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COMPARATIVE ANALYSIS OF THE EFFECTIVENESS  

OF BPG, AGU, AVIF AND HEIF COMPRESSION METHODS  

FOR MEDICAL IMAGES CORRUPTED BY NOISE OF TWO TYPES  
 

The subject matter is lossy compression using the BPG, AGU, AVIF, and HEIF encoders for medical images 

with different levels of visual complexity corrupted by additive Gaussian and Poisson noise. The goal of this 

study is to compare encoders regarding optimal image compression parameters and select the most suitable 
metric to determine the optimal operation point. The tasks considered include: selecting 512x512 grayscale test 

images with various degrees of visual complexity, including visually complex images rich in edges and textures, 

moderately complex images with edges and textures adjacent to homogeneous areas, and visually simple images 

consisting mainly of homogeneous areas; establishing image quality assessment metrics and evaluating their 

effectiveness under different encoder compression parameters; selecting one or more metrics that clearly deter-

mine the position of the optimal operation point; providing recommendations based on the results obtained for 

compressing medical images corrupted by additive white Gaussian and Poisson noises using four encoders to 
maximize the quality of the restored image to the noise-free original. The employed methods encompass image 

quality assessment techniques employing MSE, PSNR, and MSSIM metrics, as well as software modeling in 
Python without using the built-in Poisson noise generator. The results show that optimal operation points 

(OOPs) can be determined for all these metrics when the quality of the compressed image is better than the 

quality of the corresponding noisy original image, accompanied by a sufficiently high compression ratio. More-

over, achieving an appropriate balance between the compression ratio and image quality leads to partial noise 

reduction without noticeable information content distortion in the compressed image. This study emphasizes the 

importance of using appropriate metrics to assess the quality of compressed medical images and provides insight 

into the determination of the compression parameter Q to achieve the optimal operation point of the BPG en-

coder for specific images. However, the position of the OOP and its presence depend not only on the image 
complexity but also on the chosen encoder. Conclusions. The scientific novelty of the obtained results includes: 

1) The consideration of noise models and parameter levels typical for medical imaging, namely, additive Gauss-

ian noise of such intensity that it approximately corresponds to just noticeable differences, and signal-dependent 

Poisson noise; 2) The analysis of the multi-scale structural similarity index (MS-SSIM), which has not been 

previously explored in studies on lossy compression of noisy medical images; 3) A detailed examination of AVIF 

and HEIF coders to determine whether the optimal operating point (OOP) is observed for them and under which 

noise conditions; 4) The use of a dataset comprising ten medical images of varying visual complexity, with gen-

eralized tendencies revealed for different structural types; 5) The identification of the ability of many metrics to 

exhibit an OOP for images of moderate visual complexity or those dominated by homogeneous areas; 6) For 

Poisson noise, the demonstration of a dependence between the quality factor Q in the OOP and the average 

image intensity, which can be practically estimated for a given image; 7) The finding that different encoders 

require different approaches to determine their respective OOPs due to their distinct compression control pa-

rameters; 8) The observation that compression ratios achieved at the OOP are generally high, supporting the 

feasibility of using the OOP or its neighbourhood in practice. 
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1. Introduction 

 

Medical image compression is of great importance 

in the healthcare industry because it can significantly in-

crease the efficiency of data transmission and storage and 

reduce the costs associated with medical imaging. With 

the proliferation of digital technologies in diagnostics 

and treatment, the volume of medical images has grown 

significantly, creating problems with their storage, trans-

mission, and processing [1]. Efficient image transmis-

sion, particularly in constrained environments such as 

Wireless Multimedia Sensor Networks (WMSN), has be-

come a critical task, prompting research into advanced 

methods, including those based on the Residue Number 

System [2, 3]. Medical image compression technologies 

can help solve these problems by reducing the need for 
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data storage and transmission without losing the image 

diagnostic quality [4, 5]. This contributes to faster and 

more reliable diagnoses, reduced storage and transmis-

sion costs, and improved care quality. Medical image 

compression is extremely important for telemedicine and 

remote medical services, where efficient image transmis-

sion is critical for timely diagnosis and treatment. 
 

1.1. Motivation  
 

Two types of compression are commonly used in 

digital image processing: lossless compression and lossy 

compression [6]. Lossless compression, as the name im-

plies, allows one to fully restore a compressed image to 

its original state without any data loss. This approach is 

often used in medical imaging, where even the slightest 

loss of information can significantly affect diagnosis and 

treatment decisions [7, 8]. In contrast to lossless com-

pression, lossy compression [9, 10] involves removing 

some data from the image to achieve a higher compres-

sion ratio. Although this approach can significantly re-

duce the file size, it also leads to a certain loss of image 

quality, which may be unacceptable in medical imaging 

[11, 12].  

The compression of medical images requires con-

sideration of some special requirements. First, the diag-

nostic quality of the compressed images must be pre-

served so that they remain as informative as the original. 

In addition, the compression process must ensure fast and 

efficient image transfer and storage while meeting the 

healthcare industry’s security and privacy requirements. 

Compatibility of compressed images with various soft-

ware and medical equipment used in clinical practice is 

another important condition. Fulfilling these require-

ments is critical for the effective use of compressed im-

ages in medical practice [13, 14]. 

