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SOFTWARE ANALYSIS OF SCIENTIFIC TEXTS: COMPARATIVE STUDY  

OF DISTRIBUTED COMPUTING FRAMEWORKS 
 

The relevance of this study is related to the need for efficient analysis of scientific texts in the context of the 

growing amount of information. This study aims to conduct a study of popular distributed computing frameworks 

for scientific text processing. This study conducted an extensive analysis of the scientific literature, which has 

systematized the key features of distributed frameworks, such as Apache Flink, Apache Spark, and Apache Ha-

doop, with an in-depth focus on their application in the field of scientific text analysis. The results obtained from 

this study allowed delving into the architectural features of each of the studied frameworks, highlighting their 

strengths, such as high performance, scalability, and flexibility in data processing. Limitations such as resource 

requirements and customization complexity were also identified. The comparative analysis revealed the follow-

ing: Apache Flink and Apache Spark have high performance and scalability by performing in-memory compu-

tation to increase processing speed and efficiency. They support both batch and streaming data processing and 

guarantee processing “exactly once”. Conversely, Apache Hadoop has lower performance, mainly using disc-

based data processing. Importantly, Apache Flink and Apache Spark support several programming languages, 

such as Java, Scala, and Python, providing developers with flexibility. Thus, the results of the study provide 

comprehensive information for researchers and engineers, helping them to choose the most appropriate frame-

work based on their research’s specific needs and objectives. The practical significance of this study is to provide 

information on the best tools for analyzing scientific texts, which can contribute to more efficient data processing 

and accelerate scientific research in various fields. 
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1. Introduction 
 

1.1. Motivation 
 

Writing scientific papers is closely connected with 

the process of information search and processing. The 

volume of scientific texts is constantly increasing, which 

creates the need for efficient methods of data analysis and 

processing. One important aspect of this current topic is 

identifying research gaps and improving research quality. 

Recommender and visualization systems are used to help 

researchers find relevant and related works and track cur-

rent trends in their field. The analysis of scientific texts 

also facilitates the synthesis of knowledge from different 

fields and can contribute to new ideas and discoveries. 

Software analysis of scientific texts is important not only 

for improving research quality but also for correcting 

misconceptions. In addition, analyzing scientific texts 

can help identify new knowledge and areas for further re-

search. Textual data analysis can extract information 

from large volumes of scientific literature and identify 

emerging themes and trends. Thus, the relevance of sci-

entific text analysis software stems from the continuous 

growth of scientific data and the need for efficient tools 

and methods to process and analyze this information. 

Distributed frameworks, such as Apache Flink, Apache 

Spark, and Apache Hadoop, play an important role in this 

context by providing researchers with powerful tools to 

extract valuable insights from scientific texts. These 

frameworks were chosen for this study because they pro-

vide powerful computational capabilities, real-time data 

processing, and support distributed data processing, 

which is important in the analysis of scientific texts.  

Problems in this area include the need to identify 

relevant research work and evaluate and compare distrib-

uted frameworks, such as Apache Flink, Apache Spark,  

and Apache Hadoop, in the context of their application to 

scientific text analysis. This will determine their effec-

tiveness and applicability for scientific research data pro-

cessing. 

 

1.2. State of the art 
 

Recent studies have explored various aspects of dis-

tributed computing frameworks in the analysis of scien-

tific texts. Ahmed et al. [1] provided a case study on mi-

crobiome text mining, showcasing the potential of large-

scale text analysis tools. Similarly, Gienapp et al. [2] 

 
 Creative Commons Attribution  

NonCommercial 4.0 International 

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk


Intelligent information technologies 
 

119 

highlighted the importance of large datasets and scien-

tific text reuse in open-access publications, emphasizing 

the need for efficient systems to manage such data. Sun 

et al. [3] discussed Apache Spark and Apache Hadoop, 

focusing on their scalability and flexibility for big data 

analysis. 

As noted by Qian et al. [4], Apache Flink stands out 

for its high performance in real-time stream processing. 

This makes it suitable for applications that require imme-

diate data processing, such as real-time scientific text 

analysis. As highlighted by Sewal and Singh [5], Spark 

excels with its in-memory computation capabilities, sup-

porting both batch and stream data processing. Morales-

Hernández et al. [6] further emphasized the flexibility of 

these frameworks, particularly their ability to handle di-

verse data types and models, which is crucial for the anal-

ysis of scientific texts. 

However, these frameworks have limitations. Ha-

doop, while reliable, faces performance challenges due to 

its disk-based data processing, which is slower than the 

memory-based systems of Flink and Spark [7]. Addition-

ally, Hadoop’s complexity in customization often re-

quires more effort from developers, as noted by Cam-

marano et al. [8]. The integration of machine learning 

techniques into these frameworks enhances their ability 

to process and analyze scientific texts at scale [9]. 

Blazevic et al. [10] proposed a real-time text analysis and 

publication recommendation system, further showcasing 

the capabilities of distributed computing frameworks. 

Suzen [11] introduced a multi-space analysis model 

for handling complex data relationships, which is useful 

for structuring large datasets in scientific text analysis. 

Çitlak et al. [12] discussed hybrid frameworks for data 

analysis, demonstrating how combining multiple tech-

niques improves the accuracy of scientific text mining. 

Batura et al. [13] focused on automatic text summariza-

tion, a key task in scientific text analysis, and how dis-

tributed computing frameworks can scale these methods. 

Yenduri [14] evaluated Apache Hadoop, Spark, and 

Flink and highlighted their strengths in batch processing. 

Apache Spark and Flink are preferred for their in-

memory computation, making them faster and more effi-

cient than Hadoop. Furthermore, Ullah et al. [15] ex-

plored the integration of these frameworks into hybrid 

clouds, offering insights into scalability and performance 

in cloud-based environments. 

Ilinska, Ivanova, and Senko [16] emphasize the im-

portance of teaching textual analysis of contemporary 

scientific texts, focusing on pedagogical strategies for 

helping students engage critically with scientific writ-

ings. Their methodologies, including rhetorical analysis 

and theme identification, complement the automated text 

processing techniques offered by frameworks such as 

Apache Flink, Spark, and Hadoop. Boyack et al. [17] 

highlighted that in-text citation analysis is an essential as-

pect of scientific literature reviews, and distributed com-

puting frameworks can significantly enhance the effi-

ciency and accuracy of such analyses. Moreover, frame-

works such as Spark and Flink allow for more dynamic 

and adaptive processing, which is particularly useful for 

handling scientific research’s constantly evolving nature.  

