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ENHANCED FIRE HAZARD DETECTION IN SOLAR POWER PLANTS:  

AN INTEGRATED UAV, AI, AND SCADA-BASED APPROACH 
 

The Subject of this research is the development of an intelligent, integrated system for the early detection and 

causal analysis of fire hazards in large-scale solar power plants (SPPs). It addresses the critical shortcomings 

of conventional monitoring methods, which often lack the necessary integration, speed, and diagnostic depth to 
reliably prevent catastrophic failures resulting from photovoltaic (PV) module defects. The goal of this study 

is to design, develop, and validate a comprehensive, multi-modal framework that fully automates the monitor-

ing workflow, from data acquisition to actionable decision-making. The proposed system aims to significantly 

enhance plant safety by providing reliable, cause-differentiated alerts, which in turn optimizes maintenance 

strategies, minimizes downtime, and improves the overall economic viability of solar energy infrastructure. 
The Methods employed involve a synergistic architecture that combines an Unmanned Aerial Vehicle (UAV) 

equipped with high-resolution RGB and radiometric infrared cameras for rapid imaging, supplemented by 

dedicated Internet of Things (IoT) temperature sensors on PV module bypass diodes for critical component 

verification. A custom-trained YOLOv8 deep learning model performs automated defect detection from the 

captured imagery. The system’s intellectual core is a novel logical inference engine based on a Disjunctive 

Normal Form (DNF) equation. This formal logic model intelligently fuses four key binary features, namely, 

primary defect cause (damage vs. soiling), visual evidence, thermal anomaly severity, and bypass diode func-

tional status, to produce a definitive and context-aware fire risk assessment. The entire workflow is managed 

and visualized using a SCADA TRACE MODE platform for centralized control and automated alerting. The 

study successfully validated the performance and logical integrity of the integrated system through a series of 

high-fidelity, scenario-based simulations. These simulations rigorously confirmed the capability of the DNF 

logic to accurately and reliably identify all predefined fire hazards. This included not only obvious faults but 

also "stealthy," damage-induced hotspots where the primary safety mechanism (the bypass diode) had failed. 

Concurrently, the system correctly classified mitigated risks to prevent false alarms, demonstrating its diag-

nostic precision. This capability allows the system to reliably differentiate between true emergencies requiring 

immediate module replacement and less critical issues, such as soiling that merely necessitates cleaning. The 

projected increase in diagnostic accuracy for identifying critical, fire-prone defects over conventional, single-

modality methods is up to 40%, providing a quantitative measure of enhanced safety and reliability. Further-

more, the proposed system is projected to reduce the false-positive alarm rate by over 75% compared with IR-
only automated systems. In conclusion, this study establishes a powerful new paradigm for proactive SPP 

safety management. The intelligent fusion of UAV and IoT sensing, AI-driven analytics, and a formal logical 

framework provides a robust and reliable solution for fire risk mitigation, enabling a highly efficient, condi-

tion-based maintenance strategy and significantly enhancing the safety, reliability, and performance of modern 

solar power infrastructure. 
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1. Introduction 
 

1.1. Motivation 

 

The global imperative to transition toward 

sustainable energy systems has positioned solar 

photovoltaic (PV) technology at the forefront of the 

renewable energy revolution. According to the 

International Renewable Energy Agency (IRENA), the 

global solar PV capacity has surged, crossing the 

terawatt threshold and continuing on an exponential 

growth trajectory [1]. This massive expansion, 

particularly in the form of large-scale utility solar power 

plants (SPPs), brings with it an escalating need for 

robust, reliable, and intelligent operational and safety 

management systems [2]. While PV modules are 

designed for decades of service, they are susceptible to a 

variety of degradation mechanisms and defects that can 

compromise performance and safety [3]. 

The potential for fire is among the most severe 

operational risks in SPPs. Although statistically 

infrequent, PV module fires can have catastrophic 

consequences, including asset destruction, prolonged 

plant downtime, significant financial losses, and serious 

safety risks for personnel and the surrounding 

environment [4]. Most PV-related fires can be traced to 

thermal anomalies, primarily hotspots. A hotspot is a 

PV cell or module’s localized area that experiences a 

significantly elevated temperature due to increased 

electrical resistance. This can be triggered by a range of 

factors, including internal cell defects such as micro-

cracks and faulty solder bonds, or external factors such 

as partial shading or heavy soiling [5]. When a cell’s 

current generation is impeded, it can become reverse-

biased, forcing it to dissipate heat from other series-

connected cells [6, 7]. If this heat is not effectively 

managed, a thermal runaway process can be initiated, 

leading to the breakdown of module materials (e.g., 

backsheet, encapsulant) and potentially culminating in 

an arc fault and open flame [8]. 

The historical approach to PV plant maintenance, 

involving manual visual inspections and periodic 

electrical measurements like I-V curve tracing, is 

profoundly inadequate for the scale and complexity of 

modern SPPs [9]. Such methods are not only 

prohibitively labor-intensive and time-consuming but 

are also often reactive, identifying problems only after 

significant performance degradation or failure has 

occurred. Unmanned aerial vehicles (UAVs) equipped 

with dual RGB and infrared (IR) cameras have 

transformed the data acquisition landscape, enabling 

rapid and comprehensive thermographic and visual 

surveys of entire solar fields [10, 11]. However, this 

technological advance has shifted the bottleneck from 

data collection to data analysis. A single inspection 

flight can generate terabytes of imagery, and the manual 

review of this data is a daunting task that is prone to 

human fatigue, subjectivity, and error. 

To overcome this data analysis challenge, the 

research community has increasingly turned to Artificial 

Intelligence (AI), particularly deep learning algorithms. 

Object detection models such as You Only Look Once 

(YOLO) and its variants have demonstrated remarkable 

success in identifying and classifying a wide array of 

PV defects from aerial images with high accuracy 

[12, 13]. However, most current AI-based systems 

operate as sophisticated defect classifiers, identifying 

anomalies in isolation without a deeper, contextual 

understanding of the overall risk they pose [14]. The 

mere detection of a hotspot by an AI does not 

automatically equate to a fire hazard. The true level of 

risk is a complex function of the intensity of the hotspot, 

its underlying cause (e.g., a permanent micro-crack 

versus temporary bird droppings), and the functional 

status of the module’s built-in safety mechanisms, 

namely the bypass diodes. These diodes are designed to 

activate and shunt current around a faulty or shaded cell 

string, preventing severe overheating. A failed or 

malfunctioning bypass diode can render this crucial 

safety feature useless, dramatically elevating the fire 

risk [15]. 

This study identifies and addresses a critical 

research gap: the lack of an integrated, multi-modal 

system that moves beyond simple defect detection to 

perform a holistic, context-aware fire hazard 

assessment. The primary objective of this research is to 

design, develop, and validate an innovative monitoring 

framework that intelligently fuses data from multiple 

sources within a formal logical decision-making 

structure. The proposed system architecture integrates 

UAV-based data acquisition, advanced AI (YOLOv8 by 

[16]) for image processing, and a TRACE MODE 

system for Supervisory Control and Data Acquisition 

(SCADA) [17] for centralized command and control. 

The intellectual core of this system is a Disjunctive 

Normal Form (DNF) logical model, derived from a 

meticulously constructed truth table of critical defect 

indicators. Our goal is to demonstrate that this system 

can not only detect fire hazards with superior accuracy 

but also infer their probable root causes, thereby 

providing actionable intelligence to guide targeted, 

efficient, and cost-effective maintenance operations. 

The principal contributions of this work are as 

follows: 

1. Development of a Formal Logical Model for 

Fire Risk Assessment. We introduce a novel DNF-based 

logical function that synthesizes four critical, multi-

modal binary inputs: defect cause ( 1X  ), RGB visual 

evidence ( 2X  ), infrared thermal anomaly ( 3X  ), and 
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bypass diode temperature status (
4X  ), to produce a 

definitive fire risk classification (Y). Compared with 

single-modality systems, this formal approach enhances 

diagnostic accuracy and minimizes false alarms.  

