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COMPARATIVE ANALYSIS OF THE EFFECTIVENESS
OF BPG, AGU, AVIF AND HEIF COMPRESSION METHODS
FOR MEDICAL IMAGES CORRUPTED BY NOISE OF TWO TYPES

The subject matter is lossy compression using the BPG, AGU, AVIF, and HEIF encoders for medical images
with different levels of visual complexity corrupted by additive Gaussian and Poisson noise. The goal of this
study is to compare encoders regarding optimal image compression parameters and select the most suitable
metric to determine the optimal operation point. The tasks considered include: selecting 512x512 grayscale test
images with various degrees of visual complexity, including visually complex images rich in edges and textures,
moderately complex images with edges and textures adjacent to homogeneous areas, and visually simple images
consisting mainly of homogeneous areas; establishing image quality assessment metrics and evaluating their
effectiveness under different encoder compression parameters; selecting one or more metrics that clearly deter-
mine the position of the optimal operation point; providing recommendations based on the results obtained for
compressing medical images corrupted by additive white Gaussian and Poisson noises using four encoders to
maximize the quality of the restored image to the noise-free original. The employed methods encompass image
quality assessment techniques employing MSE, PSNR, and MSSIM metrics, as well as software modeling in
Python without using the built-in Poisson noise generator. The results show that optimal operation points
(OOPs) can be determined for all these metrics when the quality of the compressed image is better than the
quality of the corresponding noisy original image, accompanied by a sufficiently high compression ratio. More-
over, achieving an appropriate balance between the compression ratio and image quality leads to partial noise
reduction without noticeable information content distortion in the compressed image. This study emphasizes the
importance of using appropriate metrics to assess the quality of compressed medical images and provides insight
into the determination of the compression parameter Q to achieve the optimal operation point of the BPG en-
coder for specific images. However, the position of the OOP and its presence depend not only on the image
complexity but also on the chosen encoder. Conclusions. The scientific novelty of the obtained results includes:
1) The consideration of noise models and parameter levels typical for medical imaging, namely, additive Gauss-
ian noise of such intensity that it approximately corresponds to just noticeable differences, and signal -dependent
Poisson noise; 2) The analysis of the multi-scale structural similarity index (MS-SSIM), which has not been
previously explored in studies on lossy compression of noisy medical images; 3) Adetailed examination of AVIF
and HEIF coders to determine whether the optimal operating point (OOP) is observed for them and under which
noise conditions; 4) The use of a dataset comprising ten medical images of varying visual complexity, with gen-
eralized tendencies revealed for different structural types; 5) The identification of the ability of many metrics to
exhibit an OOP for images of moderate visual complexity or those dominated by homogeneous areas; 6) For
Poisson noise, the demonstration of a dependence between the quality factor Q in the OOP and the average
image intensity, which can be practically estimated for a given image; 7) The finding that different encoders
require different approaches to determine their respective OOPs due to their distinct compression control pa-
rameters; 8) The observation that compression ratios achieved at the OOP are generally high, supporting the
feasibility of using the OOP or its neighbourhood in practice.
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significantly, creating problems with their storage, trans-
mission, and processing [1]. Efficient image transmis-

1. Introduction

Medical image compression is of great importance
in the healthcare industry because it can significantly in-
crease the efficiency of data transmission and storage and
reduce the costs associated with medical imaging. With
the proliferation of digital technologies in diagnostics
and treatment, the volume of medical images has grown

sion, particularly in constrained environments such as
Wireless Multimedia Sensor Networks (WMSN), has be-
come a critical task, prompting research into advanced
methods, including those based on the Residue Number
System [2, 3]. Medical image compression technologies
can help solve these problems by reducing the need for
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data storage and transmission without losing the image
diagnostic quality [4, 5]. This contributes to faster and
more reliable diagnoses, reduced storage and transmis-
sion costs, and improved care quality. Medical image
compression is extremely important for telemedicine and
remote medical services, where efficient image transmis-
sionis critical for timely diagnosis and treatment.

1.1. Motivation

Two types of compression are commonly used in
digital image processing: lossless compression and lossy
compression [6]. Lossless compression, as the name im-
plies, allows one to fully restore a compressed image to
its original state without any data loss. This approach is
often used in medical imaging, where even the slightest
loss of information can significantly affect diagnosis and
treatment decisions [7, 8]. In contrast to lossless com-
pression, lossy compression [9, 10] involves removing
some data from the image to achieve a higher compres-
sion ratio. Although this approach can significantly re-
duce the file size, it also leads to a certain loss of image
quality, which may be unacceptable in medical imaging
[11, 12].

The compression of medical images requires con-
sideration of some special requirements. First, the diag-
nostic quality of the compressed images must be pre-
served so that they remain as informative as the original.
Inaddition, the compression process must ensure fast and
efficient image transfer and storage while meeting the
healthcare industry’s security and privacy requirements.
Compatibility of compressed images with various soft-
ware and medical equipment used in clinical practice is
another important condition. Fulfilling these require-
ments is critical for the effective use of compressed im-
ages in medical practice [13, 14].

