9

Naive Bayes -- 68.46 71.66 69.35 69

Decision Tree 72.8 82.75 82.22 81.4 85.46

5. Discussion

This study shows how the integration of feature se-

lection methods enhances the performance of machine

learning algorithms in recommending clones for refactor-

ing. Experiments were conducted on datasets derived

from six open-source Java projects, applying a systematic

evaluation of three widely used feature selection meth-

ods: Correlation, Infogain, and ReliefF.

Initially, all classifiers were evaluated on the full

feature set (i.e., without feature selection). Decision Tree

and LogitBoost achieved the highest F-Measure of

94.4% on the Lucene dataset. Random Forest performed

best on the Axis2, Eclispse.jdt.core, and Jruby datasets

with F-measures of 86%, 86.8%, and 85.3%, respec-

tively. Subsequently, the three feature selection methods

were applied to assess their effect on classifier perfor-

mance. The Infogain method consistently improved the

performance of multiple classifiers across all datasets ex-

cept Axis2, where correlation-based selection led to bet-

ter results for eleven classifiers. We observed that the Re-

liefF method enables the Decision Tree classifier to

achieve the highest average performance i.e., precision

(85.71%), recall (85.48%), and F-score (85.46%).

Table 11 presents a detailed summary of the best-

performing classifiers for each dataset and feature selec-

tion method. Figures 2-5 show performance of different

classifiers for all features, correlation, Infogain, and Re-

liefF feature selection methods, respectively.

Our results indicate that the optimal choice of clas-

sifier and feature selection method varies depending on

the dataset characteristics. For instance:

 Random Committee achieved the highest aver-

age precision, recall and F-measure using all features and

correlation (see Figure 2 and Figure 3);

 Random Forest and Decision Tree were most

effective when paired with InfoGain and ReliefF respec-

tively (see Figure 4 and Figure 5);

 AdaBoost, Bagging, RandomCommittee,

SMO, Naïve Bayes, and MLP achieved the highest av-

erage precision, recall, and F-measure using correlation

feature selection.

 Random Forest, LogitBoost, and Mul-

ticlassClassifier achieved the highest average precision,

recall, and F-Measure using Infogain feature selection;

 Decision Tree, Random Tree, Decision Table,

Random Subspace, and IBK achieved the highest aver-

age precision, recall and F-Measure using ReliefF feature

selection.

The superiority of the Decision Tree Classifier with

ReliefF suggests that tree-based models benefit from at-

tribute selection that emphasizes local instance-level rel-

evance. This combination can be useful for clone-related

tasks, where attribute behaviour varies across different

projects. Additionally, Random Forest and Random

Committee displayed robust performance across multiple

datasets and feature selection attributes, indicating their

resilience to noisy and redundant features.

These findings suggest that applying appropriate

feature selection methods can substantially improve the

performance of machine learning models for recom-

mending clones for refactoring. The results reveal that

feature selection is not merely a preprocessing step but a

decisive step in improving classifier performance for

clone recommendation systems. This has high practical

implications as it reduces manual effort and improves the

accuracy of identifying suitable clones for refactoring,

especially in large software. Furthermore, our compara-

tive evaluation offers a reproducible framework for fu-

ture studies in this area. The methodology, which consists

of clone data modeling, feature selection and classifier

evaluation can be generalized to other domains such as

bug-proneness prediction in cloned code, Test-case pri-

oritization for clone-heavy modules and cross-language

clone recommendation systems in Python and C++.