2. Synergistic, Fully Integrated System 

Architecture Design. A cohesive system design that 

synergizes the distinct strengths of UAVs (for rapid data 

acquisition), AI (for automated image analysis), and 

SCADA technology (for centralized monitoring, 

alerting, and data management) is presented. This 

creates a seamless, end-to-end workflow from data 

collection to decision-making. 

3. Implementation of an Intelligent Operational 

Algorithm. In this work, we detail an operational 

algorithm that enables real-time data processing and the 

automated application of the DNF logic. This algorithm 

facilitates the immediate generation of critical alerts for 

fire-hazardous conditions and differentiates between 

underlying causes to recommend the most appropriate 

maintenance action (e.g., cleaning vs. replacement). 

This paper provides a comprehensive exposition of 

this methodology, its validation through simulated real-

world data, and a thorough discussion of its potential to 

set a new standard for safety, reliability, and operational 

excellence in the global solar energy industry. 

 

1.2. State of the art 

 

The body of research dedicated to PV system 

monitoring and fault diagnosis has grown in lockstep 

with the industry itself. This evolution has progressed 

from manual techniques to sophisticated automated 

systems, with each stage introducing new capabilities 

and challenges. This section reviews the key 

technological domains that form the foundation of the 

proposed integrated system [18]. 

The earliest and most fundamental PV system 

inspection methods involved manual, on-the-ground 

techniques. Visual inspection remains a baseline 

practice, allowing technicians to identify obvious issues 

such as broken glass, severe soiling, physical damage, 

or corrosion. For electrical characterization, I-V curve 

tracing is the gold standard [19]. By measuring the 

current-voltage characteristics of a module or string 

under specific irradiance conditions, technicians can 

identify deviations from expected performance, which 

may indicate issues like degradation, mismatched cells, 

or high series resistance. Standards, such as IEC 62446, 

codify these commissioning and inspection procedures 

[20]. 

Electroluminescence (EL) imaging is another 

powerful ground-based technique. EL imaging involves 

applying a forward bias voltage to the PV module in the 

dark, causing the silicon cells to emit near-infrared light. 

An IR-sensitive camera captures this emission, 

revealing defects with remarkable clarity, such as 

microcracks, finger interruptions, and inactive cell 

areas. Although highly effective, EL imaging is 

typically impractical for large-scale field inspections 

because it requires darkness and module disconnection 

for biasing. While providing valuable data, these 

traditional methods share a critical drawback: they lack 

scalability. For a utility-scale SPP with hundreds of 

thousands of modules, manually performing these 

checks is logistically unfeasible, economically 

prohibitive, and too slow to enable proactive 

maintenance [20]. 

Infrared (IR) thermography has emerged as a 

transformative nondestructive testing (NDT) technique 

for PV inspections [21]. It operates on the principle that 

faulty PV cells or connections dissipate energy as heat,  

creating thermal signatures that are invisible to the 

naked eye but readily detectable by an IR camera [22]. 

Hotspots, overheated junction boxes, and entire 

overheated cell strings can be identified quickly and 

non-invasively. 

The integration of radiometric thermal cameras 

and high-resolution RGB cameras onto UAV platforms 

represents a paradigm shift in inspection efficiency 

[10, 23]. UAVs can survey vast solar farms in a fraction 

of the time required for ground-based inspections, 

dramatically reducing labor costs and minimizing 

personnel time in the field [24]. Numerous studies have 

validated the efficacy of UAV-based inspections in 

detecting a wide spectrum of defects, including soiling, 

shading, delamination, vegetation encroachment, and 

various types of hotspots [25, 26]. However, this data 

acquisition efficiency created a new problem: the "big 

data" deluge. A single inspection can yield tens of 

thousands of images, and manual analysis becomes the 

new bottleneck, reintroducing human error and 

subjectivity into the workflow. 

Researchers have leveraged advancements in 

computer vision and deep learning to automate the 

analysis of the massive datasets generated by UAVs. 

Convolutional neural networks (CNNs) have proven to 

be exceptionally capable of learning complex visual 

patterns, making them ideal for defect detection. 

Various architectures have been applied, from 

classification models to more advanced object detection 

and segmentation models. Object detectors such as the 

You Only Look Once (YOLO) family and Faster R-

CNN are popular for their ability to locate and classify 

multiple defects within a single image [12, 27]. 

Segmentation models, such as U-Net, can provide pixel-

level masks of defective areas, allowing for more 

precise quantification of issues, such as soiling. 

These AI models have been successfully trained to 

identify a comprehensive range of defects from both IR 

and RGB images, often achieving human-level or 
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superhuman accuracy [13, 28, 29]. Although these AI 

systems are powerful tools for automating defect 

detection, they typically operate in a vacuum. They can 

report "hotspot detected" but cannot inherently assess 

the contextual risk. The crucial questions: "Is this 

hotspot a fire hazard?" "What is the cause?" "Is the 

module’s safety system working?" remains unanswered 

by the AI model alone. This highlights the significant 

gap between defect detection and true diagnostic 

intelligence. 

The bypass diode is a critical, yet often 

overlooked, safety component in a PV module. 

Typically, one diode is used for every 18–24 cells. Its 

purpose is to provide an alternative path for current to 

flow when a cell or group of cells is shaded or faulty, 

preventing the faulty cells from becoming dangerously 

reverse-biased and overheating [15]. The diode’s 

functionality is paramount to module safety. 

Bypass diodes can fail in two primary modes: 

open-circuit or short-circuit. An open-circuited diode 

fails to activate, offering no protection and allowing the 

unabated development of a hotspot. A short-circuited 

diode is permanently active, constantly shunting its 

associated cell string, resulting in a permanent loss of 

power output from that part of the module. Several 

studies have highlighted that bypass diode failure 

significantly contributes to severe module damage and 

fire incidents [6]. However, monitoring their health is 

challenging. They are located in the module’s junction 

box, often on the rear, making visual inspection or aerial 

thermography difficult. While a very hot junction box 

can be a sign of a failed diode, direct temperature 

measurement provides the most reliable indication of its 

status. This underscores the need for a multi-sensor 

approach that incorporates data beyond simple surface 

thermography. 

Supervisory Control and Data Acquisition 

(SCADA) systems are the backbone of industrial 

process control and are widely used in SPPs [17]. They 

excel at monitoring high-level operational parameters 

and collecting data from inverters, string monitoring 

boxes, and meteorological stations. A typical SCADA 

system can provide real-time and historical data on 

power generation (AC and DC), voltage, current, 

irradiance, and ambient temperature [31]. This is 

invaluable for performance monitoring and high-level 

fault detection (e.g., an entire inverter outage). 

However, traditional SCADA systems lack the 

granularity to diagnose issues at the individual module 

level. They might indicate that a string is 

underperforming, but they cannot pinpoint the specific 

module or defect nature. Integrating advanced, module-

level analytics, such as the DNF-based logic proposed 

in this work, into a powerful SCADA platform, such as 

TRACE MODE [32], offers a pathway to bridge this 

gap. This would transform the SCADA system from a 

passive monitor into an active, intelligent safety and 

diagnostic hub. 

In summary, while significant strides have been 

made in each of these individual domains, a truly 

holistic solution remains elusive. Our work directly 

addresses this gap by creating a synergistic framework 

that integrates the rapid data acquisition of UAVs, the 

analytical power of AI, the critical context of bypass 

diode health, and the central control capabilities of a 

SCADA system, all governed by a formal logical model 

to provide unparalleled fire hazard detection and 

diagnostic insight. 

 

1.3. The purpose  

and tasks of research 

 

This research aims to solve the critical scientific 

and applied problem of enhancing the operational safe-

ty, reliability, and efficiency of large-scale solar power 

plants. This is achieved by developing an intelligent, 

integrated monitoring and diagnostic system designed to 

proactively detect fire hazards, accurately identify their 

root causes, and provide actionable insights to optimize 

maintenance strategies. 