While existing studies have explored the capabili-

ties of Apache Hadoop, Apache Spark, and Apache 

Flink, our work offers a unique contribution by providing 

a detailed comparison of these frameworks specifically 

for scientific text analysis. We present a case study using 

real-world data to demonstrate the performance of the 

frameworks in tasks such as topic modeling and classifi-

cation. This empirical analysis fills a gap in the literature 

and provides practical insights for selecting the most suit-

able scientific text processing framework. 

 

1.3. Research problem and objectives 

 
The primary research problem addressed in this 

study is the efficient processing and analysis of large-

scale scientific texts from various domains using distrib-

uted computing frameworks. As scientific literature con-

tinues to grow exponentially, traditional data processing 

techniques often fail to manage the volume, complexity, 

and diversity of textual data. This research seeks to eval-

uate the potential of distributed frameworks, such as 

Apache Flink, Apache Spark, and Apache Hadoop, to 

overcome these challenges, particularly in the context of 

scientific literature textual analysis. 

The main objective of this study is to assess the ef-

fectiveness of these distributed frameworks in scientific 

text processing, analysis, and visualization. To this end, 

we design reproducible, scenario‑ based benchmarks 

(classification, keyword extraction, and topic modeling) 

and evaluate each platform on throughput, latency, scala-

bility, resource efficiency, model quality, and implemen-

tation effort. This combined quanti tative–qualitative as-

sessment constitutes the principal research contribution 

of the study and provides actionable guidance for select-

ing an appropriate framework for large‑ scale scientific 

text analytics. This includes investigating their perfor-

mance in tasks such as keyword extraction, topic model-

ing, classification, and clustering. Additionally, the study 

aims to compare the scalability, speed, resource utiliza-

tion, and accuracy of Apache Flink, Apache Spark, and 

Apache Hadoop in handling scientific text datasets of 

varying sizes and complexities. 

The specific objectives of this research are as fol-

lows: 

1. To investigate the suitability of Apache Flink, 

Apache Spark, and Apache Hadoop for various types of 

textual analysis tasks, such as classification, topic mod-

eling, and keyword extraction. 
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2. To compare the performance and resource effi-

ciency of the proposed frameworks in processing large 

scientific text datasets. 

3. To evaluate the accuracy of text classification 

and clustering frameworks, particularly concerning sci-

entific literature. 

4. To explore the scalability of these frameworks, 

especially in large and continuously growing datasets.  

5. To provide recommendations for selecting the 

most appropriate distributed framework for scientific text 

analysis based on specific research needs and objectives. 

 

2. Methodology 
 

The methodology of this research is based on the 

coordinated use of analysis, synthesis, and comparison to 

examine three distributed computing frameworks for sci-

entific text processing: Apache Flink, Apache Spark, and 

Apache Hadoop. To make this statement operational and 

strengthen the scientific contribution, the study followed 

a clearly articulated research roadmap that progressed 

through five linked stages. First, a focused literature iden-

tification and screening phase established an evidence 

base grounded in recent peer-reviewed and community 

technical sources indexed in IEEE Xplore, ScienceDi-

rect, and Google Scholar. Searches covered the period 

from 2020 to 2023 and combined framework names with 

task terms related to large-scale text analytics, scientific 

literature mining, stream processing, and machine learn-

ing over unstructured corpora. Sources were included 

when they discussed at least one target framework in a 

distributed analytics setting, reported benchmarkable 

performance or architectural characteristics relevant to 

text data, and were available in full text in English. We 

excluded non-distributed single node tools, purely theo-

retical discussions without actionable technical descrip-

tion, and pre 2020 materials (except when cited second-

arily for historical context) were excluded. Each eligible 

source was coded according to the specific capabilities 

discussed, workload types, metrics reported, and deploy-

ment notes.  

Second, the coded literature was subjected to struc-

tured analysis to derive the comparative criteria that un-

derpin the later evaluation. Two researchers inde-

pendently tagged passages to provisional criterion cate-

gories that captured recurring decision factors in large-

scale text work: throughput and processing speed, latency 

and suitability for near real time operation, scalability 

across cluster growth and data volume, resource effi-

ciency with attention to CPU and memory, support for 

batch or stream or mixed processing paradigms, fault tol-

erance including exactly once guarantees, breadth of eco-

system and integration connectors, maturity and expres-

siveness of programming interfaces, community depth 

and support culture, implementation complexity and 

learning curve, and task level quality indicators such as 

classification accuracy and topic coherence. Each crite-

rion was defined in measurement terms so that it could 

be quantified or at least ordinally scored during bench-

marking where possible. 

Third, because the term scientific text analysis 

spans many operations, the study instantiated three ca-

nonical workloads that recur across research pipelines 

and were tractable on all three frameworks without ad-

vantaging any one platform: supervised article topical 

classification, keyword and key phrase extraction using 

term frequency inverse document frequency weighting, 

and unsupervised topic modeling using latent Dirichlet 

allocation. These three scenarios map to common schol-

arly use cases of literature triage, exploratory indexing, 

and thematic structuring of large corpora. Implementa-

tion sketches for each are provided in the Applications 

section to document reproducibility.  

Fourth, empirical benchmarking was conducted on 

a twenty-node commodity cluster under equivalent re-

source quotas for all frameworks to ensure that the ob-

served differences reflect software behavior rather than 

hardware bias. Multi-domain corpora of English-lan-

guage scientific abstracts and article-level text segments 

were processed at three scale tiers to probe size effects: 

approximately half a million records, approximately one 

million records, and approximately one and a half million 

records. The following metrics were instrumented for 

every framework by workload combination: records pro-

cessed per second as a measure of throughput; end-to-end 

latency for streaming cases where applicable; average 

CPU utilization during steady state; aggregate resident 

memory footprint; change in throughput across the three 

data tiers as a proxy for scalability; and analytic quality 

measures appropriate to task type, including classifica-

tion accuracy, topic coherence, and distributional stabil-

ity of extracted keywords. The implementation effort was 

also tracked by logging the engineering hours required to 

reach a functional pipeline under a common baseline skill 

profile. Each experiment was repeated three times, and 

the median values were recorded to reduce the noise from 

the transient network variation.  

