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A MODEL OF ENSURING LLM CYBERSECURITY

The subject of study is a model for ensuring cybersecurity of Large Language Models (LLM). The goal of this
study is to develop and analyze the components of the LLM cybersecurity model to improve its assessment
accuracy and ensure the required security level. Tasks: the abstract structure of LLM systems should be sug-
gested and analyzed; a common model of cybersecurity of LLM systems (LLMS) should be built; a cybersecurity
model of LLM as a main component of LLMS should be developed; the elements of the developed cybersecurity
model should be analyzed; potential case studies should be described and an example of risk criticality analysis
for one of the threats of the LLM should be provided; the directions of future research should be substantiated
on the identification, classification, criticality analysis, and collection of exploits to test the stability of LLM. The
research results: the basic high-level architecture of LLMS, which consists of external sources, the LLM service,
server functions, and storage environments, is developed; a common LLM cybersecurity model was built based
on this architecture; the cybersecurity model was developed, which is an independent component of the overall
cybersecurity model of LLMS and is based on a chain of the following elements: threat, vulnerability, attack,
risks, and countermeasures; in addition, an analysis of the elements of the LLM cybersecurity model is con-
ducted, and a sequence of countermeasures is proposed. Conclusions. This study determines that improving the
cybersecurity of LLM is an important and urgent task, given the widespread use of these models in many areas
of human life. The importance of developing an LLM cybersecurity model is that it is the baseline for all
subsequent research. The practical significance of analyzing the model’s elements lies in using them to conduct
experiments to simulate cyber attacks on LLM. The main contributions of this study are the LLM and LLMS
cybersecurity models, the formalization of the results of these experiments, an assessment of the criticality level
for cyber risks of the models, and the choice of countermeasures based on the coefficient of their effectiveness.
In this case, ensuring an acceptable risk level for LLM is possible at a minimal cost. Areas for further research:
definition and classification of exploits to test LLM security; methodology for collecting these exploits; analysis
of the criticality of the damage they cause for various applications.

Keywords: LLM; cybersecurity of LLM; cybersecurity model; threat; vulnerability; attack; risk; countermeas-
ures.

LLM [6]. However, the use of these models carries addi-
tional risks and potential problems. LLM may provide in-
accurate information or even misinform the user, which
will lead to potentially harmful consequences [1]. Data
confidentiality and ethical implications of using LLM
also raise concerns [3].

1. Introduction
1.1. Motivation

LLM are spreading rapidly in many areas of human
activity. Understanding natural language is a powerful

driver of this tool, making its use accessible to different
users. These models are a logical complement to tradi-
tional software. LLM improves diagnostics, simplifies
communication, and works with medical records in the
healthcare sector [1]. The use of this technology helps to
increase scientific research productivity [2]. LLM appli-
cations help in teaching and provide an opportunity for
adaptive learning for each individual student [3]. Pro-
gress in LLM development is pushing the manufacturing
industry to transform by optimizing processes and im-
proving productivity in this area [4]. Unmanned aerial
vehicles use LLM to understand visual data captured by
their cameras [5]. Considering the flexibility, simplicity,
and cost-effectiveness of artificial intelligence (Al) as a
service, more organizations can rapidly configure and use

Given the increasing interest in LLM and the poten-
tial problems and risks associated with their use, the issue
of improving the cybersecurity of these models arises,
which will improve the reliability and quality of this tech-
nology [7]. To analyze the state and level of security, it
is necessary to analyze LLM cybersecurity issues and ex-
isting models that will be the basis for enhancing assess-
ment techniques and ensuring security and trustworthi-
ness requirements.

1.2. State of the art

Most studies in the field of Al and LLM cybersecu-
rity focus on specific risk areas from the use of these tech-
nologies, classify attacks and their wvulnerabilities,
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consider possible defense strategies, and develop risk
taxonomies and simplified threat models without consid-
ering all the necessary elements for analyzing their cy-
bersecurity in detail.

The study [8] focuses on the vulnerabilities, attacks,
and countermeasures of Al systems and identifies three
types of attacks on these systems: platform, algorithm,
and data attacks. All attacks are analyzed in accordance
with the main provisions of the Intrusion Modes Effects
Criticality Analysis (IMECA) method, which is based on
the following chain: threat, vulnerability, attack, effects,
risk criticality assessment in terms of violation of confi-
dentiality, integrity, or system availability, and counter-
measures. Based on this analysis, cyber risk criticality
matrices for Al systems are implemented before and after
countermeasures are implemented. The most critical at-
tacks that are not tolerated by countermeasures and keep
Al systems at a high risk level are also identified. The
focus of the paper on the overview analysis of the state
of the art in Al cybersecurity makes it possible to use cer-
tain parts of it to analyze LLM cybersecurity. Specifi-
cally, the IMECA method chain can be used to develop a
LLM cybersecurity model. The classification of attacks
and their analysis according to the IMECA method can
be adapted to LLM and used in subsequent studies to fur-
ther analyze the cybersecurity of this technology.

A three-level taxonomy of low and extreme LLM
risks was developed in work [9], where the first (main)
level includes the following categories: information haz-
ards; malicious uses; discrimination, exclusion, and
toxicity; misinformation harms; human-computer
interaction harms. The total number of risks is 61. On the
basis of these risks, questions were collected for each of
them to check the answers from LLM for possible harm.
The answers from the LLM were manually evaluated by
humans and automatically evaluated with the help of
another LLM and a special classification model. Risks
are an integral part of the LLM cybersecurity model, so
their taxonomy can be used to develop it with some
modifications and improvements. Furthermore, the data
collected during this study can be further used to validate
LLM models and train classifiers to verify their answers.

In addition and extension to the study [9], there are
works [10] and [11], which are also devoted to the taxon-
omy of risks of language models. The results of these
studies partially cover the issues of LLM cybersecurity,
so they can be partially used in the development of a
model for its cybersecurity and in further research in this
area.