This study addresses the following key tasks to 

achieve this overarching goal: 

1) Development of a comprehensive, multi-modal 

data acquisition methodology that utilizes UAVs 

equipped with high-resolution RGB and radiometric 

thermal sensors, supplemented by dedicated IoT sensors 

for monitoring critical components, such as bypass di-

odes. 

2) Creation of a large-scale, annotated dataset of 

PV module defects and subsequent development, train-

ing, and validation of a deep learning model based on 

the YOLOv8 architecture for the automated detection 

and classification of these defects from aerial imagery. 

3) Formalization of a sophisticated fire hazard risk 

assessment framework by establishing a set of informa-

tive binary features and constructing a comprehensive 

truth table and a DNF logical alarm function based on 

them. 

4) Design and implementation of a fully integrated 

system architecture that seamlessly combines the data 

acquisition, AI processing, and logical analysis modules 

with a SCADA TRACE MODE platform for centralized 

monitoring, visualization, automated alerting, and re-

porting. 

5) The effectiveness of the system was validated 

through high-fidelity simulations to quantify its perfor-

mance against traditional methods and demonstrate its 

impact on enhancing the safety and operational efficien-

cy of solar power plants. 
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2. Materials and methods of research 
 

The proposed methodology for detecting fire-

hazardous operating modes in PV modules is based on a 

multi-layered, integrated system designed for robust 

data fusion and intelligent decision-making. The 

architecture systematically combines hardware for data 

acquisition with analysis, logic, and control software. 

The entire process can be conceptualized in four distinct 

but deeply interconnected layers: i) Data Acquisition 

Layer, ii) AI Processing Layer, iii) Logical Inference 

Engine, and iv) SCADA Integration and Control Layer. 
 

2.1. System Architecture 
 

The foundation of the proposed methodology is a 

comprehensive, multi-modal data acquisition 

architecture designed within a Cyber-Physical System 

(CPS) framework. By seamlessly integrating physical 

hardware with cyber components for computation and 

communication, this approach provides a holistic 

structure for monitoring, analyzing, and responding to 

potential fire hazards in solar power plants. The CPS 

model allows for the effective fusion of disparate 

technical tools into a single, flexible, and multi-layered 

system, capable of moving beyond simple defect 

detection to a comprehensive assessment of the fire risk 

associated with photovoltaic (PV) modules. This section 

details the system architecture (Fig. 1) and the specific 

components responsible for data acquisition. 

The architecture shown in Fig. 1 is composed of 

several interconnected layers, beginning with the 

physical environment, i.e., the PV modules of the solar 

power plant. Data are collected from this environment 

through a sophisticated sensing and observation layer.  

1. Physical and Data Acquisition Layer: This 

foundational layer is responsible for sensing the PV 

plant’s physical state. It comprises the UAV platform 

with its dual-sensor payload and the ground-based IoT 

sensor network. The UAV subsystem rapidly captures 

high-resolution visual (RGB) and thermal (IR) data 

across the entire solar field, whereas the IoT subsystem 

provides continuous, real-time temperature readings 

from critical components (bypass diodes). The output of 

this layer is a stream of raw, multi-modal data (images 

and sensor readings). 

2. AI Processing and Feature Extraction Layer: 

The raw data from the acquisition layer are fed into this 

analytical layer. Here, a custom-trained YOLOv8 deep 

learning model processes the image data to 

automatically detect and classify various anomalies. A 

software module processes the IoT data streams. The 

primary function of this layer is to translate the 

unstructured raw data into a structured, four-

dimensional binary feature vector ( 1X , 2X , 3X , 4X ) 

for each inspected module. This abstraction is a critical 

step in converting complex sensor data into a suitable 

format for logical analysis. 

 

 

 
 

Fig. 1. The Cyber-Physical System (CPS) architecture for proactive solar plant monitoring. This integrated model 

illustrates the end-to-end data flow from physical sensors (UAV, IoT) through computational layers to a final 

analytics and control module, converting raw data into actionable safety intelligence  
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3. Logical Inference Engine Layer: This layer 

represents the system’s intellectual core. The structured 

feature vector from the AI layer is taken as its input. Its 

sole function is to execute a formal logical evaluation 

using a predefined DNF equation. This equation, which 

is derived from a comprehensive truth table based on 

PV failure physics, acts as a deterministic rule set. The 

output of this layer is a single binary value, Y, which 

represents the final, context-aware fire hazard 

classification (Y = 1 for hazardous, Y=0 for safe). 

4. SCADA Integration and Presentation Layer: 

The final layer acts as the central nervous system and 

human-machine interface (HMI). The inference engine 

ingests the definitive logical output (Y). This layer 

automatically triggers alarms, generates detailed 

incident reports with recommended actions, and sends 

notifications to O&M personnel if a hazard is detected 

(Y = 1). It utilizes the SCADA TRACE MODE 

platform to provide operators with a comprehensive, 

intuitive visualization of the plant’s health, including a 

"digital twin" map where modules are color-coded by 

status. This layer transforms the logical assessment of 

the system into actionable, human-readable intelligence. 

This end-to-end, multi-layered integration is the 

key architectural innovation that distinguishes the 

proposed framework from fragmented, single-modality 

approaches, enabling a truly context-aware, automated, 

and reliable diagnostic process. 

 

2.2. Data Acquisition Layer 

 

The system’s foundation is a multi-modal data 

acquisition strategy designed to capture a 

comprehensive snapshot of each PV module’s condition 

from multiple physical perspectives. 

1. UAV Platform and Sensor Payload. The 

selection of the UAV and its sensor payload is critical to 

the acquired data’s quality and reliability. A 

professional-grade multi-rotor UAV, such as the DJI 

Matrice 300 RTK, is employed as the aerial platform 

due to its superior flight stability, significant payload 

capacity, extended flight endurance, and precise 

navigation capabilities afforded by its Real-Time 

Kinematic (RTK) GPS system. These characteristics are 

essential for executing pre-planned, autonomous 

missions that guarantee consistent image quality and 

accurate geo-referencing. The UAV is equipped with a 

dual-sensor gimbaled payload comprising the following:  

– High-Resolution RGB Camera. A visual 

spectrum camera with a resolution of 20 megapixels or 

higher is used to capture detailed images. This imagery 

is essential for identifying visible anomalies such as 

physical damage (cracks, shattered glass), severe 

soiling, discoloration of the encapsulant, and other 

externally obvious defects. 

– Radiometric Thermal Camera. A high-resolution 

(e.g., 640x512 pixels) radiometric infrared camera with 

high thermal sensitivity, measured by a Noise-

Equivalent Temperature Difference (NETD) of less than 

30 mK, is required. The "radiometric" quality is 

paramount because it ensures that each pixel in the 

thermal image contains a calibrated, absolute 

temperature value, not just a relative color 

representation. This allows for precise, quantitative 

thermal analysis, which is fundamental to accurately 

identifying and classifying hotspots. A low NETD is 

crucial for detecting subtle thermal anomalies indicative 

of incipient faults. 

2. Bypass Diode Temperature Sensors. 

Recognizing the inherent limitations of aerial 

thermography, which cannot reliably inspect junction 

boxes located on the rear of PV modules, our system 

architecture incorporates a dedicated network of IoT 

temperature sensors. These are small, robust, and cost-

effective sensors (such as platinum resistance 

thermometers (RTDs) or K-type thermocouples) that are 

installed directly on the junction box of each module or 

on a statistically representative sample for large-scale 

deployments. These sensors are designed to 

communicate wirelessly to a central gateway via a low-

power, wide-area network (LPWAN) protocol, such as 

LoRaWAN. LoRaWAN is chosen for its long-range 

capabilities and low power consumption, allowing the 

sensors to operate for years on a single battery. This 

subsystem provides direct, real-time temperature data 

specifically for bypass diodes, a critical data point that 

is inaccessible to the UAV. 

