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RESEARCH ON MACHINE LEARNING METHODS FOR DETECTING
OBJECTS IN DIFFICULT SHOOTING CONDITIONS

The subject matter of the article is research into machine learning methods for object detection in images and
videos under complex urban conditions, particularly under poor lighting, the presence of precipitation, high
scene complexity, and limited computational resources. The goal of this research is to identify the most effective
deep learning models based on convolutional neural networks for object detection tasks under challenging im-
aging conditions, considering the practical requirements for accuracy and processing speed. The tasks to be
solved are: analysis of object detectors (YOLO v8-11, DETR, SSD, Mask R-CNN, Faster R-CNN, RetinaNet);
preparation of a dataset with real weather conditions and pedestrian environments in Ukraine; experimental
evaluation of selected detectors using the metrics mAP@0.5, mMAP@.5:.95, Recall, Precision, loU, FPS, and F1-
Score; and analysis of the obtained results. The methods used are: convolutional neural networks, automated
image annotation, comparative analysis of quality metrics (F1-score, mAP@0.5:.95, Precision, Recall, loU,
FPS), and manual correction of annotations. The following results were obtained: the YOLOv10-m and
YOLOv11-m models demonstrated the best quality indicators under conditions of limited visibility and varying
lighting. The YOLOv11-m model was the most balanced in terms of accuracy and speed across all tested condi-
tions - snow, rain, and sunshine. YOLOv11-m is recommended as the baseline model for implementation in real -
time systems, particularly in intelligent assistants for people with visual impairments. Conclusions: The scien-
tific novelty of the results obtained is as follows: 1) a comprehensive evaluation of modern deep learning archi-
tectures for object detection (YOLOv8-v11, Faster R-CNN, SSD, Mask R-CNN, DETR, RetinaNet) was carried
out under non-laboratory conditions, including real weather scenarios such as snow, rain, and poor lighting,
which are typical for urban environments in Eastern Europe; 2) the software tool for automated model evalua-
tion was developed, allowing simultaneous testing of multiple architectures and visualization of performance
metrics (F1-score, mMAP@0.5, mAP@.5:.95, loU, Precision, Recall, FPS) with support for manual annotation
correction and comparative model analysis; 3) it was experimentally established that the YOLOv11-m model
demonstrates the best balance of accuracy and inference speed across various complex imaging conditions,
justifying its recommendation as a baseline model for real-time vision-based assistive systems.
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experimentally evaluating and comparing modern object
detection models using a custom dataset. The dataset in-

1. Introduction

Despite the active development of deep learning ap-
proaches for road object detection, most existing studies
have been conducted under controlled or laboratory con-
ditions that do not reflect the complexity of real-world
environments. In particular, many state-of-the-art solu-
tions have been designed for use in countries with well-
structured road infrastructure, consistent markings, pre-
dictable traffic behavior, and relatively homogeneous
weather conditions. In contrast, Ukrainian urban environ-
ments are significantly more variable, featuring non-
standard infrastructure, inconsistent or missing road
markings, a high density of vulnerable road users, and
frequent adverse weather conditions. Given the absence
of a universal architecture that would simultaneously en-
sure high accuracy, robustness against environmental
factors, and real-time performance, this work focuses on

cludes real-world video sequences captured under vari-
ous weather and times of day in Ukrainian cities. This
allows for the identification of architectures that provide
the best trade-off between detection accuracy, processing
speed, and adaptability to practical road monitoring
tasks.