However, these are not the only problems encoun-
tered. Noise present in the collected images can signifi-
cantly affect their quality, as it obscures important areas
and details.

Medical imaging systems, such as X-ray machines
and computed tomography (CT) scanners, create images
of a patient’s body area using X-rays or CT scans, record-
ing the degree of absorption [15].

Noise in such images is often modelled using a
Poisson distribution and is known as Poisson noise, shot
noise, photon noise, Schott noise, or quantum noise. The
peculiarity of Poisson noise is peculiar in that it does not
depend on temperature or frequency but is caused by the
process of counting photons. Its intensity is directly pro-
portional to the brightness of the pixels: pixels with
higher brightness have a greater noise variance than those
with darker brightness [16].

In addition to Poisson noise, additive white Gauss-
ian noise (AWGN), which arises from various electronic

factors in data acquisition and transmission systems, is
also often present in medical images [17]. This noise is
evenly distributed throughout the image and can further
degrade image quality, making it difficult to detect subtle
structures or pathological changes.

Although neural network-based methods for com-
pression and denoising are increasingly being studied,
this study focuses on standardized codecs currently
adopted in practical healthcare systems.

1.2. State of the art

In the presence of noise, image compression re-
quires a special approach. Lossless compression is espe-
cially sensitive to noise because its efficiency is signifi-
cantly reduced, and the compression ratio (CR) can be
very close to unity [18]. In this regard, using lossy com-
pression, which provides higher CR values and has a
number of additional advantages, is advisable.

One of these advantages is the effect of noise filter-
ing, which is achieved by adjusting certain parameters
accordingly. This effect was first discovered in [19] and
is observed when various orthogonal transformations are
applied in compression methods [12, 18, 19]. This noise-
suppressing property can be enhanced by integrating
learnable denoising blocks into the compression pipe-
line [20].

The coding parameters must be chosen so that com-
pression occurs near the optimal operation point (OOP)
[21, 22], which ensures the maximum similarity of the
decoded image to the noise-free original according to a
given criterion. Meanwhile, medical images have not
been studied in [21, 22]. In addition, we consider the
noise characteristics more typical for medical images that
were not analyzed in [21, 22].

In deep learning-based compression systems, the
OOP can be learned directly from data using perceptual
and structural loss functions [23].The possible existence
of the OOP has been confirmed for various types of noise
[19], as well as for compression methods based on the
discrete cosine transform (DCT) [24, 25] and wavelets
[26]. OOP can be determined using criteria such as mean
squared error (MSE), peak signal-to-noise ratio (PSNR)
[27, 28], and visual quality metrics such as PSNR-HVS-
M and MSSIM [29]. Modern metrics, such as LPIPS or
NIQE, have been proposed to better reflect human per-
ception, especially in the presence of noise [30].

However, it remains challenging to automatically
provide compression near the OOP with complex types
of signal-dependent noise. Several recent works have
proposed adaptive compression schemes where parame-
ters are dynamically tuned based on local noise statistics
[31]. These developments demonstrate a shift toward im-
age coding techniques that are context- and noise-aware.
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1.3. Objectives and tasks

The relevance of studying the effect of these types
of noise on the efficiency of lossy compression has in-
creased, especially in the field of medical imaging, where
various noise distortions influence the formation of im-
ages. In this study, we consider the lossy compression
properties of images corrupted with additive Gaussian
and Poisson noise. The analysis is carried out for four
modern encoders: BPG [32], AGU [33], AVIF, and HEIF
[34], and recommendations for choosing compression
parameters for noisy images are provided.

To achieve the goal, within the framework of this
publication, the following tasks must be solved:

1. The dependence of the MSE metric for noisy
medical images with additive white Gaussian noise
(AWGN) and Poisson noise was analyzed using different
coders (BPG, AGU, AVIF, HEIF).

2. Determine the optimal values of the Q parameter
that provide minimal image distortion for each coder and
noise type according to the MSE, PSNR, and MSSIM
metrics.

3. Compare the results of different encoders by
quality metrics at optimal operating points (OOP).

4. The compression efficiency at optimal operating
points for each encoder was evaluated in terms of pre-
serving the required image quality and the amount of
memory saved.

5. Analyze the suitability of encoders for automatic
application in medical systems, considering the stability
of the behavior metric and the predictability of the posi-
tion of the optimal operating point Q. To identify the lim-
itations and prospects for further research, particularly
for the less studied AVIF and HEIF encoders.

The article is organized as follows:

Section 2 describes the research methods, including
subsections: 2.1. Noise models, 2.2. Image model, 2.3.
Techniques for Controlling the Efficiency of Lossy Com-
pression and 2.4. Considered compression methods.

Section 3 presents the results: the optimal compres-
sion parameters for four encoders (BPG, AGU, AVIF,
HEIF) are determined, and a comparison is made in terms
of quality metrics and compression ratio.