3. Data Acquisition Protocol. Automated flight 

plans are generated using specialized software to ensure 

consistent data collection parameters, including a high 

degree of image overlap (e.g., 70% front, 50% side) and 

a constant altitude above the PV arrays. The flight 

altitude is calculated to achieve a specific Ground 

Sample Distance (GSD) of approximately 3 cm/pixel 

for the RGB camera, providing sufficient detail for 

crack detection. The flight is conducted under clear sky 

conditions with solar irradiance above 600 W/m² to 

ensure that the thermal anomalies are sufficiently 

pronounced. This guarantees the acquisition of high-

quality, geo-referenced imagery suitable for 

photogrammetric processing and AI analysis. 

 

2.3. AI Processing Layer  

and Feature Extraction 

 

This layer processes raw, unstructured data from 

the UAV and IoT subsystems to automate defect 

detection and extract the key features required by the 

logical engine. 
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1. YOLOv8-Based Defect Detection. We selected 

the YOLOv8 [16] model because of its optimal balance 

of high detection accuracy and fast inference speed, 

making it highly suitable for processing large image 

datasets in near-real-time. The model is trained on a 

large, proprietary, custom-annotated dataset of aerial PV 

images. 

2. AI Model Training and Validation. The 

YOLOv8 model was trained on a custom dataset 

comprising more than 25,000 annotated aerial images 

captured from various SPPs under different conditions. 

The dataset includes annotations for the following 

classes: `cell_crack`, `hotspot_moderate`, 

`hotspot_severe`, `soiling`, `shading`, `delamination`, 

and `normal`. Training was performed for 300 epochs 

on a high-performance computing cluster equipped with 

NVIDIA A100 GPUs, using a learning rate of 0.01 and 

a batch size of 64. Extensive data augmentation 

techniques (including rotation, scaling, brightness 

adjustments, and simulated noise) are used during the 

training phase to ensure that the model is robust and 

generalizable to variations in lighting, viewing angle, 

and environmental conditions. The model’s 

performance was validated on a holdout test set, 

achieving a mean Average Precision (mAP) of 0.92 at 

an IoU threshold of 0.5. 

3. Extraction of Binary Features. The output from 

the YOLOv8 model, along with data from the other 

sensors, is programmatically translated into the four 

binary features ( 1X , 2X , 3X , 4X ) that form the input 

to our logical model. The logic for this extraction is as 

follows: 

– 1X  (Primary Cause of Anomaly): This feature 

distinguishes between external/remediable issues and 

internal/permanent damage. 

1) 1X 1  if the YOLOv8 output contains soiling 

or shading as a primary detected class. 

2) 1X 0  if the primary detected class is 

cell_crack, hotspot (without obvious soiling), 

delamination, or other physical damage indicators. 

– 2X  (Significant RGB Defect Detected): This 

indicates the presence of a visually significant anomaly.  

1) 2X 1  if the YOLOv8 model detects a 

significant visual defect in the RGB image (e.g., 

heavy_soiling, major_crack). 

2) 2X 0  otherwise. 

– 3X  (Significant IR Defect Detected): This 

represents a critical thermal anomaly. 

1) 3X 1  if the radiometric IR data show a 

temperature differential ( T ) for a cell or cluster that 

exceeds a predefined critical threshold (e.g., 

T 20K  ) compared to healthy reference cells in the 

same module. 

2) 
3X 0  otherwise. 

– 
4X  (Elevated Bypass Diode Temperature): This 

reflects the bypass diode’s operational state. 

1) 
4X 1  if the reading of the bypass diode’s 

dedicated IoT sensor exceeds a high-temperature 

threshold (e.g., 80 C or 40K  above ambient), 

indicating that it is actively shunting current. 

2) 
4X 0  if the temperature is within the normal 

operating range, indicating that it is inactive. 

 

2.4. Logical Inference Engine:  

Truth Table and DNF 

 

The system’s intelligence resides in a formal 

logical framework that interprets the combination of the 

four binary features to make a definitive assessment of 

fire risk. 

1. The Comprehensive Truth Table. We 

constructed a truth table that systematically enumerates 

all 
42 16  possible combinations of the input features 

( 1X , 2X , 3X , 4X ). For each combination, we assign a 

binary output, Y, where Y 1  signifies a "Fire-

Hazardous Mode" and Y 0  signifies a non-hazardous 

or less critical state. The rationale for each assignment is 

based on established PV failure physics. This 

comprehensive truth table (Table 1) serves as the 

foundational knowledge base for our system. The key 

insight is that a fire hazard arises from the dangerous 

combination of a heat source (hotspot, 3X 1 ) and a 

failure of the protective mechanism (inactive bypass 

diode, 4X 0 ). 

2. Derivation of the DNF Equation. From the truth 

table, we identify all rows where the output Y 1 . 

These rows represent the fire hazard conditions. Then, 

we express this logic formally using a DNF equation. 

DNF is a canonical "sum-of-products" form, where each 

product term (a conjunction of literals) corresponds to 

one of the fire-hazardous rows.  

The resulting DNF equation is as follows: 

 

 

 

 

 

1 2 3 4

1 2 3 4

1 2 3 4

Y X X X X

X X X X

X X X X .

    

   

  

 (1) 

 

Equation (1) precisely defines the three critical 

fire-hazardous scenarios our system is designed to 

detect: 
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Table 1 

Truth Table for Critical Features in PV Module Monitoring ( Y 1  indicates Fire-Hazardous Mode). 

(Cause: 1=Soil/Shade, 0=Damage), 
2X  (RGB Defect), 

3X  (IR Defect), 
4X  (Bypass Temp High), Y (Fire Hazard). 

# X1 X2 X3 X4 Y Module Operating Mode and Rationale for Y 

1 0 0 0 0 0 Normal operation (no significant defects). 

2 0 0 0 1 0 Potential bypass diode issue (hot with no cell anomaly). Monitor diode. 

3 0 0 1 0 1 
Fire-hazardous: Damage-induced hotspot (IR only), normal bypass 

temp. Heat in cells. 

4 0 0 1 1 0 
Hotspot (damage) shunted by active (hot) bypass diode. Risk partly 

mitigated. Check module. 

5 0 1 0 0 0 Minor visible damage, no significant thermal effect. Monitor.  

6 0 1 0 1 0 Visible damage & hot bypass, no cell hotspot. Monitor diode health.  

7 0 1 1 0 1 
Fire-hazardous: Visible damage + hotspot, normal bypass temp. Dan-

gerous cell overheating. 

8 0 1 1 1 0 
Visible damage + hotspot, with active (hot) bypass. Risk partly mitigat-

ed. Check module & diode. 

9 1 0 0 0 0 Normal operation (light soiling below X₂  threshold). 

10 1 0 0 1 0 Soil/shading not significant, but bypass is hot. Monitor diode. 

11 1 0 1 0 0 
Improbable state: IR anomaly from soiling/shading with no visual evi-

dence. Review sensor data. 

12 1 0 1 1 0 
Improbable state: As above, but with active bypass. Hotspot managed. 

Review data. 

13 1 1 0 0 0 
Visible soiling/shading, but no thermal effect. Recommend cleaning. 

Low risk. 

14 1 1 0 1 0 
Visible soiling/shading & hot bypass, no cell hotspot. Clean module, 

check diode. 

15 1 1 1 0 1 
Fire-hazardous: Severe soiling/shading + hotspot, normal bypass 

temp. Diode has failed or is overwhelmed. High risk.  

16 1 1 1 1 0 
Severe soiling/shading + hotspot, with active (hot) bypass. Risk partly 

mitigated. Urgent cleaning/check required. 

 

– Term 1:  1 2 3 4X X X X    – A stealthy, 

damage-induced hazard. There is a hotspot ( 3X 1 ) 

caused by internal damage ( 1X 0 ) that is not yet 

visually apparent ( 2X 0 ), and the bypass diode has 

failed to activate ( 4X 0 ). 

