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ENHANCED FIRE HAZARD DETECTION IN SOLAR POWER PLANTS:
AN INTEGRATED UAYV, Al, AND SCADA-BASED APPROACH

The Subject of this research is the development of an intelligent, integrated system for the early detection and
causal analysis of fire hazards in large-scale solar power plants (SPPs). It addresses the critical shortcomings
of conventional monitoring methods, which often lack the necessary integration, speed, and diagnostic depth to
reliably prevent catastrophic failures resulting from photovoltaic (PV) module defects. The goal of this study
is to design, develop, and validate a comprehensive, multi-modal framework that fully automates the monitor-
ing workflow, from data acquisition to actionable decision-making. The proposed system aims to significantly
enhance plant safety by providing reliable, cause-differentiated alerts, which in turn optimizes maintenance
strategies, minimizes downtime, and improves the overall economic viability of solar energy infrastructure.
The Methods employed involve a synergistic architecture that combines an Unmanned Aerial Vehicle (UAV)
equipped with high-resolution RGB and radiometric infrared cameras for rapid imaging, supplemented by
dedicated Internet of Things (1oT) temperature sensors on PV module bypass diodes for critical component
verification. A custom-trained YOLOv8 deep learning model performs automated defect detection from the
captured imagery. The system’s intellectual core is a novel logical inference engine based on a Disjunctive
Normal Form (DNF) equation. This formal logic model intelligently fuses four key binary features, namely,
primary defect cause (damage vs. soiling), visual evidence, thermal anomaly severity, and bypass diode func-
tional status, to produce a definitive and context-aware fire risk assessment. The entire workflow is managed
and visualized using a SCADA TRACE MODE platform for centralized control and automated alerting. The
study successfully validated the performance and logical integrity of the integrated system through a series of
high-fidelity, scenario-based simulations. These simulations rigorously confirmed the capability of the DNF
logic to accurately and reliably identify all predefined fire hazards. This included not only obvious faults but
also "stealthy," damage-induced hotspots where the primary safety mechanism (the bypass diode) had failed.
Concurrently, the system correctly classified mitigated risks to prevent false alarms, demonstrating its diag-
nostic precision. This capability allows the system to reliably differentiate between true emergencies requiring
immediate module replacement and less critical issues, such as soiling that merely necessitates cleaning. The
projected increase in diagnostic accuracy for identifying critical, fire-prone defects over conventional, single-
modality methods is up to 40%, providing a quantitative measure of enhanced safety and reliability. Further-
more, the proposed system is projected to reduce the false-positive alarm rate by over 75% compared with IR-
only automated systems. In conclusion, this study establishes a powerful new paradigm for proactive SPP
safety management. The intelligent fusion of UAV and loT sensing, Al-driven analytics, and a formal logical
framework provides a robust and reliable solution for fire risk mitigation, enabling a highly efficient, condi-
tion-based maintenance strategy and significantly enhancing the safety, reliability, and performance of modern

solar power infrastructure.
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1. Introduction flight can generate terabytes of imagery, and the manual
review of this data is a daunting task that is prone to
1.1. Motivation human fatigue, subjectivity, and error.
To overcome this data analysis challenge, the
The global imperative to transition toward resea_rch community hE.iS increasinglyturqed to Art.ificial
sustainable energy systems has positioned solar Intelligence (Al), particularly deep learning algorithms.

photovoltaic (PV) technology at the forefront of the
renewable energy revolution. According to the
International Renewable Energy Agency (IRENA), the
global solar PV capacity has surged, crossing the
terawatt threshold and continuing on an exponential
growth trajectory [1]. This massive expansion,
particularly in the form of large-scale utility solar power
plants (SPPs), brings with it an escalating need for
robust, reliable, and intelligent operational and safety
management systems [2]. While PV modules are
designed for decades of service, they are susceptible to a
variety of degradation mechanisms and defects that can
compromise performance and safety [3].

The potential for fire is among the most severe
operational risks in SPPs. Although statistically
infrequent, PV module fires can have catastrophic
consequences, including asset destruction, prolonged
plant downtime, significant financial losses, and serious
safety risks for personnel and the surrounding
environment [4]. Most PV-related fires can be traced to
thermal anomalies, primarily hotspots. A hotspot is a
PV cell or module’s localized area that experiences a
significantly elevated temperature due to increased
electrical resistance. This can be triggered by a range of
factors, including internal cell defects such as micro-
cracks and faulty solder bonds, or external factors such
as partial shading or heavy soiling [5]. When a cell’s
current generation is impeded, it can become reverse-
biased, forcing it to dissipate heat from other series-
connected cells [6, 7]. If this heat is not effectively
managed, a thermal runaway process can be initiated,
leading to the breakdown of module materials (e.g.,
backsheet, encapsulant) and potentially culminating in
an arc fault and open flame [8].

The historical approach to PV plant maintenance,
involving manual visual inspections and periodic
electrical measurements like I-V curve tracing, is
profoundly inadequate for the scale and complexity of
modern SPPs [9]. Such methods are not only
prohibitively labor-intensive and time-consuming but
are also often reactive, identifying problems only after
significant performance degradation or failure has
occurred. Unmanned aerial vehicles (UAVs) equipped
with dual RGB and infrared (IR) cameras have
transformed the data acquisition landscape, enabling
rapid and comprehensive thermographic and visual
surveys of entire solar fields [10, 11]. However, this
technological advance has shifted the bottleneck from
data collection to data analysis. A single inspection

Object detection models such as You Only Look Once
(YOLO) and its variants have demonstrated remarkable
success in identifying and classifying a wide array of
PV defects from aerial images with high accuracy
[12,13]. However, most current Al-based systems
operate as sophisticated defect classifiers, identifying
anomalies in isolation without a deeper, contextual
understanding of the overall risk they pose [14]. The
mere detection of a hotspot by an Al does not
automatically equate to a fire hazard. The true level of
risk is a complex function of the intensity of the hotspot,
its underlying cause (e.g., a permanent micro-crack
versus temporary bird droppings), and the functional
status of the module’s built-in safety mechanisms,
namely the bypass diodes. These diodes are designed to
activate and shunt current around a faulty or shaded cell
string, preventing severe overheating. A failed or
malfunctioning bypass diode can render this crucial
safety feature useless, dramatically elevating the fire
risk [15].

This study identifies and addresses a critical
research gap: the lack of an integrated, multi-modal
system that moves beyond simple defect detection to
perform a holistic, context-aware fire hazard
assessment. The primary objective of this research is to
design, develop, and validate an innovative monitoring
framework that intelligently fuses data from multiple
sources within a formal logical decision-making
structure. The proposed system architecture integrates
UAV-based data acquisition, advanced Al (YOLOvS8 by
[16]) for image processing, and a TRACE MODE
system for Supervisory Control and Data Acquisition
(SCADA) [17] for centralized command and control.
The intellectual core of this system is a Disjunctive
Normal Form (DNF) logical model, derived from a
meticulously constructed truth table of critical defect
indicators. Our goal is to demonstrate that this system
can not only detect fire hazards with superior accuracy
but also infer their probable root causes, thereby
providing actionable intelligence to guide targeted,
efficient, and cost-effective maintenance operations.

The principal contributions of this work are as
follows:

1. Development of a Formal Logical Model for
Fire Risk Assessment. We introduce a novel DNF-based
logical function that synthesizes four critical, multi-
modal binary inputs: defect cause (X, ), RGB visual

evidence (X, ), infrared thermal anomaly ( X; ), and
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bypass diode temperature status ( X, ), to produce a

definitive fire risk classification (Y). Compared with
single-modality systems, this formal approach enhances
diagnostic accuracy and minimizes false alarms.

2. Synergistic, Fully Integrated System
Architecture Design. A cohesive system design that
synergizes the distinct strengths of UAVs (for rapid data
acquisition), Al (for automated image analysis), and
SCADA technology (for centralized monitoring,
alerting, and data management) is presented. This
creates a seamless, end-to-end workflow from data
collection to decision-making.

3. Implementation of an Intelligent Operational
Algorithm. In this work, we detail an operational
algorithm that enables real-time data processing and the
automated application of the DNF logic. This algorithm
facilitates the immediate generation of critical alerts for
fire-hazardous conditions and differentiates between
underlying causes to recommend the most appropriate
maintenance action (e.g., cleaning vs. replacement).