However, these are not the only problems encoun-

tered. Noise present in the collected images can signifi-

cantly affect their quality, as it obscures important areas 

and details. 

Medical imaging systems, such as X-ray machines 

and computed tomography (CT) scanners, create images 

of a patient’s body area using X-rays or CT scans, record-

ing the degree of absorption [15]. 

Noise in such images is often modelled using a 

Poisson distribution and is known as Poisson noise, shot 

noise, photon noise, Schott noise, or quantum noise. The 

peculiarity of Poisson noise is peculiar in that it does not 

depend on temperature or frequency but is caused by the 

process of counting photons. Its intensity is directly pro-

portional to the brightness of the pixels: pixels with 

higher brightness have a greater noise variance than those 

with darker brightness [16]. 

In addition to Poisson noise, additive white Gauss-

ian noise (AWGN), which arises from various electronic 

factors in data acquisition and transmission systems, is 

also often present in medical images [17]. This noise is 

evenly distributed throughout the image and can further 

degrade image quality, making it difficult to detect subtle 

structures or pathological changes. 

Although neural network-based methods for com-

pression and denoising are increasingly being studied, 

this study focuses on standardized codecs currently 

adopted in practical healthcare systems. 

 

1.2. State of the art  

 

In the presence of noise, image compression re-

quires a special approach. Lossless compression is espe-

cially sensitive to noise because its efficiency is signifi-

cantly reduced, and the compression ratio (CR) can be 

very close to unity [18]. In this regard, using lossy com-

pression, which provides higher CR values and has a 

number of additional advantages, is advisable. 

One of these advantages is the effect of noise filter-

ing, which is achieved by adjusting certain parameters 

accordingly. This effect was first discovered in [19] and 

is observed when various orthogonal transformations are 

applied in compression methods [12, 18, 19]. This noise-

suppressing property can be enhanced by integrating 

learnable denoising blocks into the compression pipe-

line [20]. 

The coding parameters must be chosen so that com-

pression occurs near the optimal operation point (OOP) 

[21, 22], which ensures the maximum similarity of the 

decoded image to the noise-free original according to a 

given criterion. Meanwhile, medical images have not 

been studied in [21, 22]. In addition, we consider the 

noise characteristics more typical for medical images that 

were not analyzed in [21, 22].     

In deep learning-based compression systems, the 

OOP can be learned directly from data using perceptual 

and structural loss functions [23].The possible existence 

of the OOP has been confirmed for various types of noise 

[19], as well as for compression methods based on the 

discrete cosine transform (DCT) [24, 25] and wavelets 

[26]. OOP can be determined using criteria such as mean 

squared error (MSE), peak signal-to-noise ratio (PSNR) 

[27, 28], and visual quality metrics such as PSNR-HVS-

M and MSSIM [29]. Modern metrics, such as LPIPS or 

NIQE, have been proposed to better reflect human per-

ception, especially in the presence of noise [30]. 

However, it remains challenging to automatically 

provide compression near the OOP with complex types 

of signal-dependent noise. Several recent works have 

proposed adaptive compression schemes where parame-

ters are dynamically tuned based on local noise statistics 

[31]. These developments demonstrate a shift toward im-

age coding techniques that are context- and noise-aware. 
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1.3. Objectives and tasks 
 

The relevance of studying the effect of these types 

of noise on the efficiency of lossy compression has in-

creased, especially in the field of medical imaging, where 

various noise distortions influence the formation of im-

ages. In this study, we consider the lossy compression 

properties of images corrupted with additive Gaussian 

and Poisson noise. The analysis is carried out for four 

modern encoders: BPG [32], AGU [33], AVIF, and HEIF 

[34], and recommendations for choosing compression 

parameters for noisy images are provided. 

To achieve the goal, within the framework of this 

publication, the following tasks must be solved: 

1. The dependence of the MSE metric for noisy 

medical images with additive white Gaussian noise 

(AWGN) and Poisson noise was analyzed using different 

coders (BPG, AGU, AVIF, HEIF). 

2. Determine the optimal values of the Q parameter 

that provide minimal image distortion for each coder and 

noise type according to the MSE, PSNR, and MSSIM 

metrics.  

3. Compare the results of different encoders by 

quality metrics at optimal operating points (OOP). 

4. The compression efficiency at optimal operating 

points for each encoder was evaluated in terms of pre-

serving the required image quality and the amount of 

memory saved. 

5. Analyze the suitability of encoders for automatic 

application in medical systems, considering the stability 

of the behavior metric and the predictability of the posi-

tion of the optimal operating point Q. To identify the lim-

itations and prospects for further research, particularly 

for the less studied AVIF and HEIF encoders. 

The article is organized as follows: 

Section 2 describes the research methods, including 

subsections: 2.1. Noise models, 2.2. Image model, 2.3. 

Techniques for Controlling the Efficiency of Lossy Com-

pression and 2.4. Considered compression methods. 

Section 3 presents the results: the optimal compres-

sion parameters for four encoders (BPG, AGU, AVIF, 

HEIF) are determined, and a comparison is made in terms 

of quality metrics and compression ratio. 