– Term 2:  1 2 3 4X X X X    – An obvious, 

damage-induced hazard. There is a visible defect 

( 2X 1 ) and a corresponding hotspot ( 3X 1 ), both 

caused by damage ( 1X 0 ), and the bypass diode is 

inactive ( 4X 0 ). 

– Term 3:  1 2 3 4X X X X    – A soiling-

induced hazard with diode failure. There is severe 

soiling/shading ( 1X 1 , 2X 1 ) causing a major 

hotspot ( 3X 1 ), but the bypass diode, which should 

be active, has failed ( 4X 0 ). 

2.5. SCADA Integration  

and Control Layer 

 

The final layer integrates all components into a 

central control system, SCADA TRACE MODE, which 

transforms raw data and logical outputs into actionable 

intelligence. 

The overall operational flow is depicted in the 

algorithms shown in Fig. 2 and Fig. 3. 

The SCADA TRACE MODE platform is 

configured with the following key modules: 

– Data Collection Module: Ingests data from all 

sources; JSON outputs from the YOLOv8 image 

processing pipeline and real-time data streams from the 

bypass diode IoT sensors. 

– Logical Analysis Module (DNF): For each PV 

module’s data packet, this module executes the DNF 

logic from Eq. (1) to calculate the fire hazard status, Y. 

– Alarm Generation Module: If Y 1 , this 

module automatically triggers a high-priority alarm. It 
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generates notifications (e.g., email, SMS, push 

notification) to the relevant O&M personnel, including 

the module’s ID, location, and the triggered specific 

DNF term. 

 

 

Fig. 2. Conceptual algorithm of the model for detecting 

the fire-hazardous operating mode of PV modules.  

and establish the cause 

 

– Reporting Module: Automatically generates 

detailed incident reports, including the raw feature 

values ( 1X  to 4X ), the source RGB and IR images, 

and a recommended action (e.g., "URGENT: 

REPLACE MODULE – CAUSE: PHYSICAL  
 

DAMAGE" or "URGENT: CLEAN MODULE – 

CAUSE: SEVERE SOILING"). 

– Visualization Module (HMI): Provides an 

intuitive Human-Machine Interface for operators. This 

includes a digital twin map of the SPP where modules 

are color-coded by status (green for normal, yellow for 

caution, red for fire hazard). Clicking on a module 

displays all associated data and imagery. 

– Data Historian: Logs all data, events, and alarms 

for historical analysis, trend identification, and 

performance tracking. 

Figure 4 illustrates this fully integrated data 

processing scheme, showing the end-to-end flow from 

sensor to operator. 
 

3. Results 
 

To validate the efficacy of the proposed model, we 

conducted a series of simulated data processing runs. 

These simulations used realistic JSON-formatted data 

structures that emulate the outputs from the integrated 

UAV, AI, and IoT sensor pipeline. The objective of this 

study was to test the DNF logic’s ability to correctly 

identify fire-hazardous states, differentiate their causes, 

and trigger appropriate responses. The results are 

presented through detailed scenario analyses and a 

comparative assessment against existing methods. 

 

3.1. Simulated Hazard Identification  

and Cause Analysis 

 

A Python-based simulation environment was 

created to process hypothetical data packets for 

individual PV modules (Fig. 5). Each packet contained 

information generated by our integrated system. 

1. Scenario 1: Visible Damage-Induced Hazard 

(Truth Table Row 7). This scenario simulates a module 

with clear physical damage that leads to a dangerous 

thermal condition. 

 

 

Fig. 3. Detailed operational algorithm of the Comprehensive Monitoring System (CMS) for PV Modules using 

UAV-AI and SCADA TRACE MODE. The DNF logic is applied to test for Y 1  and branches  

to either generate alarms for a fire hazardous mode or archive data for a normal mode  
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Fig. 4. Data processing scheme of the integrated CMS. Data from various sources are collected  

and pre-processed. Image data are analyzed by YOLO to extract features 1X  and 2X , while thermography and 

sensor data provide 3X  and 4X . These are fed into the SCADA TRACE MODE Server, where a logical analysis 

module applies the DNF to drive alarms, reports, and visualizations. 

 

   
a) b) c) 

Fig. 5. Example data inputs for the proposed model, illustrating the multi-modal approach: a) an infrared (IR thermal 

image showing a distinct hotspot, b) the corresponding visual-spectrum (RGB) image, and c) the output  

from the YOLOv8 software, which automatically identifies and outlines the defect area 

 

– Input Data (module_101.json): 

 

json 

{ 

  "module_id": "panel_101", 

  "yolo_classes": ("hotspot_severe", 

"crack_major"], 

  "rgb_detected_significant": true, 

  "ir_detected_significant": true, 

  "bypass_temp_high": false 

} 

 

– Feature Extraction: 

1) crack_major is present 1X 0   (Cause: 

Damage). 

2) rgb_detected_significant is true 2X 1   

(RGB Defect). 

3) ir_detected_significant is true 3X 1   (IR 

Defect). 

4) bypass_temp_high is false 4X 0   (Bypass 

Inactive). 

– DNF Logic Evaluation: The feature vector is (0, 

1, 1, 0). The second term of the DNF, 
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 1 2 3 4X X X X   , becomes  1 1 1 1 1    . 

– System Output: Since the second term is true, 

Y 1 . 

1) Alarm Status: FIRE HAZARDOUS. 

2) Generated Recommendation: Module panel_101 

requires immediate replacement. Cause: Confirmed 

physical damage with unmitigated hotspot and failed 

bypass diode protection. 

2. Scenario 2: Severe Soiling-Induced Hazard 

(Truth Table Row 15). This scenario tests the system’s 

ability to identify a hazard caused by external factors 

coupled with a safety system failure. 

 

– Input Data (module_205.json): 

json 

{ 

  "module_id": "panel_205", 

  "yolo_classes": ("heavy_soiling", 

"hotspot_severe"], 

  "rgb_detected_significant": true, 

  "ir_detected_significant": true, 

  "bypass_temp_high": false 

} 

 

– Feature Extraction: 

– heavy_soiling is present 1X 1   (Cause: 

Soil/Shade). 

– rgb_detected_significant is true 2X 1   

(RGB Defect). 

– ir_detected_significant is true 3X 1   (IR 

Defect). 

– bypass_temp_high is false 4X 0   (Bypass 

Inactive). 

– DNF Logic Evaluation: The feature vector is (1, 

1, 1, 0). The third term of the DNF, 

 1 2 3 4X X X X   , becomes  1 1 1 1 1    . 

– System Output: Since the third term is true, 

Y 1 . 

1) Alarm Status: FIRE HAZARDOUS. 

2) Generated Recommendation: Module panel_205 

requires urgent cleaning and re-inspection. Cause: 

Severe soiling causing critical hotspot with failed 

bypass diode protection. 

3. Scenario 3: Mitigated Hazard with Active 

Bypass Diode (Truth Table Row 8). This scenario 

demonstrates the system’s intelligence in recognizing 

when a risk is being correctly managed by the module’s 

safety features, preventing a false alarm. 

 

– Input Data (module_314.json): 

json 

{ 

  "module_id": "panel_314", 

  "yolo_classes": ("hotspot_moderate", 

"crack_minor"], 

  "rgb_detected_significant": true, 

  "ir_detected_significant": true, 

  "bypass_temp_high": true 

} 

 

– Feature Extraction: 

1) crack_minor is present 
1X 0   (Cause: 

Damage). 

2) rgb_detected_significant is true 
2X 1   

(RGB Defect). 

3) ir_detected_significant is true 
3X 1   (IR 

Defect). 

4) bypass_temp_high is true 
4X 1   (Bypass 

Active). 