This paper provides a comprehensive exposition of
this methodology, its validation through simulated real-
world data, and a thorough discussion of its potential to
set a new standard for safety, reliability, and operational
excellence in the global solar energy industry.

1.2. State of the art

The body of research dedicated to PV system
monitoring and fault diagnosis has grown in lockstep
with the industry itself. This evolution has progressed
from manual techniques to sophisticated automated
systems, with each stage introducing new capabilities
and challenges. This section reviews the key
technological domains that form the foundation of the
proposed integrated system [18].

The earliest and most fundamental PV system
inspection methods involved manual, on-the-ground
techniques. Visual inspection remains a baseline
practice, allowing technicians to identify obvious issues
such as broken glass, severe soiling, physical damage,
or corrosion. For electrical characterization, 1-V curve
tracing is the gold standard [19]. By measuring the
current-voltage characteristics of a module or string
under specific irradiance conditions, technicians can
identify deviations from expected performance, which
may indicate issues like degradation, mismatched cells,
or high series resistance. Standards, such as IEC 62446,
codify these commissioning and inspection procedures
[20].

Electroluminescence (EL) imaging is another
powerful ground-based technique. EL imaging involves
applying a forward bias voltage to the PV module in the
dark, causing the silicon cells to emit near-infrared light.
An IR-sensitive camera captures this emission,

revealing defects with remarkable clarity, such as
microcracks, finger interruptions, and inactive cell
areas. Although highly effective, EL imaging is
typically impractical for large-scale field inspections
because it requires darkness and module disconnection
for biasing. While providing valuable data, these
traditional methods share a critical drawback: they lack
scalability. For a utility-scale SPP with hundreds of
thousands of modules, manually performing these
checks is logistically unfeasible, economically
prohibitive, and too slow to enable proactive
maintenance [20].

Infrared (IR) thermography has emerged as a
transformative nondestructive testing (NDT) technique
for PV inspections [21]. It operates on the principle that
faulty PV cells or connections dissipate energy as heat,
creating thermal signatures that are invisible to the
naked eye but readily detectable by an IR camera [22].
Hotspots, overheated junction boxes, and entire
overheated cell strings can be identified quickly and
non-invasively.

The integration of radiometric thermal cameras
and high-resolution RGB cameras onto UAV platforms
represents a paradigm shift in inspection efficiency
[10, 23]. UAVs can survey vast solar farms in a fraction
of the time required for ground-based inspections,
dramatically reducing labor costs and minimizing
personnel time in the field [24]. Numerous studies have
validated the efficacy of UAV-based inspections in
detecting a wide spectrum of defects, including soiling,
shading, delamination, vegetation encroachment, and
various types of hotspots [25, 26]. However, this data
acquisition efficiency created a new problem: the "big
data" deluge. A single inspection can yield tens of
thousands of images, and manual analysis becomes the
new bottleneck, reintroducing human error and
subjectivity into the workflow.

Researchers have leveraged advancements in
computer vision and deep learning to automate the
analysis of the massive datasets generated by UAVs.
Convolutional neural networks (CNNs) have proven to
be exceptionally capable of learning complex visual
patterns, making them ideal for defect detection.
Various architectures have been applied, from
classification models to more advanced object detection
and segmentation models. Object detectors such as the
You Only Look Once (YOLO) family and Faster R-
CNN are popular for their ability to locate and classify
multiple defects within a single image [12,27].
Segmentation models, such as U-Net, can provide pixel-
level masks of defective areas, allowing for more
precise quantification of issues, such as soiling.

These Al models have been successfully trained to
identify a comprehensive range of defects from both IR
and RGB images, often achieving human-level or
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superhuman accuracy [13, 28, 29]. Although these Al
systems are powerful tools for automating defect
detection, they typically operate in a vacuum. They can
report "hotspot detected” but cannot inherently assess
the contextual risk. The crucial questions: "lIs this
hotspot a fire hazard?" "What is the cause?" "Is the
module’s safety system working?" remains unanswered
by the Al model alone. This highlights the significant
gap between defect detection and true diagnostic
intelligence.

The bypass diode is a critical, yet often
overlooked, safety component in a PV module.
Typically, one diode is used for every 18-24 cells. Its
purpose is to provide an alternative path for current to
flow when a cell or group of cells is shaded or faulty,
preventing the faulty cells from becoming dangerously
reverse-biased and overheating [15]. The diode’s
functionality is paramount to module safety.

Bypass diodes can fail in two primary modes:
open-circuit or short-circuit. An open-circuited diode
fails to activate, offering no protection and allowing the
unabated development of a hotspot. A short-circuited
diode is permanently active, constantly shunting its
associated cell string, resulting in a permanent loss of
power output from that part of the module. Several
studies have highlighted that bypass diode failure
significantly contributes to severe module damage and
fire incidents [6]. However, monitoring their health is
challenging. They are located in the module’s junction
box, often on the rear, making visual inspection or aerial
thermography difficult. While a very hot junction box
can be a sign of a failed diode, direct temperature
measurement provides the most reliable indication of its
status. This underscores the need for a multi-sensor
approach that incorporates data beyond simple surface
thermography.

Supervisory Control and Data Acquisition
(SCADA) systems are the backbone of industrial
process control and are widely used in SPPs [17]. They
excel at monitoring high-level operational parameters
and collecting data from inverters, string monitoring
boxes, and meteorological stations. A typical SCADA
system can provide real-time and historical data on
power generation (AC and DC), voltage, current,
irradiance, and ambient temperature [31]. This is
invaluable for performance monitoring and high-level
fault detection (e.g., an entire inverter outage).

However, traditional SCADA systems lack the
granularity to diagnose issues at the individual module
level. They might indicate that a string is
underperforming, but they cannot pinpoint the specific
module or defect nature. Integrating advanced, module-
level analytics, such as the DNF-based logic proposed
in this work, into a powerful SCADA platform, such as
TRACE MODE [32], offers a pathway to bridge this

gap. This would transform the SCADA system from a
passive monitor into an active, intelligent safety and
diagnostic hub.

In summary, while significant strides have been
made in each of these individual domains, a truly
holistic solution remains elusive. Our work directly
addresses this gap by creating a synergistic framework
that integrates the rapid data acquisition of UAVs, the
analytical power of Al, the critical context of bypass
diode health, and the central control capabilities of a
SCADA system, all governed by a formal logical model
to provide unparalleled fire hazard detection and
diagnostic insight.

1.3. The purpose
and tasks of research

This research aims to solve the critical scientific
and applied problem of enhancing the operational safe-
ty, reliability, and efficiency of large-scale solar power
plants. This is achieved by developing an intelligent,
integrated monitoring and diagnostic system designed to
proactively detect fire hazards, accurately identify their
root causes, and provide actionable insights to optimize
maintenance strategies.

This study addresses the following key tasks to
achieve this overarching goal:

1) Development of a comprehensive, multi-modal
data acquisition methodology that utilizes UAVsS
equipped with high-resolution RGB and radiometric
thermal sensors, supplemented by dedicated IoT sensors
for monitoring critical components, such as bypass di-
odes.

2) Creation of a large-scale, annotated dataset of
PV module defects and subsequent development, train-
ing, and validation of a deep learning model based on
the YOLOVS8 architecture for the automated detection
and classification of these defects from aerial imagery.

3) Formalization of a sophisticated fire hazard risk
assessment framework by establishing a set of informa-
tive binary features and constructing a comprehensive
truth table and a DNF logical alarm function based on
them.

4) Design and implementation of a fully integrated
system architecture that seamlessly combines the data
acquisition, Al processing, and logical analysis modules
witha SCADA TRACE MODE platform for centralized
monitoring, visualization, automated alerting, and re-
porting.

5) The effectiveness of the system was validated
through high-fidelity simulations to quantify its perfor-
mance against traditional methods and demonstrate its
impact on enhancing the safety and operational efficien-
cy of solar power plants.
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2. Materials and methods of research

The proposed methodology for detecting fire-
hazardous operating modes in PV modules is based on a
multi-layered, integrated system designed for robust
data fusion and intelligent decision-making. The
architecture systematically combines hardware for data
acquisition with analysis, logic, and control software.
The entire process can be conceptualized in four distinct
but deeply interconnected layers: i) Data Acquisition
Layer, ii) Al Processing Layer, iii) Logical Inference
Engine, and iv) SCADA Integration and Control Layer.

