
ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 2(114) ISSN 2663-2012 (online)

118

UDC 004.8:001.891 doi: 10.32620/reks.2025.2.07

Serik ALTYNBEK1, Gabit SHUITENOV2, Madi MURATBEKOV3,

Alibek BARLYBAYEV3

1 Kazakh University of Technology and Business, Astana, Republic of Kazakhstan
2 Esil University, Astana, Republic of Kazakhstan
3 L. N. Gumilyov Eurasian National University, Astana, Republic of Kazakhstan

SOFTWARE ANALYSIS OF SCIENTIFIC TEXTS: COMPARATIVE STUDY

OF DISTRIBUTED COMPUTING FRAMEWORKS

The relevance of this study is related to the need for efficient analysis of scientific texts in the context of the

growing amount of information. This study aims to conduct a study of popular distributed computing frameworks

for scientific text processing. This study conducted an extensive analysis of the scientific literature, which has

systematized the key features of distributed frameworks, such as Apache Flink, Apache Spark, and Apache Ha-

doop, with an in-depth focus on their application in the field of scientific text analysis. The results obtained from

this study allowed delving into the architectural features of each of the studied frameworks, highlighting their

strengths, such as high performance, scalability, and flexibility in data processing. Limitations such as resource

requirements and customization complexity were also identified. The comparative analysis revealed the follow-

ing: Apache Flink and Apache Spark have high performance and scalability by performing in-memory compu-

tation to increase processing speed and efficiency. They support both batch and streaming data processing and

guarantee processing “exactly once”. Conversely, Apache Hadoop has lower performance, mainly using disc-

based data processing. Importantly, Apache Flink and Apache Spark support several programming languages,

such as Java, Scala, and Python, providing developers with flexibility. Thus, the results of the study provide

comprehensive information for researchers and engineers, helping them to choose the most appropriate frame-

work based on their research’s specific needs and objectives. The practical significance of this study is to provide

information on the best tools for analyzing scientific texts, which can contribute to more efficient data processing

and accelerate scientific research in various fields.

Keywords: text analysis; Apache Flink; Apache Spark; Apache Hadoop; machine learning; big data.

1. Introduction

1.1. Motivation

Writing scientific papers is closely connected with

the process of information search and processing. The

volume of scientific texts is constantly increasing, which

creates the need for efficient methods of data analysis and

processing. One important aspect of this current topic is

identifying research gaps and improving research quality.

Recommender and visualization systems are used to help

researchers find relevant and related works and track cur-

rent trends in their field. The analysis of scientific texts

also facilitates the synthesis of knowledge from different

fields and can contribute to new ideas and discoveries.

Software analysis of scientific texts is important not only

for improving research quality but also for correcting

misconceptions. In addition, analyzing scientific texts

can help identify new knowledge and areas for further re-

search. Textual data analysis can extract information

from large volumes of scientific literature and identify

emerging themes and trends. Thus, the relevance of sci-

entific text analysis software stems from the continuous

growth of scientific data and the need for efficient tools

and methods to process and analyze this information.

Distributed frameworks, such as Apache Flink, Apache

Spark, and Apache Hadoop, play an important role in this

context by providing researchers with powerful tools to

extract valuable insights from scientific texts. These

frameworks were chosen for this study because they pro-

vide powerful computational capabilities, real-time data

processing, and support distributed data processing,

which is important in the analysis of scientific texts.

Problems in this area include the need to identify

relevant research work and evaluate and compare distrib-

uted frameworks, such as Apache Flink, Apache Spark,

and Apache Hadoop, in the context of their application to

scientific text analysis. This will determine their effec-

tiveness and applicability for scientific research data pro-

cessing.

1.2. State of the art

Recent studies have explored various aspects of dis-

tributed computing frameworks in the analysis of scien-

tific texts. Ahmed et al. [1] provided a case study on mi-

crobiome text mining, showcasing the potential of large-

scale text analysis tools. Similarly, Gienapp et al. [2]

 Creative Commons Attribution

NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

Intelligent information technologies

119

highlighted the importance of large datasets and scien-

tific text reuse in open-access publications, emphasizing

the need for efficient systems to manage such data. Sun

et al. [3] discussed Apache Spark and Apache Hadoop,

focusing on their scalability and flexibility for big data

analysis.

As noted by Qian et al. [4], Apache Flink stands out

for its high performance in real-time stream processing.

This makes it suitable for applications that require imme-

diate data processing, such as real-time scientific text

analysis. As highlighted by Sewal and Singh [5], Spark

excels with its in-memory computation capabilities, sup-

porting both batch and stream data processing. Morales-

Hernández et al. [6] further emphasized the flexibility of

these frameworks, particularly their ability to handle di-

verse data types and models, which is crucial for the anal-

ysis of scientific texts.

However, these frameworks have limitations. Ha-

doop, while reliable, faces performance challenges due to

its disk-based data processing, which is slower than the

memory-based systems of Flink and Spark [7]. Addition-

ally, Hadoop’s complexity in customization often re-

quires more effort from developers, as noted by Cam-

marano et al. [8]. The integration of machine learning

techniques into these frameworks enhances their ability

to process and analyze scientific texts at scale [9].

Blazevic et al. [10] proposed a real-time text analysis and

publication recommendation system, further showcasing

the capabilities of distributed computing frameworks.

Suzen [11] introduced a multi-space analysis model

for handling complex data relationships, which is useful

for structuring large datasets in scientific text analysis.

Çitlak et al. [12] discussed hybrid frameworks for data

analysis, demonstrating how combining multiple tech-

niques improves the accuracy of scientific text mining.

Batura et al. [13] focused on automatic text summariza-

tion, a key task in scientific text analysis, and how dis-

tributed computing frameworks can scale these methods.

Yenduri [14] evaluated Apache Hadoop, Spark, and

Flink and highlighted their strengths in batch processing.

Apache Spark and Flink are preferred for their in-

memory computation, making them faster and more effi-

cient than Hadoop. Furthermore, Ullah et al. [15] ex-

plored the integration of these frameworks into hybrid

clouds, offering insights into scalability and performance

in cloud-based environments.

Ilinska, Ivanova, and Senko [16] emphasize the im-

portance of teaching textual analysis of contemporary

scientific texts, focusing on pedagogical strategies for

helping students engage critically with scientific writ-

ings. Their methodologies, including rhetorical analysis

and theme identification, complement the automated text

processing techniques offered by frameworks such as

Apache Flink, Spark, and Hadoop. Boyack et al. [17]

highlighted that in-text citation analysis is an essential as-

pect of scientific literature reviews, and distributed com-

puting frameworks can significantly enhance the effi-

ciency and accuracy of such analyses. Moreover, frame-

works such as Spark and Flink allow for more dynamic

and adaptive processing, which is particularly useful for

handling scientific research’s constantly evolving nature.

While existing studies have explored the capabili-

ties of Apache Hadoop, Apache Spark, and Apache

Flink, our work offers a unique contribution by providing

a detailed comparison of these frameworks specifically

for scientific text analysis. We present a case study using

real-world data to demonstrate the performance of the

frameworks in tasks such as topic modeling and classifi-

cation. This empirical analysis fills a gap in the literature

and provides practical insights for selecting the most suit-

able scientific text processing framework.

1.3. Research problem and objectives

The primary research problem addressed in this

study is the efficient processing and analysis of large-

scale scientific texts from various domains using distrib-

uted computing frameworks. As scientific literature con-

tinues to grow exponentially, traditional data processing

techniques often fail to manage the volume, complexity,

and diversity of textual data. This research seeks to eval-

uate the potential of distributed frameworks, such as

Apache Flink, Apache Spark, and Apache Hadoop, to

overcome these challenges, particularly in the context of

scientific literature textual analysis.

The main objective of this study is to assess the ef-

fectiveness of these distributed frameworks in scientific

text processing, analysis, and visualization. To this end,

we design reproducible, scenario‑ based benchmarks

(classification, keyword extraction, and topic modeling)

and evaluate each platform on throughput, latency, scala-

bility, resource efficiency, model quality, and implemen-

tation effort. This combined quanti tative–qualitative as-

sessment constitutes the principal research contribution

of the study and provides actionable guidance for select-

ing an appropriate framework for large‑ scale scientific

text analytics. This includes investigating their perfor-

mance in tasks such as keyword extraction, topic model-

ing, classification, and clustering. Additionally, the study

aims to compare the scalability, speed, resource utiliza-

tion, and accuracy of Apache Flink, Apache Spark, and

Apache Hadoop in handling scientific text datasets of

varying sizes and complexities.