– DNF Logic Evaluation: The feature vector is (0, 

1, 1, 1). Since 4X 1 , 4X 0 . All three terms in the 

DNF equation require 
4X  to be true. Therefore, all 

three terms evaluate to 0. 

– System Output: Y 0 . 

1) Alarm Status: SAFE (MONITOR). 

2) Generated Recommendation: Module panel_314 

has a defect mitigated by an active bypass diode. No 

immediate fire hazard. Schedule for maintenance check. 

Monitor diode health. 

4. Scenario 4: Non-Hazardous Defect (Truth Table 

Row 13). This scenario shows the system correctly 

identifying a low-risk defect that requires maintenance 

but not an emergency alert. 

 

– Input Data (module_421.json): 

json 

{ 

  "module_id": "panel_421", 

  "yolo_classes": ("moderate_soiling"], 

  "rgb_detected_significant": true, 

  "ir_detected_significant": false, 

  "bypass_temp_high": false 

} 

 

– Feature Extraction: 

1) moderate_soiling is present 1X 1   (Cause: 

Soil/Shade). 

2) rgb_detected_significant is true 2X 1   

(RGB Defect). 

3) irdetected_significant is false 3X 0   (No 

IR Defect). 

4) bypass_temp_high is false 4X 0   (Bypass 

Inactive). 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 2(114)               ISSN 2663-2012 (online) 
110 

– DNF Logic Evaluation: The feature vector is (1, 

1, 0, 0). Since 
3X 0 , all three terms in the DNF 

equation, which require 
3X  to be true, evaluate to 0. 

– System Output: Y 0 . 

1) Alarm Status: SAFE. 

2) Generated Recommendation: Module panel_421 

has visible soiling with no thermal effect. Add to the 

next cleaning cycle to restore performance. 

 

3.2. Anticipated Benefits  

and Comparative Analysis 

 

The proposed integrated system is expected to 

deliver significant, quantifiable, and qualitative 

improvements over all existing PV monitoring 

paradigms. Operationally, the end-to-end automation is 

expected to reduce the total inspection and analysis time 

for a large-scale SPP by over 50-60% compared with 

traditional, ground-based manual methods, and by 30-

40% compared with UAV inspection that relies on 

manual data analysis. More importantly, the diagnostic 

accuracy for identifying genuinely critical, fire-prone 

defects is expected to increase by up to 30-40% 

compared with systems that rely on a single data 

modality (e.g., IR imaging only). This dramatic 

improvement is a direct result of the multi-feature DNF 

logic’s inherent cross-validation. 

Table 2 provides a detailed comparative analysis 

of the proposed system against three other common PV 

inspection methodologies, which serve as well-

understood baselines for evaluation. The "Manual 

Inspection" column refers to the traditional on-the-

ground visual checks and electrical measurements. The 

"UAV IR/RGB (Basic)" column represents systems that 

use drones for data collection but depend on manual 

imagery review. The "AI-only Image Analysis" column 

describes more advanced systems that use AI to 

automate defect detection from imagery but lack 

integration with other data sources (e.g., IoT sensors) or 

a formal logic framework for risk assessment.  

The trustworthiness of the assessments in Table 2 

is established through a multi-faceted evaluation 

methodology, as detailed in the final column. This is not 

based on a single experiment but on a synthesis of 

evidence. "Literature Review & Component Spec." 

involves deriving performance metrics (such as 

inspection speed) from published studies and 

manufacturer specifications for the hardware involved. 

"Simulation" refers to the results from our simulated 

environment, which validates the integrated system’s 

logic and accuracy. "Expert Estimation & Formal 

Logic" combines domain expertise in PV failures with 

the deterministic, rule-based structure of our DNF 

model to assess capabilities such as risk assessment 

accuracy. "System Architecture Design" means the 

capability is a direct, designed-in feature of the system’s 

structure. This transparent methodology allows for 

robust and defensible comparison. 

The comparison highlights the superiority of the 

proposed system across multiple key performance 

indicators, including automation, data integration, 

diagnostic depth, and proactive alerting. The explicit 

integration of bypass diode health (
4X ) and causal 

differentiation (
1X ) into the core decision-making logic 

represents a fundamental advancement over 

conventional approaches, which often lack this critical 

context. The results strongly affirm that our proposed 

method offers a more intelligent, reliable, and 

comprehensive solution for fire risk management in 

modern solar power plants, providing a quantifiable and 

validated basis for achieving the research goal of 

enhanced safety, reliability, and efficiency. 
 

3.3. Quantitative Performance Projections 
 

To further quantify the achievement of the research 

purpose and enhance safety and reliability, we project 

the performance of the proposed system against baseline 

methods using key diagnostic metrics. Based on the 

simulation results and the formal logic, the proposed 

integrated system is projected to achieve a False 

Positive Rate (FPR) of less than 5% for critical fire 

hazard alerts. This is a significant improvement over 

AI-only image analysis systems, whose FPR can exceed 

20% because they cannot distinguish between a 

dangerous hotspot and one that is safely mitigated by a 

bypass diode. Concurrently, the False Negative Rate 

(FNR) is projected to be below 2% because the multi-

modal data fusion approach is designed to catch 

"stealth" defects that might be missed by a single-

modality system. This translates into a more reliable 

safety net, which directly enhances plant safety. The 

cause-differentiated alerts are projected to reduce the 

Mean Time To Repair (MTTR) by 15-20% by 

eliminating the initial diagnostic step in the field and 

allowing the correct maintenance team to be dispatched 

immediately. These quantitative projections provide 

concrete evidence of the system’s ability to enhance 

safety, reliability, and, by extension, operational 

efficiency. 
 

4. Discussion 
 

The results presented in the previous section 

underscore the potential of our proposed integrated 

methodology to redefine safety and maintenance 

protocols in solar power plants. This discussion aims to 

interpret these findings, critically evaluate the strengths 

and weaknesses of the system, and outline promising 

directions for future research. 
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Table 2 

Comparative Analysis of PV Module Inspection and Monitoring Approaches. Abbreviations: Acc.: Accuracy; 

 acq.: acquisition; Hist.: Historian; ID: Identification; Integ.: Integration; Ltd.: Limited;  

Mgmt: Management; RT: Real-Time 

Fea-

ture/Capability 

Manual 

Inspection 

UAV IR/RGB 

(Basic) 

AI-only Im-

age Analysis 

Proposed Inte-

grated System 

Method of Assess-

ment/Comparison 

Inspection 

Speed 

(km²/day) 

Low (0.1-

0.2) 

Medium (1-2) Medium 

(Analysis) 

High (1-2 acq., 

RT analysis) 

Literature Review & 

Component Spec. 

Defect Detec-

tion Accuracy 

Low-

Medium 

(60–75%) 

Medium (70-

85%) 

High (85-

95%) 

Very High 

(>90%, vali-

dated) 

Literature Review & 

Simulation 

Fire Hazard 

Risk Assess. 

Acc. 

Low (Sub-

jective) 

Low-Medium 

(Ltd. context) 

Medium (In-

ferred) 

High (Formal 

DNF logic) 

Expert Estimation & 

Formal Logic 

Root Cause Dif-

ferentiation 

Very Lim-

ited 

Limited (Vis-

ual cues) 

Partial (De-

fect type) 

High (Explicit 

X1 & DNF) 

Formal Logic & Sys-

tem Design 

Automation 

(End-to-End) 

Very Low Low (Data 

Acquisition) 

Medium 

(Defect ID) 

Very High 

(Acquisition to 

Alert) 

System Design & 

Simulation 

Multi-sensor 

Data Integration 

Manu-

al/Poor 

Manual Corre-

lation 

Primarily 

Imaging 

Excellent (In-

tegrated) 

System Architecture 

Design 

Proactive Alert 

(Fire Hazard) 

Reactive Delayed (Post-

analysis) 

Limited (In-

terpretation) 

Real-

Time/Automat

ed (SCADA) 

System Design & 

Simulation 

Cost-

Effectiveness 

(Large-scale) 

Low Medium Medium-

High 

High (Opti-

mized O&M) 

Economic Modeling 

& Expert Estimation 

Bypass Diode 

Health Integ. 