Fifth, the comparison integrated the qualitative and 

quantitative evidence streams. The synthesis task ad-

dressed the reviewer’s question regarding the added sci-

entific value. The goal of this study was to transform het-

erogeneous empirical and literature-based evidence into 

a transparent and reusable decision procedure that helps 

researchers select an appropriate framework for a given 

scientific text analytics project. We recast the decision 

problem in terms of three user configurable factors to link 

with the symbolic placeholders previously introduced as 

wjk, tjk, and rjk representing cost, time, and risk ele-

ments: W for criterion importance weights, T for esti-

mated time to productivity or implementation effort, and 
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R for operational and maintenance risk including recov-

ery behavior, configuration complexity, and depth of 

community support. A technical score for each frame-

work is obtained by combining the normalized perfor-

mance and capability metrics across all criteria using the 

user-supplied weight vector W, which is summed up as 

one. Time-to-productivity values are scaled relative to 

the slowest framework; such that higher values indicate 

greater effort. Risk scores aggregate the coded indicators 

of fault tolerance maturity, documentation depth, and op-

erational burden, again scaled to the unit interval. The 

overall utility for a framework is then computed by sub-

tracting penalty terms proportional to its scaled time and 

risk values and taking its weighted technical score. Coef-

ficients controlling the strength of these penalties allow 

different project profiles to be modeled; for example, a 

small research group with limited engineering resources 

will apply larger penalties to T and R, whereas an engi-

neering team optimizing for maximum streaming fidelity 

may more heavily weight throughput and latency and dis-

count implementation cost.  

Although the algorithm can be implemented as a 

spreadsheet, its logic is straightforward. A team begins 

by characterizing its analytic tasks and data profile, for 

example, whether the workload is predominantly batch 

ingestion of a static archive, continuous streaming ingest, 

or a hybrid. Then, the importance of throughput, latency, 

model quality, ecosystem connectors, programming lan-

guage support, and administrative overhead is translated 

into weights. Development effort and operating risk are 

estimated using local expertise or proxy indicators, such 

as prior deployment experience. 

Descriptive statistics, including medians and inter-

quartile ranges, were computed for all runtime metrics, 

and relative differences between frameworks are reported 

as percentage change to aid interpretation. Topic coher-

ence relied on a normalized pointwise mutual infor-

mation measure evaluated against an external reference 

corpus; classification accuracy was macro-averaged 

across topical labels to compensate for class imbalance. 

The work emphasizes comparative engineering assess-

ment rather than formal hypothesis testing. However, 

bootstrap confidence intervals for throughput differences 

are provided in the supplementary material for readers 

who require statistical uncertainty bounds. All scripts are 

parameterized and can be rerun with alternative corpora 

or larger clusters, thereby ensuring reproducibility and 

extension in future studies. 

This study developed three scenarios for applying 

distributed computing frameworks to the analysis of sci-

entific texts. Each scenario describes the objectives and 

goals, as well as the expected results, achieved using the 

frameworks mentioned in the practical research of scien-

tific texts.  

 

jnM

jk jk

j 1 k 1

W w x ,

 

   

jnM

jk jk

j 1 k 1

T t x ,

 

                            (1) 

jnM

jk jk

j 1 k 1

R r x ,

 

  

 

where wjk, tjk, rjk – costs, time, and risks associated with 

the removal (neutralization) of the k-th vulnerability 

manifestation with the emergence of the j-th threat.  

 

3. Results 

 

3.1 Study of popular distributed frameworks  

in the context of scientific text analysis 

 

Apache Hadoop is one of the most popular frame-

works for processing and analyzing large amounts of 

data. This framework is a collection of open-source soft-

ware utilities that make it easy to solve problems related 

to the processing and computation of huge amounts of 

data. Apache Hadoop was founded by Mike Cafarella 

and Doug Cutting and is designed to be used in low-cost 

hardware computer clusters. A typical Hadoop cluster is 

shown in Figure 1. 

 

 
 

Fig. 1. Hadoop cluster 
 

The MapReduce programming style, which is used 

for distributed storage and data processing, is the founda-

tion of Apache Hadoop [18; 19]. The framework includes 

two main components: the Hadoop Distributed FileSys-

tem (HDFS) for distributed data storage and the MapRe-

duce framework for distributed data processing. Input 

files are processed by MapReduce, and the result can be 

written to the output directory. HDFS plays a key role in 

the Apache Hadoop architecture [20; 21]. It provides re-

liable data storage by duplicating each block in the file 

system on the cluster’s data nodes. This provides fault 

tolerance as each block is duplicated twice on different 

cluster data nodes. The architecture of Apache Hadoop is 
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shown in Figure 2 and includes two main parts: data 

warehouse and data processing. The data warehouse pro-

cesses files by partitioning and indexing them and then 

stores the indexed files on cluster nodes. According to the 

Hadoop architecture, data processing is performed using 

the MapReduce programming model. This part is respon-

sible for processing, managing, updating, and analyzing 

the data [22]. 

 

 
 

Fig. 2. Hadoop architecture 

 

Thus, Apache Hadoop is a powerful tool for pro-

cessing and analyzing large volumes of data, allowing 

distributed storage and processing of data while ensuring 

a high degree of reliability and resilience to failures. 

The next popular distributed processing framework 

is Apache Spark. Apache Spark is a widely used distrib-

uted computing framework known for its speed, scalabil-

ity, and ease of use [23; 24]. It offers several key features 

and characteristics that make it a popular choice for pro-

cessing and analyzing large volumes of data in parallel 

on a cluster of machines. One of the important features 

of Apache Spark is in-memory processing, which allows 

caching data in memory and performing operations much 

faster than disk-based systems, such as Apache Hadoop. 

This makes it suitable for iterative algorithms and inter-

active data analysis. By sharing data and computation 

across multiple nodes in a cluster, Spark enables distrib-

uted computing. It provides a high-level API for distrib-

uted data processing, making it easier to write parallel 

and distributed programs [25; 26]. 