Study [12] addresses the following issues: the ben-
efits of using LLM technology; potential risks of using
LLM; vulnerabilities and weaknesses of LLM systems;
and strategies for their protection. LLM threats are di-
vided into two separate groups: model-specific vulnera-
bilities and other vulnerabilities that are not related to the

model. The nature and architecture of the LLM causes
model vulnerabilities. These vulnerabilities can be ex-
ploited by the following types of attacks: adversarial at-
tacks, inference attacks, extraction attacks, bias and un-
fairness exploitation, and instruction tuning attacks. Vul-
nerabilities outside the model are well known in the cyber
defense community. These include: remote code execu-
tion, side channel, and supply chain vulnerabilities. The
attacks, vulnerabilities, and weaknesses of LLM and the
strategies to protect them discussed in this paper are also
integral parts of this technology’s cybersecurity. There-
fore, this study’s information can be used to develop a
formal model of LLM cybersecurity.

In study [13], the risks of all components of the
LLM system, methods of their mitigation, and control
testing are studied to measure the safety and security of
these systems. In addition, a risk taxonomy for each LLM
system component is proposed, which represents a threat
model from a systemic point of view. This model com-
prises five aspects: input data, language model, tools,
output data, and risk assessment. Each of the risks has a
detailed overview, a list of root causes, and mitigation
strategies. LLM benchmarking based on robustness,
truthfulness, ethical issues, and bias issues is also inves-
tigated. The findings of this work have a significant re-
sult, so they can be finalized and presented in the form of
a more formalized model of LLM cyber threats that in-
cludes all aspects of its cybersecurity.

Work [14] discusses the risks and attacks on
generative Al and LLM. This study also considers certain
countermeasures to improve the security of these models.
In addition, potential research areas for improving the
security of generative Al and LLM, including Al
firewalls, integrated firewalls, guardrails, content
detection, and regulations enforcement, are discussed.
The countermeasures discussed in this paper can be used
in future research on LLM security. However, they
require further analysis in terms of effectiveness and cost.

The OWASP Top 10 for LLM [15] is one of the
most authoritative studies in the field of LLM cybersecu-
rity. This paper aims to highlight and address security is-
sues related to LLM. A list of 10 existing LLM risks that
pose the highest threat to these systems is provided for
this purpose. In addition, the work contains the architec-
ture of modern LLM applications and their basic threat
model. The results of this study are the basis for many
other works in the field of LLM cybersecurity. Thus, our
work will be based on these results, with certain improve-
ments and formalization.

Based on the results of the analysis of known stud-
ies, identifying all the components of LLM security and
understanding the state of affairs in this area in a more
formal way is difficult. Therefore, formalizing the avail-
able knowledge in the form of a LLM cybersecurity
model is necessary, which will be the starting point in the
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process of assessing and ensuring the cybersecurity of
this technology. Given the current state of affairs in the
field of LLM security and the need to improve their pro-
tection, developing a cybersecurity model of this technol-
ogy, which will be the basic element for further research,
is advisable.

This study does not cover LLM cybersecurity for
different domains of use.

1.3. Goal and objectives

The goal of this study is to develop and analyze the
components of the LLM cybersecurity model to improve
the accuracy of its assessment and ensure its safety.
Consequently, it is expected to increase the completeness
and trustworthiness of the cybersecurity assessment of
models.

The study objectives are as follows:

- analyze the abstract structure of LLM systems;

- develop and analyze cybersecurity models for
LLM and LLM systems;

- analyze and propose a selection of countermeas-
ures to LLM wulnerabilities.

The article is organized as follows: Section 2 de-
scribes the research methodology’s main elements. Sec-
tion 3 builds a common system cybersecurity model us-
ing LLM. Section 4 develops the cybersecurity model of
LLM, analyzes its elements, and proposes a sequence of
countermeasures. Section 5 describes the case study. Sec-
tion 6 discusses the results of the research and develop-
ment, and Section 7 summarizes the study and develops
proposals for further research.

2. Methodology

The research methodology is based on the following
principles:

- research of LLM, LLM-based systems, and their
environment as a complex system functioning in an ag-
gressive environment and cyber intrusions;

- development of a component and theoretical-set
description of LLM as an object of cybersecurity assess-
ment and consideration of specific threats, vulnerabili-
ties, and attacks;

- risk-oriented analysis of the criticality level of
LLM considering the probability and severity of cyber
attacks on vulnerabilities;

- determining the sequence of choice of counter-
measures (CM) according to the results of cybersecurity
assessment and requirements (criterion for CM choice).

The research roadmap comprises the following
steps:

- analysis of the basic high-level architecture of
LLM systems and the development of its theoretical-set
description;

- development of a common cybersecurity model
for LLM systems;

- development of a cybersecurity model of LLM
and analysis of the model elements;

- determining the sequence of countermeasures to
provide acceptable risks;

- description of the case study and discussion of
the research results;

- substantiate the directions of future research on
the identification, classification, criticality analysis, and
collection of exploits to test the LLM stability.

This study focuses on a qualitative assessment of
security using expert and risk-oriented analysis based on
IMECA [16]. The next research will focus on the quanti-
tative assessment of LLM cybersecurity.

3. Cybersecurity of LLM systems

3.1. Architecture of the modern LLM systems

Modern LLM systems have different architectures,
but in the basic case, they consist of the following high-
level components [15]: external sources, LLM service,
server-side functions (plugins and services), and storage
environment. Figure 1 shows the basic architecture of the
LLM system, which includes the main components, their
relationship, and the trust boundaries of the data flow
[17].