Conclusions and recommendations for the practical 

use of compression in medical systems are presented in 

Section 4. 
 

2. Materials and research methods 
 

When evaluating image compression methods for 

noisy images, both the image and noise models must be 

considered. To understand the impact of noise on the 

compression process, its statistical characteristics must 

be clearly defined. In this article, we consider two types 

of the noise: additive white Gaussian noise (AWGN) and 

Poisson noise. Signal-dependent noise might have a  

completely different effect on compression than signal-

independent noise. A model of signal-dependent noise 

must accurately describe its properties to correctly ac-

count for the effect of noise. It should also be noted that 

studies must be carried out for images of different com-

plexity to understand both positive and negative out-

comes.  
 

2.1. Noise models  
 

White Gaussian noise is usually assumed to be ad-

ditive, zero-mean, independent and identically distrib-

uted (i.i.d.) [35]. Under these assumptions, the resulting 

image z is modelled as follows: 

 

z(x) y(x) (x),                         (1) 

 

where y  is a deterministic, noiseless image,
2x

is a pixel coordinate, and (x)  is a random variable that 

follows the normal distribution 2N(0, )  with zero mean 

and variance 2 . 

Each x-coordinate corresponds to an independent 

realized value of the random variable (x) , and together 

they form an additive white Gaussian noise (AWGN) 

field that distorts the y-image. 

The Gaussian noise was generated using the ran-

dom_noise function from the skimage.util module with a 

fixed random seed (92) to ensure reproducibility. The 

variance was set to σ² = 25 unless otherwise specified.  

Poisson noise describes the random fluctuations 

that occur when discrete events, such as photons in med-

ical images, are counted. It is a signal-dependent noise, 

meaning that its variance (spread of values) is propor-

tional to the signal’s mean value. This means that the 

more intense the image (higher the signal level), the 

greater the noise [32]. 

For large values of the mean (μ), the Poisson distri-

bution is well approximated by a normal distribution with 

the same mean and variance: 

 

P( ) N( , )    ,                            (2) 

 

where N is a normal distribution with expectation  . 

Equation (2) is based on a standard approximation 

in which a normal distribution approximates the Poisson 

distribution when the expected number of events is suffi-

ciently large. This assumption is reasonable for typical 

pixel intensities in medical imaging when the mean pho-

ton count exceeds approximately 10–12, as shown in [36, 

37]. Although a rigorous derivation of the optimality con-

ditions is beyond the scope of this study, the use of this 

approximation allows for analytical tractability and prac-
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tical relevance in moderate- to high-intensity imaging re-

gimes. 

In [32], the authors provide an intuitive justification 

for this approximation, which is based on the central limit 

theorem (CLT) and the Poisson distribution’s closed 

property when adding random variables. 

When modeling Poisson noise, special functions in 

software tools and approximation by Gaussian noise can 

be used, where the variance is equal to the value of the 

image pixel. This approach is valid for 8-bit images and 

is generally considered adequate when the pixel values 

exceed 10–15, as recommended in prior studies. 

This approximation allows replacing the Poisson 

distribution family with a Gaussian distribution family 

with a non-constant (spatially varying) variance that de-

pends on the pixel brightness. This simplifies the analysis 

and processing. In our experiments, the tested images 

predominantly featured medium- to high-intensity val-

ues, where the Gaussian approximation to Poisson noise 

remains valid. 

The same set of images was used across all simula-

tions, and each noise realization was regenerated for 

every trial using a fixed seed (0) to ensure consistency 

across methods. 

 

2.2. Image model 

 

Medical imaging encompasses various methods for 

obtaining images of a human body by processing bio-

medical signals. The resulting images differ depending 

on the imaging method and the study object, which af-

fects their characteristics. 

The effectiveness of compression methods largely 

depends on the image characteristics, including its com-

plexity and the presence of noise. Therefore, the selection 

of test images is an important stage of the study. Visual 

information with a simpler structure is easier to compress 

without significant loss, whereas complex images are the 

opposite. 

We used 10 images (med1.png - med10.png) ob-

tained from the website [radiopaedia.org]. These are 

medical images with atypical diagnoses. To simulate the 

conditions under interest, the images were artificially 

noised according to the aforementioned noise models.  

Fig. 1 shows an example of a wrist image: (a) orig-

inal, (b) version with additive Gaussian noise intensity, 

(c) version with Poisson noise. Both noises are more no-

ticeable in bright areas and almost invisible in dark areas. 

 

2.3. Techniques for Controlling the Efficiency  

of Lossy Compression 

 

When working with noisy images, one of the fea-

tures of lossy compression is the ability to suppress noise, 

provided that the control parameters are properly tuned,  

 
a 

 
b 

 
с 

Fig. 1. Example of original (a), AWGN  

noisy (
2 =25) (b) and Poisson noisy (c) images 
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which allows compression to be performed near the 

OOP.  Classical quality criteria are used to evaluate the 

effectiveness of compression, in particular MSE, as well 

as metrics related to visual perception, such as PSNR- 

HVS-M and MSSIM. These indicators involve compar-

ing the decompressed noisy image decI  with the original, 

noisy image origI  for a set of artificially noised test im-

ages. 