Conclusions and recommendations for the practical
use of compression in medical systems are presented in
Section 4.

2. Materials and research methods

When evaluating image compression methods for
noisy images, both the image and noise models must be
considered. To understand the impact of noise on the
compression process, its statistical characteristics must
be clearly defined. In this article, we consider two types
of the noise: additive white Gaussian noise (AWGN) and
Poisson noise. Signal-dependent noise might have a

completely different effect on compression than signal -
independent noise. A model of signal-dependent noise
must accurately describe its properties to correctly ac-
count for the effect of noise. It should also be noted that
studies must be carried out for images of different com-
plexity to understand both positive and negative out-
comes.

2.1. Noise models

White Gaussian noise is usually assumed to be ad-
ditive, zero-mean, independent and identically distrib-
uted (i.i.d.) [35]. Under these assumptions, the resulting
image z is modelled as follows:

2(x) = y(x) +n(x), M)

where y isa deterministic, noiseless image, x e Q c 72
is a pixel coordinate, and n(x) is a random variable that

follows the normal distribution N(0,c?) with zero mean

and variance o?.

Each x-coordinate corresponds to an independent
realized value of the random variable n(x), and together

they form an additive white Gaussian noise (AWGN)
field that distorts the y-image.

The Gaussian noise was generated using the ran-
dom_noise function from the skimage.util module with a
fixed random seed (92) to ensure reproducibility. The
variance was set to 62 = 25 unless otherwise specified.

Poisson noise describes the random fluctuations
that occur when discrete events, such as photons in med-
ical images, are counted. It is a signal-dependent noise,
meaning that its variance (spread of values) is propor-
tional to the signal’s mean value. This means that the
more intense the image (higher the signal level), the
greater the noise [32].

For large values of the mean (), the Poisson distri-
bution is well approximated by a normal distribution with
the same mean and variance:

P(w) =~ N(u, 1), 2

where N is a normal distribution with expectation . .

Equation (2) is based on a standard approximation
inwhich a normal distribution approximates the Poisson
distribution when the expected number of events is suffi-
ciently large. This assumption is reasonable for typical
pixel intensities in medical imaging when the mean pho-
ton count exceeds approximately 10-12, as shownin [36,
37]. Although a rigorous derivation of the optimality con-
ditions is beyond the scope of this study, the use of this
approximation allows for analytical tractability and prac-
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tical relevance in moderate- to high-intensity imaging re-
gimes.

In[32], the authors provide an intuitive justification
for this approximation, which is based on the central limit
theorem (CLT) and the Poisson distribution’s closed
property when adding random variables.

When modeling Poisson noise, special functions in
software tools and approximation by Gaussian noise can
be used, where the variance is equal to the value of the
image pixel. This approach is valid for 8-bit images and
is generally considered adequate when the pixel values
exceed 10-15, as recommended in prior studies.

This approximation allows replacing the Poisson
distribution family with a Gaussian distribution family
with a non-constant (spatially varying) variance that de-
pends onthe pixel brightness. This simplifies the analysis
and processing. In our experiments, the tested images
predominantly featured medium- to high-intensity val-
ues, where the Gaussian approximation to Poisson noise
remains valid.

The same set of images was used across all simula-
tions, and each noise realization was regenerated for
every trial using a fixed seed (0) to ensure consistency
across methods.

2.2. Image model

Medical imaging encompasses various methods for
obtaining images of a human body by processing bio-
medical signals. The resulting images differ depending
on the imaging method and the study object, which af-
fects their characteristics.

The effectiveness of compression methods largely
depends on the image characteristics, including its com-
plexity and the presence of noise. Therefore, the selection
of test images is an important stage of the study. Visual
information with a simpler structure is easier to compress
without significant loss, whereas complex images are the
opposite.

We used 10 images (medl.png - med10.png) ob-
tained from the website [radiopaedia.org]. These are
medical images with atypical diagnoses. To simulate the
conditions under interest, the images were artificially
noised according to the aforementioned noise models.

Fig. 1 shows an example of a wrist image: (a) orig-
inal, (b) version with additive Gaussian noise intensity,
(c) version with Poisson noise. Both noises are more no-
ticeable inbright areas and almost invisible in dark areas.

2.3. Techniques for Controlling the Efficiency
of Lossy Compression

C
Fig. 1. Example of original (a), AWGN

tures of lossy compression is the ability to suppress noise, noisy ( o” =25) (b) and Poisson noisy (c) images
provided that the control parameters are properly tuned,

When working with noisy images, one of the fea-
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which allows compression to be performed near the
OOP. Classical quality criteria are used to evaluate the
effectiveness of compression, in particular MSE, as well
as metrics related to visual perception, such as PSNR-
HVS-M and MSSIM. These indicators involve compar-
ing the decompressed noisy image 14, with the original,

noisy image |, for a set of artificially noised test im-

ages.