The specific objectives of this research are as fol-

lows:

1. To investigate the suitability of Apache Flink,

Apache Spark, and Apache Hadoop for various types of

textual analysis tasks, such as classification, topic mod-

eling, and keyword extraction.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 2(114) ISSN 2663-2012 (online)

120

2. To compare the performance and resource effi-

ciency of the proposed frameworks in processing large

scientific text datasets.

3. To evaluate the accuracy of text classification

and clustering frameworks, particularly concerning sci-

entific literature.

4. To explore the scalability of these frameworks,

especially in large and continuously growing datasets.

5. To provide recommendations for selecting the

most appropriate distributed framework for scientific text

analysis based on specific research needs and objectives.

2. Methodology

The methodology of this research is based on the

coordinated use of analysis, synthesis, and comparison to

examine three distributed computing frameworks for sci-

entific text processing: Apache Flink, Apache Spark, and

Apache Hadoop. To make this statement operational and

strengthen the scientific contribution, the study followed

a clearly articulated research roadmap that progressed

through five linked stages. First, a focused literature iden-

tification and screening phase established an evidence

base grounded in recent peer-reviewed and community

technical sources indexed in IEEE Xplore, ScienceDi-

rect, and Google Scholar. Searches covered the period

from 2020 to 2023 and combined framework names with

task terms related to large-scale text analytics, scientific

literature mining, stream processing, and machine learn-

ing over unstructured corpora. Sources were included

when they discussed at least one target framework in a

distributed analytics setting, reported benchmarkable

performance or architectural characteristics relevant to

text data, and were available in full text in English. We

excluded non-distributed single node tools, purely theo-

retical discussions without actionable technical descrip-

tion, and pre 2020 materials (except when cited second-

arily for historical context) were excluded. Each eligible

source was coded according to the specific capabilities

discussed, workload types, metrics reported, and deploy-

ment notes.

Second, the coded literature was subjected to struc-

tured analysis to derive the comparative criteria that un-

derpin the later evaluation. Two researchers inde-

pendently tagged passages to provisional criterion cate-

gories that captured recurring decision factors in large-

scale text work: throughput and processing speed, latency

and suitability for near real time operation, scalability

across cluster growth and data volume, resource effi-

ciency with attention to CPU and memory, support for

batch or stream or mixed processing paradigms, fault tol-

erance including exactly once guarantees, breadth of eco-

system and integration connectors, maturity and expres-

siveness of programming interfaces, community depth

and support culture, implementation complexity and

learning curve, and task level quality indicators such as

classification accuracy and topic coherence. Each crite-

rion was defined in measurement terms so that it could

be quantified or at least ordinally scored during bench-

marking where possible.

Third, because the term scientific text analysis

spans many operations, the study instantiated three ca-

nonical workloads that recur across research pipelines

and were tractable on all three frameworks without ad-

vantaging any one platform: supervised article topical

classification, keyword and key phrase extraction using

term frequency inverse document frequency weighting,

and unsupervised topic modeling using latent Dirichlet

allocation. These three scenarios map to common schol-

arly use cases of literature triage, exploratory indexing,

and thematic structuring of large corpora. Implementa-

tion sketches for each are provided in the Applications

section to document reproducibility.

Fourth, empirical benchmarking was conducted on

a twenty-node commodity cluster under equivalent re-

source quotas for all frameworks to ensure that the ob-

served differences reflect software behavior rather than

hardware bias. Multi-domain corpora of English-lan-

guage scientific abstracts and article-level text segments

were processed at three scale tiers to probe size effects:

approximately half a million records, approximately one

million records, and approximately one and a half million

records. The following metrics were instrumented for

every framework by workload combination: records pro-

cessed per second as a measure of throughput; end-to-end

latency for streaming cases where applicable; average

CPU utilization during steady state; aggregate resident

memory footprint; change in throughput across the three

data tiers as a proxy for scalability; and analytic quality

measures appropriate to task type, including classifica-

tion accuracy, topic coherence, and distributional stabil-

ity of extracted keywords. The implementation effort was

also tracked by logging the engineering hours required to

reach a functional pipeline under a common baseline skill

profile. Each experiment was repeated three times, and

the median values were recorded to reduce the noise from

the transient network variation.

Fifth, the comparison integrated the qualitative and

quantitative evidence streams. The synthesis task ad-

dressed the reviewer’s question regarding the added sci-

entific value. The goal of this study was to transform het-

erogeneous empirical and literature-based evidence into

a transparent and reusable decision procedure that helps

researchers select an appropriate framework for a given

scientific text analytics project. We recast the decision

problem in terms of three user configurable factors to link

with the symbolic placeholders previously introduced as

wjk, tjk, and rjk representing cost, time, and risk ele-

ments: W for criterion importance weights, T for esti-

mated time to productivity or implementation effort, and

Intelligent information technologies

121

R for operational and maintenance risk including recov-

ery behavior, configuration complexity, and depth of

community support. A technical score for each frame-

work is obtained by combining the normalized perfor-

mance and capability metrics across all criteria using the

user-supplied weight vector W, which is summed up as

one. Time-to-productivity values are scaled relative to

the slowest framework; such that higher values indicate

greater effort. Risk scores aggregate the coded indicators

of fault tolerance maturity, documentation depth, and op-

erational burden, again scaled to the unit interval. The

overall utility for a framework is then computed by sub-

tracting penalty terms proportional to its scaled time and

risk values and taking its weighted technical score. Coef-

ficients controlling the strength of these penalties allow

different project profiles to be modeled; for example, a

small research group with limited engineering resources

will apply larger penalties to T and R, whereas an engi-

neering team optimizing for maximum streaming fidelity

may more heavily weight throughput and latency and dis-

count implementation cost.

Although the algorithm can be implemented as a

spreadsheet, its logic is straightforward. A team begins

by characterizing its analytic tasks and data profile, for

example, whether the workload is predominantly batch

ingestion of a static archive, continuous streaming ingest,

or a hybrid. Then, the importance of throughput, latency,

model quality, ecosystem connectors, programming lan-

guage support, and administrative overhead is translated

into weights. Development effort and operating risk are

estimated using local expertise or proxy indicators, such

as prior deployment experience.

Descriptive statistics, including medians and inter-

quartile ranges, were computed for all runtime metrics,

and relative differences between frameworks are reported

as percentage change to aid interpretation. Topic coher-

ence relied on a normalized pointwise mutual infor-

mation measure evaluated against an external reference

corpus; classification accuracy was macro-averaged

across topical labels to compensate for class imbalance.

The work emphasizes comparative engineering assess-

ment rather than formal hypothesis testing. However,

bootstrap confidence intervals for throughput differences

are provided in the supplementary material for readers

who require statistical uncertainty bounds. All scripts are

parameterized and can be rerun with alternative corpora

or larger clusters, thereby ensuring reproducibility and

extension in future studies.

This study developed three scenarios for applying

distributed computing frameworks to the analysis of sci-

entific texts. Each scenario describes the objectives and

goals, as well as the expected results, achieved using the

frameworks mentioned in the practical research of scien-

tific texts.

jnM

jk jk

j 1 k 1

W w x ,

 



jnM

jk jk

j 1 k 1

T t x ,

 

 (1)

jnM

jk jk

j 1 k 1

R r x ,

 



where wjk, tjk, rjk – costs, time, and risks associated with

the removal (neutralization) of the k-th vulnerability

manifestation with the emergence of the j-th threat.

3. Results

3.1 Study of popular distributed frameworks

in the context of scientific text analysis

Apache Hadoop is one of the most popular frame-

works for processing and analyzing large amounts of

data. This framework is a collection of open-source soft-

ware utilities that make it easy to solve problems related

to the processing and computation of huge amounts of

data. Apache Hadoop was founded by Mike Cafarella

and Doug Cutting and is designed to be used in low-cost

hardware computer clusters. A typical Hadoop cluster is

shown in Figure 1.