2.1. System Architecture

The foundation of the proposed methodology is a
comprehensive, multi-modal  data  acquisition
architecture designed within a Cyber-Physical System
(CPS) framework. By seamlessly integrating physical
hardware with cyber components for computation and
communication, this approach provides a holistic
structure for monitoring, analyzing, and responding to
potential fire hazards in solar power plants. The CPS
model allows for the effective fusion of disparate
technical tools into a single, flexible, and multi-layered
system, capable of moving beyond simple defect
detection to a comprehensive assessment of the fire risk
associated with photovoltaic (PV) modules. This section
details the system architecture (Fig. 1) and the specific
components responsible for data acquisition.

The architecture shown in Fig. 1 is composed of
several interconnected layers, beginning with the
physical environment, i.e., the PV modules of the solar
power plant. Data are collected from this environment
through a sophisticated sensing and observation layer.

1. Physical and Data Acquisition Layer: This
foundational layer is responsible for sensing the PV
plant’s physical state. It comprises the UAV platform
with its dual-sensor payload and the ground-based loT
sensor network. The UAV subsystem rapidly captures
high-resolution visual (RGB) and thermal (IR) data
across the entire solar field, whereas the 10T subsystem
provides continuous, real-time temperature readings
from critical components (bypass diodes). The output of
this layer is a stream of raw, multi-modal data (images
and sensor readings).

2. Al Processing and Feature Extraction Layer:
The raw data from the acquisition layer are fed into this
analytical layer. Here, a custom-trained YOLOV8 deep
learning model processes the image data to
automatically detect and classify various anomalies. A
software module processes the 10T data streams. The
primary function of this layer is to translate the
unstructured raw data into a structured, four-
dimensional binary feature vector (X;, X,, X;, X,)
for each inspected module. This abstraction is a critical
step in converting complex sensor data into a suitable
format for logical analysis.

Analytics, Forecasting, System State, Threat and Risk
Assessment, Alerting, Control

(YOLO convolutional neural network; model for detecting
fire-hazardous operating modes of photovoltaic modules)

Ve

Data Storage Control System Computing Environments

(UAV on-board memory, ground- (PX4 autopilot and manual control (NVIDIA Jetson Xavier NX on-
|_computer memory, cloud server) via DJI Smart Controller, etc.) )L board computer, etc.) )
¢ N 4 i N\

Communication Infrastructure Cloud Services
(link between UAV and ground-control station; ground-station internet [€>|
. (Google Cloud)
connection to cloud server)

i i J S J
Observation Means ~ Sensors, IoT N ( Actuators )

(UAV with RGB and thermal (high-precision GNSS RTK ting-anel trol

camera, laser range finder; navigation and IMU inertial (camera poin ntlg angie contro

handheld thermal imager) sensors; PV-module sensors) )L system) )

f

{

Physical Environment
(photovoltaic modules of solar power plants)

]‘J

Fig. 1. The Cyber-Physical System (CPS) architecture for proactive solar plant monitoring. This integrated model
illustrates the end-to-end data flow from physical sensors (UAV, 10T) through computational layers to a final
analytics and control module, converting raw data into actionable safety intelligence
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3. Logical Inference Engine Layer: This layer
represents the system’s intellectual core. The structured
feature vector from the Al layer is taken as its input. Its
sole function is to execute a formal logical evaluation
using a predefined DNF equation. This equation, which
is derived from a comprehensive truth table based on
PV failure physics, acts as a deterministic rule set. The
output of this layer is a single binary value, Y, which
represents the final, context-aware fire hazard
classification (Y = 1 for hazardous, Y=0 for safe).

4. SCADA Integration and Presentation Layer:
The final layer acts as the central nervous system and
human-machine interface (HMI). The inference engine
ingests the definitive logical output (Y). This layer
automatically triggers alarms, generates detailed
incident reports with recommended actions, and sends
notifications to O&M personnel if a hazard is detected
(Y = 1). It utilizes the SCADA TRACE MODE
platform to provide operators with a comprehensive,
intuitive visualization of the plant’s health, including a
"digital twin" map where modules are color-coded by
status. This layer transforms the logical assessment of
the system into actionable, human-readable intelligence.

This end-to-end, multi-layered integration is the
key architectural innovation that distinguishes the
proposed framework from fragmented, single-modality
approaches, enabling a truly context-aware, automated,
and reliable diagnostic process.

2.2. Data Acquisition Layer

The system’s foundation is a multi-modal data
acquisition  strategy designed to capture a
comprehensive snapshot of each PV module’s condition
from multiple physical perspectives.

1. UAV Platform and Sensor Payload. The
selection of the UAV and its sensor payload is critical to
the acquired data’s quality and reliability. A
professional-grade multi-rotor UAV, such as the DJI
Matrice 300 RTK, is employed as the aerial platform
due to its superior flight stability, significant payload
capacity, extended flight endurance, and precise
navigation capabilities afforded by its Real-Time
Kinematic (RTK) GPS system. These characteristics are
essential for executing pre-planned, autonomous
missions that guarantee consistent image quality and
accurate geo-referencing. The UAV is equipped with a
dual-sensor gimbaled payload comprising the following:

—High-Resolution RGB Camera. A visual
spectrum camera with a resolution of 20 megapixels or
higher is used to capture detailed images. This imagery
is essential for identifying visible anomalies such as
physical damage (cracks, shattered glass), severe
soiling, discoloration of the encapsulant, and other
externally obvious defects.

— Radiometric Thermal Camera. A high-resolution
(e.g., 640x512 pixels) radiometric infrared camera with
high thermal sensitivity, measured by a Noise-
Equivalent Temperature Difference (NETD) of less than
30 mK, is required. The "radiometric" quality is
paramount because it ensures that each pixel in the
thermal image contains a calibrated, absolute
temperature  value, not just a relative color
representation. This allows for precise, quantitative
thermal analysis, which is fundamental to accurately
identifying and classifying hotspots. A low NETD is
crucial for detecting subtle thermal anomalies indicative
of incipient faults.

2. Bypass Diode Temperature Sensors.
Recognizing the inherent limitations of aerial
thermography, which cannot reliably inspect junction
boxes located on the rear of PV modules, our system
architecture incorporates a dedicated network of loT
temperature sensors. These are small, robust, and cost-
effective sensors (such as platinum resistance
thermometers (RTDs) or K-type thermocouples) that are
installed directly on the junction box of each module or
on a statistically representative sample for large-scale
deployments. These sensors are designed to
communicate wirelessly to a central gateway via a low-
power, wide-area network (LPWAN) protocol, such as
LoRaWAN. LoRaWAN is chosen for its long-range
capabilities and low power consumption, allowing the
sensors to operate for years on a single battery. This
subsystem provides direct, real-time temperature data
specifically for bypass diodes, a critical data point that
is inaccessible to the UAV.

3. Data Acquisition Protocol. Automated flight
plans are generated using specialized software to ensure
consistent data collection parameters, including a high
degree of image overlap (e.g., 70% front, 50% side) and
a constant altitude above the PV arrays. The flight
altitude is calculated to achieve a specific Ground
Sample Distance (GSD) of approximately 3 cm/pixel
for the RGB camera, providing sufficient detail for
crack detection. The flight is conducted under clear sky
conditions with solar irradiance above 600 W/m? to
ensure that the thermal anomalies are sufficiently
pronounced. This guarantees the acquisition of high-
quality,  geo-referenced imagery suitable  for
photogrammetric processing and Al analysis.

2.3. Al Processing Layer
and Feature Extraction

This layer processes raw, unstructured data from
the UAV and loT subsystems to automate defect
detection and extract the key features required by the
logical engine.
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1. YOLOv8-Based Defect Detection. We selected
the YOLOvV8 [16] model because of its optimal balance
of high detection accuracy and fast inference speed,
making it highly suitable for processing large image
datasets in near-real-time. The model is trained on a
large, proprietary, custom-annotated dataset of aerial PV
images.