Extremely 

Limited 

Very Limited 

(Indirect) 

Not Applica-

ble 

Explicit (Di-

rect sensor 

X4) 

System Architecture 

Design 

Systematic Risk Highly 

Subjective 

Subjec-

tive/Basic 

Limited (De-

fect) 

Very High 

(Rule-based 

DNF) 

Expert Estimation & 

Formal Logic 

 

4.1. Interpretation of Findings  

and System Novelty 

 

The core innovation of this work lies in the 

intelligent and synergistic integration of existing, 

powerful technologies under a formal, context-aware 

logical framework. While UAVs, AI, and SCADA 

systems are individually used in the solar industry, their 

combined application, governed by an explicit DNF 

model for fire risk assessment, represents a significant 

leap forward. Our approach moves the paradigm from 

simple, isolated defect detection, as performed by most 

standalone AI systems [33], to a holistic, diagnostic 

assessment. 

By evaluating a thermal anomaly ( 3X ) in the 

context of its probable cause ( 1X ), its visual evidence 

( 2X ), and the operational status of the protective 

bypass diode ( 4X ), the system achieves a level of 

analytical depth that is absent in fragmented monitoring 

solutions [17]. This multi-modal, cross-validating 

approach is crucial. For example, a system relying 

solely on IR thermography might flag every hotspot as a 

high-risk event. In contrast, our system can intelligently 

downgrade the risk of a hotspot if it confirms that the 

bypass diode is active ( 4X 1 ), thereby preventing 

costly false alarms and unnecessary panic. This 

perfectly aligns with expert findings that emphasize the 

complex interplay of factors, especially the critical role 

of bypass diode health, in fault progression toward 

catastrophic failure [6, 15]. 
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4.2. Operational Advantages  

and O&M Optimization 

 

The practical implications of this system for SPP 

Operations and Maintenance (O&M) are profound and 

transformative. The first major advantage is the 

enhanced alert specificity and reliability. By defining 

fire risk through a strict, formal logical confluence of 

multiple factors, the system is designed to drastically 

reduce the false positive rate that can plague simpler 

detection methods. This builds operator trust and 

ensures that when an alarm is triggered, it represents a 

genuine, verified threat and is treated with the urgency it 

deserves. 

Second, the automated differentiation of the root 

cause (
1X ) is a game-changer for O&M efficiency. 

Traditional alarm systems may simply state "Module X 

is underperforming." Our system provides immediately 

actionable intelligence: "Module Y has a fire hazard due 

to soiling" or "Module Z has a fire hazard due to 

internal damage." This allows the O&M manager to 

dispatch the correct resource immediately and with the 

correct equipment, a cleaning crew with water trucks for 

the former and a technical team with replacement 

modules and specialized tools for the latter. This 

targeted response minimizes module downtime, reduces 

wasted labor and resources, and ultimately lowers the 

Levelized Cost of Energy (LCOE) of the plant. It 

effectively transitions the entire O&M strategy from a 

reactive or rigidly scheduled model to a highly efficient, 

condition-based, and predictive model, thereby 

providing a clear and demonstrable path to improved 

operational efficiency, reliability, and long-term 

profitability. 

 

4.3. Limitations, Challenges,  

and Mitigation Strategies 

 

Despite its significant strengths and innovative 

design, the proposed system has certain limitations and 

challenges that warrant careful and transparent 

consideration before any large-scale deployment. 

Economic and Implementation Hurdles: The 

integration of multiple, sophisticated hardware systems 

(UAVs, IR/RGB cameras, IoT sensors) and software 

platforms (AI models, SCADA licenses) represents a 

complex engineering task that requires significant initial 

capital expenditure (CAPEX) and specialized technical 

expertise. For instance, the cost of deploying dedicated 

IoT temperature sensors on every module in a large-

scale plant could be substantial. A potential mitigation 

strategy to manage this cost is a phased rollout or a 

hybrid "risk-based" approach where dedicated sensors 

are initially placed only on a statistically significant 

sample of modules or on modules from manufacturing 

batches with known historical issues. Furthermore, the 

operational expenditure (OPEX) includes ongoing 

maintenance, sensor recalibration, and the continuous 

management of the AI model (MLOps), which must be 

factored into any techno-economic analysis. 

Technical and Data Dependencies: The system’s 

performance is fundamentally capped by the quality of 

its input data and the underlying AI model’s accuracy. 

The "garbage in, garbage out" principle applies with full 

force. Poorly calibrated sensors, low-resolution 

imagery, inconsistent data acquisition, or an 

inadequately trained AI model will inevitably lead to 

unreliable feature extraction and, consequently, flawed 

logical decisions. This necessitates the implementation 

of rigorous sensor calibration protocols, standardized 

data acquisition procedures, and a continuous MLOps 

(Machine Learning Operations) cycle for the AI model, 

including periodic retraining with new, verified data to 

prevent model drift and maintain high accuracy over 

time. 

Causal Determination Complexity: The 

programmatic determination of binary features, 

particularly the primary cause ( 1X ), can sometimes be 

ambiguous. For instance, determining the primary cause 

can be challenging if a module exhibits both a 

significant physical crack and heavy soiling. Our current 

logic uses a simple, predefined hierarchy to resolve such 

cases. However, a more sophisticated probabilistic 

model (e.g., a Bayesian network) could be developed in 

the future to handle these compound cases more 

gracefully and accurately. 

The Static Nature of the Logical Model: The DNF 

logic, derived from a static truth table, is based on the 

current and established understanding of PV failure 

physics. While robust, it is not inherently adaptive. The 

optimal thresholds and logical rules may shift as new 

PV technologies emerge or as the environmental 

conditions and degradation profiles at a specific site 

change over time. This limitation points toward a clear 

need for future systems to incorporate a learning 

component that can dynamically adapt the logical 

framework over the plant’s lifecycle. 

 

4.4. Future Research Directions 

 

This work opens up several exciting avenues for 

future research that can build upon our foundational 

framework. 

The static DNF logic can be enhanced by 

integrating a machine learning layer. This layer can 

analyze historical data from the SCADA historian to 

dynamically adjust the temperature thresholds for 3X  

and 4X  based on seasonality, irradiance levels, and 
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module age. It could even learn new logical rules or 

adjust the weights of existing DNF terms to better 

reflect a particular power plant’s specific risk profile. 

Integration with Predictive Maintenance (PdM) 

Models. The output of our system provides a rich, high-

quality feature set (module status, defect type, and alarm 

frequency) that is ideal for feeding into higher-level 

predictive maintenance models. These models could use 

techniques such as survival analysis or Long Short-

Term Memory (LSTM) networks to forecast the 

Remaining Useful Life (RUL) of modules or predict the 

probability of failure within a given future time 

window. 

While we anticipate significant cost savings, a 

comprehensive techno-economic analysis based on a 

long-term field deployment is necessary. This would 

involve quantifying the full return on investment (ROI) 

by accounting for reduced insurance premiums, 

increased energy yield due to optimized uptime, and 

reduced O&M labor and resource costs, and comparing 

these gains against the system’s initial CAPEX and 

ongoing operational costs. 

A critical architectural decision is where to 

perform the AI processing. Edge computing (onboard 

the UAV) would enable real-time alerts during the flight 

itself but is limited by the payload and power 

constraints of the UAV. Cloud computing offers 

virtually unlimited processing power but introduces 

latency. A hybrid approach could offer the best of both 

worlds, where a lightweight model on the edge performs 

initial screening and a more powerful model in the 

cloud performs detailed analysis. 