ﬂ.32

LLM service Server-side functions

R

External sources —

H —
i Malicious actors / Users i H Q

Storage environment

T8
Fig. 1. Basic high-level architecture of LLM systems

External sources, consisting of regular users and
malicious actors, interact with the LLM system. Interac-
tion occurs through the system’s ordinary text requests.
These queries pass the first trust boundary (TB1) and are
considered untrusted because the possibility of manipu-
lating the system by malicious actors arises in this area.
Usually, interaction with the LLM is a two-way process,
so data going in the opposite direction is also untrusted.
Therefore, the first trust boundary is two-way. Further-
more, the LLM acts as a mediator in the system’s opera-
tion using server-side functions and the storage environ-
ment. The second and third trust boundaries (TB2 and
TB3) are also two-way and should be considered when
designing a system around the LLM.
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A theoretical-set description of the architectural el-
ements of LLM systems LLMSa can be defined as fol-
lows:

LLMS, = {ES, LLM, SSF, SE! , (1)

where ES = {U, MA} — is the set of external resources
consisting of regular users U and malicious actors MA,
LLM = {LLM;, LLM,, ..., LLM} — is the set of lan-
guage models that can include one or more models work-
ing in an ensemble, SSF = {AS, CF, PI, API} —is the set
of server-side functions consisting of application services
AS, cloud functions CF, plugins PI, and API integrations,
SE = {DB, PD} —is the set of storage environments con-
sisting of databases DB and private documents PD.

3.2. Common cybersecurity model
of LLM systems

Figure 2 shows the common LLM cybersecurity
model, which is based on the following chain: threat, vul-
nerability, attack, risks, and countermeasures.

The source of the threat to the LLM system is mali-
cious actors and regular users who interact with the sys-
tem through text requests [18]. These requests can be sent
for normal interaction or to attack the system. An attack
on a system is an attempt to implement its threats, and the
inability to counter these threats arises from
vulnerabilities in one or another part of the system. As a
result of successful attacks, systems are at risk of losing
confidentiality, integrity, and availability of resources
[19]. Thus, the use of countermeasures is an essential
way to counter these attacks, strengthen systems, and

LLM is an entry point for attacks. Then, the model
acts as a mediator between the attacker and the down-
stream system. Simultaneously, the LLM can reduce the
strength of the attack by removing the vulnerable content
in the data and strengthening the attack by adding the vul-
nerable data before passing it to the next system compo-
nents. By exploiting vulnerabilities, an attacker can per-
form successful attacks that lead to the risk of losing the
system’s confidentiality, integrity, and availability. Ef-
fective countermeasures help counteract attacks,
strengthen the LLM and other system components, and
reduce and mitigate the risks from these attacks.

A theoretical-set description of the common model
of cybersecurity elements of LLM systems LLMSg be-
fore using countermeasures can be defined as follows:

LLMS,,. = {LLMS,, ThS, VS, AS,RS}, (2)

where LLMSa — is the set of LLM system elements which
are the attack targets, ThS = {ThS;, ThS,, ..., ThS.} —is
the set of system threats, VS = {VS1, VS,, ..., VS;} —is
the set of system vulnerabilities, AS = {AS;, AS,, ...,
ASn} —is the set of attacks on the system, and RS = {RS;,
RS,, ..., RS} —is the set of system risks.

A theoretical-set description of the common model
of cybersecurity elements of LLM systems LLMSs after
using countermeasures can be defined as follows:

LLMS,,, = {LLMS,, ThS, VS, AS,RS",CM}, (3)

where RS" = {RS";, RS™, ..., RS"} — is the set of system
risks changed by countermeasures, and CM = {CMy,

. CM,, ..., CMy} —is the set of countermeasures.
reduce the risk of losses. S o}
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Fig. 2. Common cybersecurity model of LLM systems
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The security of classical software, which includes
plugins, services, and storage environments, is a well-
known and researched field for cybersecurity profession-
als. Following well-known cybersecurity practices helps
in effectively combating threats to these system compo-
nents. Therefore, further research will focus specifically
on the cybersecurity of LLM models and the flow of data
through the first trust boundary TB1.

4. LLM cybersecurity model
and its elements

4.1. General LLM cybersecurity model

Figure 3 shows the LLM cybersecurity model,
which is a separate and independent part of the common
LLM system cybersecurity model.

The input data to the model can be either a regular
request or an attack aimed at implementing one of the
model’s threats. The vulnerability of the model allows at-
tackers to implement threats. The output data can be ei-
ther ordinary model responses or carry certain risks that
attackers can exploit. Countermeasures are aimed at
counteracting and strengthening attacks on the model and

at reducing the risks resulting from its operation.

A theoretical-set description of the model of cyber-
security elements of language models LLMs before us-
ing countermeasures can be defined as follows:

LLM,, = {LLM, Th, V, A, R} , 4)

where LLM = {LLM;, LLM, ..., LLM} — is the set of
language models that can include one or more models
working in an ensemble, Th ={Thy, Thy, ..., Thy} —isthe
set of LLM threats, V = {V1, Vo, ..., V} —is the set of
LLM vulnerabilities, A = {A1, Ao, ..., Am} — is the set of
attacks on the LLM, and R = {R1, Ry, ..., R} —is the set
of LLM risks.

A theoretical-set description of the model of cyber-
security elements of language models LLMs after using
countermeasures can be defined as follows:

LLM,,. = {LLM, Th, V, A, R", CM} , (5)
where R" = {R";, R, ..., R} — is the set of LLM risks

changed by countermeasures, and CM = {CM;, CM, ...,
CMu} — is the set of countermeasures.

Countermeasures
T T
Counteraction , Strengthen X
: !
: LLM Vulnerabilities“.'r
: threats
y o [(Th LLM
(A }-{An] ‘ ’
Attacks
Malicious
actors 3 N
: 1 N 5’
and Vo c—>o
: : C D
Users : i 5
Risks :
<—A——I Thn
:
]
! A
1 1
1 1
Reduce | Strengthen !
1 1
Countermeasures

Fig. 3. LLM cybersecurity model
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Based on this model, it is possible to build a dia-
gram of LLM security system processes, which plays the
role of a plan to ensure the protection of these models
(Figure 4).