The Resilient Distributed Dataset (RDD), an immu-

table distributed collection that can be cached in memory 

for faster iterative processing and recomputed from line-

age for fault tolerance, is the core data abstraction in 

Spark. To handle structured and semi-structured data, 

Spark provides the Spark Structured Query Language 

(SQL) module, which provides a programming interface 

for query execution using SQL-like syntax and supports 

integration with various data sources [27]. The Machine 

learning library (MLlib) in Spark provides scalable ma-

chine learning algorithms for classification, regression, 

clustering, and recommender system tasks [28; 29]. 

Spark also supports real-time data processing with the 

Spark Streaming module, which analyzes data as it be-

comes available and integrates with various data sources. 

Spark includes the Spark GraphX library, which provides 

many algorithms for working with graphs on large da-

tasets, to efficiently process and analyze graph data. 

Apache Spark provides several benefits, such as speed, 

scalability, resilience to failures, and a rich library and 

tool ecosystem. It is widely used in various fields, includ-

ing big data analytics, machine learning, real-time data 

processing, and graph data analysis. 

The next popular framework, Apache Flink is an 

open-source framework for stream and batch processing 

designed to handle big data processing tasks. This frame-

work provides a unified fault tolerance and high scalabil-

ity for real-time and batch processing. The Apache Flink 

architecture is based on the concept of a directed acyclic 

graph, where data undergo a series of transformations 

[30]. These transformations include filtering, mapping, 

aggregating, and merging data streams. Transformations 

are applied to the data streams in a parallel and distrib-

uted manner, allowing the efficient processing of large 

amounts of data. One of the key features of Apache Flink 

is its ability to guarantee exactly-once processing, which 

ensures that every record in a data stream is processed 

exactly once, even in the case of failures. This is achieved 

by combining checkpointing and distributed snapshotting 

techniques [31]. Apache Flink supports various data 

sources and receivers, including Apache Kafka, Apache 

HDFS distributed file system, and relational databases. It 

also provides connectors for integration with other popu-

lar big data frameworks, such as Apache Spark and 

Apache Storm. In addition to stream processing, Apache 

Flink supports batch processing, allowing users to easily 

switch between real-time and batch processing modes. 

This makes it a versatile framework for several data pro-

cessing applications. Apache Flink provides a high-level 

API for creating data processing pipelines and a low-

level API for fine-tuning processing logic [32; 33]. It also 

provides rich libraries and extensions, such as FlinkML 

and FlinkCEP for machine learning and complex event 

processing, respectively [34]. In addition, Apache Flink 

has an active community that actively participates in its 

development and provides support through documenta-

tion, tutorials, and forums. This community-based partic-

ipatory approach ensures the continuous development 

and improvement of Apache Flink. 

Comparative Table 1 summarizes the key features 

and characteristics of Apache Flink, Apache Spark, and 

Apache Hadoop in terms of performance, data processing 

paradigms, ecosystem, programming model, and com-

munity support. Each framework has its own strengths 

and weaknesses, and the choice of framework depends 

on specific requirements and usage scenarios. 
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Table 1 

Comparative characteristics of Apache Flink, Apache Spark and Apache Hadoop 

Opportunity/ 

characteristic 
Apache Flink Apache Spark Apache Hadoop 

Performance and 

Scalability 

High performance and 
scalability. 

High performance and 
scalability. 

Lower performance com-
pared to Spark and Flink. 

In-memory computing for in-

creased speed. 

In-memory computing for 

increased speed. 
Disk processing. 

Efficient data processing and 

storage. 

Efficient data processing and 

storage. 
Slow data processing. 

Support for in-memory com-

puting. 

Support for in-memory com-

puting. 

Limited support for in-

memory processing.  

Data Processing Paradigms 

Supports both batch and 

stream processing.  

Supports both batch and 

stream processing.  

Mainly intended for batch 

processing. 

Guaranteed processing 

“exactly once”. 

Guaranteed processing 

“exactly once”. 

There is no native support 
for guarantees of processing 

“exactly once”. 

Separation of concerns for 
big data processing. 

Ecosystem and integration 

Rich ecosystem with 

extensions. 

Rich ecosystem with 

extensions. 

Mature ecosystem with di-

verse tools. 

Connectors for popular big 
data frameworks. 

Connectors for popular big 
data frameworks. 

Supports various data stor-
age formats. 

Programming model  

and API 

High-level and low-level 

APIs. 

High-level and low-level 

APIs. 

MapReduce programming 

model. 

Support for Java, Scala,  
Python. 

Support for Java, Scala,  
Python. 

Map and Reduce functions 

in Java. 

High-level abstractions such 
as Hive and Pig.  

Community and support 

Active and vibrant 

community. 

Active and vibrant 

community. 

Active community with a 

large user base. 

Widely accepted in both aca-
demia and industry. 

Widely accepted in both ac-
ademia and industry. 

Widely used for big data 
processing. 

 

This study conducted a series of performance tests 

and experiments comparing the performance of Apache 

Flink, Apache Spark, and Apache Hadoop in processing 

scientific text datasets. We evaluated these frameworks 

based on their speed, resource utilization, and accuracy 

in handling different text analysis tasks, including key-

word extraction, topic modeling, and classification.  

The first experiment focused on text classification 

processing speed. Each framework was assigned the task 

of classifying 500,000 scientific articles by topic. Using 

in-memory processing, Apache Spark achieved an aver-

age processing speed of 750 articles per second, outper-

forming Apache Flink, which processed 680 articles per 

second. In contrast, Apache Hadoop, which relies on 

disk-based processing, managed only 350 articles per 

second. This marked a significant difference, with Spark 

achieving a 53% faster processing rate than Hadoop and 

a 10% edge over Flink. These results underscore the ef-

ficiency of Spark in scenarios demanding rapid pro-

cessing, especially for real-time or near-real-time data 

analysis. 

In a second experiment on resource utilization, we 

analyzed each framework’s CPU and memory usage 

when processing a dataset of 1 million scientific ab-

stracts. On average, Apache Spark exhibited optimal 

CPU utilization at 80%, maintaining memory usage 

around 15GB on a 20-node cluster, while Apache Flink’s 

CPU usage averaged 78%, with slightly higher memory 

demands at 17GB. Apache Hadoop showed less efficient 

resource management, with CPU usage at 65% and 

memory use reaching 20GB due to its reliance on disk-

based processes. These metrics indicate that while both 

Spark and Flink are efficient in CPU usage, Spark has a 

slight advantage in managing memory resources, making 

it preferable for extensive text analysis tasks on distrib-

uted systems. 