Machine learning and intelligent systems

63

Table 11

ML algorithms achieved the highest F-Measure on various datasets

Dataset All features Correlation Infogain ReliefF

Axis2 Random Forest

(86%)

Decision Table

(85.9%)

Random Forest

(86%)

Decision Table (85.9)

Eclispe.jdt.core Random Forest

(86.8%)

Random Forest

(87.3%)

Random Forest

(87.3%)

Random Forest

(89.6%)

Elastic Search SMO (74.2%) LogitBoost

(74.2%)

LogitBoost (74.2%) AdaBoost, SMO

(74.2%)

JFreeChart Decision Tree

(93.2%)

LogitBoost (94.1%) Random Committee

(94.1%)

Decision Tree (94.1%)

JRuby Random Forest

(85.3%)

Random Committee

(83.7%)

Random Forest

(83.8%)

Decision Tree and

Random tree (85.4%)

Lucene Decision Tree,

LogitBoost (94.4%)

AdaBoost

(90.7%)

Random Tree,

LogitBoost,

AdaBoost (90.7%)

Decision Tree

(94.4%)

Fig. 2. Performance of different classifiers using all features

0

10

20

30

40

50

60

70

80

90

Average Precision Average Recall Average F-Measure

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)
64

Fig. 3. Performance of different classifiers using correlation feature selection

Fig. 4. Performance of different classifiers using Infogain feature selection

60

65

70

75

80

85

90

Average Precision Average Recall Average F-Measure

0

10

20

30

40

50

60

70

80

90

Average Precision Average Recall Average F-Measure

Machine learning and intelligent systems

65

Fig. 5. Performance of different classifiers using ReliefF feature selection

6. Conclusion

After detecting clones from software, clones suita-

ble for removal through refactoring must be filtered. The

manual selection of suitable clones can be tiring and

time-intensive. This study addresses this challenge by

systematically evaluating the effectiveness of various

machine learning algorithms in combination with three

feature selection methods- Correlation, Infogain and Re-

liefF for identifying suitable clones for refactoring.

A total of fourteen machine-learning classifiers

were analyzed across six open-source Java projects. The

results demonstrate that Decision Tree and LogitBoost

classifiers achieved the highest accuracy of 94.44% on

Lucene dataset with feature selection. Furthermore, De-

cision Tree when used with ReliefF, gives the highest av-

erage precision, recall, and F-measure across datasets,

underscoring the significant impact of applying suitable

feature selection techniques.

The findings not only validate the use of automated

machine learning approaches in clone management but

also offer a scalable framework for real-world software

maintenance. This contributes both scientifically by in-

troducing a comparative evaluation methodology and

practically by reducing manual effort in clone filtering.

The results lead to the following general recommen-

dations:

ReliefF is highly effective when used with Decision

Tree models in clone recommendations for refactoring.

Infogain tends to benefit classifiers with structured fea-

ture dependencies whereas Correlation proves useful

when datasets are less complex but require basic rele-

vance filtering. Classifiers such as Random Forest, Ran-

dom Committee and Decision Tree are consistently reli-

able across various datasets making them suitable for

clone refactoring scenarios.

In the future, we aim to explore additional feature

selection methods and a broader set of machine learning

algorithms on a clone refactoring dataset that incorpo-

rates a cloned fragment's bug-proneness and developer’s

effort. Further, the applicability of deep learning tech-

niques for semantic feature extraction to build clone rec-

ommendation systems for refactoring can be explored in

future work.

Contribution of authors: Introduction, methodol-

ogy – Manpreet Kaur; related work– Dhavleesh Rat-

tan; performance evaluation – Manpreet Kaur; Tables,

Figures, Discussion – Madan Lal; original draft prepa-

ration and editing – Manpreet Kaur; review- Dhavleesh

Rattan and Madan Lal

Conflict of Interest

The authors declare that they have no conflict of in-

terest in relation to this research, whether financial, per-

sonal, authorship or otherwise, that could affect the re-

search and its results presented in this paper.

0

10

20

30

40

50

60

70

80

90

100

Average Precision Average Recall Average F-Measure

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 3(115) ISSN 2663-2012 (online)
66

Financing

This study was conducted without any financial

support.

Data Availability

The manuscript contains no associated data.

Use of Artificial Intelligence

The authors confirm that they did not use artificial

intelligence technologies when creating the current work.

All the authors have read and agreed to the pub-

lished version of this manuscript.