The main goal of lossy compression is to achieve an
acceptable level of image quality at a maximum compres-
sionratio (CR). Therefore, finding a balance between CR
and quality is important, as an increase in CR inevitably
leads to greater introduced distortions. The correspond-
ing rate/distortion curves (RDCs) behave in a traditional
manner, i.e., are monotonous with metric values worsen-
ing as CR increases.

If lossy compression is applied to a noisy image, the
introduced distortions can be associated with both noise
reduction and blurring of edges, details, or textures. All
coders considered below are based on orthogonal trans-
form (namely, DCT) performed in blocks (of different
sizes). Distortions are introduced due to DCT coefficient
guantization. Then, if the obtained DCT coefficients are
small compared to the quantization step (QS) and most
likely correspond to noise, they are assigned zero values,
and the positive effect of noise removal occurs. This pos-
itive effect increases (till a certain moment) if the QS in-
creases. In turn, if a DCT coefficient is larger and is not
zeroed after quantization, this coefficient probably re-
lates to information content. Then, undesired distortions
are introduced, and their intensity increases if the QS in-
creases. This means that optimum might be associated
with the optimal operation point (OOP) and a certain QS
or a parameter controlling compression (PCC) that is
connected with the actual QS.

In practice, if OOP exists, there are two reasons for
its compression. First, CR is OOP is usually quite large
(see data in next Sections). Second, the quality of the im-
age compressed in OOP is better than that of the uncom-
pressed (original noisy) image. Meanwhile, to perform
lossy compression of the noisy image in OOP, one must
be sure that OOP exists and that PCC can be correctly set
in OOP.

Despite the abovementioned verbal explanation of
the effects occurring in the lossy compression of noisy
images, the analytical statement and solving of the opti-
mi zation task are problematic. The main problem deals
with limited a priori information on the statistics of DCT
coefficients for image content and noise components for
a given image to be compressed. Then, one must rely on
the numerical simulation data obtained for a set of typical
images and noise characteristics. A special analysis is re-
quired where RDCs can be obtained by “comparing” the
true image (without noise) to the compressed (originally

noisy) image for different compression parameter values.
We are more interested in dependences that can
only be obtained through simulation.

Having a compressed image Ifj,i =1..,Lj=1..7J,
itis easy to calculate

A -l T
MSE, =2 205 —15) ©)
tr

where I, I}

pressed images, respectively; 1xJ- image size, and

- pixel brightness value of true and com-

2552
PSNR,. :1O|OglO(—MSE ). (4)

tc

Other metrics can be similarly calculated using com-
pressed noisy and true images.

In fact, to determine OOP or optimal CR, we need to
establish whether an RDC have an extremum. The coor-
dinate of the global minimum of the MSE;; or the maxi-
mum of the PSNRy is OOP in the traditional sense. It is
also worth characterizing compression in OOP by the
compression ratio CRoop, since this parameter is also im-
portant in practice.

In addition to traditional metrics, such as MSE and
PSNR, visual quality metrics are widely applied inimage
compression. The PSNR-HVS-M metric [38] considers
the peculiarities of the human visual system and is based
on the discrete cosine transform (DCT). Its values are
measured in decibels: the higher the value, the higher the
visual quality. The MSSIM metric [39] is based on a
wavelet transform and has a value ranging from 0 (very
poor quality) to 1 (excellent quality).

Below, we have denoted PCCs for all the considered
coders as Q. However, different encoders use different
PCC parameters that vary in different limits, where its
increase corresponds to a larger CR. QS can be any pos-
itive value, but it is usually less than 100. For the BPG
coder, the PCC is simply called Q, which can only be a
non-negative integer with a maximal value of 51. The
larger Q, the larger CR. In contrast, for HEIF and AVIF
coders, the quality factor (QF) serves as Q (PCC), where
the larger QF corresponds to the smaller CR. QF is inte-
ger from 1 to 100.

2.4. Considered compression methods

Four encoders are considered in this paper. Let us
give more details concerning each of them.

AGU is a high-quality lossy image encoder based
on 32x32 DCT to decompose images into frequency
components and reduce data size. The use of modern
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techniques for lossless coding of quantized DCT coeffi-
cients and in-built deblocking after decompression is a
feature of AGU.

Better Portable Graphics (BPG) is an image format
developed by Fabrice Bellard in 2014 that is based on the
HEVC (H.265) standard and provides high compression
while maintaining quality. Block processing, pixel pre-
diction, two-dimensional DCT, and adaptive quantiza-
tion are used to extract and compress important details
efficiently. Entropy coding is the final step, which further
reduces the amount of data.

AVIF is a modern image format based on the AV1
video codec that delivers high quality with significant
compression. It supports both lossy and lossless compres-
sion, 12-bit color depth, high-resolution (HDR), transpar-
ency, and metadata preservation. Thanks to the efficient
AV1 coding algorithms, AVIF files can be 50-60%
smaller than JPEGs with similar quality. The format is
supported by leading browsers and popular graphical ed-
itors.