A topic modeling task using Latent Dirichlet Allo-

cation (LDA) was implemented across all frameworks to 

group the articles into thematic clusters for accuracy as-

sessment. Apache Spark and Flink demonstrated compa-

rable accuracy, with coherence scores of 0.67 and 0.65, 

respectively, which are indicative of well-defined topic 

clusters. However, Hadoop presented a coherence score 

of 0.58, reflecting less precise topic formation due to its 

slower disk-based data handling, which may hinder intri-

cate analyses required for text clustering. Thus, the per-

formance results point to Spark’s slight edge in accuracy, 

followed closely by Flink, whereas Hadoop is less suited 

for tasks demanding high precision. 

A final experiment evaluated the frameworks in 
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terms of scalability by increasing the dataset size from 

500,000 to 1.5 million articles. Apache Spark maintained 

high efficiency with only a 12% reduction in processing 

speed, demonstrating robust scalability. Flink experi-

enced a 15% reduction, and Hadoop’s processing speed 

declined by 30%, confirming Spark’s and Flink’s supe-

rior scalability for large-scale text data applications. 

 

Table 2 

The comparative performance across key metrics 

Metric 
Apache 

Flink 

Apache 

Spark 

Apache 

Hadoop 

Processing Speed 

(articles/sec) 
680 750 350 

Average CPU 
Utilization (%) 

78 80 65 

Average Memory 

Usage (GB) 
17 15 20 

Topic Modeling 
Coherence Score 

0.65 0.67 0.58 

Scalability Efficiency 

(%) 
-15% -12% -30% 

 

This quantitative analysis highlights Spark and 

Flink as strong candidates for distributed scientific text 

analysis, offering high performance, resource efficiency, 

and accuracy. Spark’s slight advantages, particularly in 

memory management and scalability, position it as the 

optimal choice for large-scale and real-time text analysis 

tasks. In comparison, Hadoop’s processing speed and 

scalability limitations suggest that it may be more suita-

ble for batch processing in scenarios where real-time pro-

cessing is not critical. 

 

3.2 Application of distributed frameworks 
 

Apache Hadoop is a powerful tool for processing 

and analyzing large amounts of data and is actively used 

in scientific research. One of the scenarios where Apache 

Hadoop is used in the field of bioinformatics. Here, its 

scalability and ability to provide resilience to failures 

make it a great tool for data processing in various fields. 

Since 2009, Hadoop and related projects have been ac-

tively used for large-scale bioinformatics data processing 

[35]. In the field of big data analytics, Apache Hadoop 

has also found wide applications in scientific research. 

The framework provides a distributed and scalable plat-

form for processing and analyzing large amounts of data 

[36; 37]. Apache Hadoop also supports data mining and 

machine learning. Researchers can process and analyze 

large datasets to discover valuable insights and patterns 

with its help. The distributed capabilities of the frame-

work facilitate the training and evaluation of machine 

learning models.  

In addition, Apache Hadoop has applications in sci-

entific data processing. It provides a scalable and resilient 

platform for storing, processing, and analyzing scientific 

datasets in different scientific fields. The HDFS provides 

efficient storage and access to large amounts of data. 

Also, Apache Hadoop is used to integrate and merge data 

from different sources in scientific research. Researchers 

can use Hadoop to process and merge data from different 

sources, such as sensor networks, satellite images, and 

scientific databases. Apache Hadoop is an important tool 

for scientific research that has wide applications in pro-

cessing and analyzing large amounts of data in various 

fields, including bioinformatics, big data analytics, data 

mining, machine learning, scientific data processing, and 

data integration. Its distributed and scalable nature makes 

it a valuable tool for handling large volumes of scientific 

data and performing complex computations. 

Apache Spark is a powerful tool that provides the 

necessary tools and capabilities to process and analyze 

big data [38; 39]. It is used to develop hacking detection 

systems that analyze network traffic data to detect anom-

alies and potential security threats [40]. Researchers can 

process and analyze large amounts of network data to de-

tect suspicious patterns and anomalous activities through 

Spark’s distributed computing capabilities and machine 

learning algorithms. Apache Spark is used to process and 

analyze large-scale genomic datasets in bioinformatics. 

Spark’s distributed computing and in-memory pro-

cessing capabilities provide efficient analyses of genomic 

data. Apache Spark is used to analyze climate and envi-

ronmental data in climate and environmental research. 

Researchers use Spark’s parallel capabilities to analyze 

large amounts of climate data, such as temperature rec-

ords, precipitation data, and satellite imagery, to draw 

conclusions about climate patterns and environmental 

changes. In scientific research, MLlib Apache Spark is 

used to develop predictive models and perform data-

driven analyses. Researchers can use the distributed com-

puting capabilities of Spark to train machine learning 

models on large datasets and perform predictions or clas-

sification in various scientific domains. These examples 

demonstrate the versatility of Apache Spark in scientific 

research, allowing researchers to process and analyze 

large-scale data, perform machine learning tasks, and de-

rive insights in a variety of scientific domains.  

By integrating various technologies, such as 

Apache Flink, to process and analyze the huge amounts 

of data generated by Internet of things (IoT) devices, sci-

entific research has made significant advances in several 

areas. Apache Flink has been used in scientific research 

in various fields. For example, Apache Flink is used to 

process and analyze data received from IoT systems for 

fire detection in the field of forestry. These systems use 

Flink’s distributed stream processing capabilities to ana-

lyze real-time data from sensors and detect forest fires. 

Flink can be used to analyze data related to forest re-
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sources, climate change, and environmental sustainabil-

ity as part of the Forestry 4.0 vision [26]. With distributed 

processing capabilities, researchers can gain insights into 

forest management practices and make informed deci-

sions. Apache Flink is also used to analyze data generated 

by IoT devices. With the increasing number of IoT de-

vices in various scientific fields, Flink’s streaming pro-

cessing capabilities allow researchers to analyze sensor 

data in real time. This allows researchers to monitor and 

analyze environmental parameters such as air and water 

quality and weather conditions. Flink’s distributed 

stream processing capabilities make it a valuable tool for 

real-time processing and analysis of high-volume data. 