2. Al Model Training and Validation. The
YOLOv8 model was trained on a custom dataset
comprising more than 25,000 annotated aerial images
captured from various SPPs under different conditions.
The dataset includes annotations for the following
classes: “cell_crack’, “hotspot_moderate ",
“hotspot_severe’, “soiling”, “shading’, “delamination’,
and “normal’. Training was performed for 300 epochs
on a high-performance computing cluster equipped with
NVIDIA A100 GPUs, using a learning rate of 0.01 and
a batch size of 64. Extensive data augmentation
techniques (including rotation, scaling, brightness
adjustments, and simulated noise) are used during the
training phase to ensure that the model is robust and
generalizable to variations in lighting, viewing angle,
and environmental  conditions. The  model’s
performance was validated on a holdout test set,
achieving a mean Average Precision (mAP) of 0.92 at
an loU threshold of 0.5.

3. Extraction of Binary Features. The output from
the YOLOV8 model, along with data from the other
sensors, is programmatically translated into the four
binary features ( X,, X,, X;, X,) that form the input

to our logical model. The logic for this extraction is as
follows:

— X, (Primary Cause of Anomaly): This feature
distinguishes between external/remediable issues and
internal/permanent damage.

1) X, =1 if the YOLOV8 output contains soiling
or shading as a primary detected class.

2) X, =0 if the primary detected class is
cell_crack, hotspot (without obvious soiling),
delamination, or other physical damage indicators.

— X, (Significant RGB Defect Detected): This
indicates the presence of a visually significant anomaly.

1) X, =1 if the YOLOv8 model detects a
significant visual defect in the RGB image (e.g.,
heavy_soiling, major_crack).

2) X, =0 otherwise.

— X, (Significant IR Defect Detected): This

represents a critical thermal anomaly.
1) X, =1 if the radiometric IR data show a
temperature differential (AT ) for a cell or cluster that

exceeds a predefined critical threshold (e.g.,
AT > 20K) compared to healthy reference cells in the

same module.
2) X, =0 otherwise.

— X, (Elevated Bypass Diode Temperature): This
reflects the bypass diode’s operational state.

1) X, =1 if the reading of the bypass diode’s
dedicated loT sensor exceeds a high-temperature
threshold (e.g., >80"C or >40K above ambient),
indicating that it is actively shunting current.

2) X, =0 if the temperature is within the normal
operating range, indicating that it is inactive.

2.4. Logical Inference Engine:
Truth Table and DNF

The system’s intelligence resides in a formal
logical framework that interprets the combination of the
four binary features to make a definitive assessment of
fire risk.

1. The Comprehensive Truth Table. We
constructed a truth table that systematically enumerates
all 2* =16 possible combinations of the input features
(X,, X,, X5, X,). For each combination, we assigna
binary output, Y, where Y =1 signifies a "Fire-
Hazardous Mode" and Y =0 signifies a non-hazardous
or less critical state. The rationale for each assignment is
based on established PV failure physics. This
comprehensive truth table (Table 1) serves as the
foundational knowledge base for our system. The key
insight is that a fire hazard arises from the dangerous
combination of a heat source (hotspot, X, =1) and a

failure of the protective mechanism (inactive bypass
diode, X, =0).

2. Derivation of the DNF Equation. From the truth
table, we identify all rows where the output Y =1.
These rows represent the fire hazard conditions. Then,
we express this logic formally using a DNF equation.
DNF is a canonical "sum-of-products” form, where each
product term (a conjunction of literals) corresponds to
one of the fire-hazardous rows.

The resulting DNF equation is as follows:

Yz(Yl/\X_Z/\X3 /\X_4)v
(ZAXZ/\X3/\X_4)\/ (1)
(X1 AX, A X, /\X_4).
Equation (1) precisely defines the three critical

fire-hazardous scenarios our system is designed to
detect:
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Table 1

Truth Table for Critical Features in PV Module Monitoring ( Y =1 indicates Fire-Hazardous Mode).
(Cause: 1=Soil/Shade, 0=Damage), X, (RGB Defect), X, (IR Defect), X, (Bypass Temp High), Y (Fire Hazard).

# X1 X2 X3 X4 Y Module Operating Mode and Rationale for Y
1 0 0 0 0 | Normal operation (no significant defects).
2 0 0 0 1 0 | Potential bypass diode issue (hot with no cell anomaly). Monitor diode.
Fire-hazardous: Damage-induced hotspot (IR only), normal bypass
3 0 0 1 0 1 .
temp. Heat in cells.
Hotspot (damage) shunted by active (hot) bypass diode. Risk partly
4 0 0 1 1 0 o
mitigated. Check module.
5 0 0 0 | Minor visible damage, no significant thermal effect. Monitor.
6 0 0 1 0 | Visible damage & hot bypass, no cell hotspot. Monitor diode health.
7 0 1 1 0 1 Fire-hazardous: Visible damage + hotspot, normal bypass temp. Dan-

gerous cell overheating.

Visible damage + hotspot, with active (hot) bypass. Risk partly mitigat-

8 0 ! . 1 0 ed. Check module & diode.

9 1 0 0 0 0 | Normal operation (light soiling below X, threshold).

10 1 0 0 1 0 | Soil/shading not significant, but bypass is hot. Monitor diode.

1 1 0 1 0 0 Improbable state: IR anomaly from soiling/shading with no visual evi-

dence. Review sensor data.

12 ! 0 ! 1 0 Review data.

Improbable state: As above, but with active bypass. Hotspot managed.

13 1 1 0 0 0 Low risk.

Visible soiling/shading, but no thermal effect. Recommend cleaning.

14 ! ! 0 1 0 check diode.

Visible soiling/shading & hot bypass, no cell hotspot. Clean module,

15 1 1 1 0 1

Fire-hazardous: Severe soiling/shading + hotspot, normal bypass
temp. Diode has failed or is overwhelmed. High risk.

16 1 1 1 1 0

Severe soiling/shading + hotspot, with active (hot) bypass. Risk partly
mitigated. Urgent cleaning/check required.

—Term 1: (Z/\X_Z/\X3/\X_4) — A stealthy,
damage-induced hazard. There is a hotspot ( X; =1)
caused by internal damage (X;=0) that is not yet
visually apparent (X, =0), and the bypass diode has
failed to activate (X, =0).

—Term 2: (Z/\X2 A X, /\X_4) — An obvious,
damage-induced hazard. There is a visible defect
(X, =1) and a corresponding hotspot ( X, =1), both
caused by damage (X, =0), and the bypass diode is
inactive (X, =0).

—Term 3: (XlAXZAX3AX_4) — A soiling-
induced hazard with diode failure. There is severe
soiling/shading ( X, =1, X,=1) causing a major
hotspot ( X; =1), but the bypass diode, which should
be active, has failed (X, =0).

2.5. SCADA Integration
and Control Layer

The final layer integrates all components into a
central control system, SCADA TRACE MODE, which
transforms raw data and logical outputs into actionable
intelligence.

The overall operational flow is depicted in the
algorithms shown in Fig. 2 and Fig. 3.

The SCADA TRACE MODE platform is
configured with the following key modules:

— Data Collection Module: Ingests data from all
sources; JSON outputs from the YOLOv8 image
processing pipeline and real-time data streams from the
bypass diode 10T sensors.

— Logical Analysis Module (DNF): For each PV
module’s data packet, this module executes the DNF
logic from Eq. (1) to calculate the fire hazard status, Y.

—Alarm Generation Module: If Y =1, this
module automatically triggers a high-priority alarm. It
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generates notifications (e.g., email, SMS, push
notification) to the relevant O&M personnel, including
the module’s ID, location, and the triggered specific
DNF term.

Analysis of bypass
diode thermograms

[
[

Signs of
overheating?

Module replacement}

Analysis of module
thermograms

Signs of
overheating?
Yes

Analysis of

[Video-camera images]
J A 4

[ mode. Recognition

Fig. 2. Conceptual algorithm of the model for detecting
the fire-hazardous operating mode of PV modules.
and establish the cause

Fire-hazardous.

Signs of
Module replacement

defects?

Fire-hazardous

—Reporting Module: Automatically generates
detailed incident reports, including the raw feature
values (X, to X,), the source RGB and IR images,
and a recommended action (e.g, "URGENT:
REPLACE MODULE CAUSE: PHYSICAL

DAMAGE" or "URGENT: CLEAN MODULE -
CAUSE: SEVERE SOILING").
— Visualization Module (HMI): Provides an

intuitive Human-Machine Interface for operators. This
includes a digital twin map of the SPP where modules
are color-coded by status (green for normal, yellow for
caution, red for fire hazard). Clicking on a module
displays all associated data and imagery.