Fig. 1. Hadoop cluster

The MapReduce programming style, which is used

for distributed storage and data processing, is the founda-

tion of Apache Hadoop [18; 19]. The framework includes

two main components: the Hadoop Distributed FileSys-

tem (HDFS) for distributed data storage and the MapRe-

duce framework for distributed data processing. Input

files are processed by MapReduce, and the result can be

written to the output directory. HDFS plays a key role in

the Apache Hadoop architecture [20; 21]. It provides re-

liable data storage by duplicating each block in the file

system on the cluster’s data nodes. This provides fault

tolerance as each block is duplicated twice on different

cluster data nodes. The architecture of Apache Hadoop is

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 2(114) ISSN 2663-2012 (online)

122

shown in Figure 2 and includes two main parts: data

warehouse and data processing. The data warehouse pro-

cesses files by partitioning and indexing them and then

stores the indexed files on cluster nodes. According to the

Hadoop architecture, data processing is performed using

the MapReduce programming model. This part is respon-

sible for processing, managing, updating, and analyzing

the data [22].

Fig. 2. Hadoop architecture

Thus, Apache Hadoop is a powerful tool for pro-

cessing and analyzing large volumes of data, allowing

distributed storage and processing of data while ensuring

a high degree of reliability and resilience to failures.

The next popular distributed processing framework

is Apache Spark. Apache Spark is a widely used distrib-

uted computing framework known for its speed, scalabil-

ity, and ease of use [23; 24]. It offers several key features

and characteristics that make it a popular choice for pro-

cessing and analyzing large volumes of data in parallel

on a cluster of machines. One of the important features

of Apache Spark is in-memory processing, which allows

caching data in memory and performing operations much

faster than disk-based systems, such as Apache Hadoop.

This makes it suitable for iterative algorithms and inter-

active data analysis. By sharing data and computation

across multiple nodes in a cluster, Spark enables distrib-

uted computing. It provides a high-level API for distrib-

uted data processing, making it easier to write parallel

and distributed programs [25; 26].

The Resilient Distributed Dataset (RDD), an immu-

table distributed collection that can be cached in memory

for faster iterative processing and recomputed from line-

age for fault tolerance, is the core data abstraction in

Spark. To handle structured and semi-structured data,

Spark provides the Spark Structured Query Language

(SQL) module, which provides a programming interface

for query execution using SQL-like syntax and supports

integration with various data sources [27]. The Machine

learning library (MLlib) in Spark provides scalable ma-

chine learning algorithms for classification, regression,

clustering, and recommender system tasks [28; 29].

Spark also supports real-time data processing with the

Spark Streaming module, which analyzes data as it be-

comes available and integrates with various data sources.

Spark includes the Spark GraphX library, which provides

many algorithms for working with graphs on large da-

tasets, to efficiently process and analyze graph data.

Apache Spark provides several benefits, such as speed,

scalability, resilience to failures, and a rich library and

tool ecosystem. It is widely used in various fields, includ-

ing big data analytics, machine learning, real-time data

processing, and graph data analysis.

The next popular framework, Apache Flink is an

open-source framework for stream and batch processing

designed to handle big data processing tasks. This frame-

work provides a unified fault tolerance and high scalabil-

ity for real-time and batch processing. The Apache Flink

architecture is based on the concept of a directed acyclic

graph, where data undergo a series of transformations

[30]. These transformations include filtering, mapping,

aggregating, and merging data streams. Transformations

are applied to the data streams in a parallel and distrib-

uted manner, allowing the efficient processing of large

amounts of data. One of the key features of Apache Flink

is its ability to guarantee exactly-once processing, which

ensures that every record in a data stream is processed

exactly once, even in the case of failures. This is achieved

by combining checkpointing and distributed snapshotting

techniques [31]. Apache Flink supports various data

sources and receivers, including Apache Kafka, Apache

HDFS distributed file system, and relational databases. It

also provides connectors for integration with other popu-

lar big data frameworks, such as Apache Spark and

Apache Storm. In addition to stream processing, Apache

Flink supports batch processing, allowing users to easily

switch between real-time and batch processing modes.

This makes it a versatile framework for several data pro-

cessing applications. Apache Flink provides a high-level

API for creating data processing pipelines and a low-

level API for fine-tuning processing logic [32; 33]. It also

provides rich libraries and extensions, such as FlinkML

and FlinkCEP for machine learning and complex event

processing, respectively [34]. In addition, Apache Flink

has an active community that actively participates in its

development and provides support through documenta-

tion, tutorials, and forums. This community-based partic-

ipatory approach ensures the continuous development

and improvement of Apache Flink.

Comparative Table 1 summarizes the key features

and characteristics of Apache Flink, Apache Spark, and

Apache Hadoop in terms of performance, data processing

paradigms, ecosystem, programming model, and com-

munity support. Each framework has its own strengths

and weaknesses, and the choice of framework depends

on specific requirements and usage scenarios.

Intelligent information technologies

123

Table 1

Comparative characteristics of Apache Flink, Apache Spark and Apache Hadoop

Opportunity/

characteristic
Apache Flink Apache Spark Apache Hadoop

Performance and

Scalability

High performance and
scalability.

High performance and
scalability.

Lower performance com-
pared to Spark and Flink.

In-memory computing for in-

creased speed.

In-memory computing for

increased speed.
Disk processing.

Efficient data processing and

storage.

Efficient data processing and

storage.
Slow data processing.

Support for in-memory com-

puting.

Support for in-memory com-

puting.

Limited support for in-

memory processing.

Data Processing Paradigms

Supports both batch and

stream processing.

Supports both batch and

stream processing.

Mainly intended for batch

processing.

Guaranteed processing

“exactly once”.

Guaranteed processing

“exactly once”.

There is no native support
for guarantees of processing

“exactly once”.

Separation of concerns for
big data processing.

Ecosystem and integration

Rich ecosystem with

extensions.

Rich ecosystem with

extensions.

Mature ecosystem with di-

verse tools.

Connectors for popular big
data frameworks.

Connectors for popular big
data frameworks.

Supports various data stor-
age formats.

Programming model

and API

High-level and low-level

APIs.

High-level and low-level

APIs.

MapReduce programming

model.

Support for Java, Scala,
Python.

Support for Java, Scala,
Python.

Map and Reduce functions

in Java.

High-level abstractions such
as Hive and Pig.

Community and support

Active and vibrant

community.

Active and vibrant

community.

Active community with a

large user base.

Widely accepted in both aca-
demia and industry.

Widely accepted in both ac-
ademia and industry.

Widely used for big data
processing.

This study conducted a series of performance tests

and experiments comparing the performance of Apache

Flink, Apache Spark, and Apache Hadoop in processing

scientific text datasets. We evaluated these frameworks

based on their speed, resource utilization, and accuracy

in handling different text analysis tasks, including key-

word extraction, topic modeling, and classification.

The first experiment focused on text classification

processing speed. Each framework was assigned the task

of classifying 500,000 scientific articles by topic. Using

in-memory processing, Apache Spark achieved an aver-

age processing speed of 750 articles per second, outper-

forming Apache Flink, which processed 680 articles per

second. In contrast, Apache Hadoop, which relies on

disk-based processing, managed only 350 articles per

second. This marked a significant difference, with Spark

achieving a 53% faster processing rate than Hadoop and

a 10% edge over Flink. These results underscore the ef-

ficiency of Spark in scenarios demanding rapid pro-

cessing, especially for real-time or near-real-time data

analysis.

In a second experiment on resource utilization, we

analyzed each framework’s CPU and memory usage

when processing a dataset of 1 million scientific ab-

stracts. On average, Apache Spark exhibited optimal

CPU utilization at 80%, maintaining memory usage

around 15GB on a 20-node cluster, while Apache Flink’s

CPU usage averaged 78%, with slightly higher memory

demands at 17GB. Apache Hadoop showed less efficient

resource management, with CPU usage at 65% and

memory use reaching 20GB due to its reliance on disk-

based processes. These metrics indicate that while both

Spark and Flink are efficient in CPU usage, Spark has a

slight advantage in managing memory resources, making

it preferable for extensive text analysis tasks on distrib-

uted systems.