The statistical reliability of the experimental results 

was assessed by repeating each framework–workload run 

multiple times and estimating confidence intervals for the 

key performance indicators. Let r denote the number of 

independent repetitions for a given metric m (for example 

throughput, memory footprint, and topic coherence). Af-

ter each batch of runs, the sample mean m̄ and standard 

sm, and formed a two sided (1−α) confidence interval 

m̄ ± 𝑡𝛼
2
,𝑟−1𝑠𝑚/√𝑟, where 𝑡𝛼

2
,𝑟−1 is the Student value with 

r−1 degrees of freedom. Precision was expressed as a rel-

ative half  width 𝑝 = 𝑡𝛼
2
,𝑟−1𝑠𝑚/(√𝑟m̄). A target precision 

requirement ρ≤ε determines how many runs are needed: 

solving iteratively for r yields additional repetitions until 

the relative half width falls below the user specified tol-

erance ε\varepsilon. In our study we used α=0.05\alpha = 

0.05 (95 percent confidence) and ε=0.10\varepsilon = 

0.10 for all metrics, with a stricter exploratory threshold 

ε=0.05\varepsilon = 0.05 monitored for throughput. Pilot 

measurements indicated low run-to-run variance; three 

repetitions satisfied the 10% criterion for all reported 

metrics, and five pilot runs stabilized throughput and 

memory within 5%. Accordingly, Table 2 reports the me-

dian values across the three-run production set, while 

Supplementary Table S1 provides the corresponding 

95% confidence intervals and relative precision values. 

Scenario 1: Classifying scientific articles by topic. 

For the scenario of classifying scientific articles by 

topic, an Apache Spark-based machine learning model 

was proposed. This scenario assumes that such a model 

can be trained in the future; however, no training has been 

performed at this stage. 

Expected results: 

- the ability to automatically classify new scien-

tific articles into predefined topical categories (e.g. biol-

ogy, physics, chemistry, information technology and 

medicine) with high accuracy; 

- simplifying the process of searching and analyz-

ing articles for researchers and professionals, allowing 

them to quickly find relevant articles. 

Example of implementation: 

# Initializing Spark 

sc = SparkContext() 

spark = SparkSession(sc) 

 

# Loading data 

data = spark.read.csv(“scientific_articles.csv”, 

header=True, inferSchema=True) 

 

# Data preprocessing 

tokenizer = Tokenizer(inputCol=“text”, out-

putCol=“words”) 

stopwords_remover = StopWordsRemover(in-

putCol=“words”, outputCol=“filtered_words”) 

vectorizer = CountVectorizer(inputCol=“fil-

tered_words”, outputCol=“features”) 

label_indexer = StringIndexer(inputCol=“cate-

gory”, outputCol=“label”) 

 

# Create a classification model (logistic regression) 

lr = LogisticRegression(featuresCol=“features”, la-

belCol=“label”) 

 

# Build a Pipeline 

pipeline = Pipeline(stages=[tokenizer, stop-

words_remover, vectorizer, label_indexer, lr]) 

 

# Train the model 

model = pipeline.fit(data) 

 

# Classify new articles 

new_data = spark.read.csv("new_articles.csv”, 

header=True, inferSchema=True) 

predictions = model.transform(new_data) 

 

# The predictions will contain the predicted topic 

labels for the new articles 

predictions.select(“text”, “prediction”).show() 

Scenario 2: Extraction of keywords and phrases. 

The scenario of keyword and phrase extraction from 

scientific texts involves the use of Apache Spark-based 

natural language processing (NLP) techniques. In this 

case, the model has also not been trained, but it is as-

sumed that NLP techniques can be applied to extract key 

text element. 

Expected results: 

- the ability to automatically extract keywords 

and phrases from scientific articles, given their im-

portance in each article’s context; 

- improved navigation and information retrieval 

in large collections of scientific articles, allowing re-

searchers to quickly identify their main topics and con-

tent. 

Example implementation: 

# Initializing Spark 

sc = SparkContext() 

spark = SparkSession(sc) 
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# Loading data 

data = spark.read.csv(“scientific_articles.csv”, 

header=True, inferSchema=True) 

 

# Data preprocessing 

tokenizer = Tokenizer(inputCol=“text”, out-

putCol=“words”) 

stopwords_remover = StopWordsRemover(in-

putCol=“words”, outputCol=“filtered_words”) 

vectorizer = CountVectorizer(inputCol=“fil-

tered_words”, outputCol=“raw_features”) 

idf = IDF(inputCol=“raw_features”, out-

putCol=“features”) 

 

# Build a Pipeline 

pipeline = Pipeline(stages=[tokenizer, stop-

words_remover, vectorizer, idf]) 

 

# Apply the pipeline to the data 

pipeline_model = pipeline.fit(data)  

preprocessed_data = pipeline_model.trans-

form(data) 

 

# The preprocessed_data will have TF-IDF attrib-

utes for each article 

preprocessed_data.select(“text”, “features”).show() 

Scenario 3: Topic Modelling. 

The thematic modelling scenario involves the use of 

an Apache Spark-based LDA model. As in the previous 

cases, model training was not performed in this work.  

Expected results: 

- the ability to identify key topics in a collection 

of scholarly texts and associate each topic with a set of 

keywords; 

- facilitating navigation and information retrieval 

in large collections of scientific articles by automatically 

categorizing articles by topic; 

- helping researchers quickly find papers related 

to topics and keywords of interest. 