References

1. Rattan, D., Bhatia, R., & Singh, M. Software

clone detection: A systematic review. Information and
Software Technology, 2013, vol. 55, no. 7, pp. 1165–

1199. DOI: 10.1016/j.infsof.2013.01.008.

2. Roy, C. K., Cordy, J. R., & Koschke, R. Com-

parison and evaluation of code clone detection tech-

niques and tools: A qualitative approach. Science of

Computer Programming, 2009, vol. 74, no. 7, pp. 470–

495. DOI: 10.1016/j.scico.2009.02.007.

3. Roy, C. K., Zibran, M. F., & Koschke, R. The

Vision of Software Clone Management: Past, Present,

and Future. Proceedings of the IEEE Conference on Soft-

ware Maintenance, Reengineering, and Reverse Engi-
neering, 2014, pp. 18–33. DOI: 10.1109/CSMR-

WCRE.2014.6747168.

4. Sheneamer, A., & Kalita, J. A Survey of Soft-

ware Clone Detection Techniques. International Journal

of Computer Applications, 2016, vol. 137, no. 10, pp. 1–

21. DOI: 10.5120/ijca2016908896.

5. Zibran, M. F. Analysis and visualization for

clone refactoring. Proceedings of the 2015 IEEE 9th In-

ternational Workshop on Software Clones (IWSC), 2015,

pp. 47–48. DOI: 10.1109/IWSC.2015.7069889.

6. Tairas, R., & Gray, J. Clone maintenance

through analysis and refactoring. Proceedings of the
ACM SIGSOFT Symposium on Foundations of Software

Engineering, 2008, pp. 29–32. DOI:

10.1145/1496653.1496661.

7. Mondal, M., Roy, C. K., & Schneider, K. A.

A survey on clone refactoring and tracking. Journal of

Systems and Software, 2020, vol. 159, article no. 110429.

DOI: 10.1016/j.jss.2019.110429.

8. Duala-Ekoko, E., & Robillard, M. P. Clone

tracker: Tool support for code clone management. Pro-

ceedings of the International Conference on Software

Engineering, 2008, pp. 843–846. DOI:
10.1145/1368088.1368218.

9. Kaur, M., Rattan, D., & Lal, M. An Approach

To Recommend Clones For Refactoring Using Machine

Learning And Feature Selection. IOSR Journal of Com-

puter Engineering, 2023, vol. 25, no. 6, pp. 62–64. DOI:

10.9790/0661-2506016264.

10. Chen, Z., Kwon, Y. W., & Song, M. Clone re-

factoring inspection by summarizing clone refactorings

and detecting inconsistent changes during software evo-

lution. Journal of Software: Evolution and Process,

2018, vol. 30, no. 1, pp. 1–24. DOI: 10.1002/smr.1951.

11. Alharbi, M. A comparative study of automated

refactoring tools. IEEE Access, 2024, vol. 12, pp. 18764–

18781. DOI: 10.1109/ACCESS.2024.3361314.

12. Alomar, E. A., & Mkaouer, M. W. Behind the

intent of extract method refactoring. IEEE Transactions

on Software Engineering, 2024, vol. 50, no. 1, pp. 668–

694. DOI: 10.1109/TSE.2023.3345800.

13. Kalhor, S., Keyvanpour, M. R., & Sala-
jegheh, A. A systematic review of refactoring opportuni-

ties by software antipattern detection. Automated Soft-

ware Engineering, 2024, vol. 31, no. 1, article no. 42.

DOI: 10.1007/s10515-024-00443-y.

14. Higo, Y., Kamiya, T., Kusumoto, S., & In-

oue, K. Refactoring Support Based on Code Clone Anal-

ysis. Proceedings of the Product Focused Software Pro-

cess Improvement, 5th International Conference

(PROFES 2004), Kansai Science City, Japan, 2004, pp.

220–233. DOI: 10.1007/978-3-540-24659-6_16.