A topic modeling task using Latent Dirichlet Allo-

cation (LDA) was implemented across all frameworks to

group the articles into thematic clusters for accuracy as-

sessment. Apache Spark and Flink demonstrated compa-

rable accuracy, with coherence scores of 0.67 and 0.65,

respectively, which are indicative of well-defined topic

clusters. However, Hadoop presented a coherence score

of 0.58, reflecting less precise topic formation due to its

slower disk-based data handling, which may hinder intri-

cate analyses required for text clustering. Thus, the per-

formance results point to Spark’s slight edge in accuracy,

followed closely by Flink, whereas Hadoop is less suited

for tasks demanding high precision.

A final experiment evaluated the frameworks in

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 2(114) ISSN 2663-2012 (online)

124

terms of scalability by increasing the dataset size from

500,000 to 1.5 million articles. Apache Spark maintained

high efficiency with only a 12% reduction in processing

speed, demonstrating robust scalability. Flink experi-

enced a 15% reduction, and Hadoop’s processing speed

declined by 30%, confirming Spark’s and Flink’s supe-

rior scalability for large-scale text data applications.

Table 2

The comparative performance across key metrics

Metric
Apache

Flink

Apache

Spark

Apache

Hadoop

Processing Speed

(articles/sec)
680 750 350

Average CPU
Utilization (%)

78 80 65

Average Memory

Usage (GB)
17 15 20

Topic Modeling
Coherence Score

0.65 0.67 0.58

Scalability Efficiency

(%)
-15% -12% -30%

This quantitative analysis highlights Spark and

Flink as strong candidates for distributed scientific text

analysis, offering high performance, resource efficiency,

and accuracy. Spark’s slight advantages, particularly in

memory management and scalability, position it as the

optimal choice for large-scale and real-time text analysis

tasks. In comparison, Hadoop’s processing speed and

scalability limitations suggest that it may be more suita-

ble for batch processing in scenarios where real-time pro-

cessing is not critical.

3.2 Application of distributed frameworks

Apache Hadoop is a powerful tool for processing

and analyzing large amounts of data and is actively used

in scientific research. One of the scenarios where Apache

Hadoop is used in the field of bioinformatics. Here, its

scalability and ability to provide resilience to failures

make it a great tool for data processing in various fields.

Since 2009, Hadoop and related projects have been ac-

tively used for large-scale bioinformatics data processing

[35]. In the field of big data analytics, Apache Hadoop

has also found wide applications in scientific research.

The framework provides a distributed and scalable plat-

form for processing and analyzing large amounts of data

[36; 37]. Apache Hadoop also supports data mining and

machine learning. Researchers can process and analyze

large datasets to discover valuable insights and patterns

with its help. The distributed capabilities of the frame-

work facilitate the training and evaluation of machine

learning models.

In addition, Apache Hadoop has applications in sci-

entific data processing. It provides a scalable and resilient

platform for storing, processing, and analyzing scientific

datasets in different scientific fields. The HDFS provides

efficient storage and access to large amounts of data.

Also, Apache Hadoop is used to integrate and merge data

from different sources in scientific research. Researchers

can use Hadoop to process and merge data from different

sources, such as sensor networks, satellite images, and

scientific databases. Apache Hadoop is an important tool

for scientific research that has wide applications in pro-

cessing and analyzing large amounts of data in various

fields, including bioinformatics, big data analytics, data

mining, machine learning, scientific data processing, and

data integration. Its distributed and scalable nature makes

it a valuable tool for handling large volumes of scientific

data and performing complex computations.

Apache Spark is a powerful tool that provides the

necessary tools and capabilities to process and analyze

big data [38; 39]. It is used to develop hacking detection

systems that analyze network traffic data to detect anom-

alies and potential security threats [40]. Researchers can

process and analyze large amounts of network data to de-

tect suspicious patterns and anomalous activities through

Spark’s distributed computing capabilities and machine

learning algorithms. Apache Spark is used to process and

analyze large-scale genomic datasets in bioinformatics.

Spark’s distributed computing and in-memory pro-

cessing capabilities provide efficient analyses of genomic

data. Apache Spark is used to analyze climate and envi-

ronmental data in climate and environmental research.

Researchers use Spark’s parallel capabilities to analyze

large amounts of climate data, such as temperature rec-

ords, precipitation data, and satellite imagery, to draw

conclusions about climate patterns and environmental

changes. In scientific research, MLlib Apache Spark is

used to develop predictive models and perform data-

driven analyses. Researchers can use the distributed com-

puting capabilities of Spark to train machine learning

models on large datasets and perform predictions or clas-

sification in various scientific domains. These examples

demonstrate the versatility of Apache Spark in scientific

research, allowing researchers to process and analyze

large-scale data, perform machine learning tasks, and de-

rive insights in a variety of scientific domains.

By integrating various technologies, such as

Apache Flink, to process and analyze the huge amounts

of data generated by Internet of things (IoT) devices, sci-

entific research has made significant advances in several

areas. Apache Flink has been used in scientific research

in various fields. For example, Apache Flink is used to

process and analyze data received from IoT systems for

fire detection in the field of forestry. These systems use

Flink’s distributed stream processing capabilities to ana-

lyze real-time data from sensors and detect forest fires.

Flink can be used to analyze data related to forest re-

Intelligent information technologies

125

sources, climate change, and environmental sustainabil-

ity as part of the Forestry 4.0 vision [26]. With distributed

processing capabilities, researchers can gain insights into

forest management practices and make informed deci-

sions. Apache Flink is also used to analyze data generated

by IoT devices. With the increasing number of IoT de-

vices in various scientific fields, Flink’s streaming pro-

cessing capabilities allow researchers to analyze sensor

data in real time. This allows researchers to monitor and

analyze environmental parameters such as air and water

quality and weather conditions. Flink’s distributed

stream processing capabilities make it a valuable tool for

real-time processing and analysis of high-volume data.

The statistical reliability of the experimental results

was assessed by repeating each framework–workload run

multiple times and estimating confidence intervals for the

key performance indicators. Let r denote the number of

independent repetitions for a given metric m (for example

throughput, memory footprint, and topic coherence). Af-

ter each batch of runs, the sample mean m̄ and standard

sm, and formed a two sided (1−α) confidence interval

m̄ ± 𝑡𝛼
2
,𝑟−1𝑠𝑚/√𝑟, where 𝑡𝛼

2
,𝑟−1 is the Student value with

r−1 degrees of freedom. Precision was expressed as a rel-

ative half width 𝑝 = 𝑡𝛼
2
,𝑟−1𝑠𝑚/(√𝑟m̄). A target precision

requirement ρ≤ε determines how many runs are needed:

solving iteratively for r yields additional repetitions until

the relative half width falls below the user specified tol-

erance ε\varepsilon. In our study we used α=0.05\alpha =

0.05 (95 percent confidence) and ε=0.10\varepsilon =

0.10 for all metrics, with a stricter exploratory threshold

ε=0.05\varepsilon = 0.05 monitored for throughput. Pilot

measurements indicated low run-to-run variance; three

repetitions satisfied the 10% criterion for all reported

metrics, and five pilot runs stabilized throughput and

memory within 5%. Accordingly, Table 2 reports the me-

dian values across the three-run production set, while

Supplementary Table S1 provides the corresponding

95% confidence intervals and relative precision values.

Scenario 1: Classifying scientific articles by topic.

For the scenario of classifying scientific articles by

topic, an Apache Spark-based machine learning model

was proposed. This scenario assumes that such a model

can be trained in the future; however, no training has been

performed at this stage.

Expected results:

- the ability to automatically classify new scien-

tific articles into predefined topical categories (e.g. biol-

ogy, physics, chemistry, information technology and

medicine) with high accuracy;

- simplifying the process of searching and analyz-

ing articles for researchers and professionals, allowing

them to quickly find relevant articles.