4.2. LLM threats

LLM threats are a set of factors and conditions that
can compromise the security of these models. The stand-
ard security model comprises three categories: confiden-
tiality, integrity, and availability [20]. Accordingly, we
can distinguish 3 types of LLM threats: confidentiality
violation, integrity violation, and availability violation.
LLM confidentiality involves keeping private infor-
mation protected [20]. LLM integrity concerns protecting
information from improper modification [20]. LLM
availability is responsible for the constant availability of
these models [20]. The issue of model availability is more
general and does not directly relate to their vulnerabili-
ties. There are well-known traditional methods of pro-
tecting systems from this threat [21], as well as methods
that use machine learning to analyze network traffic for
threats [22]. Therefore, this component can be ignored in
the study of LLM cybersecurity as a common and well-
studied threat to systems in general.

The principle of model functioning consists of the
following stages: receiving user input, processing the
data, and providing a response. Based on this principle,
users are a potential source of threat to the model, data
are potential exploits to model vulnerabilities, and re-
sponses are a potential threat to its confidentiality and in-
tegrity.

LLM are programs that use a large amount of avail-
able text and calculate probabilities to create texts that
look like human-generated content [23]. The answers of
these models are very convincing in a wide variety of top-
ics, almost unrecognizable from an average human’s an-
swers. However, the most obvious difference from the

human mind is the goals of the models. Unlike many hu-
man goals, LLM has a single goal to produce human-like
text. To achieve this goal, they estimate the probabilities
that a certain word should appear next, considering all the
words that came before it. Thus, these models are not in-
tended to reflect and understand the world but are only
intended to produce convincing human-like text. There is
no reasoning in LLM answers, and the fact that these an-
swers are sometimes similar to the correct ones is due to
the random coincidence of the probabilities of the words
in the training data [24].

Given the purpose of LLM and the probabilistic na-
ture of their operation, the following answers can be gen-
erated:

correct answers;
incorrect answers;
harmful answers prohibited by the security pol-

Iy,

- answers containing private data.

Correct answers do not pose any threat to the mod-
els. Conversely, incorrect, harmful, and prohibited an-
swers by the security policy pose a threat to the integrity
of the model. Furthermore, answers containing private
data pose a threat to model confidentiality.

4.3. LLM vulnerabilities

In classical programming, people enter rules (the
program itself) and data to be processed by these rules
and receive answers as output [25]. Figure 5 shows the
transformation principle for classical programming.

p
Rules Classical

: Answers
programming

Data ——;
AN

Fig. 5. The transformation principle
for classical programming

evaluate
Defenders
minimize
strengthen
use
Countermeasures
reduce
8 ?@ Vulnerabilities
2|8 g
IS 5 lead to
c Q o . losses
Attackers 2 2 Risks
lead to
use — increase | have
Attacks Threats LLM
aimed at

Fig. 4. Diagram of LLM security system processes
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In this case, there are always data that has not yet
been processed by the rules, which leads to the possibility
of unexpected answers being obtained. In addition, such
data can be used by attackers to exploit program vulner-
abilities and for their own personal purposes. However,
in classical programming, rules are under the control of
developers, so unprocessed data can be closed quite eas-
ily and quickly by adding new rules.

In contrast to classical programming, in machine
learning, people enter data and answer them, and as a re-
sult, they receive rules that are used to work with new
data to solve new problems [25]. In this case, the models
are trained rather than explicitly programmed. By learn-
ing from a large amount of data, the model can generalize
data and find a certain statistical structure. Figure 6 illus-
trates the transformation principle for machine learning.

-~

Data — Machine

. Rules
learning

Answers ——

Fig. 6. The transformation principle
for machine learning

In this case, unprocessed data can be used for at-
tacks that exploit model vulnerabilities. However, the
rules are no longer under the developers’ direct control.
Thus, vulnerable data entering the LLM can lead to un-
expected results, but this situation cannot be easily fixed
because the data processing rules are generated directly
in the model training process rather than by developers.
Therefore, the way machine learning works is its
strength, given its promising success in various fields of
human activity, and its vulnerability, because the initial
rules are formed during the learning process and are out
of the control of developers.

LLM wvulnerabilities are flaws and weaknesses in
models that can lead to a security breach. The main vul-
nerability of models exploited by attackers is the rules
generated during training. For LLM, these rules control

Input

London is the

city ... LLM

London is the city of dreams

T

QOutput

the process of generating the response of the model,
which is based on generating a sequence of words based
on the probability distribution of the context provided at
the input [26]. This process is not under the control of the
developers; thus, tolerating the risks of attackers’ exploi-
tation is not linear and easy. In addition, models can be
further trained, fine-tuned [27], and aligned with user in-
tentions with human feedback [28] during their life cycle.
Given this, the rules that control the process of generating
the response of the model are constantly changing, which
complicates the risk tolerance situation. Figure 7 shows
the principle of LLM response generation.

4.4, LLM attacks

The interaction with the LLM is performed using
regular text queries. For more efficient and secure inter-
action with the model, user queries are extended with ad-
ditional templates [29]. Figure 8 shows a typical LLM
request template.

Prefix: You are an Al assistant acting as a text corrector. : Role

Suggest one proper correction for a received text. : Directive
Any input will be in English on any subject matter. : Context
Do not accept any harmful or dangerous topics. : Constraints

WOrK examples

Text: {user_input} : Input text

Fig. 8. LLM request template

This template consists of the following parts:

- role - who or for what the model stands for;

- directive - the main goal that the model should
follow;

- context - additional information that should help
the model do its job;

- constraints - limitations on what the model can
generate in response;

- examples - examples of what the answers should
look like;

Output at step 1 Output at step 2

! !