HEIF is a modern image format based on the HEVC
(H.265) video codec that delivers high quality with a sig-
nificant reduction in file size (up to 50-60% smaller than
JPEG). The format supports 16-bit color depth, transpar-
ency, HDR and animation, making it suitable for profes-
sional graphics work. HEIF is especially popular on Ap-
ple devices.

Since Q for the BPG, AGU, AVIF and HEIF encod-
ers has different meanings, the plots are given separately
for each encoder (see examples in Fig. 2-7).

2.5. Software Configuration
and Tools

All simulations were performed within a well-de-
fined software environment to ensure the reproducibility
of experiments.

The BPG codec (version 0.9.8) was executed using
the command-line tools bpgenc.exe and bpgdec.exe [32].

The AGU encoder was executed via AGU.EXE, ob-
tained from[33]; however, the developer provided no ex-
plicit version number.

The AVIF and HEIF codecs were used through the
libheif library (version 1.19.7), which was integrated into
the Python environment using the pillow_heif package
(version 0.22.0) [34].

The simulations were conducted using Python
3.10.12, with the following key packages: OpenCV
4.8.0.76, NumPy 1.26.4, scikit-image 0.22.0, pandas
2.2.2, scikit-learn 1.5.0, sewar 0.4.5, psnrhvsm (custom
ITU-T J.341 implementation)

All experiments were executed on a machine with
an Intel Core i5-1335U CPU, 16 GB RAM, and Windows
11 x64 Pro.

3. Results and Discussion
3.1. Results obtained

We begin our analysis with the usual MSE;. metric
(3). InFig. 2a - 2d, the data obtained for test medical im-
ages contaminated by AWGN with variance 25 for each
encoder under study.

As shown in Fig. 2, MSE varies in a wide range
and behaves differently for different encoders. For the
BPG encoder, at small Q (<23), MSE for the given im-
ages remains almost the same. A further increase in Q
leads to a decrease in the vicinity of the OOP for all 10
images in Fig. 2 a. Partial noise suppression is observed,
characterized by a decrease in MSE. Then, as Q in-
creases further, MSE steadily increases if Q becomes
larger. Note that for all images, Qoor is practically the
same and equal to 31, which agrees with the data in [21,
22].

For the AGU encoder, the MSE: dependences

(Fig. 2,b) have values approximately equal to o2 for

very small Q, they slowly increase till Q=8, then they de-
crease till Q =20, having Qoop~20=4c, and, after this,
start to increase again. Notably, there is no clearly de-
fined minimum in the dependence of MSE. on Q for only
one medical image (med9.png), which is the most com-
plex.

Recall that for HEIF and AVIF, a large Q corre-
sponds to a small CR. In the case of the AVIF encoder
(Fig. 2,c), there are minima (OOPs) for Q about 45 for
almost all tested images. The behavior of the HEIF en-
coder is similar to that of the AVIF encoder, but minima
(OOPs) are observed for Q = 35.

Fig. 3 shows the MSE;. dependence for the test im-
ages with Poisson noise. The behavior of the dependence
is similar to that of additive Gaussian noise.

AGU is the only encoder that does not have OOPs
for all images with Poisson noise. For other encoders, the
minimum MSE; is observed for all plots, but it is shifted
to the side of higher Q values compared to OOPs for ad-

ditive Gaussian noise with o® =25. Tables 1 and 2 show
the average OOP positions for all encoders.

For the BPG encoder, OOPs are observed for all test
images, and Qoop is larger if the image mean lmean iS
larger (image mean is approximately equal to
MSE«(Q=1). Qoor is approximately 38. For the AGU en-
coder, minima are observed for
Qoop:4(MSEtc(Q:1))0‘5:4(|mean)o'5. For AVIF, Qoop var-
ies in rather wide limits from 24 to 36, with the main ten-
dency of Qoop decreasing if MSE;: (Q=100) increases. A
similar tendency is observed for HEIF, but the range of
Qoor Variation is from 20 to 30. This means that, for
AVIF and HEIF, additional studies are needed to propose
automatic and accurate algorithms of optimal PCC set-
tingin OOP.
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Fig. 2. Dependences of MSE on Q for the AWGN
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CR in OOP is important because memory savings can be
valuable if many images are acquired in some clinic and
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then saved. The mean CR values reach tens for AWGN
and can even exceed 100 for Poisson noise. This means
that memory savings can be very significant. In this
sense, the results for the AGU encoder are the worst. Re-
garding the quality metrics in OOP, the BPG coder pro-
vides the best values of average MSE, PSNR, PSNR-
HVS-M, and MSSIM. The worst results are produced by
AVIF, but the difference is small. Thus, the BPG encoder
appears to be the best practical solution.

To address concerns regarding the rigor of our sta-
tistical evaluation, we performed formal statistical signif-
icance tests and extended the analysis beyond reporting
only average values and standard deviations. We applied
one-way ANOVA (Analysis of Variance) tests to com-
pare the performance of different codecs across five key
metrics: MSE, PSNR, PSNR-HVS-M, compression ratio
(CR), and MSSSIM.