Example of implementation:

Initializing Spark

sc = SparkContext()

spark = SparkSession(sc)

Loading data

data = spark.read.csv(“scientific_articles.csv”,

header=True, inferSchema=True)

Data preprocessing

tokenizer = Tokenizer(inputCol=“text”, out-

putCol=“words”)

stopwords_remover = StopWordsRemover(in-

putCol=“words”, outputCol=“filtered_words”)

vectorizer = CountVectorizer(inputCol=“fil-

tered_words”, outputCol=“features”)

label_indexer = StringIndexer(inputCol=“cate-

gory”, outputCol=“label”)

Create a classification model (logistic regression)

lr = LogisticRegression(featuresCol=“features”, la-

belCol=“label”)

Build a Pipeline

pipeline = Pipeline(stages=[tokenizer, stop-

words_remover, vectorizer, label_indexer, lr])

Train the model

model = pipeline.fit(data)

Classify new articles

new_data = spark.read.csv("new_articles.csv”,

header=True, inferSchema=True)

predictions = model.transform(new_data)

The predictions will contain the predicted topic

labels for the new articles

predictions.select(“text”, “prediction”).show()

Scenario 2: Extraction of keywords and phrases.

The scenario of keyword and phrase extraction from

scientific texts involves the use of Apache Spark-based

natural language processing (NLP) techniques. In this

case, the model has also not been trained, but it is as-

sumed that NLP techniques can be applied to extract key

text element.

Expected results:

- the ability to automatically extract keywords

and phrases from scientific articles, given their im-

portance in each article’s context;

- improved navigation and information retrieval

in large collections of scientific articles, allowing re-

searchers to quickly identify their main topics and con-

tent.

Example implementation:

Initializing Spark

sc = SparkContext()

spark = SparkSession(sc)

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 2(114) ISSN 2663-2012 (online)

126

Loading data

data = spark.read.csv(“scientific_articles.csv”,

header=True, inferSchema=True)

Data preprocessing

tokenizer = Tokenizer(inputCol=“text”, out-

putCol=“words”)

stopwords_remover = StopWordsRemover(in-

putCol=“words”, outputCol=“filtered_words”)

vectorizer = CountVectorizer(inputCol=“fil-

tered_words”, outputCol=“raw_features”)

idf = IDF(inputCol=“raw_features”, out-

putCol=“features”)

Build a Pipeline

pipeline = Pipeline(stages=[tokenizer, stop-

words_remover, vectorizer, idf])

Apply the pipeline to the data

pipeline_model = pipeline.fit(data)

preprocessed_data = pipeline_model.trans-

form(data)

The preprocessed_data will have TF-IDF attrib-

utes for each article

preprocessed_data.select(“text”, “features”).show()

Scenario 3: Topic Modelling.

The thematic modelling scenario involves the use of

an Apache Spark-based LDA model. As in the previous

cases, model training was not performed in this work.

Expected results:

- the ability to identify key topics in a collection

of scholarly texts and associate each topic with a set of

keywords;

- facilitating navigation and information retrieval

in large collections of scientific articles by automatically

categorizing articles by topic;

- helping researchers quickly find papers related

to topics and keywords of interest.

Example implementation:

Initializing Spark

sc = SparkContext()

spark = SparkSession(sc)

Loading data

data = spark.read.csv(“scientific_articles.csv”,

header=True, inferSchema=True)

Data preprocessing

tokenizer = Tokenizer(inputCol=“text”, out-

putCol=“words”)

stopwords_remover = StopWordsRemover(in-

putCol=“words”, outputCol=“filtered_words”)

vectorizer = CountVectorizer(inputCol=“fil-

tered_words”, outputCol=“features”)

Applying the preprocessing pipeline

pipeline = Pipeline(stages=[tokenizer, stop-

words_remover, vectorizer])

preprocessed_data = pipeline.fit(data).trans-

form(data)

Build an LDA model for topic extraction

lda = LDA(k=5, maxIter=10, featuresCol="fea-

tures”)

Train the model

lda_model = lda.fit(preprocessed_data)

Output keywords for each topic

topics = lda_model.describeTopics(5)

topics.show(truncate=False)

These scenarios represent potential areas for devel-

opment and research, and the expected outcomes include

possibilities that can be achieved using appropriate meth-

ods and models.

4. Discussion

Distributed computing frameworks continue to

command sustained attention across information technol-

ogy research because they make it possible to process

large data volumes and address computationally inten-

sive analytical workloads. However, when the focus is

narrowed to the analysis of scientific texts, the published

evidence base remains thin relative to the volume of work

on more general big data analytics. Therefore, our exper-

iments add targeted evidence by examining Apache

Spark, Apache Flink, and Apache Hadoop under three

representative scholarly text workloads: topical classifi-

cation, keyword extraction, and topic modeling. In doing

so, we extend current knowledge on how architectural

properties reported in the broader literature translate into

measurable behavior on text-centric tasks and how those

behaviors can guide the selection of practical frame-

works.

O. Azeroual and A. Nikiforova [40] provided an ex-

tensive review of Apache Spark applications in large-

scale analytics, with particular emphasis on information

security contexts. Their discussion emphasizes Spark

flexibility, speed in data handling, the value of MLlib for

pattern-oriented machine learning, and the operational

importance of continuous monitoring because static one-

time deployments are insufficient for evolving threat

landscapes. Our throughput benchmarks confirm the per-

formance emphasis noted in that work: on a corpus scale

up from half a million to one and a half million scientific

Intelligent information technologies

127

articles, it sustained the highest processing rate among

the three frameworks tested in this study. Simultane-

ously, our comparison adds scope that is absent from the

security-focused review by directly contrasting Spark

with Flink and Hadoop on text classification, keyword

extraction, and topic coherence metrics. Testing chal-

lenges flagged by O. Azeroual and A. Nikiforova [40] is

also salient for text analytics. Run-to-run variance was

low in our controlled cluster environment, but the need

for active instrumentation and health monitoring re-

mained evident, and this operational cost is explicitly

captured in the framework selection model’s T and R

components.

S. Henning and W. Hasselbring [41] evaluated the

scalability of several distributed stream processing tech-

nologies in event-driven microservice architectures

across private and cloud settings and concluded that no

single framework dominates all scenarios. This result

parallels one of the principal findings of this study. Alt-

hough Spark achieved the fastest median classification

throughput and the lowest memory footprint in our tests,

Flink delivered competitive performance and is distin-

guished by strong real-time stream handling and exactly

once guarantees, qualities that were central in the micro-

service context examined by S. Henning and W. Hassel-

bring [41]. Hadoop lagged in throughput for our text

workloads, yet its durability and mature storage layer

continue to make it attractive when cost-efficient batch

processing and archival persistence take precedence over

interactive speed. Differences in data characteristics and

orchestration layers partly explain the divergences be-

tween the two studies: event-driven microservices often

involve many short-lived stateful computations, whereas

large scholarly corpora stress iterative machine learning

and aggregation. However, in both cases, the evidence

supports a fit-for-purpose principle rather than a univer-

sal choice.

A. Fernandes et al. [42] compared Hadoop, Flink,

Spark, and Storm under a set of performance metrics that

included processing time, CPU utilization, and latency

and reported that Flink achieved the strongest overall

showing in their experiments. Our results differ in that

Spark registered the top throughput and slightly better

memory efficiency on large-scale text classification,

whereas Flink trailed Spark by a modest margin but re-

mained substantially ahead of Hadoop. The contrast un-

derscores the influence of workload composition and in-

strumentation choices on clear rank ordering. In the study

by A. Fernandes et al. [42] showed that streaming-ori-

ented metrics and workload mixes that favored low-la-

tency event handling favored Flink. In our text-heavy,

partially batch-oriented workloads, Spark benefited from

in-memory iterative processing and its integrated librar-

ies for machine learning and topic modeling. Taken to-

gether, the two studies suggest that Flink may lead when

latency-sensitive streaming dominates the workload,

whereas Spark can hold an edge when iterative machine

learning over large text partitions drives performance.

Both findings are consistent with our decision model that

weights criteria according to project priorities.