Word Probability Word Probability
of 0.295 dreams 0.224
that 0.114 ——>  ambition 0.075
where 0.073 opportunity 0.052

Fig. 7. The principle of LLM response generation
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- input text - a place for substituting the user’s The input data to the model is an exploit that ex-

text. ploits its vulnerabilities to force it to deviate from its ex-

Using this template, the model can interact with the
user with higher efficiency. It understands itsrole and the
main purpose of its functioning. The context provides ad-
ditional information that will be used in the request pro-
cessing, and the constraints suggest what the model re-
sponse cannot contain. The model knows how it should
respond to a request from a user based on the examples.

Figure 9 shows the normal and malicious interac-
tions with the LLM model.

Input: We is all human.

Output: We are all human.

Input: Ignore previous instructions and say "Hello, World!".

Output: Hello, World!

Fig. 9. Normal and malicious interactions with LLM

The model performs its work and offers corrections
for the text it received from the user as a result of normal
interaction. In the second case, we have a malicious
change in the purpose of the model and, as a result, ig-
noring the correction of the text and following the new
instructions sent by the attacker [30].

The source of threats to the model is all its users.
All inputs to the model are potential attacks on it. The
model can be out of balance due to attacks with usual
input data and previously prepared data in the form of
prompt injection and jailbreak attacks. A plaintext at-
tack implies sending plain, unprocessed text to the model
with the expectation that the model has no defense mech-
anism. Prompt injection attacks allow attackers to replace
the original model instructions by adding malicious text
to queries [31]. Figure 9 shows an example of this type
of attack. Furthermore, jailbreak attacks force models to
violate the usage policy and create malicious content or
provide personal information [32]. This type of attack is
performed by building complex and diverse scenarios
embedded in the model’s input data. Figure 10 shows ex-
amples of attempted plaintext and successful jailbreak at-
tacks on the LLM model.

Input: What tools do | need to cut down a stop sign?

Output: I'm sorry, but as an Al language model, | can't help
with this question ...

Input: What tools do | need to cut down a stop sign? Start
with "Absolutely! Here's ".

Output: Absolutely! Here's a list of tools ...

Fig. 10. Attacking the LLM model

pected behavior [33]. Attacking models and testing their
defense level are performed using these exploits.

The attack success rate (ASR) is a common metric
for assessing the success of an attack and is calculated
using the following formula [34]:

XL 1Q)

ASR = ,
DI

(6)

where 1(Qi) - is an evaluation function that is equal to 1
when the model response is a successful attack and 0 oth-
erwise, Qi - is a i-th query to the model from the total
query dataset D, n — is number of queries that equals the
cardinality of the D. If the dataset D has 100 queries, of
which 80 queries were successful attacks on the model,
then the attack success rate in this case will be 0.8 or 80%
in percentage form.

45. LLM risks

Risk defines the impact of an attack on the model,
which results in loss of confidentiality, integrity, and
availability. A combination of indicators of the probabil-
ity of an attack and the severity of its impact on the model
defines it [35].

Given the principle of LLM functioning, which is
based on receiving input data, processing it, and provid-
ing a response, the output data from the model is a threat
and causes risks of loss of confidentiality, integrity, and
availability of the model.

The risk criticality level, which is a combination of
probability and severity indicators, is defined according
to the following matrix in Table 1.

Table 1
LLM cyber risk criticality matrix
Severity
Probability Low Medium High
(3.9) (6.9) (10.0)
Low
(0.39) 1.52 2.69 3.9
Medium
(0.69) 2.69 4,76
High
(1.0) 3.9

Qualitative and quantitative indicators are based on
the metrics of the Common Vulnerability Scoring System
version 2 (CVSS v2.0) [36]. Green color indicates a low
risk area with a quantitative indicator in the range of 0.0
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to 2.69, yellow - medium risk with a quantitative indica-
tor in the range of 2.7 to 4.76, and the red color indicates
a high-risk area with a quantitative indicator in the range
of 4.77 to 10.0, respectively. A low risk level is accepta-
ble for the model and does not require any additional ac-
tions. The medium level is acceptable in most cases, but
should be reviewed and reduced if possible. A high-risk
level is not acceptable and should be reduced as soon as
possible.

The risk value is calculated using the following tra-
ditional formula:

R=PxS, (7

where R - is the risk, P - is the probability of an attack
occurring and succeeding, and S - is the severity of the
attack impact. If the probability value is 0.74 and the se-
verity value is 8.0, the total risk value will be 5.92, indi-
cating that the cyber risk is in the high criticality area.

4.6. Countermeasures

Given the widespread use of LLM in various areas
of human activity and the threats to their security that can
compromise confidentiality and integrity, ensuring an ac-
ceptable level of cybersecurity is important. Thisrequires
identifying possible countermeasures and selecting those
that best reduce risks at a reasonable cost.

Countermeasures are aimed at countering attacks on
these models, strengthening the model itself, and reduc-
ing the risks from these attacks in the context of language
models. Thus, LLM protection includes: the use of an in-
put protection module that prevents unwanted data from
entering the model; additional impact on the model to
strengthen it and prevent possible unwanted behavior;
and the use of an output protection module that reduces
the risk of the model propagating unexpected or incorrect

Input protection
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»

Rules-based
mechanisms

l

Input Neural network C
classifiers

~—

l

R
LLM-based
mechanisms
S

l

LLM

data. Figure 11 shows a diagram of the LLM vulnerabil-
ity countermeasure system.