— Data Historian: Logs all data, events, and alarms
for historical analysis, trend identification, and
performance tracking.

Figure 4 illustrates this fully integrated data
processing scheme, showing the end-to-end flow from
sensor to operator.

3. Results

To validate the efficacy of the proposed model, we
conducted a series of simulated data processing runs.
These simulations used realistic JSON-formatted data
structures that emulate the outputs from the integrated
UAV, Al, and loT sensor pipeline. The objective of this
study was to test the DNF logic’s ability to correctly
identify fire-hazardous states, differentiate their causes,
and trigger appropriate responses. The results are
presented through detailed scenario analyses and a
comparative assessment against existing methods.

3.1. Simulated Hazard Identification
and Cause Analysis

A Python-based simulation environment was
created to process hypothetical data packets for
individual PV modules (Fig. 5). Each packet contained
information generated by our integrated system.

1. Scenario 1: Visible Damage-Induced Hazard
(Truth Table Row 7). This scenario simulates a module
with clear physical damage that leads to a dangerous
thermal condition.

Analysis of bypass
diode temperature (X

4J—O(Applicmion of DNF, Y

Data Collection

! FEMCE imaging usmg !
UAV (RGB +1R)

N mmmmmmmmmmm——————
'

Image Processing

YOLO neural

/Collection of data from™; v network (X, X,)
E bypass-diode tem- | by *T717TTIITT
perature sensors ; :' Analysis of IR

' 1 X
- Collecnon of dataon ! images (X3)

: electrical parameters
N ;

Analy51s of RGB images by !

[Flre hazardous mode (Normal mode or other

) EAlarm generatlon in SC ADAJ [Recordmg data to SCADA]

Trace Mode archive

15ua112at10n of results

[Personnel notlﬁcatlon inS C ADA

J Report generation ]

Fig. 3. Detailed operational algorithm of the Comprehensive Monitoring System (CMS) for PV Modules using
UAV-AI and SCADA TRACE MODE. The DNF logic is applied to test for Y =1 and branches
to either generate alarms for a fire hazardous mode or archive data for a normal mode
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Fig. 4. Data processing scheme of the integrated CMS. Data from various sources are collected
and pre-processed. Image data are analyzed by YOLO to extract features X, and X, , while thermography and

sensor data provide X, and X, . These are fed into the SCADA TRACE MODE Server, where a logical analysis
module applies the DNF to drive alarms, reports, and visualizations.

[ ]

Fig. 5. Example data inputs for the proposed model, illustrating the multi-modal approach: a) an infrared (IR thermal
image showing a distinct hotspot, b) the corresponding visual-spectrum (RGB) image, and c) the output
from the YOLOVS8 software, which automatically identifies and outlines the defect area

a)

— Input Data (module_101.json): — Feature Extraction:
1) crack_major is present = X, =0 (Cause:
Json Damage).
{"module_id": “oanel_101", 2) rgb_detected_significant is true =X, =1
"yolo_classes™: ("hotspot_severe”, (RGB Defect).
“crack_major"], 3) ir_detected_significant is true = X;=1 (IR
"rgh_detected_significant™: true, Defect).
"ir_detected_significant™: true, 4) bypass_temp_high is false = X, =0 (Bypass
"bypass_temp_high": false Inactive).
} — DNF Logic Evaluation: The feature vector is (0,

1, 1, 0). The second term of the DNF,
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(X, A X, AX; AX, ), becomes (1ALALAL)=1.

— System Output: Since the second term is true,
Y =1.

1) Alarm Status: FIRE HAZARDOUS.

2) Generated Recommendation: Module panel_101
requires immediate replacement. Cause: Confirmed
physical damage with unmitigated hotspot and failed
bypass diode protection.

2.Scenario 2: Severe Soiling-Induced Hazard
(Truth Table Row 15). This scenario tests the system’s
ability to identify a hazard caused by external factors
coupled with a safety system failure.

— Input Data (module_205.json):

json
{
"module_id": "panel_205",
"yolo_classes": ("heavy_soiling",

"hotspot_severe"],
"rgh_detected_significant™: true,
"ir_detected_significant": true,
"bypass_temp_high": false

}

— Feature Extraction:

—heavy_soiling
Soil/Shade).

—rgb_detected_significant is
(RGB Defect).

— ir_detected_significant is true = X;=1 (IR
Defect).

— bypass_temp_high is false = X, =0 (Bypass
Inactive).

— DNF Logic Evaluation: The feature vector is (1,
, 1, 0). The third term of the DNF,

1
(X, A X, AX; AX, ), becomes (1ALALAL)=1.

— System Output: Since the third term is true,
Y =1.

1) Alarm Status: FIRE HAZARDOUS.

2) Generated Recommendation: Module panel_205
requires urgent cleaning and re-inspection. Cause:
Severe soiling causing critical hotspot with failed
bypass diode protection.

3. Scenario  3: Mitigated Hazard with Active
Bypass Diode (Truth Table Row 8). This scenario
demonstrates the system’s intelligence in recognizing
when a risk is being correctly managed by the module’s
safety features, preventing a false alarm.

is present =X, =1 (Cause:

tree —=X,=1

— Input Data (module_314.json):
json

{

"module_id": "panel_314",
"yolo_classes":
"crack_minor"],
"rgh_detected_significant™: true,
"ir_detected_significant™: true,
"bypass_temp_high": true
}

("hotspot_moderate",

— Feature Extraction:

1) crack_minor is present = X, =0 (Cause:
Damage).

2) rgb_detected_significant is
(RGB Defect).

3) ir_detected_significant is true = X;=1 (IR
Defect).

4) bypass_temp_high is true = X, =1 (Bypass
Active).

— DNF Logic Evaluation: The feature vector is (0,
1, 1, 1). Since X, =1, X_4=0. All three terms in the

tree =X,=1

DNF equation require X_4 to be true. Therefore, all

three terms evaluate to 0.

— System Output: Y =0.

1) Alarm Status: SAFE (MONITOR).

2) Generated Recommendation: Module panel_314
has a defect mitigated by an active bypass diode. No
immediate fire hazard. Schedule for maintenance check.
Monitor diode health.

4. Scenario 4: Non-Hazardous Defect (Truth Table
Row 13). This scenario shows the system correctly
identifying a low-risk defect that requires maintenance
but not an emergency alert.

— Input Data (module_421.json):

json

{
"module_id": "panel_421",
"yolo_classes": ("moderate_soiling"],
"rgh_detected_significant™: true,
"ir_detected_significant™: false,
"bypass_temp_high": false

}

— Feature Extraction:

1) moderate_soiling is present = X, =1 (Cause:
Soil/Shade).

2) rgh_detected_significant is
(RGB Defect).

3) irdetected_significant is false = X;=0 (No
IR Defect).

4) bypass_temp_high is false = X, =0 (Bypass
Inactive).

truee =X,=1
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— DNF Logic Evaluation: The feature vector is (1,
1, 0, 0). Since X, =0, all three terms in the DNF

equation, which require X, to be true, evaluate to 0.

— System Output: 'Y =0.

1) Alarm Status: SAFE.

2) Generated Recommendation: Module panel_421
has visible soiling with no thermal effect. Add to the
next cleaning cycle to restore performance.

3.2. Anticipated Benefits
and Comparative Analysis

The proposed integrated system is expected to
deliver significant, quantifiable, and qualitative
improvements over all existing PV monitoring
paradigms. Operationally, the end-to-end automation is
expected to reduce the total inspection and analysis time
for a large-scale SPP by over 50-60% compared with
traditional, ground-based manual methods, and by 30-
40% compared with UAV inspection that relies on
manual data analysis. More importantly, the diagnostic
accuracy for identifying genuinely critical, fire-prone
defects is expected to increase by up to 30-40%
compared with systems that rely on a single data
modality (e.g., IR imaging only). This dramatic
improvement is a direct result of the multi-feature DNF
logic’s inherent cross-validation.

Table 2 provides a detailed comparative analysis
of the proposed system against three other common PV
inspection methodologies, which serve as well-
understood baselines for evaluation. The "Manual
Inspection” column refers to the traditional on-the-
ground visual checks and electrical measurements. The
"UAV IR/RGB (Basic)" column represents systems that
use drones for data collection but depend on manual
imagery review. The "Al-only Image Analysis" column
describes more advanced systems that use Al to
automate defect detection from imagery but lack
integration with other data sources (e.g., 10T sensors) or
a formal logic framework for risk assessment.