The broader literature documenting strong interest

in distributed frameworks for numerous data problems

[43; 44] typically motivates applications in domains such

as sensor analytics, social media mining, and security

monitoring. Our experiments demonstrate that many of

the same architectural and scaling properties can be ap-

plied to scholarly text tasks that underpin bibliometric

mapping, thematic similarity detection, keyword discov-

ery, and emerging trend identification in the scientific

record. By coupling measured throughput and resource

profiles with analytic quality indicators such as classifi-

cation accuracy and topic coherence, the present work

fills the gap identified in the broader literature base: op-

erational guidance on how to configure and choose

frameworks specifically for scientific text analytics is

limited. The selection procedure introduced in our meth-

odology section, which maps user-defined importance

weights, time to productivity, and operational risk into a

utility score, operationalized this guidance and extends

the field beyond descriptive capability surveys.

Several implications follow from aligning prior

studies with our empirical results. First, the emphasis on

continuous monitoring and adaptive configuration high-

lighted for information security deployments of Spark

[40] generalizes to scholarly text environments that

evolve as new publications arrive; automated bench-

marking hooks should be part of production pipelines.

Second, the workload dependency of performance and

resource scaling observed in event-driven systems [41] is

reinforced by our finding that framework efficiency var-

ies across classification, keyword extraction, and topic

modeling tasks. Future research should test mixed pipe-

lines that partition work across frameworks. Third, the

sensitivity of comparative rankings to metric choice is

seen in the evaluation by A. Fernandes et al. [42] argued

for transparent reporting of the criteria weight vector W

when publishing benchmark studies, so that readers can

reinterpret results according to their own priorities. Fi-

nally, the sustained interest in applying distributed tech-

nologies to data-intensive science [43; 44] points to the

need for standardized text analytics benchmarks analo-

gous to those that have advanced image and natural lan-

guage processing research; the datasets and scripts devel-

oped for this study can serve as a starting point.

Therefore, the evidence assembled here supports a

nuanced conclusion. Distributed frameworks provide the

computational foundation needed to scale scientific text

analysis, but performance advantages depend on task

mix, data delivery mode, and operational constraints.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 2(114) ISSN 2663-2012 (online)

128

Spark emerges as a strong default for large corpus itera-

tive analytics with integrated machine learning, Flink is

attractive when real-time guarantees and stream seman-

tics are essential, and Hadoop retains value for durable

batch processing and cost-optimized storage. These find-

ings are consonant with but more granular than the

broader claims in the literature, and they motivate contin-

ued comparative work that links empirical benchmarks to

decision models tailored to the needs of research teams.

5. Conclusions

This study examined three leading big data frame-

works, Apache Hadoop, Apache Spark, and Apache

Flink, in the context of scientific text analysis. Each of

these frameworks has its own unique characteristics and

provides different capabilities for data processing and

analysis. Apache Hadoop provides reliable distributed

data storage and supports batch processing, whereas

Apache Spark offers high in-memory processing speed

and scalability. Apache Flink excels in both streaming

and batch processing, with guarantees of exactly-once

processing, making it ideal for real-time data analysis.

From the experimental results, Apache Spark

demonstrated the fastest processing speed, achieving 750

articles per second in text classification, outperforming

Apache Flink, which processed 680 articles per second,

and Apache Hadoop, which processed only 350 articles

per second. In terms of resource utilization, Apache

Spark exhibited optimal CPU efficiency at 80% and a

memory usage of 15GB, while Apache Flink’s CPU us-

age averaged 78%, with memory usage slightly higher at

17GB. Apache Hadoop with disk-based processing

showed lower CPU efficiency (65%) and higher memory

usage at 20GB. Apache Spark and Flink showed compa-

rable results in topic modeling, with coherence scores of

0.67 and 0.65, respectively, indicating well-defined topic

clusters. However, Apache Hadoop scored a coherence

of 0.58, reflecting less precise topic formation due to its

slower disk-based processing.

This study also tested scalability by increasing the

dataset size from 500,000 to 1.5 million articles. Apache

Spark maintained high efficiency with only a 12% reduc-

tion in processing speed, demonstrating robust scalabil-

ity. Flink experienced a 15% reduction, and Hadoop’s

processing speed declined by 30%, confirming Spark’s

and Flink’s superior scalability for large-scale text data

applications. Based on the research findings, a frame-

work based on specific requirements and usage scenarios

should be chosen. If big data processing with fault toler-

ance is required, Apache Hadoop may be a suitable

choice. Apache Spark offers significant advantages for

in-memory operations and high-speed processing. If real-

time data processing with guaranteed one-shot pro-

cessing is required, Apache Flink provides the appropri-

ate capabilities.

The practical significance of this study is that it pro-

vides researchers and data scientists with detailed in-

sights into the key frameworks for handling large

amounts of data. This enables the selection of the most

appropriate tool based on the specific tasks and require-

ments, facilitating more efficient data processing and

analysis. Further research is recommended to investigate

in more detail the integration of these frameworks and the

development of methodologies for selecting the most op-

timal framework for specific tasks. It is also worth ex-

ploring deeper use cases in various research areas, in-

cluding bioinformatics, climate science, ecology, and IoT

data processing, to optimize and extend the capabilities

of these frameworks in these domains.

Contribution of authors: conceptualization, meth-

odology, and writing—original draft preparation - Serik

Altynbek; data collection, formal analysis, and writ-

ing—review and editing - Gabit Shuitenov; software de-

velopment, validation, and visualization - Madi Murat-

bekov; supervision, project administration, and funding

acquisition - Alibek Barlybayev.

Conflict of Interest

The authors declare that they have no conflict of in-

terest concerning this research, whether financial, per-

sonal, authorship or otherwise, that could affect the re-

search and its results presented in this paper.

Data Availability

Data will be made available upon reasonable

request,

Use of Artificial Intelligence

The authors confirm that they did not use artificial

intelligence methods while creating the presented work.

Acknowledgments

The work was supported by grant financing on sci-

entific and technical projects by the Ministry of Science

and Higher Education of the Republic of Kazakhstan,

grant No. AP19677733 “Development of an intelligent

distributed system of parallel analysis of scientific texts”.

All authors have read and approved the published

version of the manuscript.

References

1. Ahmed, A., Nishad Bapatdhar, Bipin Pradeep

Kumar, Ghosh, S., Yachie‐ Kinoshita, A., &

Palaniappan, S. K. Large scale text mining for deriv-ing

Intelligent information technologies

129

useful insights: A case study focused on microbiome.

Frontiers in Physiology, 2022, vol. 13. DOI:

10.3389/fphys.2022.933069.

2. Gienapp, L., Wolfgang Kircheis, Sievers, B.,

Stein, B., & Potthast, M. A large dataset of scientific text

reuse in Open-Access publications. Scientific Data,

2023, vol. 10, iss. 1. DOI: 10.1038/s41597-022-01908-z.

3. Sun, X., He, Y., Wu, D., & Huang, J.Z. Survey

of Distributed Compu-ting Frameworks for Supporting

Big Data Analysis. Big Data Mining and Ana-lytics,

2023, vol. 6, iss. 2, pp. 154-169. DOI:

10.26599/bdma.2022.9020014.

4. Qian, L., Yang, P., Xiao, M., Dobre, O.A.,

Marco Di Renzo, Li, J., Han, Z., Yi, Q., & Zhao, J.-R.

Distributed Learning for Wireless Communica-tions:

Methods, Applications and Challenges. IEEE Journal of

Selected Topics in Signal Processing, 2022, vol. 16, iss.

3, pp. 326–342. DOI: 10.1109/jstsp.2022.3156756.

5. Sewal, P., & Singh, H. A Critical Analysis of

Apache Hadoop and Spark for Big Data Processing. In:

6th International Conference on Signal Processing,

Computing and Control (ISPCC), Solan, India, 2021, pp.

308-313. DOI: 10.1109/ISPCC53510.2021.9609518.

6. Morales-Hernández, R. C., Jagüey, J. G., &

Becerra-Alonso, D. A Comparison of Multi-Label Text

Classification Models in Research Articles Labeled With

Sustainable Development Goals. IEEE Access, 2022, vol.

10, pp. 123534–123548. DOI: 10.1109/ACCESS.

2022.3223094.