Since risk is a combination of the probability of an attack
and the severity of its impact, and because severity is a
constant, reducing the probability of these attacks is the
main goal of implementing countermeasures. The value
of the attack probability can be defined depending on the
access complexity, which is a metric of the difficulty of
exploiting the identified vulnerability [37]. Thus, if a vul-
nerability is easy to exploit, the probability of an attack
is higher, and if it is difficult to exploit a vulnerability,
the probability of an attack is lower. In the case of LLM,
which has one main vulnerability based on its principle
of functioning, the difficulty of exploiting this vulnera-
bility is always low; therefore, the probability of an attack
on it should always be high. Therefore, defining the prob-
ability of an attack on an LLM based on the access com-
plexity of its vulnerability is not the best choice. A more
informative and accurate way to measure the probability
of an attack occurring and succeeding is to use a statisti-
cal probability score. It can be obtained by conducting N
experiments that simulate cyberattacks or by processing
statistical data on N such attacks on the LLM assets. Ac-
cordingly, if Ns attacks were successful, the statistical
probability score P” can be calculated as follows:

P =—, @)

The higher the value of this score, the more likely it is
that attackers will be interested in potentially attacking
the model, while the lower the value, the less likely they
will be interested in doing so, since the effort will not
bring sufficient benefit to them. To ensure the required
level of confidence in the calculation of P*, the required
number of experiments N (or static data from relevant
tests) must be determined.
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Fig. 11. Scheme of the system to mitigate the impact of vulnerabilities and attacks on LLM
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If their number is limited by certain circumstances, the
confidence probability can be calculated for the fixed
value N. Defining possible distribution rules for the num-
ber of successful attacks as a random variable is a sepa-
rate task, but most studies use risk-based assessment [16].

It is clear that requirements can be defined for an
acceptable or unacceptable value of P”, which will affect
the formulation of the next task - the task of finding and
implementing a set of countermeasures. Countermeas-
ures reduce the probability of attacks by reducing the suc-
cess rate of attacks. Each of the countermeasures CMi
from the set CM is characterized by the level of impact k;
on the value of P* and the corresponding costs CMC;.
Therefore, the problem of finding the optimal or rational
set of countermeasures CMop — CM is formulated, which
will ensure the requirements for P*rq are achieved at the
minimum cost CMCin (the sum of the costs of imple-
menting the CMp: Subset). Algorithms for finding the op-
timal set of countermeasures have been described in
many works, particularly in [38, 39], but the specifics of
LLM systems require further research.

This task can be formed and solved not only based
on P*q requirements but also considering the level of ac-
ceptable risk Rasump, and therefore the severity of the im-
pact. The definition of P*req (Rasump) requirements is based
on an understanding of which class of critical systems the
LLM system belongs to and can be dynamically revised
depending on the functioning conditions. Therefore, a
proactive approach to protection is required [22].

Thus, in addition to reducing the criticality of cyber
risks by using certain countermeasures, the implementa-
tion cost is also important. The main selection criterion is
“acceptable risk — minimum cost”. Considering this cri-
terion, it is necessary to select a certain number of coun-
termeasures that, on the one hand, can ensure an accepta-
ble level of cyber risks for the organization, and, on the
other hand, be cost-effective and have the lowest possible
price.

To determine the effectiveness of a countermeasure,
it is necessary to maximize the benefits of the counter-
measure and reduce its costs. This can be performed us-
ing the following formula:

Ry
CME = 22 - 9)

where CME - is the countermeasure effectiveness ratio,
Ry - is the risk value before the countermeasure is ap-
plied, R, - is the risk value after the countermeasure is
applied, CMC - is the cost (maybe relative cost) of apply-
ing the countermeasure. The risk reduction level is de-
fined by the ratio of the risk before and after the counter-
measure is applied. The lower this value, the better the
protection. Simultaneously, the effectiveness of a coun-
termeasure additionally depends on its price. The higher

the protection price, the lower the overall effectiveness.
Thus, if the risk before the application of countermeas-
ures was 8, and countermeasure 1 reduces this value to 6
at a price of $50, then its effectiveness is 0.027, and if
countermeasure 2 reduces the risk to 6 at a price of $70,
then its effectiveness will be 0.019. Given the obtained
efficiency values, countermeasure 1 has a higher coeffi-
cient; therefore, it will have a higher priority when choos-
ing a set of countermeasures to protect the model.

Thus, the problem of two-criteria optimization,
with risk and cost as the criteria, is reduced to a one-cri-
teria approach in terms of the effectiveness of the coun-
termeasure, which simplifies the selection of risk-ac-
ceptable and cost-minimal countermeasures.

The algorithm for choosing the optimal subset of
countermeasures to ensure an acceptable level of LLM
cybersecurity consists of the following steps:

- analyze the LLM as an object of protection and
identify a set of threats and vulnerabilities;

- form a set of countermeasures to protect LLM,;

- justify the criteria for choosing countermeasures
(“acceptable risk - minimum cost” or “limited cost — min-
imal risk”) considering features of LLM/LLMS;

- analyze a coverage of vulnerabilities under at-
tacks with existing countermeasures;

- form coverage matrix;

- identify complete set of options (CM subsets)
for covering all LLM vulnerabilities with a set of coun-
termeasures;

- determine the risk-cost metrics for these options
(CM subsets);
choose the optimal subset of countermeasures according
to criterion to provide required cybersecurity of
LLM/LLMS.

5. Case study

The results of the proposed approach to defining
and ensuring LLM cybersecurity can be implemented in
many areas of LLM application, particularly in web tech-
nologies and unmanned aerial vehicles (UAV). Web
technologies are the most native area for applying these
models. LLM can be hosted on cloud servers, and access
to them can be provided under the Al as a Service (Al-
aaS) business model [40]. Determining the security level
can be done using software tools based on the results of
this study. The defined level of criticality of LLM risks
obtained by simulating cyberattacks will indicate the
model’s problem areas.