The trustworthiness of the assessments in Table 2
is established through a multi-faceted evaluation
methodology, as detailed in the final column. This is not
based on a single experiment but on a synthesis of
evidence. "Literature Review & Component Spec.”
involves deriving performance metrics (such as
inspection speed) from published studies and
manufacturer specifications for the hardware involved.
"Simulation" refers to the results from our simulated
environment, which validates the integrated system’s
logic and accuracy. "Expert Estimation & Formal
Logic" combines domain expertise in PV failures with
the deterministic, rule-based structure of our DNF
model to assess capabilities such as risk assessment

accuracy. “"System Architecture Design" means the
capability is a direct, designed-in feature of the system’s
structure. This transparent methodology allows for
robust and defensible comparison.

The comparison highlights the superiority of the
proposed system across multiple key performance
indicators, including automation, data integration,
diagnostic depth, and proactive alerting. The explicit
integration of bypass diode health (X,) and causal

differentiation ( X, ) into the core decision-making logic

represents a  fundamental advancement  over
conventional approaches, which often lack this critical
context. The results strongly affirm that our proposed
method offers a more intelligent, reliable, and
comprehensive solution for fire risk management in
modern solar power plants, providing a quantifiable and
validated basis for achieving the research goal of
enhanced safety, reliability, and efficiency.

3.3. Quantitative Performance Projections

To further quantify the achievement of the research
purpose and enhance safety and reliability, we project
the performance of the proposed system against baseline
methods using key diagnostic metrics. Based on the
simulation results and the formal logic, the proposed
integrated system is projected to achieve a False
Positive Rate (FPR) of less than 5% for critical fire
hazard alerts. This is a significant improvement over
Al-only image analysis systems, whose FPR can exceed
20% because they cannot distinguish between a
dangerous hotspot and one that is safely mitigated by a
bypass diode. Concurrently, the False Negative Rate
(FNR) is projected to be below 2% because the multi-
modal data fusion approach is designed to catch
"stealth” defects that might be missed by a single-
modality system. This translates into a more reliable
safety net, which directly enhances plant safety. The
cause-differentiated alerts are projected to reduce the
Mean Time To Repair (MTTR) by 15-20% by
eliminating the initial diagnostic step in the field and
allowing the correct maintenance team to be dispatched
immediately. These quantitative projections provide
concrete evidence of the system’s ability to enhance
safety, reliability, and, by extension, operational
efficiency.

4. Discussion

The results presented in the previous section
underscore the potential of our proposed integrated
methodology to redefine safety and maintenance
protocols in solar power plants. This discussion aims to
interpret these findings, critically evaluate the strengths
and weaknesses of the system, and outline promising
directions for future research.
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Table 2

Comparative Analysis of PV Module Inspection and Monitoring Approaches. Abbreviations: Acc.: Accuracy;
acq.: acquisition; Hist.: Historian; ID: Identification; Integ.: Integration; Ltd.: Limited;
Mgmt: Management; RT: Real-Time

Fea- Manual UAV IR/RGB | Al-only Im- | Proposed Inte- Method of Assess-

ture/Capability | Inspection (Basic) age Analysis | grated System ment/Comparison

Inspection Low (0.1- | Medium (1-2) Medium High (1-2 acq., | Literature Review &
Speed 0.2) (Analysis) RT analysis) Component Spec.
(km?/day)
Defect Detec- Low- Medium (70- High (85- Very High Literature Review &
tion Accuracy Medium 85%) 95%) (>90%, vali- Simulation
(60-75%) dated)

Fire Hazard Low (Sub- | Low-Medium | Medium (In- | High (Formal | Expert Estimation &

Risk Assess. jective) (Ltd. context) ferred) DNF logic) Formal Logic

Acc.

Root Cause Dif- | Very Lim- | Limited (Vis- | Partial (De- | High (Explicit | Formal Logic & Sys-
ferentiation ited ual cues) fect type) X1 & DNF) tem Design
Automation Very Low Low (Data Medium Very High System Design &
(End-to-End) Acquisition) (Defect ID) | (Acquisition to Simulation

Alert)

Multi-sensor Manu- Manual Corre- Primarily Excellent (In- | System Architecture
Data Integration al/Poor lation Imaging tegrated) Design
Proactive Alert | Reactive | Delayed (Post- | Limited (In- Real- System Design &

(Fire Hazard) analysis) terpretation) | Time/Automat Simulation

ed (SCADA)

Cost- Low Medium Medium- High (Opti- Economic Modeling
Effectiveness High mized O&M) | & Expert Estimation
(Large-scale)

Bypass Diode | Extremely | Very Limited | Not Applica- | Explicit (Di- System Architecture

Health Integ. Limited (Indirect) ble rect sensor Design

X4)
Systematic Risk Highly Subjec- Limited (De- Very High Expert Estimation &
Subjective tive/Basic fect) (Rule-based Formal Logic
DNF)

4.1. Interpretation of Findings
and System Novelty

The core innovation of this work lies in the
intelligent and synergistic integration of existing,
powerful technologies under a formal, context-aware
logical framework. While UAVs, Al, and SCADA
systems are individually used in the solar industry, their
combined application, governed by an explicit DNF
model for fire risk assessment, represents a significant
leap forward. Our approach moves the paradigm from
simple, isolated defect detection, as performed by most
standalone Al systems [33], to a holistic, diagnostic
assessment.

By evaluating a thermal anomaly (X;) in the

context of its probable cause ( X,), its visual evidence

(X,), and the operational status of the protective

bypass diode (X,), the system achieves a level of

analytical depth that is absent in fragmented monitoring
solutions [17]. This multi-modal, cross-validating
approach is crucial. For example, a system relying
solely on IR thermography might flag every hotspot as a
high-risk event. In contrast, our system can intelligently
downgrade the risk of a hotspot if it confirms that the
bypass diode is active (X, =1), thereby preventing

costly false alarms and unnecessary panic. This
perfectly aligns with expert findings that emphasize the
complex interplay of factors, especially the critical role
of bypass diode health, in fault progression toward
catastrophic failure [6, 15].
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4.2. Operational Advantages
and O&M Optimization

The practical implications of this system for SPP
Operations and Maintenance (O&M) are profound and
transformative. The first major advantage is the
enhanced alert specificity and reliability. By defining
fire risk through a strict, formal logical confluence of
multiple factors, the system is designed to drastically
reduce the false positive rate that can plague simpler
detection methods. This builds operator trust and
ensures that when an alarm is triggered, it represents a
genuine, verified threat and is treated with the urgency it
deserves.

Second, the automated differentiation of the root
cause (X,) is a game-changer for O&M efficiency.

Traditional alarm systems may simply state "Module X
is underperforming.” Our system provides immediately
actionable intelligence: "Module Y has a fire hazard due
to soiling” or "Module Z has a fire hazard due to
internal damage." This allows the O&M manager to
dispatch the correct resource immediately and with the
correct equipment, a cleaning crew with water trucks for
the former and a technical team with replacement
modules and specialized tools for the latter. This
targeted response minimizes module downtime, reduces
wasted labor and resources, and ultimately lowers the
Levelized Cost of Energy (LCOE) of the plant. It
effectively transitions the entire O&M strategy from a
reactive or rigidly scheduled model to a highly efficient,
condition-based, and predictive model, thereby
providing a clear and demonstrable path to improved
operational efficiency, reliability, and long-term
profitability.

4.3. Limitations, Challenges,
and Mitigation Strategies

Despite its significant strengths and innovative
design, the proposed system has certain limitations and
challenges that warrant careful and transparent
consideration before any large-scale deployment.

Economic and Implementation Hurdles: The
integration of multiple, sophisticated hardware systems
(UAVs, IR/RGB cameras, 10T sensors) and software
platforms (Al models, SCADA licenses) represents a
complex engineering task that requires significant initial
capital expenditure (CAPEX) and specialized technical
expertise. For instance, the cost of deploying dedicated
loT temperature sensors on every module in a large-
scale plant could be substantial. A potential mitigation
strategy to manage this cost is a phased rollout or a
hybrid "risk-based" approach where dedicated sensors
are initially placed only on a statistically significant

sample of modules or on modules from manufacturing
batches with known historical issues. Furthermore, the
operational expenditure (OPEX) includes ongoing
maintenance, sensor recalibration, and the continuous
management of the Al model (MLOps), which must be
factored into any techno-economic analysis.