The main goal of lossy compression is to achieve an 

acceptable level of image quality at a maximum compres-

sion ratio (CR). Therefore, finding a balance between CR 

and quality is important, as an increase in CR inevitably 

leads to greater introduced distortions. The correspond-

ing rate/distortion curves (RDCs) behave in a traditional 

manner, i.e., are monotonous with metric values worsen-

ing as CR increases.  

If lossy compression is applied to a noisy image, the 

introduced distortions can be associated with both noise 

reduction and blurring of edges, details, or textures. All 

coders considered below are based on orthogonal trans-

form (namely, DCT) performed in blocks (of different 

sizes). Distortions are introduced due to DCT coefficient 

quantization. Then, if the obtained DCT coefficients are 

small compared to the quantization step (QS) and most 

likely correspond to noise, they are assigned zero values, 

and the positive effect of noise removal occurs. This pos-

itive effect increases (till a certain moment) if the QS in-

creases. In turn, if a DCT coefficient is larger and is not 

zeroed after quantization, this coefficient probably re-

lates to information content. Then, undesired distortions 

are introduced, and their intensity increases if the QS in-

creases. This means that optimum might be associated 

with the optimal operation point (OOP) and a certain QS 

or a parameter controlling compression (PCC) that is 

connected with the actual QS.   

In practice, if OOP exists, there are two reasons for 

its compression. First, CR is OOP is usually quite large 

(see data in next Sections). Second, the quality of the im-

age compressed in OOP is better than that of the uncom-

pressed (original noisy) image. Meanwhile, to perform 

lossy compression of the noisy image in OOP, one must 

be sure that OOP exists and that PCC can be correctly set 

in OOP.  

Despite the abovementioned verbal explanation of 

the effects occurring in the lossy compression of noisy 

images, the analytical statement and solving of the opti-

mization task are problematic. The main problem deals 

with limited a priori information on the statistics of DCT 

coefficients for image content and noise components for 

a given image to be compressed. Then, one must rely on 

the numerical simulation data obtained for a set of typical 

images and noise characteristics. A special analysis is re-

quired where RDCs can be obtained by “comparing” the 

true image (without noise) to the compressed (originally 

noisy) image for different compression parameter values.  

We are more interested in dependences that can 

only be obtained through simulation. 

Having a compressed image c
ijI ,i 1,..., I, j 1,..., J  , 

it is easy to calculate  

 

2I J tr c
tc ij iji 1 j 1

1
MSE (I I )

IJ  
   ,             (3) 

 

where tr c
ij ijI , I  - pixel brightness value of true and com-

pressed images, respectively; I J - image size, and  

 

2

tc 10
tc

255
PSNR 10log ( )

MSE
 .                (4) 

 

Other metrics can be similarly calculated using com-

pressed noisy and true images.  

In fact, to determine OOP or optimal CR, we need to 

establish whether an RDC have an extremum. The coor-

dinate of the global minimum of the MSEtc or the maxi-

mum of the PSNRtc is OOP in the traditional sense. It is 

also worth characterizing compression in OOP by the 

compression ratio CROOP, since this parameter is also im-

portant in practice. 

In addition to traditional metrics, such as MSE and 

PSNR, visual quality metrics are widely applied in image 

compression. The PSNR-HVS-M metric [38] considers 

the peculiarities of the human visual system and is based 

on the discrete cosine transform (DCT). Its values are 

measured in decibels: the higher the value, the higher the 

visual quality. The MSSIM metric [39] is based on a 

wavelet transform and has a value ranging from 0 (very 

poor quality) to 1 (excellent quality). 

Below, we have denoted PCCs for all the considered 

coders as Q. However, different encoders use different 

PCC parameters that vary in different limits, where its 

increase corresponds to a larger CR. QS can be any pos-

itive value, but it is usually less than 100. For the BPG 

coder, the PCC is simply called Q, which can only be a 

non-negative integer with a maximal value of 51. The 

larger Q, the larger CR.  In contrast, for HEIF and AVIF 

coders, the quality factor (QF) serves as Q (PCC), where 

the larger QF corresponds to the smaller CR. QF is inte-

ger from 1 to 100. 

  

2.4. Considered compression methods 

 

Four encoders are considered in this paper. Let us 

give more details concerning each of them.  

AGU is a high-quality lossy image encoder based 

on 32x32 DCT to decompose images into frequency 

components and reduce data size. The use of modern 
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techniques for lossless coding of quantized DCT coeffi-

cients and in-built deblocking after decompression is a  

feature of AGU.  

Better Portable Graphics (BPG) is an image format 

developed by Fabrice Bellard in 2014 that is based on the 

HEVC (H.265) standard and provides high compression 

while maintaining quality. Block processing, pixel pre-

diction, two-dimensional DCT, and adaptive quantiza-

tion are used to extract and compress important details 

efficiently. Entropy coding is the final step, which further 

reduces the amount of data. 