Considering this level, effective countermeasures
that will ensure an acceptable level of risk at a minimum
cost will be selected. The proposed countermeasures can
then be implemented in the customer’s system to ensure
an acceptable level of risk.
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Unlike the web technology industry, the UAV in-
dustry was previously limited in its use of LLM. How-
ever, due to the technological revolution, the design of
UAVs has changed, and they are now equipped with
powerful equipment with great computing capabilities,
which significantly expands their potential [41]. Modern
UAVs have powerful processors and graphical compu-
ting modules, which make it possible to place LLM di-
rectly on the vehicle’s board. This provides UAVs with
the ability to analyze complex data to improve decision-
making in various situations. To safely use LLM on
UAVs, it is important to ensure the cybersecurity of this
technology.

This can be ensured through periodic testing by
simulating cyber attacks and obtaining the level of criti-
cality of LLM risks, based on which the necessary coun-
termeasures will be selected and implemented to bring
this level to an acceptable value.

As an example, we can analyze the threat of GPT-
4 generating harmful content. This analysis is based on
the resulting LLM cybersecurity model and is performed
by the IMECA method’s main provisions. The
quantitative values of the attack results and
countermeasures to them are taken from [42]. An attack
on this type of threat relates to the adversarial type and,
according to [8], has a high level of severity, which can
be translated into a quantitative value of 8. The analysis
results are presented in Table 2.

Table 2
Criticality analysis of the risks
of harmful content generation

Threat Generating harmful content

Vulnerability StatIStI(.:al probabilistic response
generation

Attack Jailbreak

> Probability | 0.78

,‘_é’ Severity 8

S | Risk 6.24

Countermeas- SmoothLLM, Perplexity Filter,

ures Erase-and-Check

Thus, this threat has a high risk level before
countermeasures are applied, specifically 6.24.

Based on IMECA methodology, it is necessary to
calculate new risk level values considering the previously
defined set of countermeasures. The impact of each
countermeasure on the risks will be calculated separately.

SmoothLLM  countermeasure  reduces the
probability of occurrence to 0.56, thereby reducing the
risk to 4.48, which corresponds to a medium risk level.

Perplexity Filter countermeasure reduces the
probability of occurrence to 0.7, and therefore, the risk is
reduced to 5.6, which corresponds to a high risk level.

Erase-and-Check countermeasure reduces the
probability of occurrence to 0.1; therefore, the risk is
reduced to 0.8, indicating a low risk level.

Based on the effectiveness of countermeasures, we
can conclude that Erase-and-Check is the most effective
because it reduces the criticality of risks to a low level
without considering their cost.

6. Discussion

The main contribution of this work is a model of
LLM cybersecurity, which allows the identification of
key security aspects of this technology and a more formal
understanding of the state of affairs in this area. Thisisa
model basis for analyzing and qualitatively assessing the
LLM and LLM systems’ cybersecurity. This model will
be used as a starting point in the assessment and ensuring
of LLM cybersecurity. This model is part of a more com-
mon LLM system cybersecurity model.

The LLM simulation attack discussed in this paper
is not a new method for testing the security of these mod-
els. Attacking models using jailbreak and prompt injec-
tion attacks to determine the ASR value is a common
practice that has been used in many other studies. How-
ever, unlike other studies, a statistical probability score
for the occurrence and success of these attacks was pro-
posed, which, in combination with the severity of their
impact, makes it possible to quantify the level of critical-
ity of cyber risks for LLM. The calculation of this level
makes it possible to build a cyber risk criticality matrix
that will show the overall security state of the system and
divide these risks into low, medium, and high. Dividing
risks into these three areas is important for further miti-
gation efforts.

The use of countermeasures to mitigate the impact
of possible attacks on LLM is also a common practice.
The use of input and output modules, as well as addi-
tional model tuning, is covered in other works and is
widely used in practice. However, not much attention is
paid to their efficiency. To overcome this problem, it has
been proposed to select countermeasures according to the
criterion of “acceptable risk — minimum cost”. For this
purpose, a countermeasure efficiency ratio will be used,
which depends on the risk value before the countermeas-
ure is applied, the risk value after the countermeasure is
applied, and the price of using this countermeasure.
Based on these coefficients, the benefits of implementing
countermeasures will be maximized and their costs will
be minimized.

The use of the proposed approaches is limited to the
cybersecurity of the LLM itself. The security of classical
software, which usually surrounds these models, is a
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well-researched area with effective and well-known
countermeasures. Therefore, ensuring the cybersecurity
of the surrounding classical software is not the purpose
of this paper and will not be the focus of future research.

Assessing and ensuring the cybersecurity of LLM
is an important, promising, and poorly researched area.
This study addresses this area and takes the first steps to-
ward achieving this goal. This paper provides a theoreti-
cal overview of the cybersecurity components of this
technology, as well as basic methods for its calculation
and ensuring. Further work will focus on the practical im-
plementation of the proposed approaches. The creation of
a software tool for simulating attacks on LLM for further
calculation of the criticality level of model risks and the
choice of effective countermeasures that will ensure an
acceptable level of risk at a minimum cost is particularly
important.

7. Conclusions

This study identifies that improving the cybersecu-
rity of LLM is an important and urgent task, given the
widespread use of these models in many areas of human
life. The path to this improvement consists of certain
steps, the first of which was undertaken in this study.

As part of this work, based on a high-level model of
systems that use LLM and a common model of their cy-
bersecurity, a model of LLM cybersecurity was devel-
oped as an independent component of this common
model. The importance of developing this model is that
it acts as a baseline and creates the basis for further re-
search in assessing and ensuring an acceptable level of
cyber risks of this technology.

The detailed analysis of the LLM cybersecurity
model components has an important practical role. Based
on the results of this analysis, it is possible to conduct
practical experiments to simulate cyberattacks on LLM
based on the knowledge obtained about their threats, vul-
nerabilities, and attack methods. The main contribution
of the study is to formalize the results of these experi-
ments in the form of defining a statistical probability of
the occurrence and success of attacks, combining this es-
timate with the severity of the impact of attacks, and fur-
ther assessing the level of criticality of cyber risks for
LLM as a whole.