ANOVA is a widely used statistical method that as-

sesses whether the means of three or more groups (in our
case, different codecs) differ significantly. It does so by
analyzing the variance between groups compared with
the variance within groups. A significant ANOVA result
(indicated F-statistic and low p-value) suggests that at
least one codec performs statistically differently from the
others on the given metric.
The analysis was conducted on results aggregated over
ten test images for each codec, separately for each noise
condition (AWGN and Poisson noise). The findings
demonstrate statistically significant differences among
codecs for PSNR (AWGN: F=42.39, p<6.75%
10%"; Poisson: F=99.99, p<4.48x1062), PSNR-HVS-M
(AWGN: F=29.28, p<1.09x1018; Poisson: F=8.64,
p<1.04x10%), CR (AWGN: F=29.97, p<4.04x1071%;
Poisson: F=14.37, p<2.64x107), and MSSSIM (AWGN:
F=13.31, p<1.22x10-8; Poisson: F=27.59, p<1.25x1017),
Although the differences in MSE were less pronounced
and did not reach statistical significance for Poisson noise
(F=0.90, p=0.44), they were significant for AWGN
(F=26.84, p<3.71x10%7). This overall pattern confirms
that codec performances differ meaningfully for most
evaluated metrics across noise types.

Furthermore, we complemented the statistical tests
with a ranking-based analysis identifying how frequently
each codec achieved the best or worst results per image
and metric:

PSNR metric:

The best: BPG for all 10 images for both noise types;

The worst: AGU and AVIF most frequently;
PSNR-HVS-M:

The best: BPG leads (9/10 AWGN, 8/10 Poisson);

The worst: AVIF and AGU dominate the worst rankings.

MSSSIM:

The best: BPG for all 10 images for both noise models;

The worst: AVIF and AGU evenly split poor rank-
ings.
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Table 1
The statistics for OOP for images contaminated by AWGN with variance 25
Coder Average Average MSE Average Average PSNR-HVS- Averace CR Average
Qoop + std PSNR = std M =+ std g MSSIM = std
AGU 24 9.92+ 8.03 38.78+ 4.35 37.14+ 2.20 40.59 0.984+ 0.007
AVIF 49 10.70+ 8.55 38.47+ 4.44 36.92+ 2,51 52.35 0.984+ 0.009
BPG 31 8.83+ 6.86 39.31+ 4.40 38.13+ 2.37 48.09 0.987+ 0.007
HEIF 35 10.07+ 7.73 38.71+£ 4.32 37.25+ 2.40 52.00 0.984 +0.008
Table 2
The statistics for OOP for images contaminated by Poisson noise
Coder Average Average MSE Average Average PSNR-HVS- Averace CR Average
Qoop + std PSNR =+ std M =+ std 9 MSSIM =+ std
AGU 53 18.55+ 14.94 35.97+ 4.24 33.02+ 2.83 98.46 0.968 £0.018
AVIF 31 18.93+ 15.78 35.93+ 4.49 32.94+ 3.10 115.70 0.968=+ 0.020
BPG 38 16.81+ 14.53 36.45+ 451 33.61+ 2.89 140.58 0.971+ 0.017
HEIF 24 18.12+ 14.72 36.09+ 4.37 33.19+ 3.00 110.16 0.969+ 0.019

This comprehensive analysis confirms that BPG
consistently delivers superior PSNR, perceptual quality
(PSNR-HVS-M and MSSSIM), and competitive com-
pression efficiency.

We provide robust evidence substantiating the su-
periority and trade-offs among codecs by combining for-
mal hypothesis testing with per-image ranking statistics,
strengthening the credibility of our conclusions.

4. Conclusions

This study performed a comprehensive comparison
of four modern encoders (BPG, AGU, AVIF, HEIF) for
compressing Gaussian or Poisson noise-contaminated
medical images. In accordance with the task set, the fol-
lowing results were obtained:

- It is found that the MSEtc, PSNRtc and
MSSIMtc metrics effectively identify the optimal operat-
ing points for the compression parameter (Qoor), at
which the best ratio between image quality and compres-
sion ratio (CR) is achieved. For example, for AWGN
noise, the BPG encoder achieves Qoop<~ 31, average
PSNR ~ 39.31 dB, MSSIM =~ 0.987, and CR =~ 48.09. For
Poisson noise, Qoor = 38, PSNR = 36.45 dB, MSSIM =
0.971, and CR = 140.58.

- Itis shown that the BPG coder provides the best
results for all studied metrics for both Gaussianand Pois-
son noise, demonstrating high image quality with a sig-
nificant reduction in file size. By comparison, the AVIF
encoder gives average PSNR = 38.47 dB and MSSIM
0.984 with CR = 52.35 for AWGN, and PSNR
35.93 dB, MSSIM = 0.968 with CR =~ 115.70 for Poisson
noise.