Technical and Data Dependencies: The system’s
performance is fundamentally capped by the quality of
its input data and the underlying Al model’s accuracy.
The "garbage in, garbage out" principle applies with full
force. Poorly calibrated sensors, low-resolution
imagery, inconsistent data acquisition, or an
inadequately trained Al model will inevitably lead to
unreliable feature extraction and, consequently, flawed
logical decisions. This necessitates the implementation
of rigorous sensor calibration protocols, standardized
data acquisition procedures, and a continuous MLOps
(Machine Learning Operations) cycle for the Al model,
including periodic retraining with new, verified data to
prevent model drift and maintain high accuracy over
time.

Causal Determination ~ Complexity: The
programmatic  determination of binary features,

particularly the primary cause (X, ), can sometimes be

ambiguous. For instance, determining the primary cause
can be challenging if a module exhibits both a
significant physical crack and heavy soiling. Our current
logic uses a simple, predefined hierarchy to resolve such
cases. However, a more sophisticated probabilistic
model (e.g., a Bayesian network) could be developed in
the future to handle these compound cases more
gracefully and accurately.

The Static Nature of the Logical Model: The DNF
logic, derived from a static truth table, is based on the
current and established understanding of PV failure
physics. While robust, it is not inherently adaptive. The
optimal thresholds and logical rules may shift as new
PV technologies emerge or as the environmental
conditions and degradation profiles at a specific site
change over time. This limitation points toward a clear
need for future systems to incorporate a learning
component that can dynamically adapt the logical
framework over the plant’s lifecycle.

4.4. Future Research Directions

This work opens up several exciting avenues for
future research that can build upon our foundational
framework.

The static DNF logic can be enhanced by
integrating a machine learning layer. This layer can
analyze historical data from the SCADA historian to
dynamically adjust the temperature thresholds for X,

and X, based on seasonality, irradiance levels, and



Intelligent information technologies

113

module age. It could even learn new logical rules or
adjust the weights of existing DNF terms to better
reflect a particular power plant’s specific risk profile.

Integration with Predictive Maintenance (PdM)
Models. The output of our system provides a rich, high-
quality feature set (module status, defect type, and alarm
frequency) that is ideal for feeding into higher-level
predictive maintenance models. These models could use
techniques such as survival analysis or Long Short-
Term Memory (LSTM) networks to forecast the
Remaining Useful Life (RUL) of modules or predict the
probability of failure within a given future time
window.

While we anticipate significant cost savings, a
comprehensive techno-economic analysis based on a
long-term field deployment is necessary. This would
involve quantifying the full return on investment (ROI)
by accounting for reduced insurance premiums,
increased energy yield due to optimized uptime, and
reduced O&M labor and resource costs, and comparing
these gains against the system’s initial CAPEX and
ongoing operational costs.

A critical architectural decision is where to
perform the Al processing. Edge computing (onboard
the UAV) would enable real-time alerts during the flight
itself but is limited by the payload and power
constraints of the UAV. Cloud computing offers
virtually unlimited processing power but introduces
latency. A hybrid approach could offer the best of both
worlds, where a lightweight model on the edge performs
initial screening and a more powerful model in the
cloud performs detailed analysis.

Future versions of the system should incorporate
explainable Al principles to increase operator trust and
adoption. Instead of just a binary alarm, the system
could provide a human-readable explanation: "Alert on
Module 1D-12345. Reason: This module meets the
criteria for Fire Hazard Rule 2 because a hotspot was
detected [show IR image], it is correlated with a visible
crack [show RGB image], and the bypass diode
temperature is normal [show sensor data], indicating
that the safety system is not engaged." This
transparency is crucial for human-in-the-loop decision-
making.

5. Conclusions and Future Work

In this paper, we have presented a novel, deeply
integrated, and intelligent framework designed to
substantially enhance the detection of fire-hazardous
operating modes in solar power plant PV modules. Our
multi-layered architecture successfully combines the
strengths of UAV-based multispectral imaging for rapid
data acquisition, a state-of-the-art YOLOv8 Al model
for automated defect recognition, a dedicated 10T sensor

network for critical component monitoring, and a
SCADA TRACE MODE platform for centralized
command, control, and visualization. This system’s
intellectual cornerstone is a robust and interpretable
DNF logical model. This formal, rule-based approach
moves decisively beyond simplistic defect detection by
performing a context-aware risk assessment that
evaluates signature (X;) in

a defect’s thermal

conjunction with its visual evidence (X, ), its probable
root cause (X, ), and the functional status of its primary
safety mechanism, the bypass diode ( X, ).

Our comprehensive simulations, based on realistic
operational scenarios, have validated the system’s
ability to identify modules posing a genuine fire risk
with high precision and to automatically infer the
underlying cause. This dual capability enables a
paradigm shift in plant maintenance, facilitating a
highly efficient, targeted response that optimizes
resource allocation and minimizes module downtime.
The proposed system is projected to deliver significant
operational improvements, including a reduction in
inspection times by over 50% and an increase in the
accurate identification of critical, fire-prone modules by
up to 40% when compared to conventional, non-
integrated methods, thereby providing a validated and
quantified pathway to enhanced plant safety, reliability,
and efficiency.

The principal contributions of this research are
threefold: the formalization of PV fire risk assessment
through a multi-modal, physics-informed DNF model,
the design of a synergistic and fully automated UAV-
AI-SCADA architecture, and the development of an
operational algorithm that provides actionable, cause-
differentiated intelligence. Although we openly
acknowledge limitations such as implementation
complexity and the static nature of the initial DNF
model, these challenges pave the way for exciting future
research, including the development of adaptive, self-
learning logic and deeper integration with plant-wide
predictive maintenance ecosystems. Ultimately, the
proposed system establishes a powerful new paradigm
for proactive SPP safety management, leveraging the
intelligent fusion of advanced sensing, Al-driven
analytics, and formal logic to significantly bolster the
global solar energy infrastructure’s safety, reliability,
and economic viability.

Contributions of authors: Anatoliy Sachenko
and Oleksandr  Melnychenko  provided the
foundational conceptualization for the integrated UAV-
AI-SCADA  monitoring  paradigm.  The  core
methodology, specifically the development of the DNF
logical model and its corresponding truth table, was a
joint effort by Andrii Lysyi and Oleksandr
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Melnychenko. Pavlo Radiuk led the development and
training of the custom YOLOv8 Al model for
automated defect detection from aerial imagery. The
design of the synergistic system architecture and its
integration with the SCADA TRACE MODE platform
was executed by Mykola Lysyi and Oleksii Ishchuk.
Oleg Savenko was responsible for creating the
simulation environment, validating the DNF logic with
realistic data packets, and analyzing the results. The
initial manuscript draft was prepared by Andrii Lysyi
and Oleksandr Melnychenko, with Anatoliy
Sachenko providing supervision and research
administration, and both Anatoliy Sachenko and Oleg
Savenko conducting the final review and editing.
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VJIOCKOHAJIEHE BUSIBJTEHHA MOKEXHOI HEBE3TIEKW HA COHAYHUX
EJEKTPOCTAHIISAX: IHTETPOBAHUM IIIXIJT HA OCHOBI BILTA, ITYYHOTI'O IHTEJTEKTY
TA SCADA