1.1 Motivation

The development of intelligent assistance systems
for people with visual impairments involves the imple-
mentation of some tasks. These include the design, re-
search, and improvement of methods that ensure the op-
eration of the system’s modules. The main goal of such a
system is to analyze information about the surrounding
environment and to provide support to people with visual
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impairments during movement. The implementation of
these tasks is possible by using computer vision methods
and devices that accompany the user in the following se-
quence:

- development of a method to determine environ-
mental conditions (lighting, weather conditions, etc.) us-
ing highly heterogeneous data (images, data from LiDAR
sensors, audio data from microphones);

- improvement of an adaptive method (consider-
ing environmental conditions) for preprocessing data
from cameras and LiDAR sensors;

- improvement of a method for object detection
and tracking inimages or videos based on data from cam-
eras and LiDAR sensors;

- improvement of a method for predicting the tra-
jectories of dynamic objects with consideration of envi-
ronmental conditions;

- study and application of audio analysis methods
aimed at improving the detection of environmental con-
ditions. This includes the development of a high-preci-
sion voice interface for data input, clarification of obsta-
cles, route correction, and conducting dialogue to obtain
necessary information;

- development of a prototype device to assist peo-
ple with visual impairments in everyday life.

After studying the factors affecting environmental
conditions and the safety, comfort, mobility, and inde-
pendence of users, the following groups were identified:

- obstacles and hazards in the environment;

- difficulties in mobility;

- lack of access to information;

- social interaction and risk of criminal assaults;

- transportation-related dangers;

- dependence on external assistance.

Particular attention in the research is given to
groups 1-3: obstacles and hazards in the environment
(obstructions on the path such as uneven surfaces, stairs,
uncovered manholes, curbs, and objects on the road can
cause injuries; lack of accessible navigation tools; en-
counters with stray or wild animals); mobility difficulties
(people with visual impairments often face challenges
when crossing roads, using public transportation, or even
navigating familiar places due to the lack of clear under-
standing of their surroundings; absence of tactile markers

or auditory signals); lack of access to information (ab-
sence of visual information or failure to consider the
needs of people with visual impairments can lead to una-
wareness of potential threats or dangers).

1.2 State of the art

Since the accuracy of identifying objects in the sur-
rounding environment is significantly affected by
weather conditions, which can complicate object detec-
tion, this study includes a review of research that specif-
ically focused on weather condition recognition as one of
the preparatory steps for detecting moving objects.

The review [1] considered almost all common types
of weather phenomena that negatively affect the ability
of sensors to perceive and measure data, including rain,
snow, fog, haze, strong light, and contamination. Inaddi-
tion, it presented datasets, simulators, and experimental
tools with weather-condition support. This review was
conducted in the context of applying weather recognition
methods to automated driving systems (ADS). The au-
thors of [1] assessed the impact of each type of adverse
weather condition (light rain <4 mm/h, heavy rain >25
mm/h, dense smoke/fog vis<0.1 km, fog vis<0.5 km,
haze/smoke height>2 km, heavy snow, temperature) on
the main types of sensors (LiDARSs, radars, ground-pen-
etrating radar, cameras, stereo cameras) (Table 1). The
intensity of the impact is evaluated on a scale ranging
from 0 to 5, where:

0 —negligible: effects that can be almost ignored;

1 —minor: effects that rarely cause detection errors;

2 —slight: effects that cause minor errors in special cases;

3 —moderate: effects that cause perception errors up to
30% of the time;

4 —severe: effects that cause perception errors in more
than 30% but less than 50% of cases;

5 —critical: noise or obstruction leading to false detec-
tion or detection failure.

Thus, LIDAR is affected by heavy snow and fog,
which significantly limits its effectiveness. Radar is the
most resistant to weather conditions and is almost unaf-
fected by rain and fog. Cameras are vulnerable to bright
light and contamination, which can completely block
their perception.

Table 1

Impact of weather conditions on sensors in automated driving systems [1]

Weather condition LiDAR Radar Camera Thermal imager
Light rain (< 4 mm/h) 2 0 3 2
Heavy rain (> 25 mm/h) 3 1 4 3
Fog (visibility < 0.5 km) 4 0 4 1
Snow 5 2 2 2
Bright light 2 2 5 2
Sensor contamination 3 2 5 4
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Thermal imagers operate reliably at night but have limi-
tations when contaminated or at low temperatures.