- The AGU encoder was more effective for im-
ages with Gaussian noise, providing optimal Qoop values
according to the theoretical model, with Qoop = 24,
PSNR ~ 38.78 dB, MSSIM = 0.984 and CR ~ 40.59.

u

u

However, it was less suitable for processing images with
Poisson noise, where Qoopr = 53, PSNR = 35.97dB,
MSSIM = 0.968 and CR = 98.46.

- For AVIF and HEIF encoders, significant varia-
bility in the position of the optimal Qoop Operating point
was found, e.g., for HEIF under Poisson noise Qoop Var-
ies around 24 with PSNR =~ 36.09 dB, MSSIM ~ 0.969
and CR ~ 110.16, which complicates the automatic tun-
ing of compression parameters. This indicates the need
for further research on the stability and predictability of
their characteristics. It is also desirable to develop practi-
cal algorithms for setting quality factors for these coders
depending on noise type and intensity.

- It was found that compression at Qoop points al-
lows not only to effectively reduce the size of images, but
also to partially suppress noise without significant loss of
diagnostically important information.

The obtained results have practical significance for
medical image storage and transmission systems, partic-
ularly in telemedicine. Further studies should be com-
bined with expert assessment by physicians to confirm
the clinical suitability of the processed images.
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TMOPIBHAJTBHUI AHAJI3 E@EKTUBHOCTI METO/IIB CTUCHEHHS
BPG, AGU, AVIF TA HEIF JJIs1 MEAUYHUX 30BPAKEHbD,
HOMKOXEHUX INIYMAMM IBOX THUIIIB