AVIF is a modern image format based on the AV1 

video codec that delivers high quality with significant 

compression. It supports both lossy and lossless compres-

sion, 12-bit color depth, high-resolution (HDR), transpar-

ency, and metadata preservation. Thanks to the efficient 

AV1 coding algorithms, AVIF files can be 50-60% 

smaller than JPEGs with similar quality. The format is 

supported by leading browsers and popular graphical ed-

itors. 

HEIF is a modern image format based on the HEVC 

(H.265) video codec that delivers high quality with a sig-

nificant reduction in file size (up to 50-60% smaller than 

JPEG). The format supports 16-bit color depth, transpar-

ency, HDR and animation, making it suitable for profes-

sional graphics work. HEIF is especially popular on Ap-

ple devices. 

Since Q for the BPG, AGU, AVIF and HEIF encod-

ers has different meanings, the plots are given separately 

for each encoder (see examples in Fig. 2-7). 

 

2.5. Software Configuration  

and Tools 

 

All simulations were performed within a well-de-

fined software environment to ensure the reproducibility 

of experiments.  

The BPG codec (version 0.9.8) was executed using 

the command-line tools bpgenc.exe and bpgdec.exe [32]. 

The AGU encoder was executed via AGU.EXE, ob-

tained from [33]; however, the developer provided no ex-

plicit version number. 

The AVIF and HEIF codecs were used through the 

libheif library (version 1.19.7), which was integrated into 

the Python environment using the pillow_heif package 

(version 0.22.0) [34]. 

The simulations were conducted using Python 

3.10.12, with the following key packages: OpenCV 

4.8.0.76, NumPy 1.26.4, scikit-image 0.22.0, pandas 

2.2.2, scikit-learn 1.5.0, sewar 0.4.5, psnrhvsm (custom 

ITU-T J.341 implementation) 

All experiments were executed on a machine with 

an Intel Core i5-1335U CPU, 16 GB RAM, and Windows 

11 x64 Pro.  

 

3. Results and Discussion 

3.1. Results obtained 

 

We begin our analysis with the usual MSEtc metric 

(3). In Fig. 2a - 2d, the data obtained for test medical im-

ages contaminated by AWGN with variance 25 for each 

encoder under study.  

As shown in Fig. 2, MSEtc varies in a wide range 

and behaves differently for different encoders. For the 

BPG encoder, at small Q (<23), MSEtc for the given im-

ages remains almost the same. A further increase in Q 

leads to a decrease in the vicinity of the OOP for all 10 

images in Fig. 2 a. Partial noise suppression is observed, 

characterized by a decrease in MSEtc. Then, as Q in-

creases further, MSEtc steadily increases if Q becomes 

larger. Note that for all images, QOOP is practically the 

same and equal to 31, which agrees with the data in [21, 

22].   

For the AGU encoder, the MSEtc dependences 

(Fig. 2,b) have values approximately equal to 2  for 

very small Q, they slowly increase till Q≈8, then they de-

crease till Q ≈20, having QOOP≈20=4σ, and, after this, 

start to increase again. Notably, there is no clearly de-

fined minimum in the dependence of MSEtc on Q for only 

one medical image (med9.png), which is the most com-

plex.  

Recall that for HEIF and AVIF, a large Q corre-

sponds to a small CR. In the case of the AVIF encoder 

(Fig. 2,c), there are minima (OOPs) for Q about 45 for 

almost all tested images. The behavior of the HEIF en-

coder is similar to that of the AVIF encoder, but minima 

(OOPs) are observed for Q ≈ 35.   

Fig. 3 shows the MSEtc dependence for the test im-

ages with Poisson noise. The behavior of the dependence 

is similar to that of additive Gaussian noise.  

AGU is the only encoder that does not have OOPs 

for all images with Poisson noise. For other encoders, the 

minimum MSEtc is observed for all plots, but it is shifted 

to the side of higher Q values compared to OOPs for ad-

ditive Gaussian noise with 
2 =25. Tables 1 and 2 show 

the average OOP positions for all encoders.  

For the BPG encoder, OOPs are observed for all test 

images, and QOOP is larger if the image mean Imean is 

larger (image mean is approximately equal to 

MSEtc(Q=1). QOOP is approximately 38. For the AGU en-

coder, minima are observed for 

QOOP≈4(MSEtc(Q=1))0.5=4(Imean)0.5. For AVIF, QOOP var-

ies in rather wide limits from 24 to 36, with the main ten-

dency of QOOP decreasing if MSEtc (Q=100) increases. A 

similar tendency is observed for HEIF, but the range of 

QOOP variation is from 20 to 30. This means that, for 

AVIF and HEIF, additional studies are needed to propose 

automatic and accurate algorithms of optimal PCC set-

ting in OOP.  
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a 

 
b 

 
c 

 
d 

Fig. 2. Dependences of MSEtc on Q for the AWGN 

noisy test images compressed by (a) – BPG, (b) – AGU, 

(c) – AVIF, (d) – HEIF 

 

 

 
a 

 
b 

 
c 

 
d 

Fig. 3. Dependences of MSEtc on Q for the Poison noisy 

test images compressed by (a) – BPG, (b) – AGU,  

(c) – AVIF, (d) – HEIF 
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According to the PSNRtc metric (Fig. 4, 5), the co-

ordinates of the maxima coincide with the corresponding 

coordinates of the minima of the MSEtc metric because 

these metrics are mutually dependent. The most interest-

ing observations are as follows. First, for AWGN (Fig. 