To compensate for the weaknesses of individual sen-
sors, various sensor combinations were used, resulting in
improved object detection accuracy under challenging
weather conditions. The "Camera + LIiDAR + Radar" con-
figuration provides the highest reliability in snow and fog.
Some of the main sensor fusion configurations in a single
system are summarized in Table 2.

This study also demonstrates the use of machine
learning algorithms and image processing methods - De-
raining, HDDM+ (fog removal), De-noising (Weather-
Net), and point cloud segmentation.

Table 2
Sensor fusion configuration [1]
Target
Sensor config- | weather
. . Comment
uration condi-
tion
Radar + Li- _ Combines the ad-
DAR Rain vantages of radar accu-
racy and LiDAR range
Camera + Li- .
DAR (SLS- Fog Improv.es quect detec-
. tion in fog
Fusion)
RGB Camera Night Thermal imagers are
+ Thermal im- gnt, effective at night and in
Snow
ager snow
Camera + Li- ?;OI\::I The most reliable con-
DAR + Radar am, figuration
Fog

The study [2] proposed aweather phenomenon clas-
sification model based on a deep convolutional neural
network called MeteCNN. The classification accuracy of
the MeteCNN model reached 92.68%, which demon-
strates competitive classification performance among
some of the main models (such as VGG16, ResNet34,
EfficientNet-B7) on the dataset created by the authors -
WEAPD (Weather Phenomenon Database).

The weather phenomenon image database, con-
structed according to meteorological criteria, contains
6,877 images for 11 types of weather phenomena, featur-
ing complex and noisy backgrounds, with each image in-
cluding additional objects that create interference. The
best recognized categories are: rainbow, lightning, and
frost with accuracy of 100%, 99%, and 98%, respec-
tively. The lowest performing categories are "snow" and
"glaze," each with an accuracy of 85% (Table 3).

The results presented in Table 3 and Figure 1 were
obtained using the following hyperparameters and set-
tings: 13 convolutional layers (conv layers) and 6 pooling
layers, batch size - 16, initial learning rate - 0.001, learn-

ing rate decay applied, optimizer - stochastic gradient de-
scent (SGD) with a momentum of 0.9.
Table 3
Quality evaluation metrics of the optimized architecture
of the MeteCNN neural network model [2]

Category Preci- | pecany | F1-Meas-
sion ure
Hail 0.98 0.98 0.98
Rainbow 1.00 1.00 1.00
Snow 0.85 0.85 0.85
Rain 0.91 0.96 0.93
Lightning 1.00 0.97 0.99
Dew 0.97 0.99 0.98
Sandstorm 0.93 0.99 0.96
Frost 0.93 0.85 0.89
Smog/Fog 0.98 0.94 0.96
Rime 0.88 0.89 0.88
Glaze 0.85 0.84 0.85
Average value 0.93 0.93 0.93
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Fig. 1. Predicted labels [2]

A drawback of the proposed model is that it confuses cer-
tain categories of weather phenomena, which may be at-
tributed to the similarity and complexity of the images.

Among the other studies considered, one that stands
out because of its significant achievements and relevance
to the related problem area is the study [3]. The research-
ers proposed a new approach, IA-YOLO (Image-Adap-
tive YOLO), to improve object detection under adverse
weather conditions — in fog and low-light environments.

The maindistinction of the proposed approach from
existing ones is the introduction of an additional image
processing module, which enables the extraction of hid-
den useful information by removing weather-specific
content. The proposed DIP (digital image processing)
module consists of six differentiated filters, namely:
Defog, White Balance (WB), Gamma correction, Con-
trast, Tone adjustment, and Sharpen.

The qualitative indicators from the previous
study [3] demonstrate the object detection results using
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YOLOV3 Il (columns 1, 3, and 5) and the proposed
IA-YOLO (columns 2, 4, and 6) on synthetic images
from VOC_Foggy test (top row) and real fog images
from the RTTS foggy dataset (bottom row). The pro-
posed method learns to reduce fogginess and sharpen im-
age edges, which ensures better detection performance
with fewer missed and false detections.