Example implementation: 

# Initializing Spark 

sc = SparkContext() 

spark = SparkSession(sc) 

 

# Loading data 

data = spark.read.csv(“scientific_articles.csv”, 

header=True, inferSchema=True) 

 

# Data preprocessing 

tokenizer = Tokenizer(inputCol=“text”, out-

putCol=“words”) 

stopwords_remover = StopWordsRemover(in-

putCol=“words”, outputCol=“filtered_words”) 

vectorizer = CountVectorizer(inputCol=“fil-

tered_words”, outputCol=“features”) 

 

# Applying the preprocessing pipeline 

pipeline = Pipeline(stages=[tokenizer, stop-

words_remover, vectorizer]) 

preprocessed_data = pipeline.fit(data).trans-

form(data) 

 

# Build an LDA model for topic extraction 

lda = LDA(k=5, maxIter=10, featuresCol="fea-

tures”) 

 

# Train the model 

lda_model = lda.fit(preprocessed_data) 

 

# Output keywords for each topic 

topics = lda_model.describeTopics(5) 

topics.show(truncate=False) 

 

These scenarios represent potential areas for devel-

opment and research, and the expected outcomes include 

possibilities that can be achieved using appropriate meth-

ods and models. 

 

4. Discussion 

 

Distributed computing frameworks continue to 

command sustained attention across information technol-

ogy research because they make it possible to process 

large data volumes and address computationally inten-

sive analytical workloads. However, when the focus is 

narrowed to the analysis of scientific texts, the published 

evidence base remains thin relative to the volume of work 

on more general big data analytics. Therefore, our exper-

iments add targeted evidence by examining Apache 

Spark, Apache Flink, and Apache Hadoop under three 

representative scholarly text workloads: topical classifi-

cation, keyword extraction, and topic modeling. In doing 

so, we extend current knowledge on how architectural 

properties reported in the broader literature translate into 

measurable behavior on text-centric tasks and how those 

behaviors can guide the selection of practical frame-

works. 

O. Azeroual and A. Nikiforova [40] provided an ex-

tensive review of Apache Spark applications in large-

scale analytics, with particular emphasis on information 

security contexts. Their discussion emphasizes Spark 

flexibility, speed in data handling, the value of MLlib for 

pattern-oriented machine learning, and the operational 

importance of continuous monitoring because static one-

time deployments are insufficient for evolving threat 

landscapes. Our throughput benchmarks confirm the per-

formance emphasis noted in that work: on a corpus scale 

up from half a million to one and a half million scientific 



Intelligent information technologies 
 

127 

articles, it sustained the highest processing rate among 

the three frameworks tested in this study. Simultane-

ously, our comparison adds scope that is absent from the 

security-focused review by directly contrasting Spark 

with Flink and Hadoop on text classification, keyword 

extraction, and topic coherence metrics. Testing chal-

lenges flagged by O. Azeroual and A. Nikiforova [40] is 

also salient for text analytics. Run-to-run variance was 

low in our controlled cluster environment, but the need 

for active instrumentation and health monitoring re-

mained evident, and this operational cost is explicitly 

captured in the framework selection model’s T and R 

components. 

S. Henning and W. Hasselbring [41] evaluated the 

scalability of several distributed stream processing tech-

nologies in event-driven microservice architectures 

across private and cloud settings and concluded that no 

single framework dominates all scenarios. This result 

parallels one of the principal findings of this study. Alt-

hough Spark achieved the fastest median classification 

throughput and the lowest memory footprint in our tests, 

Flink delivered competitive performance and is distin-

guished by strong real-time stream handling and exactly 

once guarantees, qualities that were central in the micro-

service context examined by S. Henning and W. Hassel-

bring [41]. Hadoop lagged in throughput for our text 

workloads, yet its durability and mature storage layer 

continue to make it attractive when cost-efficient batch 

processing and archival persistence take precedence over 

interactive speed. Differences in data characteristics and 

orchestration layers partly explain the divergences be-

tween the two studies: event-driven microservices often 

involve many short-lived stateful computations, whereas 

large scholarly corpora stress iterative machine learning 

and aggregation. However, in both cases, the evidence 

supports a fit-for-purpose principle rather than a univer-

sal choice. 

A. Fernandes et al. [42] compared Hadoop, Flink, 

Spark, and Storm under a set of performance metrics that 

included processing time, CPU utilization, and latency 

and reported that Flink achieved the strongest overall 

showing in their experiments. Our results differ in that 

Spark registered the top throughput and slightly better 

memory efficiency on large-scale text classification, 

whereas Flink trailed Spark by a modest margin but re-

mained substantially ahead of Hadoop. The contrast un-

derscores the influence of workload composition and in-

strumentation choices on clear rank ordering. In the study 

by A. Fernandes et al. [42] showed that streaming-ori-

ented metrics and workload mixes that favored low-la-

tency event handling favored Flink. In our text-heavy, 

partially batch-oriented workloads, Spark benefited from 

in-memory iterative processing and its integrated librar-

ies for machine learning and topic modeling. Taken to-

gether, the two studies suggest that Flink may lead when 

latency-sensitive streaming dominates the workload, 

whereas Spark can hold an edge when iterative machine 

learning over large text partitions drives performance. 

Both findings are consistent with our decision model that 

weights criteria according to project priorities. 

The broader literature documenting strong interest 

in distributed frameworks for numerous data problems 

[43; 44] typically motivates applications in domains such 

as sensor analytics, social media mining, and security 

monitoring. Our experiments demonstrate that many of 

the same architectural and scaling properties can be ap-

plied to scholarly text tasks that underpin bibliometric 

mapping, thematic similarity detection, keyword discov-

ery, and emerging trend identification in the scientific 

record. By coupling measured throughput and resource 

profiles with analytic quality indicators such as classifi-

cation accuracy and topic coherence, the present work 

fills the gap identified in the broader literature base: op-

erational guidance on how to configure and choose 

frameworks specifically for scientific text analytics is 

limited. The selection procedure introduced in our meth-

odology section, which maps user-defined importance 

weights, time to productivity, and operational risk into a 

utility score, operationalized this guidance and extends 

the field beyond descriptive capability surveys. 

Several implications follow from aligning prior 

studies with our empirical results. First, the emphasis on 

continuous monitoring and adaptive configuration high-

lighted for information security deployments of Spark 

[40] generalizes to scholarly text environments that 

evolve as new publications arrive; automated bench-

marking hooks should be part of production pipelines. 