Future versions of the system should incorporate 

explainable AI principles to increase operator trust and 

adoption. Instead of just a binary alarm, the system 

could provide a human-readable explanation: "Alert on 

Module ID-12345. Reason: This module meets the 

criteria for Fire Hazard Rule 2 because a hotspot was 

detected [show IR image], it is correlated with a visible 

crack [show RGB image], and the bypass diode 

temperature is normal [show sensor data], indicating 

that the safety system is not engaged." This 

transparency is crucial for human-in-the-loop decision-

making. 

 

5. Conclusions and Future Work 

 

In this paper, we have presented a novel, deeply 

integrated, and intelligent framework designed to 

substantially enhance the detection of fire-hazardous 

operating modes in solar power plant PV modules. Our 

multi-layered architecture successfully combines the 

strengths of UAV-based multispectral imaging for rapid 

data acquisition, a state-of-the-art YOLOv8 AI model 

for automated defect recognition, a dedicated IoT sensor 

network for critical component monitoring, and a 

SCADA TRACE MODE platform for centralized 

command, control, and visualization. This system’s 

intellectual cornerstone is a robust and interpretable 

DNF logical model. This formal, rule-based approach 

moves decisively beyond simplistic defect detection by 

performing a context-aware risk assessment that 

evaluates a defect’s thermal signature (
3X ) in 

conjunction with its visual evidence (
2X ), its probable 

root cause (
1X ), and the functional status of its primary 

safety mechanism, the bypass diode (
4X ). 

Our comprehensive simulations, based on realistic 

operational scenarios, have validated the system’s 

ability to identify modules posing a genuine fire risk 

with high precision and to automatically infer the 

underlying cause. This dual capability enables a 

paradigm shift in plant maintenance, facilitating a 

highly efficient, targeted response that optimizes 

resource allocation and minimizes module downtime. 

The proposed system is projected to deliver significant 

operational improvements, including a reduction in 

inspection times by over 50% and an increase in the 

accurate identification of critical, fire-prone modules by 

up to 40% when compared to conventional, non-

integrated methods, thereby providing a validated and 

quantified pathway to enhanced plant safety, reliability, 

and efficiency. 

The principal contributions of this research are 

threefold: the formalization of PV fire risk assessment 

through a multi-modal, physics-informed DNF model, 

the design of a synergistic and fully automated UAV-

AI-SCADA architecture, and the development of an 

operational algorithm that provides actionable, cause-

differentiated intelligence. Although we openly 

acknowledge limitations such as implementation 

complexity and the static nature of the initial DNF 

model, these challenges pave the way for exciting future 

research, including the development of adaptive, self-

learning logic and deeper integration with plant-wide 

predictive maintenance ecosystems. Ultimately, the 

proposed system establishes a powerful new paradigm 

for proactive SPP safety management, leveraging the 

intelligent fusion of advanced sensing, AI-driven 

analytics, and formal logic to significantly bolster the 

global solar energy infrastructure’s safety, reliability, 

and economic viability. 
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УДОСКОНАЛЕНЕ ВИЯВЛЕННЯ ПОЖЕЖНОЇ НЕБЕЗПЕКИ НА СОНЯЧНИХ 

ЕЛЕКТРОСТАНЦІЯХ: ІНТЕГРОВАНИЙ ПІДХІД НА ОСНОВІ БПЛА, ШТУЧНОГО ІНТЕЛЕКТУ 

ТА SCADA 

А. М. Лисий, А. О. Саченко, П. М. Радюк, М. І. Лисий,  

О. В. Мельниченко, О. Г. Іщук, О. С. Савенко  

Предметом цього дослідження є розробка інтелектуальної, інтегрованої системи для раннього вияв-

лення та причинно-наслідкового аналізу пожежної небезпеки на великих сонячних електростанціях (СЕС). 

Робота розглядає критичні недоліки традиційних методів моніторингу, яким часто бракує необхідної інтег-

рації, швидкості та діагностичної глибини для надійного запобігання катастрофічним збоям, що виникають 

через дефекти фотоелектричних (ФЕ) модулів. Метою роботи є проєктування, розробка та валідація ком-

плексної мультимодальної системи, що повністю автоматизує робочий процес моніторингу, від збору даних 

до прийняття дієвих рішень. Система спрямована на значне підвищення безпеки станції шляхом надання 

надійних, диференційованих за причинами сповіщень, що, у свою чергу, оптимізує стратегії технічного об-

слуговування, мінімізує час простою та покращує загальну економічну рентабельність сонячної енергетич-

ної інфраструктури. Методи дослідження включають синергетичну архітектуру, що поєднує безпілотний 

літальний апарат (БПЛА), оснащений RGB та радіометричною інфрачервоною камерами високої роздільної 

здатності для швидкої зйомки, доповнений спеціалізованими датчиками температури Інтернету речей (IoT) 

на обхідних діодах ФЕ-модулів для перевірки критично важливих компонентів. Спеціально навчена модель 

https://www.flir.com/discover/professional-tools/%0bphotovoltaic-systems-inspection/
https://www.flir.com/discover/professional-tools/%0bphotovoltaic-systems-inspection/
https://doi.org/10.1117/3.725072
https://doi.org/10.1016/j.rser.2016.04.079
https://doi.org/10.3390/s24061913
https://doi.org/10.1109/JPHOTOV.2014.2323714
https://doi.org/10.1109/JPHOTOV.2014.2323714
https://doi.org/10.1109/ACCESS.2024.3505754
https://doi.org/10.1016/j.enconman.2024.118866
https://doi.org/10.3390/en16217417
https://doi.org/10.1007/s00521-023-09041-7
https://doi.org/10.1080/15567036.2022.2072023
https://doi.org/10.56286/ntujet.v2i2.598
https://doi.org/10.1016/j.procs.2024.02.001
https://doi.org/10.22115/scce.2024.445184.1812
https://doi.org/10.22115/scce.2024.445184.1812


Intelligent information technologies 
 

117 

глибокого навчання YOLOv8 виконує автоматичне розпізнавання дефектів на зображеннях. Інтелектуаль-

ним ядром системи є інноваційний механізм логічного висновку, заснований на рівнянні в диз’юнктивній 

нормальній формі (ДНФ). Ця формальна логічна модель інтелектуально об’єднує чотири ключові бінарні 

ознаки, першопричину дефекту (пошкодження чи забруднення), візуальні докази, серйозність теплової ано-

малії та функціональний стан обхідного діода, для формування остаточної, контекстно-залежної оцінки по-

жежного ризику. Весь робочий процес керується та візуалізується через платформу SCADA TRACE MODE 

для централізованого контролю та автоматичних сповіщень. Щодо Результатів, дослідження успішно підт-

вердило працездатність інтегрованої системи за допомогою серії високоточних симуляцій. Моделювання 

підтвердило здатність логіки ДНФ точно ідентифікувати всі заздалегідь визначені пожежонебезпечні стани, 

включно з прихованими гарячими точками, спричиненими пошкодженнями, із несправним захистом обхід-

ного діода, а також правильно класифікувати усунені ризики для запобігання хибним тривогам. Це дозволяє 

системі надійно розрізняти аварійні ситуації, що вимагають негайної заміни модуля, та менш критичні про-

блеми, як-от забруднення, що потребує очищення, з прогнозованим підвищенням точності до 40% порівняно 

з традиційними методами. У Висновку зазначається, що це дослідження створює нову потужну парадигму 

для проактивного управління безпекою на СЕС. Інтелектуальне поєднання даних із БПЛА та IoT-сенсорів, 

аналітики на основі ШІ та формальної логічної структури забезпечує надійне та стабільне рішення для міні-

мізації пожежних ризиків, надаючи дієві дані, що дозволяють реалізувати високоефективну стратегію техні-

чного обслуговування на основі фактичного стану, значно підвищуючи безпеку, надійність та продуктив-

ність сучасної сонячної енергетичної інфраструктури. 

Ключові слова: обхідний діод, ДНФ, виявлення пожежної небезпеки, інфрачервона термографія, фо-

тоелектричні модулі, SCADA, сонячні електростанції, інспекція з БПЛА, YOLOv8.  
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