The results shown in Figure 2 confirm that the pro-
posed image enhancement steps for foggy or low-light
conditions provide an advantage for IA-YOLO over var-
ious YOLOV3 detector modifications across different da-
tasets.

Study [4] is dedicated to the creation of the multi-
modal OLIMP dataset, which was designed for training
artificial intelligence models to perceive the surrounding
environment. It includes four types of data (modalities):

- images;

- ultra-wideband radar signatures;

- narrow-band data streams;

- acoustic data.
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Fig. 2. Quantitative performance indicators
of the study [4]

A distinctive feature of the dataset is that it includes sig-
nals from ultra-wideband radar and acoustic sensors, and
it is primarily focused on dense urban traffic situations.
To demonstrate the effectiveness of the prepared
dataset, experiments were conducted, which demon-

strated that the use of individual modalities yields signif-
icantly lower accuracy in determining environmental
conditions, indicating the necessity of expanding input
data modalities by utilizing various sensors for data ac-
quisition (Table 4). The obtained results confirmed that
combining multiple data sources (datasets of RGB im-
ages, UWB Radar data, and Acoustic data into a dataset
named Fusion) helped reduce errors and improve detec-
tion quality.

The article [5], we present a detailed comparative
analysis of various early fusion techniques for combining
visible and thermal images to enhance object detection
using convolutional neural networks. The authors
demonstrate that static fusion methods, particularly chan-
nel summation and concatenation, significantly improve
CNN performance under low-light and thermally com-
plex scenarios. This research is relevant for computer vi-
sion tasks in nighttime surveillance and can be applied to
autonomous monitoring systems.

The review article [6] focuses on methods for fusing
LiDAR data with other sources (e.g., optical, radar) to
improve the accuracy of forest attribute estimation.
While the primary application is environmental monitor-
ing, this paper systematizes multimodal data fusion ap-
proaches that are applicable to object detection tasks in
complex scene geometry or poor visibility situations. The
article is especially relevant for those exploring LiDAR
integration into object detection systems in urban or road
environments.

Several recent studies have focused on object detec-
tion under complex environmental conditions, emphasiz-
ing the growing need for robust computer vision systems
for real-world scenarios. In the work by Chan et al. [7],
the authors proposed a non-machine-learning-based sys-
tem for detecting preceding vehicles under various light-
ing and weather conditions. The proposed method com-
bined four vehicular structure-related visual cues with a
particle filter to improve detection stability. This study
demonstrated that when carefully designed, traditional
model-based approaches can still be competitive under
non-ideal visual conditions.

Table 4

Evaluation results of object detection accuracy (pedestrian, cyclist, vehicle, tram) using different training
data modalities: ImageNet (for MobileNet-v2), UWB Radar, Acoustic, and Fusion.
The table presents key metrics: Precision (P), Recall (R) [4]

UWB | UwWB
Mo- Mo- Mo- Ra- Ra- Acous- Acous- Fu- Fu-
Object bileNet bileNet bileNet dar dar tic (P), tic (R), sion sion
P), % (R), % (AP), % P), (R), % % (P),% | (R), %
% %

Pedestrian 84 54 53 46 36 20 17 86 54
Cyclist 77 70 67 45 52 44 15 81 69
Vehicle 81 48 47 8 0 40 38 82 48