4), the BPG coder provides PSNROOP in the limits from 

36 to 45 dB, AGU coder – in the limits from 35.5 to 44 

dB, AVIF – in the limits from 35 to 44 dB, and HEIF – 

in the limits from 35.5 to 44 dB. Therefore, the best re-

sults are provided by the BPG encoder and the worst – by 

the AVIF encoder although the difference is not large. 

Second, for Poisson noise (Fig. 5), the BPG coder pro-

duces PSNROOP in the limits from 33 to 41.5 dB, AGU 

coder – in the limits from 32.5 to 41 dB, AVIF – in the 

range from 32.4 to 41 dB, and HEIF – in the range from 

33 to 41.5 dB. Thus, the best results are again provided 

by the BPG encoder and the worst – by the AVIF encoder 

although the difference is not large again.  

Since the compressed medical images are subject to 

visualization, considering the visual quality metric, 

MSSIM, is worth considering in our case. 

Analysis shows that, according to the MSSIMtc met-

ric (Fig. 6, 7), OOPs are observed as well and this hap-

pens for all ten test images in both Figures. Notably, the 

maxima’s coordinates for a given image and a given 

coder almost coincide with the corresponding minima’s 

coordinates of the MSEtc metric. This means that opti-

mizing compression according to MSEtc, one simultane-

ously optimizes the visual quality of compressed images 

according to the visual quality metric MSSIMtc (in fact, 

the same holds for the metric PSNR-HVS-Mtc). Then, the 

recommendations for setting QOOP for the BPG and AGU 

encoders are the same as those in the previous section. 

Concerning the AVIF and HEIF encoders, QOOP for them 

vary in certain limits. For AWGN with a noise variance 

of 25 (Figures 6,c and 6,d), QOOP varies from 44 to 50 for 

AVIF and from 30 to 40 for HEIF. For Poisson noise 

(Figures 7,c and 7,d), QOOP varies from 26 to 34 for AVIF 

and from 20 to 32 for HEIF. Thus, additional research is 

needed to provide automatic and accurate procedures for 

optimal PCC setting in OOP for AVIF and HEIF. Com-

parison of MSSIMtc in OOPs shows that for a given test 

image and noise type, they are slightly better for the BPG 

encoder than for other considered compression tech-

niques. 

 

3.2. Statistical Analysis and Discussion 

 

Finally, for better comparison, Tables 1 and 2 pre-

sent the data after averaging (for the considered test im-

ages) for AWGN and Poisson noise cases, respectively. 

These are the average values (and standard deviations in 

some cases) for QOOP, quality metrics, and CR in OOP. 

CR in OOP is important because memory savings can be 

valuable if many images are acquired in some clinic and  
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с 
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Fig. 4. Dependences of PSNRtc metric values on Q  

for the AWGN noisy test images compressed by  

(a) – BPG, (b) – AGU, (c) – AVIF, (d) – HEIF. 
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Fig. 5. Dependences of PSNRtc metric values on Q  

for the Poison noisy test images compressed by  

(a) – BPG, (b) – AGU, (c) – AVIF, (d) – HEIF.   

 
a 

 
b 

 
c 

 
d 

Fig. 6. Dependences of MSSIMtc on Q for the AWGN 

noisy test images compressed by (a) - BPG, (b) – AGU, 

(c) – AVIF, (d) - HEIF. 
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d 

 

Fig. 7. Dependences of MSSIMtc on Q for the Poi-

son noisy test images compressed by (a) - BPG, (b) – 

AGU, (c) – AVIF, (d) - HEIF. 

 

then saved. The mean CR values reach tens for AWGN 

and can even exceed 100 for Poisson noise. This means 

that memory savings can be very significant. In this 

sense, the results for the AGU encoder are the worst. Re-

garding the quality metrics in OOP, the BPG coder pro-

vides the best values of average MSE, PSNR, PSNR-

HVS-M, and MSSIM. The worst results are produced by 

AVIF, but the difference is small. Thus, the BPG encoder 

appears to be the best practical solution. 

To address concerns regarding the rigor of our sta-

tistical evaluation, we performed formal statistical signif-

icance tests and extended the analysis beyond reporting 

only average values and standard deviations. We applied 

one-way ANOVA (Analysis of Variance) tests to com-

pare the performance of different codecs across five key 

metrics: MSE, PSNR, PSNR-HVS-M, compression ratio 

(CR), and MSSSIM. 

ANOVA is a widely used statistical method that as-

sesses whether the means of three or more groups (in our 

case, different codecs) differ significantly. It does so by 

analyzing the variance between groups compared with 

the variance within groups. A significant ANOVA result 

(indicated F-statistic and low p-value) suggests that at 

least one codec performs statistically differently from the 

others on the given metric. 