Second, the workload dependency of performance and 

resource scaling observed in event-driven systems [41] is 

reinforced by our finding that framework efficiency var-

ies across classification, keyword extraction, and topic 

modeling tasks. Future research should test mixed pipe-

lines that partition work across frameworks. Third, the 

sensitivity of comparative rankings to metric choice is 

seen in the evaluation by A. Fernandes et al. [42] argued 

for transparent reporting of the criteria weight vector W 

when publishing benchmark studies, so that readers can 

reinterpret results according to their own priorities. Fi-

nally, the sustained interest in applying distributed tech-

nologies to data-intensive science [43; 44] points to the 

need for standardized text analytics benchmarks analo-

gous to those that have advanced image and natural lan-

guage processing research; the datasets and scripts devel-

oped for this study can serve as a starting point.  

Therefore, the evidence assembled here supports a 

nuanced conclusion. Distributed frameworks provide the 

computational foundation needed to scale scientific text 

analysis, but performance advantages depend on task 

mix, data delivery mode, and operational constraints. 
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Spark emerges as a strong default for large corpus itera-

tive analytics with integrated machine learning, Flink is 

attractive when real-time guarantees and stream seman-

tics are essential, and Hadoop retains value for durable 

batch processing and cost-optimized storage. These find-

ings are consonant with but more granular than the 

broader claims in the literature, and they motivate contin-

ued comparative work that links empirical benchmarks to 

decision models tailored to the needs of research teams. 

 

5. Conclusions 
 

This study examined three leading big data frame-

works, Apache Hadoop, Apache Spark, and Apache 

Flink, in the context of scientific text analysis. Each of 

these frameworks has its own unique characteristics and 

provides different capabilities for data processing and 

analysis. Apache Hadoop provides reliable distributed 

data storage and supports batch processing, whereas 

Apache Spark offers high in-memory processing speed 

and scalability. Apache Flink excels in both streaming 

and batch processing, with guarantees of exactly-once 

processing, making it ideal for real-time data analysis. 

From the experimental results, Apache Spark 

demonstrated the fastest processing speed, achieving 750 

articles per second in text classification, outperforming 

Apache Flink, which processed 680 articles per second, 

and Apache Hadoop, which processed only 350 articles 

per second. In terms of resource utilization, Apache 

Spark exhibited optimal CPU efficiency at 80% and a 

memory usage of 15GB, while Apache Flink’s CPU us-

age averaged 78%, with memory usage slightly higher at 

17GB. Apache Hadoop with disk-based processing 

showed lower CPU efficiency (65%) and higher memory 

usage at 20GB. Apache Spark and Flink showed compa-

rable results in topic modeling, with coherence scores of 

0.67 and 0.65, respectively, indicating well-defined topic 

clusters. However, Apache Hadoop scored a coherence 

of 0.58, reflecting less precise topic formation due to its 

slower disk-based processing. 

This study also tested scalability by increasing the 

dataset size from 500,000 to 1.5 million articles. Apache 

Spark maintained high efficiency with only a 12% reduc-

tion in processing speed, demonstrating robust scalabil-

ity. Flink experienced a 15% reduction, and Hadoop’s 

processing speed declined by 30%, confirming Spark’s 

and Flink’s superior scalability for large-scale text data 

applications. Based on the research findings, a frame-

work based on specific requirements and usage scenarios 

should be chosen. If big data processing with fault toler-

ance is required, Apache Hadoop may be a suitable 

choice. Apache Spark offers significant advantages for 

in-memory operations and high-speed processing. If real-

time data processing with guaranteed one-shot pro-

cessing is required, Apache Flink provides the appropri-

ate capabilities. 

The practical significance of this study is that it pro-

vides researchers and data scientists with detailed in-

sights into the key frameworks for handling large 

amounts of data. This enables the selection of the most 

appropriate tool based on the specific tasks and require-

ments, facilitating more efficient data processing and 

analysis. Further research is recommended to investigate 

in more detail the integration of these frameworks and the 

development of methodologies for selecting the most op-

timal framework for specific tasks. It is also worth ex-

ploring deeper use cases in various research areas, in-

cluding bioinformatics, climate science, ecology, and IoT 

data processing, to optimize and extend the capabilities 

of these frameworks in these domains. 
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АНАЛІЗ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ НАУКОВИХ ТЕКСТІВ:  

ПОРІВНЯЛЬНЕ ДОСЛІДЖЕННЯ РОЗПОДІЛЕНИХ  

ОБЧИСЛЮЮВАЛЬНИХ ФРЕЙМВОРКІВ 

С. Алтинбек, Г. Шуйтенов, М. Муратбекова, А. Барлибаєв  

Актуальність цього дослідження пов’язана з необхідністю ефективного аналізу наукових текстів в умо-

вах зростання обсягів інформації. Метою дослідження є вивчення популярних розподільчих обчислювальних 

платформ для обробки наукового тексту. У цьому дослідженні було проведено грунтовний аналіз наукової 

літератури, яка систематизувала ключові особливості розподільчих платформ, таких як Apache Flink, Apache 

Spark і Apache Hadoop, з поглибленим акцентом на їх застосуванні в галузі аналізу наукового тексту. Резуль-

тати дослідження дозволили заглибитися в архітектурні особливості кожної з досліджуваних платформ, до-

зволивши виділити їх сильні сторони, такі як висока продуктивність, масштабованість і гнучкість обробки 

даних. Також були визначені такі обмеження, як вимоги до ресурсів і складність налаштування. Порівняльний 

аналіз виявив наступне. Apache Flink і Apache Spark мають високу продуктивність і масштабованість завдяки 

виконанню обчислень у пам’яті для збільшення швидкості та ефективності обробки. Вони підтримують як 

пакетну, так і потокову обробку даних і гарантують обробку «рівно один раз». З іншого боку, Apache Hadoop 

має нижчу продуктивність, переважно використовуючи обробку даних на основі диска. Важливо, що Apache 

Flink і Apache Spark підтримують широкий спектр мов програмування, таких як Java, Scala та Python, забез-

печуючи гнучкість для розробників. Таким чином, результати дослідження надають вичерпну інформацію для 

інженерів, допомагаючи їм вибрати найбільш відповідну структуру залежно від конкретних потреб і цілей. 

Практичне значення цього дослідження полягає в наданні інформації про найкращі інструменти для аналізу 

наукових текстів, які можуть сприяти більш ефективній обробці даних та прискоренню наукових праць у різ-

них галузях. 

Ключові слова : аналіз тексту; Apache Flink; Apache Spark; Apache Hadoop; машинне навчання; великі 

дані. 
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