Tram 86 76 75 0 0 61 64 90 76
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Table 5
Comparative table of video file analyzer performances
YOLOvX [11]
One-stage approach to object detection, fast processing due to simple architecture. The
Features model is implemented based on a convolutional neural network with single-shot prediction,
optimized for real-time operation.
Weaknesses Low accuracy for small objects, sensitivity to lighting.
Application Real-time detection, simultaneous identification of multiple objects.
Faster R-CNN [12]
Two-stage detection, high accuracy for complex scenes. The model is implemented based
Features on a Region Proposal Network (RPN) for generating regions of interest, with VGG or Res-
Net as the backbone architecture.
Weaknesses Slow processing, high computational complexity.
Application High-precision applications: medical diagnostics, security systems.
SSD [11, 13]
One-stage approach, a compromise between speed and accuracy. Utilizes multiple scales
Features L . . .
for predicting objects of different sizes.
Weaknesses Low accuracy for small objects, limited adaptability.
Application Pedestrian detection, vehicle monitoring in surveillance systems.
Mask R-CNN [14]
Two-stage approach: first, region detection, then classification and segmentation using de-
Features tailed object masks. The model is implemented based on a Region Proposal Network
(RPN) for object localization.
Weaknesses Slow processing, high computational requirements.
Application Segmentation: medical diagnostics, object labeling.
DETR [15]
Features Based on transformer architecture for object detection in a scene.
Weaknesses Slow processing, high resource requirements.
Application Research, general-purpose object detection tasks.
RetinaNet [11]
Features Based on transformer architecture for object detection ina scene.
Weaknesses Slow processing, high resource requirements.
Application Research, general-purpose object detection tasks.

snowfalls, and wet road conditions. The systemwas eval-

However, the absence of learning-based adaptability lim-
its the scalability of the model to highly dynamic envi-
ronments.

Chellappa et al. [8] explored the fusion of acoustic
and visual sensors for vehicle tracking to address visibil-
ity issues caused by poor weather or occlusions. Their
system integrates data from multiple modalities to im-
prove detection accuracy, especially in cases where vis-
ual input alone may be unreliable. The research high-
lights the value of multi-sensor fusion; however, it also
notes challenges in synchronizingand calibrating hetero-
geneous sensor data streams for real-time applications.

In a more recent deep-learning-based approach,
Ghosh [9] proposed an enhancement to Faster R-CNN by
incorporating several region proposal networks (RPNs)
of varying sizes. This modification allows the detector to
capture objects of different scales more effectively, par-
ticularly in adverse weather conditions such as blizzards,

uated on three public datasets (DAWN, CDNet 2014, and
LISA) and achieved notable average precision improve-
ments (up to 95.16%), outperforming conventional sin-
gle-RPN architectures. The results of this study under-
score the benefit of architectural modification for im-
proving robustness in vehicle detection tasks.

Finally, the work by Tumas et al. [10] introduced
the ZUT dataset, which includes thermal imaging and
weather annotations for pedestrian detection in low-visi-
bility scenarios. Their experiments revealed that the ex-
isting datasets lack adequate environmental variability
and often suffer from insufficient thermal resolution. By
using a modified YOLOv3 on 16-bit thermal data, their
system achieved up to 89.1% mAP, confirming the po-
tential of sensor-specific datasets to improve detection
under fog, snow, or rain. This study contributes not only
a valuable dataset and a benchmark for testing detection
systems under real-world environmental constraints.
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It is worth noting that modern computer vision sys-
tems focused on object detection in complex environ-
ments use various types of annotations, which signifi-
cantly affect the accuracy of model training and the ef-
fectiveness of detection under real-world conditions:

- ROI (Region of Interest);

- AOI (Area of Interest);

- POI (Point of Interest);

- Bounding Box;

- Polygonal Segmentation;

- Keypoints Annotation;

- Line Annotations;

- Semantic Segmentation;

- Obiject Tracking;

3D Bounding Boxes. The correct choice of data an-
notation format determines not only the efficiency of the
training process but also the flexibility of further model
adaptation to new tasks.

Based on the analysis of existing solutions, the most
common types of annotations used in object recognition
tasks can be identified: ROI (Region of Interest), AOI
(Area of Interest), POI (Point of Interest), classical rec-
tangular bounding boxes, polygonal segmentation, key-
points annotation, line annotations, semantic segmenta-
tion, object tracking in video streams, and 3D bounding
boxes.