The analysis was conducted on results aggregated over 

ten test images for each codec, separately for each noise 

condition (AWGN and Poisson noise). The findings 

demonstrate statistically significant differences among 

codecs for PSNR (AWGN: F=42.39, p < 6.75× 

10-27; Poisson: F=99.99, p<4.48×10 -62), PSNR-HVS-M 

(AWGN: F=29.28, p<1.09×10-18; Poisson: F=8.64, 

p<1.04×10-5), CR (AWGN: F=29.97, p<4.04×10-19; 

Poisson: F=14.37, p<2.64×10-9), and MSSSIM (AWGN: 

F=13.31, p<1.22×10-8; Poisson: F=27.59, p<1.25×10-17). 

Although the differences in MSE were less pronounced 

and did not reach statistical significance for Poisson noise 

(F=0.90, p=0.44), they were significant for AWGN 

(F=26.84, p<3.71×10-17). This overall pattern confirms 

that codec performances differ meaningfully for most 

evaluated metrics across noise types. 

Furthermore, we complemented the statistical tests 

with a ranking-based analysis identifying how frequently 

each codec achieved the best or worst results per image 

and metric: 

PSNR metric: 

The best: BPG for all 10 images for both noise types; 

The worst: AGU and AVIF most frequently; 

PSNR-HVS-M: 

The best: BPG leads (9/10 AWGN, 8/10 Poisson); 

The worst: AVIF and AGU dominate the worst rankings.  

MSSSIM: 

The best: BPG for all 10 images for both noise models; 

The worst: AVIF and AGU evenly split poor rank-

ings. 
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Table 1 

The statistics for OOP for images contaminated by AWGN with variance 25  

Coder Average 

Qoop 

Average MSE 

± std 

Average 

PSNR ± std 

Average PSNR-HVS-

M ± std 
Average CR  

Average 

MSSIM ± std 

AGU 24 9.92± 8.03 38.78± 4.35 37.14± 2.20 40.59  0.984± 0.007 

AVIF 49 10.70± 8.55 38.47± 4.44 36.92± 2.51 52.35 0.984± 0.009 

BPG 31 8.83± 6.86 39.31± 4.40 38.13± 2.37 48.09 0.987± 0.007 

HEIF 35 10.07± 7.73 38.71± 4.32 37.25± 2.40 52.00 0.984 ± 0.008 

 

Table 2 

The statistics for OOP for images contaminated by Poisson noise 

Coder Average 

Qoop 

Average MSE 

± std 

Average 

PSNR ± std 

Average PSNR-HVS-

M ± std 
Average CR  

Average 

MSSIM ± std 

AGU 53 18.55± 14.94 35.97± 4.24 33.02± 2.83 98.46 0.968 ± 0.018 

AVIF 31 18.93± 15.78 35.93± 4.49 32.94± 3.10 115.70 0.968± 0.020 

BPG 38 16.81± 14.53 36.45± 4.51 33.61± 2.89 140.58 0.971± 0.017 

HEIF 24 18.12± 14.72 36.09± 4.37 33.19± 3.00 110.16 0.969± 0.019 

This comprehensive analysis confirms that BPG 

consistently delivers superior PSNR, perceptual quality 

(PSNR-HVS-M and MSSSIM), and competitive com-

pression efficiency.  

We provide robust evidence substantiating the su-

periority and trade-offs among codecs by combining for-

mal hypothesis testing with per-image ranking statistics, 

strengthening the credibility of our conclusions. 

 

4. Conclusions 
 

This study performed a comprehensive comparison 

of four modern encoders (BPG, AGU, AVIF, HEIF) for 

compressing Gaussian or Poisson noise-contaminated 

medical images. In accordance with the task set, the fol-

lowing results were obtained: 

­  It is found that the MSEtc, PSNRtc and 

MSSIMtc metrics effectively identify the optimal operat-

ing points for the compression parameter (QOOP), at 

which the best ratio between image quality and compres-

sion ratio (CR) is achieved. For example, for AWGN 

noise, the BPG encoder achieves QOOP<≈ 31, average 

PSNR ≈ 39.31 dB, MSSIM ≈ 0.987, and CR ≈ 48.09. For 

Poisson noise, QOOP ≈ 38, PSNR ≈ 36.45 dB, MSSIM ≈ 

0.971, and CR ≈ 140.58. 

­ It is shown that the BPG coder provides the best 

results for all studied metrics for both Gaussian and Pois-

son noise, demonstrating high image quality with a sig-

nificant reduction in file size. By comparison, the AVIF 

encoder gives average PSNR ≈ 38.47 dB and MSSIM ≈ 

0.984 with CR ≈ 52.35 for AWGN, and PSNR ≈ 

35.93 dB, MSSIM ≈ 0.968 with CR ≈ 115.70 for Poisson 

noise. 

­ The AGU encoder was more effective for im-

ages with Gaussian noise, providing optimal QOOP values 

according to the theoretical model, with QOOP ≈ 24, 

PSNR ≈ 38.78 dB, MSSIM ≈ 0.984 and CR ≈ 40.59.   

However, it was less suitable for processing images with 

Poisson noise, where QOOP ≈ 53, PSNR ≈ 35.97 dB, 

MSSIM ≈ 0.968 and CR ≈ 98.46. 