15. Higo, Y., Kamiya, T., Kusumoto, S., & In-
oue, K. ARIES: Refactoring support tool for code clone.

Proceedings of the International Conference on Software

Engineering, 2005, pp. 53–56. DOI:

10.1145/1083292.1083306.

16. Higo, Y., Kusumoto, S., & Inoue, K. A metric-

based approach to identifying refactoring opportunities

for merging code clones in a Java software system. Jour-

nal of Software Maintenance and Evolution: Research

and Practice, 2008, vol. 20, no. 6, pp. 435–461. DOI:

10.1002/smr.394.

17. Schulze, S., Kuhlemann, M., & Rosenmül-

ler, M. Towards a refactoring guideline using code clone
classification. Proceedings of the ACM International

Conference, 2009, pp. 1–4. DOI:

10.1145/1636642.1636648.

18. Choi, E., Yoshida, N., Ishio, T., Inoue, K., &

Sano, T. Extracting code clones for refactoring using

combinations of clone metrics. Proceedings of the Inter-

national Workshop on Software Clones (IWCS), 2011,

pp. 7–13. DOI: 10.1145/1985404.1985407.

19. Mondal, M., Roy, C. K., & Schneider, K. A. Au-

tomatic identification of important clones for refactoring

and tracking. Proceedings of the 2014 IEEE Interna-
tional Workshop on Source Code Analysis and Manipu-

lation (SCAM), 2014, pp. 11–20. DOI:

10.1109/SCAM.2014.11.

20. Wang, W., & Godfrey, M. W. Recommending

clones for refactoring using design, context, and history.

Proceedings of the 4th IEEE International Conference on

Software Maintenance and Evolution (ICSME), 2014, pp.

331–340. DOI: 10.1109/ICSME.2014.55.

21. Rongrong, S., Liping, Z., & Fengrong, Z. A

Method for Identifying and Recommending Recon-

structed Clones. Proceedings of the 2019 International

Conference on Management Engineering, Software En-
gineering and Service Sciences (ICMESS), 2019, pp. 39–

44.

Machine learning and intelligent systems

67

22. Sheneamer, A. M. An Automatic Advisor for

Refactoring Software Clones Based on Machine Learn-

ing. IEEE Access, 2020, vol. 8, pp. 124978–124988.

DOI: 10.1109/ACCESS.2020.3006178.

23. Yue, R., Gao, Z., Meng, N., Xiong, Y., Wang,

X., & Morgenthaler, J. D. Automatic clone recommenda-

tion for refactoring based on the present and the past.

Proceedings of the 2018 IEEE International Conference

on Software Maintenance and Evolution (ICSME), 2018,

pp. 115–126. DOI: 10.1109/ICSME.2018.00021.

24. Fanqi, M. Using self-organized mapping to seek
refactorable code clone. Proceedings of the 2014 Inter-

national Conference on Communication Systems and

Network Technologies (CSNT), 2014, pp. 851–855. DOI:

10.1109/CSNT.2014.177.

25. Kaur, M., & Rattan, D. A systematic literature

review on the use of machine learning in code clone re-

search. Computer Science Review, 2023, vol. 47. DOI:

10.1016/j.cosrev.2022.100528.

26. Quradaa, F. H., Shahzad, S., & Almoqbily, R. S.

A systematic literature review on the applications of re-

current neural networks in code clone research. Plos One,

2024, vol. 19, no. 2, article no. e0296858. DOI:

10.1371/journal.pone.0296858.

27. Idouglid, L., Tkatek, S., Elfayq, K., & Guezzaz,

A. A novel anomaly detection model for the industrial
internet of things using machine learning techniques. Ra-

dioelectronics and Computer Systems, 2024, vol. 2024,

no. 1, pp. 143–151. DOI: 10.32620/reks.2024.1.12.