In most cases, for the task of object detection on
roads - both in static images and in video streams—an-
notations of the Bounding Box, Semantic Segmentation,
or Object Tracking types are used. This is explained by
the balance between object positioning accuracy and the
relative ease of generating such annotations by the cho-
sen model.

Before selecting a model, we reviewed the existing
neural network analyzers designed for detecting moving
objects in video sequences: YOLO (You Only Look
Once), Faster R-CNN (Region-based Convolutional
Neural Network), SSD (Single Shot Multibox Detector),
Mask R-CNN, DETR (DEtection TRansformer), Reti-
naNet (Table 5). Based on the analysis of modern object
detection models, including YOLOv11, Faster R-CNN,
SSD, Mask R-CNN, DETR, and RetinaNet, it can be con-
cluded that one-stage models, such as YOLOv1l and
SSD, provide high processing speed, which is critically
important for real-time tasks; however, they are inferior
to two-stage approaches in terms of accuracy when rec-
ognizing small or partially occluded objects. In contrast,
models based on the Region Proposal Network (such as
Faster R-CNN, Mask R-CNN) demonstrate higher accu-
racy but require significantly more computational re-
sources and exhibit lower frame rates (FPS). In addition,
next-generation models built on transformers (DETR,
RetinaNet) demonstrate potential for task universaliza-
tion in detection; however, they are characterized by the
highest resource requirements and slow processing

speeds.

Therefore, the problem arises of insufficient accu-
racy of existing obstacle recognition systems under real
operating conditions in Ukraine. This makes the develop-
ment of an adaptive road obstacle recognition system
highly relevant, one capable of operating on images ob-
tained in complex and heterogeneous urban conditions of
Ukrainian cities and demonstrating improved accuracy
through targeted fine-tuning of the model on localized
datasets.

1.3 Aims and tasks of the work

The aim of this work was to investigate machine
learning methods based on convolutional neural net-
works for object detection under challenging imaging
conditions, such as poor lighting, precipitation, and a
large number of scene objects, considering the limited re-
sources of the video recorder.

To achieve the stated goal, the following tasks must
be accomplished:

- to analyze object detectors (YOLO v8-11,
DETR, SSD, Mask R-CNN, Faster R-CNN, RetinaNet);

- toprepare a dataset with real weather conditions
and pedestrian environments in Ukraine;

- to conduct an experimental study of the selected
detectors using the metrics mAP@0.5, mMAP@.5:.95, Re-
call, Precision, loU, FPS, F1-Score;

- to analyze the obtained results.

Further research will involve the implementation of
the proposed method and testing on real data using fu-
sion-sensor inputs.

The proposed approach and experimental results
can be used to create intelligent assistance systems for
people with visual impairments, autonomous driving sys-
tems, and urban navigation systems [16-17].

The structure of the paper is designed to systemati-
cally investigate and evaluate the effectiveness of mod-
ern deep learning methods for object detection under
complexvisual conditions. In Section 1. Introduction, the
paper outlines the relevance of the problemin the context
of urban infrastructure in Ukraine, highlighting the prob-
lems of object detection under poor lighting, precipita-
tion, and non-standard conditions. This is further con-
firmed in Section 1.1 Motivation, which emphasizes the
need for assistive systems for people with visual impair-
ments and discusses in detail practical issues related to
navigation and obstacle avoidance in real-world condi-
tions. Section 1.2 State of the art provides a detailed re-
view of the existing literature on environmental recogni-
tion and object detection in adverse scenarios, analyzing
approaches such as IA-YOLO and MeteCNN, and pre-
senting the importance of multisensor data fusion and
contextual adaptation. Section 1.3 Aims and tasks of the
work defines the main objectives of the research, namely