­ For AVIF and HEIF encoders, significant varia-

bility in the position of the optimal QOOP operating point 

was found, e.g., for HEIF under Poisson noise QOOP var-

ies around 24 with PSNR ≈ 36.09 dB, MSSIM ≈ 0.969 

and CR ≈ 110.16, which complicates the automatic tun-

ing of compression parameters. This indicates the need 

for further research on the stability and predictability of 

their characteristics. It is also desirable to develop practi-

cal algorithms for setting quality factors for these coders 

depending on noise type and intensity.   
­ It was found that compression at QOOP points al-

lows not only to effectively reduce the size of images, but 

also to partially suppress noise without significant loss of 

diagnostically important information. 

The obtained results have practical significance for 

medical image storage and transmission systems, partic-

ularly in telemedicine. Further studies should be com-

bined with expert assessment by physicians to confirm 

the clinical suitability of the processed images.  
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ПОРІВНЯЛЬНИЙ АНАЛІЗ ЕФЕКТИВНОСТІ МЕТОДІВ СТИСНЕННЯ  

BPG, AGU, AVIF ТА HEIF ДЛЯ МЕДИЧНИХ ЗОБРАЖЕНЬ,  

ПОШКОДЖЕНИХ ШУМАМИ ДВОХ ТИПІВ  

В. В. Науменко, В. В. Лукін, В. М. Науменко,  

Н. В. Кожемякіна, М. С. Солодовник  

Предметом дослідження є стиснення з втратами за допомогою кодерів BPG, AGU, AVIF та HEIF меди-

чних зображень з різним рівнем візуальної складності, спотворених адитивним гаусівським та пуассонівським 

шумом. Метою роботи є порівняння кодерів щодо оптимальних параметрів стиснення зображень та вибір 

найбільш придатної метрики для визначення оптимальної робочої точки. Розглянуті задачі включають вибір 

тестових зображень у відтінках сірого 512x512 з різним ступенем візуальної складності, включаючи візуально 

складні зображення з великою кількістю країв та текстур, помірно складні зображення з краями та текстурами, 

що прилягають до однорідних областей, та візуально прості зображення, що складаються переважно з одно-

рідних областей; встановлення метрик оцінки якості зображень та оцінка їх ефективності при різних параме-

трах стиснення кодерів; вибір однієї або декількох метрик, які чітко визначають положення оптимальної ро-

бочої точки; надання на основі отриманих результатів рекомендацій щодо стиснення медичних зображень, 

спотворених адитивними гаусівським та пуассонівським шумами, чотирма кодерами з метою максимального 

наближення якості відновленого зображення до зашумленого оригіналу. Використані методи включають ме-

тоди оцінки якості зображень з використанням метрик MSE, PSNR і MSSIM, а також програмне моделювання 

на мові Python без використання вбудованого генератора пуассонівського шуму. Результати показують, що 

для всіх цих метрик можна визначити оптимальні робочі точки (ОРТ), коли якість стисненого зображення є 

кращою за якість відповідного зашумленого вихідного зображення при достатньо високому ступені стис-

нення. Більше того, досягнення відповідного балансу між ступенем стиснення та якістю зображення призво-

дить до часткового зменшення шуму без помітного спотворення інформативності стисненого зображення. 

Дослідження підкреслює важливість використання відповідних метрик для оцінки якості стиснених медичних 

зображень і дає уявлення про визначення параметра стиснення Q для досягнення оптимальної робочої точки 

BPG-кодера для конкретних зображень. Однак положення ОРТ та її наявність залежать не тільки від складно-

сті зображення, але й від обраного кодера. Висновки. Наукова новизна отриманих результатів полягає в на-

ступному: 1) розгляд моделей шуму та рівнів параметрів, характерних для медичних зображень, а саме: ади-

тивного гаусівського шуму такої інтенсивності, що він приблизно відповідає ледь помітним відмінностям, та 

сигнально-залежного пуасонівського шуму; 2) Аналіз багатомасштабного індексу структурної подібності 

(MS-SSIM), який раніше не досліджувався в роботах зі стиснення зашумлених медичних зображень з втра-

тами; 3) детальне дослідження кодерів AVIF та HEIF для визначення того, чи спостерігається для них опти-

мальна робоча точка (ОРТ) і за яких шумових умов; 4) використання набору даних, що складається з десяти 

медичних зображень різної візуальної складності, з узагальненими тенденціями, виявленими для різних стру-

ктурних типів; 5) здатність багатьох метрик мати ОРТ для зображень помірної візуальної складності або зо-

бражень, в яких переважають однорідні ділянки; 6) для пуассонівського шуму дослідження підкреслює зале-

жність Q в ОРТ від середньої інтенсивності зображення, яка може бути обґрунтовано розрахована для зада-

ного зображення, призначеного для стиснення, на основі отриманих результатів; 7) Оскільки різні кодери ви-

користовують різні параметри, які керують стисненням, для різних кодерів потрібні різні підходи до визна-

чення ОРТ; 8) Коефіцієнти стиснення для зображень, стиснутих в ОРТ, досить високі, що додатково обґрун-

товує доцільність стиснення зображень в ОРТ або біля неї. 

Ключові слова: стиснення зображення з втратами; BPG; AGU; AVIF; HEIF; AWGN; шум Пуассона; оп-

тимальна робоча точка. 
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