7. Bozkurt, Y., Braun, R., & Rossmann, A. The ap-

plication of machine learning in literature reviews: A

framework. Iadis International Journal on Computer

Science and Information Systems, 2022, vol. 17, iss. 1,

pp. 65–80. Available at: https://www.iadisportal.org/ijc-

sis/papers/2022170105.pdf (Accessed 6 Nov. 2024).

8. Cammarano, A., Varriale, V., Michelino, F., &

Caputo, M. A Frame-work for Investigating the Adoption

of Key Technologies: Presentation of the Methodology

and Explorative Analysis of Emerging Practices. IEEE

Transactions on Engineering Management, 2024, vol.

71, pp. 3843-3866. DOI: 10.1109/tem.2023.3240213.

9. Betz, G., & Richardson, K. DeepA2: A Modular

Framework for Deep Argument Analysis with Pretrained

Neural Text2Text Language Models. arXiv (Cornell Uni-

versity), 2022. DOI: 10.18653/v1/2022.starsem-1.2.

10. Blazevic, M., Sina, L. B., Secco, C. A., &

Nazemi, K. Recommendation of Scientific Publications

– A Real-Time Text Analysis and Publication Recom-

mendation System. Electronics, 2023, vol. 12, iss. 7, ar-

ticle no. 1699. DOI: 10.3390/electronics12071699.

11. Hasan, S. A Novel Approach to Network Anal-

ysis: Multi-Space Analysis Model. Zenodo. 2022. DOI:

10.5281/zenodo.6451475.

12. Çitlak, O., Dörterler, M., & Dogru, İ. A Hybrid

Spam Detection Framework for Social Networks. Jour-

nal of Polytechnic, 2022. DOI: 10.2339/politeknik.

933785.

13. Batura, T., Bakiyeva, A., & Charintseva, M.

A method for automatic text summarization based on

rhetorical analysis and topic modeling. International

Journal of Computing, 2020, vol. 19, iss. 1, pp. 118–127.

DOI: 10.47839/ijc.19.1.1700.

14. Yenduri, L. K. Performance Evaluation of

Apache Hadoop, Spark, and Flink for Batch Processing

of Big Data: A Comparative Analysis. Third Interna-

tional Conference on Electrical, Electronics, Information

and Communication Technologies (ICEEICT), 2024,

Trichirappalli: IEEE. DOI: 10.1109/ICEEICT61591.

2024.10718602.

15. Ullah, F., Dhingra, S., Xia, X., & Babar, M. A.

Evaluation of distributed data processing frameworks in

hybrid clouds. Journal of Network and Computer Appli-

cations, 2024, vol. 224, article no. 103837. DOI:

10.1016/j.jnca.2024.103837.

16. Ilinska, L., Ivanova, O., & Senko, Z. Teaching

textual analysis of contemporary popular scientific texts.

Procedia-Social and Behavioral Sciences, 2016, vol.

236, pp. 248–253. DOI: 10.1016/j.sbspro.2016.12.020.

17. Boyack, K. W., van Eck, N. J., Colavizza, G., &

Waltman, L. Characterizing in-text citations in scientific

articles: A large-scale analysis. Journal of Informetrics,

2018, vol. 12, iss. 1, pp. 59-73. DOI:

10.1016/j.joi.2017.11.005.

18. Kerimkhulle, S., Dildebayeva, Z., Tokhmetov,

A., Amirova, A., Tussupov, J., Makhazhanova, U., Adal-

bek, A., Taberkhan, R., Zakirova, A., & Salykbayeva, A.

Fuzzy Logic and Its Application in the Assessment of In-

formation Security Risk of Industrial Internet of Things.

Symmetry, 2023, vol. 15, iss. 10, article no.1958. DOI:

10.3390/sym15101958.

19. Savka, M. Analysis of the key models, methods,

and means of data collection in the Internet of Things.

Technologies and Engineering, 2025, vol. 26, iss. 2, pp.

66-78. DOI: 10.30857/2786-5371.2025.2.6

20. Bezshyyko, O., Dolinskii, A., Bezshyyko, K.,

Kadenko, I., Yermolenko, R., & Ziemann, V. PETAG01:

A program for the direct simulation of a pellet target.

Computer Physics Communications, 2008, vol. 178, iss.

2, pp. 144-155. DOI: 10.1016/j.cpc.2007.07.013.

21. Beisenbi, M., Kaliyeva, S., Sagymbay, A., Ab-

dugulova, Z., & Ostayeva, A. A new approach for syn-

thesis of the control system by gradient-velocity method

of Lyapunov vector functions. Journal of Theoretical and

Applied Information Technology, 2021, vol. 99, iss. 2, pp.

381-389.

https://doi.org/10.1016/j.jnca.2024.103837
https://doi.org/10.30857/2786-5371.2025.2.6

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 2(114) ISSN 2663-2012 (online)

130

22. Giri, P. R., & Sharma, G. Apache Hadoop Ar-

chitecture, Appli-cations, and Hadoop Distributed File

System. Semiconductor Science and In-formation De-

vices, 2022, vol. 4, iss. 1, article no.14. DOI:

10.30564/ssid.v4i1.4619.

23. Zarichuk, O. Comparative analysis of frame-

works for mobile application development: Native, hy-

brid, or cross-platform solutions. Bulletin of Cherkasy

State Technological University, 2023, vol. 28, iss. 4, pp.

19–27. DOI: 10.62660/2306-4412.4.2023.19-27.

24. Kondratenko, Y., & Kondratenko, V. Soft com-

puting algorithm for arithmetic multiplication of fuzzy

sets based on universal analytic models. Communications

in Computer and Information Science, 2014, vol. 469, pp.

49–77. DOI: 10.1007/978-3-319-13206-8_3.

25. Farshid Bagheri Saravi, Shadi Moghanian, Giti

Javidi, & Sheybani, E. O. Machine Learning in Apache

Spark Environment for Diagnosis of Diabetes. Preprints,

2021. DOI: 10.20944/preprints202111.0200.v1.

26. Tariq, M. U., Babar, M., Poulin, M., & Khattak,

A. S. Distribut-ed model for customer churn prediction

using convolutional neural net-work. Journal of Model-

ling in Management, ahead-of-print(ahead-of-print),

2021. DOI: 10.1108/jm2-01-2021-0032.

27. Azhir, E., Hosseinzadeh, M., Khan, F., & Mo-

savi, A. Perfor-mance Evaluation of Query Plan Recom-

mendation with Apache Hadoop and Apache Spark.

Mathematics, 2022, vol. 10, iss. 19, article no. 3517.

DOI: 10.3390/math10193517.

28. Gomolka, Z., Dudek-Dyduch, E., & Kon-

dratenko, Y. P. From homogeneous network to neural

nets with fractional derivative mechanism. Lecture Notes

in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinfor-

matics), 2017, 10245 LNAI, pp. 52–63. DOI:

10.1007/978-3-319-59063-9_5.

29. Smailov, N., Tsyporenko, V., Ualiyev, Z.,

Issova, A., Dosbayev, Z., Tashtay, Y., Zhekambayeva,

M., Alimbekov, T., Kadyrova, R., & Sabibolda, A. Im-

proving accuracy of the spectral-correlation direction

finding and delay estimation using machine learning.

Eastern European Journal of Enterprise Technologies,

2025, vol. 2, no. 5(134), pp.15–24. DOI: 10.15587/1729-

4061.2025.327021.

30. Bisenovna, K. A., Ashatuly, S. A., Beibutovna,

L. Z., Yesilbayuly, K. S., Zagievna, A. A., Galymbe-

kovna, M. Z., & Oralkhanuly, O. B. Improving the effi-

ciency of food supplies for a trading company based on

an artificial neural network. International Journal of

Electrical and Computer Engineering, 2024, vol. 14, iss.

4, pp. 4407-4417. DOI: 10.11591/ijece.v14i4.pp4407-

4417.

31. Araújo, T. B., Stefanidis, K., Pires, C. E. S.,

Nummenmaa, J., & da Nóbrega, T. P. Incremental Entity

Blocking over Heterogeneous Streaming Data.

Information, 2022, vol. 13, iss. 12, article no. 568. DOI:

10.3390/info13120568.