B. B. Haymenko, B. B. JIykin, B. M. Haymenko,
H. B. Kooscemaxina, M. C. Conoooenuk

ITpeaMeTOM IOCITIIKCHHS € CTUCHEHHS 3 BTpaTaMu 3a qornomororo koaepie BPG, AGU, AVIF ta HEIF meau-
YHHUX 300paXeHb 3 PI3HUM PiBHEM Bi3yaJbHOI CKJIQIHOCTI, CHOTBOPEHNUX aJUTHBHUM IrayCiBCHKUM Ta ITyaCCOHIBCHKIM
nryMoM. MeToro poOOTH € TIOPiBHAHHS KOAEPiB MOAO ONTHMANBHUX HapaMeTpiB CTUCHEHHS 300pa)keHb Ta BHOIp
HaHOUIBII MPUAATHOI METPUKH ISl BU3HAUCHHS ONTUMAIBHOI pO00Y0i TOUkH. PO3TIIAHYTI 3aga4i BKIFOUAIOTE BHOIp
TECTOBHX 300pakKeHb y BiATIHKAX ciporo 512x512 3 pi3sHUM CTYIIEHEM Bi3yaJbHOI CKIIaHOCTI1, BKIIIOYAIOYH Bi3yaJIbHO
CKJIaJJH1 300pa)KeHHS 3 BEJIMKOIO KiJIbKICTIO KpaiB Ta TEKCTYP, IIOMIPHO CKJIaHI 300pakeHHs 3 KpasiMU Ta TEKCTypaMH,
0 MPWIATAIOTh 10 OJHOPIIHUX 00IacTel, Ta Bi3yaJabHO MPOCTi 300payKeHHSs, 0 CKJIAAA0THCS MIEPEBAKHO 3 OJTHO-
piaHKUX 00acTei; BCTAHOBICHHS METPUK OLIIHKH SKOCTI 300pa’keHb Ta OIliHKA 1X €(peKTHUBHOCTI IIPH PI3HHUX Mapame-
Tpax CTUCHEHHS KOJepiB; BUOIp oaHieT a00 AEKiIbKOX METPHUK, SIKI YiTKO BU3HAYAIOTH MOJIOKEHHS ONTHMAIBHOI pO-
00901 TOYKHM; HaJJaHHS Ha OCHOBI OTPUMAaHUX PE3YJbTATIB PEKOMEHAIN MO0 CTHCHEHHS MEIUYHHUX 300pakeHb,
CIOTBOPEHUX AU TUBHUMH I'ayCiBCHBKHM Ta ITyaCCOHIBCHKUM IIyMaMH, YOTHPMa KOJIEpaMH 3 METOI0 MaKCHMaJIbHOTO
HaOIMKEHHS SIKOCTI BiIHOBJIEHOTO 300paKEeHHS JI0 3alllyMJICHOTO OpHTiHAITy. BukopucTaHi MeTOAM BKJIIOYAIOTh Me-
TOJIM OL[IHKH SIKOCTI 300paxkeHb 3 BukopucranHsaMm Merpuk MSE, PSNR 1 MSSIM, a Takox nporpamMHe MOJIEITIOBaHHS
Ha MoBi Python 06e3 BuKOpHCTaHHS BOYZOBaHOTO reHEpaTOpa MyacCOHIBCHKOTO myMy. Pe3ynbTaTn 1OKa3yloTh, 10
JUIsl BCIX IIMX METPUK MOXKHA BU3HAYUTH ONTHUMaJbHI podoui Touku (OPT), KoM SIKICTh CTHCHEHOT'O 300paXKEeHHS €
Kpaloo 3a SKICTh BiAMNOBIIHOTO 3allyMJICHOTO BHXiJHOTO 300pa)KEHHS MpPH JIOCTATHHO BHCOKOMY CTYIIEHI CTHC-
HeHHs. binbie Toro, JOCATHEHHS BiAMOBIAHOTO OaJAHCY MiXK CTYIIEHEM CTHCHEHHS Ta SAKICTIO 300paKeHHS IPU3BO-
JIUThH 0 YaCTKOBOTO 3MEHIICHHS LIyMYy 0€3 MOMITHOTO CIIOTBOPEHHS iHOPMATUBHOCTI CTHCHEHOTO 300paKEHHS.
JlocTimKeHHS M1 IKPECITIOE BAXKIIMBICTh BUKOPHUCTAHHS BiIOBITHIX METPHK ISl OLIHKH SIKOCTI CTUCHEHUX MEIMYHUX
300pa)XeHb 1 1a€ ysABJICHHS PO BU3HAUCHHS ITapaMeTpa CTUCHEHHS Q /It JOCATHEHHS ONTHMAaJIbHOI poO0u0i TOUKH
BPG-kozepa is koHKpeTHHX 300pakeHb. Onnak nonoxkenHs OPT Ta 1l HasIBHICTB 3aJie)aTh HE TUIBKH BiJl CKIIAIHO-
cTi 300pakeHHs, aje i Big oOpaHoro koaepa. BucHoBku. HaykoBa HOBH3HA OTpUMaHUX pe3yNbTaTiB MOJISTAE B Ha-
CcTymHOMY: 1) pO3MIIsa MOJAEIICH IIyMy Ta PiBHIB TapaMeTpPiB, XapaKTEPHUX I MEAUYHHUX 300paKeHb, a caMe: aju-
THBHOTO T'ayCiBCHKOTO IIyMY TaKoi iHTEHCHBHOCTI, 0 BiH IPUOIM3HO BiAMOBIIA€ JIEAh IOMITHAM BiIMiHHOCTSIM, Ta
CHUTHAJIbHO-3aJIe)KHOTO ITYaCOHIBCHKOTO MyMy; 2) AHaimi3 OararomacmrabHOTro iHAEKCY CTPYKTYpHOI momiOHOCTI
(MS-SSIM), sikuii paHiiie He IOCTIKYBaBCs B poOOTaX 31 CTUCHEHHS 3alIyMIICHHX MEIUYHHUX 300pakeHb 3 BTpa-
Tamu; 3) meranbHe pociiukeHHs KoaepiB AVIF ta HEIF mis BU3HAYEHHS TOTO, UM CIIOCTEPITAETHCS IS HUX OITH-
ManbHa poboya Touka (OPT) i 3a sikux IIyMOBHX YMOB; 4) BUKOPUCTaHHS HA0OpY JaHMX, IO CKIaJa€ThCs 3 AECATH
MEJIMYHUX 300paKeHb Pi3HOI Bi3yaJIbHOI CKIIAJIHOCTI, 3 y3araJbHEHUMHU TEHJICHIIISIMH, BUSBICHUMH JUIS PI3HUX CTPY-
KTYpPHHX THIIB; 5) 31aTHICTh 6aratbox MeTpuk Matu OPT ajist 300paskeHb MOMIpHOI Bi3yalbHOI CKJIaTHOCTI abo 30-
OpakeHb, B AKHX MTEPEBAXKAIOTH OJHOPIIHI MIJSHKH; 6) IS MyaCCOHIBCHKOTO IIyMY JOCTiIKEHHS T IKPECITIOE 3aj1e-
xkHicTs Q B OPT Bix cepemHpoi iIHTEHCHBHOCTI 300pakeHHS, sIKa MOXKe OyTH OOTPYHTOBAHO PO3paxoBaHa IS 3a71a-
HOTO 300pakeHHs, IPU3HAYCHOTO [T CTHCHEHHS, Ha OCHOBI OTPIMAaHUX pe3yibTartiB; 7) OCKIIBKH pi3HI KOJIEpH BHU-
KOPHUCTOBYIOTh Pi3HI MapaMeTpH, sIKi KepyIOTh CTUCHEHHSIM, JUIsl Pi3HUX KOZEpPiB MOTPiOHI pi3Hi MiJIXOAN 1O BU3HA-
yenHs1 OPT; 8) Koediuientu cTiucHeHHs s 300pakeHb, cTucHyTHX B OPT, mocuTh BUCOKI, IO JJOAATKOBO OOTpyH-
TOBYE JIOLIJIBHICTH CTHCHEHHS 300paxens B OPT abo Oins Hei.

KurouoBi ciioBa: crucHenHs 300pakenns 3 Brpatamu; BPG; AGU; AVIF; HEIF; AWGN; mym I[Tyaccona; on-
THMaJbHA poboYa TOUKA.
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