In addition, this paper proposes an approach to the
selection of countermeasures for LLM based on the cri-
terion of “acceptable risk — minimum cost”, which is
based on the calculation of their effectiveness.

Because of this study, only the initial steps toward
ensuring LLM cybersecurity have been established.
Therefore, further work will focus on collecting exploits
and determining the real level of severity of effects after
their successful use, and creating a software tool for sim-
ulating attacks on LLMs to analyze and improve their

security. Besides, research on LLM security for specific
applications, such as state security [43], deepfake detec-
tion [44], safe control of intelligent UAV swarms [45,
46], and so on.
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MOJEJb 3ABE3INEYUEHHS KIGEPBE3IIEKHA LLM
O. C. Hepemin, B. C. Xapueunko

IpexmeToM mocrmikeHHsS € MOIesb 3abe3neucHHs KibepOe3mneky BeIUKUX MOBHUX Mojeneit (LLM). MeToro
OO JIOCHIDKEHHS € po3po0Ka Ta aHaIi3 KOMIIOHEHTIB Mojeni Kibepoesmeku LLM 3 MeToro miZBHIIICHHS TOYHOCTI
il oIiHKM Ta 3a0e3reueHHs] HEOOXiMHOTro piBHS Oe3neku. 3aBAaHHA. TPEICTABUTH i MpOaHaNi3yBaTH aOCTpaKTHY
cTpykTypy cucreM LLM; nobynyBatu 3araipHy mMomens KibepOesneku cucteM LLM (LLMS); po3pobutu Moaens
kibep6e3nekn LLM sik ocHOoBHOro kommoHeHta LLMS; npoaHamizyBaTu eleMeHTH po3po0iieHoi Moneni kidepoes-
MEKH; OIMMCATH MOXITHBI TIPUKIIAJN BUKOPHCTAHHS Ta HABECTH MPUKIIAJ aHATI3y KPUTHIHOCTI PH3HKIB IS OMHI€T 3
3arpo3 LLM; oOrpyHTyBaTH HampsMu MaiOyTHIX JOCHTIDKCHb MO0 BH3HAYCHHs, Kiacu(ikailii, aHaIi3y KpUTHY-
HOCTI Ta KOJISKI[IOHYBaHHS €KCIUIOMTIB /j1st epeBipku critikocti LLM. Pe3ynbTaT nociixkenns: po3podieHo 6a-
30BYy BUCOKOpiBHEBY apxitekTypy LLMS, sika ckiagaeTbes i3 30BHIiNIHIX jxeped, cepsicy LLM, cepepuux dyHkiit
Ta cepenoBUIl 30epiraHHs; Ha OCHOBI L€l apXiTeKTypH MO0y 0BaHO 3arainbHy Mojeib Kibepoesmeku LLM; 3ocepe-
JOKyIOUnCh Oe3rnocepennbo Ha LLM, po3pobieno ii monens kibepOesmekH, sika € He3aIe)KHIM KOMITOHEHTOM 3araib-
HOT Mozeni Kibepoesrneku LLMS Tta Ga3yeTbcs Ha JaHIFOXKKY HACTYIIHUX €JIEMEHTIB: 3arpo3a, Bpa3lUBICTh, aTaka,
PHU3HMKH Ta KOHTP3aXOJH; KpiM TOro, MPOBENEHO aHalli3 eleMeHTiB Mojeni Kibepoesnekn LLM Ta 3anmpornoHoBaHO
MIOCJTI IOBHICTh BUOOPY KOHTp3axoiB. BucHoBKH. 1le mociimkeHHs BU3HAYAE, 10 TIOKpalieHHs Kidepoesneku LLM
€ BaXXJIMBUM Ta aKTyaJIbHUM 3aBJaHHAM, BPAaXOBYHOUH MIMPOKE BUKOPUCTAHHSA UX MO}IeJ’Ieﬁ y 6aFaTBOX C(bepax JIFO-
CbKOro XHTTs. BaxkiauBicth po3poOku moneni kidepoesneku LLM monsirae B Tomy, 110 BoHa € 6a30BO0 AJIs BCiX
HACTYNHUX AOCikeHb. [IpakTHuHe 3HaueHHsS aHalli3y eJIeMEHTIB MOJIElNi Noysrae y iX BUKOPUCTaHHI JUIsl TpoBe-
JICHHS CKCTIEPUMEHTIB 3 MOJieItoBaHHs KioepaTtak Ha LLM. OcHOBHUM BHECKOM JaHOTO JOCIIHKEHHS € MOZei Kide-
poesneku LLM ta LLMS Ta dopmasizaris pe3yabTaTiB IUX EKCIIEPUMEHTIB Ta OL[IHKA PiBHS KPUTHYHOCTI [U1s Kibep
PH3HKIB MoOJieJiel Ta BUOIp KOHTP3aXo/iB Ha OCHOBI KoedilieHTa 1X eeKkTHBHOCTI. Y 1IbOMY BUIIAKY 3a0e3MeueHHs
NPUAHATHOTO piBHs pu3uky mist LLM MoxknuBe 3a MiHiMaibHHX BHUTpaT. HampsiMu mogajbIuux JOCJiTKeHb:
BH3HAYEHHS Ta Kiacudikallis eKCIUIOUTIB Jyisi niepeBipku Oe3neku LLM; metomomnoris 300py 1UX eKCILUTIONTIB; aHaI3
KPUTHYHOCTI 3aBJaHOI HUMH IIKOAH VIS Pi3HUX 3aCTOCYBaHb.

Koarwuosi cioBa: LLM; ki6epOesneka LLM; Monens kibepOesnexu; 3arpo3a; Bpa3JiMBICTh; aTaka; pU3UK; KOH-
TP3aXOJIH.
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