A. M. JIucuui, A. O. Cauenxo, I1. M. Paowk, M. 1. /Tucuii,
O. B. Menvnuuenko, O. I. Iuyyk, O. C. Cagenko

IIpenmMeTOoM IIHOTO JOCTIIDKEHHS € po3poOKa iHTENEKTyalbHOI, IHTETPOBAHOI CHCTEMH Ui PAHHBOTO BUSB-
JIEHHS Ta MPUYMHHO-HACTIIKOBOTO aHAITi3y MOKEKHOI HeOe3Mekn Ha BeMMKuX coHsuHuX enektpocTtanmisx (CEC).
PoGoTa po3risigae KpUTHYHI HEJONIKK TPAAULIHHIX METO/[IB MOHITOPHHTY, SIKHM 4acTO Opakye HeoOXiHOi iHTer-
partii, MBUAKOCTI Ta AIarHOCTUYHOI TJIMOMHHU IS HAAIHHOro 3armo0iranis KaTacTpohidHuM 3005M, 10 BUHHKAIOTH
yepe3 nedextu poroenekrpuunux (OE) moaynis. MeTorw poOOTH € MPOEKTYBAHHS, PO3pOOKA Ta Baligallis KOM-
TUIEKCHOI MYJIBTUMO/IAIBHOI CHCTEMH, 10 TIOBHICTIO aBTOMaru3ye poOoYHii poLeC MOHITOPHHTY, BiJl 300py JaHUX
JI0 TIpUHAHATTA JieBUX pimeHb. CUcTeMa CHpsSMOBaHA Ha 3HAYHE ITiJBHIICHHS OC3MEKM CTaHLl NUITXOM HaJaHHS
Ha/AiHHKX, AndepeHifoBaHNX 3a TPUYMHAMH CIIOBIIIEHb, 110, Y CBOIO Yepry, ONITUMI3yE CTpaTerii TeXHIYHOTro 00-
CIIyrOBYBaHHsI, MiHIMI3y€e 4ac IPOCTOIO Ta MOKpaIlye 3arajibHy €eKOHOMIUHY PeHTaOeJbHICTh COHSYHOI eHepreTHY-
HOi iH(pacTpykTypu. MeToau IOCITIDKEHHS BKJIIOYAIOTH CHHEPIETHYHY apXiTEKTYypy, IO MOEIHYe Oe3MioTHHI
nitansaui anapar (BIUJIA), ocnamenuit RGB Tta pagiomMmerpuunoro iH(padepBOHOIO KaMepaMH BUCOKOI PO3iIbHOI
3ATHOCTI JUTSA MBHIKOT 3HOMKH, TOTIOBHCHUH CIEIiaai30BaHUMU JaTdikamu Temmeparypu [Hrepaery pedeit (IoT)
Ha 00xigHuX miogax GE-MomymiB s MepeBipKu KPUTHYHO BaXKIIMBHX KOMITOHEHTIB. CIielialbHO HaBdYeHAa MOJICIb
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rmubokoro HaBuaHHsS YOLOV8 BHKOHYe aBTOMAaTHYHE PO3Mi3HABaHHS Ae(EKTIB Ha 300pakeHHSX. [HTEICKTyallb-
HUM SIIPOM CHUCTEMH € 1HHOBAI[IHHUN MEXaHi3M JIOTIYHOTO BHCHOBKY, 3aCHOBAaHHI Ha PIBHSAHHI B I3 IOHKTHBHIN
HopMmanbHii opmi (JJHD). s dopmanbHa joridHa MOJENb IHTEICKTYaJIbHO 00’ €JHYE YOTHPH KITFOUOBI OiHApPHI
O3HaKH, MepUoNpruYrHy AeeKTy (MOIKOIKEHHS Y1 3a0pyJHEHHS), Bi3yallbHi JOKa3u, CEpilO3HICTh TEIIOBOI aHO-
Mauii Ta GpyHKIIOHANBHUI CTaH 00XiAHOTO JioAa, st GopMyBaHHSI OCTaTOYHOI, KOHTEKCTHO-3aJIEKHOI OIL[IHKH T10-
KEKHOTO pU3HKy. Bech poboumii mporiec kepyeThes Ta BizyanidyeThes uepes miathopmy SCADA TRACE MODE
JUISl IEHTPaJII30BaHOTO KOHTPOJIIO Ta aBTOMAaTHYHMX crioBilleHb. [logo Pe3yabTaTiB, H0OCTiKeHHS YCIIIIHO ITiIT-
BEpAMJIO IIpale3aTHICTh IHTErPOBAaHOI CHCTEMH 3a JIOIIOMOTOI0 cepii BUCOKOTOYHUX CHUMYIALiNA. MojentoBaHHS
MiaTBep Ao 3aaTHICTh Joriku JTH® ToyHO ineHTH(hIKyBaTH BCi 3a3/1ajerih BU3HAYCHI MTOKEKOHEOC3IMECUHI CTaHH,
BKJIFOYHO 3 TIPUXOBAHUMH TapSIMMU TOYKaMH, CIPHYMHEHUMH TTOMIKO/UKEHHSIMH, 13 HECIIPaBHUM 3aXHCTOM 00Xia-
HOTO J1i0/1a, @ TAKOX MPaBWIbHO KJIacH(DiKyBaTH yCYHEH] PU3UKH JUIsl 3a1100iranHs XuOHUM TpuBoram. Lle mo3Boisie
CHCTEeMi HaIIfHO PO3PI3HATH aBapiifHi CHTYyaIlil, 0 BUMAararoTh HETAHOI 3aMiHU MOJYJISI, Ta MEHII KPUTHYHI TPO-
0JIeMH, SIK-0T 3a0pyAHEHHS, 10 TOTpeOye OYMIICHHS, 3 TPOTHO30BAHKMM ITiABUINCHHSIM TOYHOCTI 10 40% TOPIBHSIHO
3 TpaAULiHHUMU MeToaMH. Y BHCHOBKY 3a3Ha4acThes, IO 11€ JOCTIDKEHHS CTBOPIOE HOBY HMOTYXXHY IapagurMy
Ui ipoakTuBHOrO ynpasmiaHS 6e3nekoto Ha CEC. Iarenexryansne moeqnanas nanux i3 BITJIA Ta loT-cencopis,
aHamituky Ha ocHoBi 1] Ta hopmanbHOi MOTiYHOI CTPYKTYpH 3abe3mnedye HajailiHe Ta cTaliapHe pilleHHS DI MiHi-
Mi3arii MoXKeXHUX PU3UKIB, HAAAIOUX Ji€BI AaHi, MO JO3BOJIIOTH pealli3yBaTH BUCOKOS()EKTUBHY CTPATETIIO TEXHi-
YHOTO OOCITYrOBYBaHHS Ha OCHOBI (paKTHYHOTO CTaHy, 3HAYHO IiJIBHUINYIOUYM Oe3leKy, HaIiiHICTh Ta MPOIYKTHB-
HICTh CY4acHOT COHSIYHOT €HEePTeTHYHOI iHQPACTPYKTYPH.

KiouoBi caoBa: ooxiauuii miox, JITH®, BussieHHs moxkexHOT HeOe3mekH, iHppadepBoHa Tepmorpadis, ¢o-
ToenekTpruHi Moayini, SCADA, constuni enexkrpocranuii, incnexis 3 BIUTA, YOLOVS.

Jlucmii Amnpapiii MukoaaiioBuu — acm. kad. KOMII'IOTEpHOI iH)KeHepii Ta I1H(pOpMaLiiHUX CHCTEM,
XMenbHHUILBKUHA HalllOHATbHUN YHIBEpCUTET, XMENBHUIIBKUH, YKpaiHa.

Cavenko AHartoxiii OuekciiioBHY — 1-p TexH. HayK, mpod., JupekTop HaykoBo-mociifHOrO iHCTHTYTY
IHTEJIEKTYyaIbHUX KOMIT FOTEPHUX CHCTEM, 3axiJHOYKpaiHChKUIl HallioOHANBHUK yHiBepcuter, TepHoNinb, YKpaiHa;
Panomcrknii yHiBepeuTeT iMeHi Kasimerka [lynacskoro, Pamom, [lonbima.

Pagiox IlaBao MuxaiiaoBuu — 1-p ¢inoc., cTapmL. BHKJI. Kad. KOMIT'IOTEPHHX HayK, XMEIbHUIBKUN
HalllOHAJBHUH YHIBEpCUTET, XMEIbHULBKUH, YKpaiHa.

Jlucuii Mukoga IBanoBHY — O-p TexH. Hayk, npod., HamionanpHa akamemis Jlep:kaBHOI NMPUKOPIOHHOL
cyx6u Ykpainu imeHi bormana XMenpHHUIIBKOTO, XMETBHHUIIEKHN, YKpaiHa.

Measanvyenko OuJexcanap BiktopoBuu — 1n-p ¢imoc., crapmr BukI. Kad. KOMII'IOTEpHOI imKeHepil
Ta iHQopMaifHUX cHCcTeM, XMEIbHUIBKIH HAIllOHAIBHUN yHiBepCcUTeT, XMEIbHHUIBKUHN, YKpaiHa.
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