Received 27.09.2024, Accepted 25.08.2025

ЕМПІРИЧНА ОЦІНКА ВИБОРУ ФУНКЦІЙ ТА ТЕХНІК МАШИННОГО НАВЧАННЯ,

ЩОБ РЕКОМЕНДУВАТИ КЛОНИ ДЛЯ РЕФАКТОРИНГУ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

Манпріт Каур, Дхавліш Ратан, Мадан Лал

Предметом статті є управлінння програмними клонованими фрагментами. Програмні клони – це дублі-

кати кодових фрагментів, які можуть існувати в одному або різних файлах програмного забезпечення. Вияв-
лення та управління програмними клонами стало добре встановленою областю досліджень. Програмні клони

повинні бути керовані для мінімізації їх негативних впливів, оскільки наявність клонів може збільшити ви-

трати на обслуговування та вимоги до ресурсів програмного забезпечення. Рефакторинг є поширеною техні-

кою управління клонами. Інструмент для виявлення програмних клонів може виявити багато клонів у програ-

мному забезпеченні, однак не всі виявлені клони можуть бути придатними для рефакторингу. Розробнику

потрібен підмножина виявлених клонів, які можна легко відрефакторити.Метою цього дослідження є пропо-

зиція програмних клонів для рефакторингу з використанням методів машинного навчання. У статті оціню-

ється продуктивність чотирнадцяти алгоритмів машинного навчання та досліджується вплив трьох методів

відбору ознак на точність рекомендацій клонів. Завдання, які потрібно вирішити, це: вибрати відповідні

ознаки з наборів даних, розробити моделі на основі машинного навчання, які можуть пропонувати підходящі

клони для рефакторингу, обрати ефективний алгоритм машинного навчання та відбору ознак для рекоменда-

ції клонів для рефакторингу. Методи, які використовуються для відбору ознак, включають кореляцію,
InfoGain та ReliefF. Дослідження проводиться на наборах даних з шести відкритих програмних продуктів,

написаних на Java. Експериментальні результати показують, що класифікатори Дерево Рішень та LogitBoost

досягають найвищої точності 94,44% на датасеті Lucene. Серед методів відбору ознак, ReliefF забезпечує най-

кращу продуктивність, особливо коли використовується з алгоритмом Дерево Рішень. Це дослідження робить

висновок, що Випадковий Комітет, Випадковий Ліс та Дерево Рішень показують найкращі результати у по-

єднанні з кореляцією, InfoGain та ReliefF відповідно. Загалом, класифікатор Дерево Рішень, комбінований із

методом відбору ознак ReliefF, забезпечує найвищу середню точність, відгук та F-міру на різних датасетах.

Ключові слова: клони програмного забезпечення; управління клонами; рекомендація щодо клонування,

рефакторинг клонування, вибір функцій, машинне навчання.

Манпрет Каур – доктор філософії, доцент кафедри комп’ютерних наук та інженерії, Інженерний коледж
Баба Банда Сінгх Бахадур, Фатегарх Сахіб, Пенджаб, Індія.

Дхавліш Раттан – доктор філософії, доцент кафедри комп’ютерних наук та інженерії Пенджабського

університету, Патіала, Пенджаб, Індія.

Мадан Лал – доктор філософії, доцент кафедри комп’ютерних наук та інженерії Пенджабського уніве-

рситету, Патіала, Пенджаб, Індія.

Manpreet Kaur – PhD, Assistant Professor, Department of Computer Science and Engineering, Baba Banda

Singh Bahadur Engineering College, Fatehgarh Sahib, Punjab, India,

e-mail: manpreet.kaur09@gmail.com; ORCID: 0000-0002-6880-0480.

Dhavleesh Rattan – PhD, Assistant Professor, Department of Computer Science and Engineering, Punjabi Uni-

versity, Patiala, Punjab, India, e-mail: dhavleesh.ce@pbi.ac.in, ORCID: 0000-0002-6295-5078.

Madan Lal – PhD, Assistant Professor, Department of Computer Science and Engineering, Punjabi University,
Patiala, Punjab, India, e-mail: madanlal@pbi.ac.in, ORCID: 0000-0001-6202-4399.