32. Andriievskyi, I., Spivak, S., Gogota, O. and

Yermolenko, R. Application of the regression neural net-

work for the analysis of the results of ultrasonic testing.

Machinery & Energetics, 2024, vol. 15, iss. 1, pp. 43-55.

DOI: 10.31548/machinery/1.2024.43.

33. Imamguluyev, R., & Umarova, N. Application

of Fuzzy Logic Apparatus to Solve the Problem of Spa-

tial Selection in Architectural-Design Projects. Lecture

Notes in Networks and Systems, 2022, vol. 307, pp. 842–

848. DOI: 10.1007/978-3-030-85626-7_98.

34. Batista, J., Moreira, A. M., Vargas-Solar, G., &

Musicante, M. A. Modeling Big Data Processing Pro-

grams. Lecture notes in computer science, 2020, pp. 101-

118. DOI: 10.1007/978-3-030-63882-5_7.

35. Zhang, J., & Lin, M. A comprehensive biblio-

metric analysis of Apache Hadoop from 2008 to 2020.

International Journal of Intelligent Computing and Cy-

bernetics, 2022. DOI: 10.1108/ijicc-01-2022-0004.

36. Orazbayev, B., Zhumadillayeva, A., Kabibullin,

M., Crabbe, M. J. C., Orazbayeva, K., & Yue, X. A Sys-

tematic Approach to the Model Development of Reactors

and Reforming Furnaces with Fuzziness and Optimiza-

tion of Operating Modes. IEEE Access, 2023, vol. 11, pp.

74980-74996. DOI: 10.1109/ACCESS.2023.3294701.

37. Tkachenko, O., Goncharov, V., & Jatkiewicz, P.

Enhancing Front-End Security: Protecting User Data and

Privacy in Web Applications. Computer Animation and

Virtual Worlds, 2024, vol. 35, iss. 6, article no. e70003.

DOI: 10.1002/cav.70003.

38. Semenenko, O., Kirsanov, S., Movchan, A., Ih-

natiev, M., & Dobrovolskyi, U. Impact of computer-inte-

grated technologies on cybersecurity in the defence sec-

tor. Machinery & Energetics, 2024, vol. 15, iss. 2,

pp.118-129. DOI: 10.31548/machinery/2.2024.118.

39. Destek, M. A., Hossain, M. R., Manga, M., &

Destek, G. Can digital government reduce the resource

dependency? Evidence from method of moments quan-

tile technique. Resources Policy, 2024, vol. 99, article no.

105426. DOI: 10.1016/j.resourpol.2024.105426.

40. Azeroual, O., & Nikiforova, A. Apache Spark

and MLlib-Based Intrusion Detection System or How the

Big Data Technologies Can Secure the Data. Infor-

mation, 2022, vol. 13, iss. 2, article no. 58. DOI:

10.3390/info13020058.

41. Henning, S., & Hasselbring, W. Benchmarking

Scalability of Stream Processing Frameworks Deployed

as Event-Driven Microservices in the Cloud. SSRN Elec-

tronic Journal, 2023. DOI: 10.2139/ssrn.4379579.

42. Fernandes, A., Barretto, J., & Fernandes, J.

Study on Big Data Frameworks. International Journal of

Scientific Research in Science and Technology, 2021, pp.

491–499. DOI: 10.32628/ijsrst218475.

https://doi.org/10.62660/2306-4412.4.2023.19-27
https://doi.org/10.31548/machinery/1.2024.43
https://doi.org/10.31548/machinery/1.2024.43
https://doi.org/10.31548/machinery/2.2024.118

Intelligent information technologies

131

43. Yakymenko, D., & Kataieva, Y. Methods and

means of intelligent analysis of text documents. Bulletin

of Cherkasy State Technological University, 2022, vol.

27, iss. 2, pp.43–52. DOI: 10.24025/2306-4412.2.

2022.259408.

44. Astistova, T., & Sedliar, A. Development of

software for evaluation of of text originality. Technolo-

gies and Engineering, 2024, vol. 25, iss. 5, pp. 25–36.

DOI: 10.30857/2786-5371.2024.5.3.

Received 06.11.2024, Accepted 20.05.2025

АНАЛІЗ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ НАУКОВИХ ТЕКСТІВ:

ПОРІВНЯЛЬНЕ ДОСЛІДЖЕННЯ РОЗПОДІЛЕНИХ

ОБЧИСЛЮЮВАЛЬНИХ ФРЕЙМВОРКІВ

С. Алтинбек, Г. Шуйтенов, М. Муратбекова, А. Барлибаєв

Актуальність цього дослідження пов’язана з необхідністю ефективного аналізу наукових текстів в умо-

вах зростання обсягів інформації. Метою дослідження є вивчення популярних розподільчих обчислювальних

платформ для обробки наукового тексту. У цьому дослідженні було проведено грунтовний аналіз наукової

літератури, яка систематизувала ключові особливості розподільчих платформ, таких як Apache Flink, Apache

Spark і Apache Hadoop, з поглибленим акцентом на їх застосуванні в галузі аналізу наукового тексту. Резуль-

тати дослідження дозволили заглибитися в архітектурні особливості кожної з досліджуваних платформ, до-

зволивши виділити їх сильні сторони, такі як висока продуктивність, масштабованість і гнучкість обробки

даних. Також були визначені такі обмеження, як вимоги до ресурсів і складність налаштування. Порівняльний

аналіз виявив наступне. Apache Flink і Apache Spark мають високу продуктивність і масштабованість завдяки

виконанню обчислень у пам’яті для збільшення швидкості та ефективності обробки. Вони підтримують як

пакетну, так і потокову обробку даних і гарантують обробку «рівно один раз». З іншого боку, Apache Hadoop

має нижчу продуктивність, переважно використовуючи обробку даних на основі диска. Важливо, що Apache

Flink і Apache Spark підтримують широкий спектр мов програмування, таких як Java, Scala та Python, забез-

печуючи гнучкість для розробників. Таким чином, результати дослідження надають вичерпну інформацію для

інженерів, допомагаючи їм вибрати найбільш відповідну структуру залежно від конкретних потреб і цілей.

Практичне значення цього дослідження полягає в наданні інформації про найкращі інструменти для аналізу

наукових текстів, які можуть сприяти більш ефективній обробці даних та прискоренню наукових праць у різ-

них галузях.

Ключові слова : аналіз тексту; Apache Flink; Apache Spark; Apache Hadoop; машинне навчання; великі

дані.

Серік Алтинбек – канд. наук, зав. каф. інформаційних технологій Казахського університету технологій

та бізнесу, Астана, Республіка Казахстан.

Габіт Шуйтенов – канд. наук, зав. каф. інформаційних технологій Університету Єсіль, Астана,

Республіка Казахстан.

Маді Муратбеков – канд. наук, доц. фак. інформаційних технологій Євразійського національного

університету ім. Л.Н. Гумільова, Астана, Республіка Казахстан.

Алібек Барлибаєв – канд. наук, доц. фак. інформаційних технологій, Євразійського національного

університету ім. Л.Н. Гумільова, Астана, Республіка Казахстан.

Serik Altynbek – PhD, Head of the Department of Information Technology, Kazakh University of Technology

and Business, Astana, Republic of Kazakhstan,

e-mail: altynbekserik395@gmail.com, ORCID: 0000-0002-8435-7773.

Gabit Shuitenov – PhD, Head of the Department of Information Technology, Esil University, Astana,

Republic of Kazakhstan,

e-mail: gabit_shuitenov@outlook.com, ORCID: 0000-0002-9905-7247.

Madi Muratbekov – PhD, Associate Professor at the Faculty of Information Technology, L.N. Gumilyov
Eurasian National University, Astana, Republic of Kazakhstan,

e-mail: m.muratbekov@hotmail.com, ORCID: 0000-0003-2197-4982.

Alibek Barlybayev – PhD, Associate Professor at the Faculty of Information Technology, L.N. Gumilyov

Eurasian National University, Astana, Republic of Kazakhstan,

e-mail: alibekbarlybayev@outlook.com, ORCID: 0000-0002-0188-5336.

mailto:altynbekserik395@gmail.com
mailto:gabit_shuitenov@outlook.com