70

Radioelectronic and Computer Systems, 2025, no. 2(114)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

the experimental comparison of object detectors such as
YOLO v8-11, DETR, SSD, Mask R-CNN, Faster R-
CNN, and RetinaNet on real data obtained in Ukrainian
cities, using metrics such as mAP@0.5, mAP@.5:.95,
loU, Precision, Recall, FPS, and F1-Score. The experi-
mental process is given in Section 2.2 Materials and
methods of research, which describe the collection of the
dataset, annotation procedures, and development of a
special software tool for testing models and visualization
of metrics. This section also describes in detail the con-
ditions under which the testing was performed, including
snow, rain, sunny weather, as well as different levels of
illumination and scene complexity. The evaluation re-
sults are discussed in Section 3. Results discussion,
which presents a comparative analysis of the perfor-
mance of all tested models, identifying YOLOv10-m and
YOLOv11-m as the most efficient architectures under
different conditions. Finally, Section4 Conclusions sum-
marizes the key findings, highlights the suitability of
YOLOv11-m as a baseline model for real-time vision-
based systems, and outlines future directions, including
the integration of LiDAR and audio inputs, to improve
detection reliability in complex environments. The paper
concludes with declarations regarding conflicts of inter-
est, funding sources, data availability, and a comprehen-
sive literature section that confirms the scientific validity
of the study.

2. Materials and methods of research

Based on the identified environmental conditions
affecting the safety of visually impaired pedestrians, the
first task was to develop a method for determining envi-
ronmental conditions - lighting, weather conditions, etc.
- using highly heterogeneous data such as images, Li-
DAR sensor data, and audio data from microphones) will
be addressed by evaluating the quality of obstacle detec-
tion using existing artificial intelligence-based models
(Figure 3).

This will make it possible to identify the weak-
nesses of models in detecting vehicles, people, animals,
stairs, open manholes, and general obstacles for further
improvement and optimization of methods under specific
imaging conditions (precipitation, fog, complex scenes)
and for certain object categories.

The diagram illustrates the workflow of developing
and improving a neural network model for analyzing ob-
jects in real-world environments. The five stages of this
process are described below.

Dataset collection under real environmental condi-
tions. In this stage, video files of various real-world ob-
jects and environmental conditions (vehicles, people,
traffic lights, etc.). The task of this stage is to provide the
model with real test data corresponding to the actual con-
ditions in which the developed intelligent assistant will

record video with the following parameters:
- constant camera movement during walking;
- footage captured by medium-accuracy cameras;
- various weather conditions;
- different lighting conditions;
- varying scene complexity;
- avariable number of objects in the frame.

Collection of datasets under real environmental
conditions

Preparation (annotation) of
data for training a neural
network model by
categories:

= vehicles;
« people:
+ traffic lights

Analysis of annotated video files by analyzers based
on machine learning methods

Comparative analysis of metrics of the tested models

iy

Formulation of requirements for developing a custom \\//
analyzer with improved accuracy indicators based on
the obtained results

Fig. 3. Research workflow diagram to justify the need to
improve the accuracy and speed of object detection
under various imaging conditions

Data collection was conducted in different environ-
ments (urban, natural), considering changes in lighting,
weather conditions, and shooting perspectives, to create
a representative dataset that ensured effective model
training.

The statistical indicators of the data prepared for
training the model under real-world conditions are as fol-
lows (Fig. 4):

- the duration of video files that took part in test-
ing the neural network models varied from 40 to 480 sec-
onds;

- dataset characteristics: number of files - 5 files,
including 3 in cloudy weather, 2 in snowy weather, 1 in
rainy weather, 2 in sunny weather, and 1 in twilight
weather.

I'n Aata Posmip Josxua

& Video #1 (City, Day, Cloudy, Rain) 16.12.2024 13:14 aiin MP4 1210638K6  00:08:08

&) Video #2 (City, Early Mornin g, Snow) 21.11.2024 7211 aiin MP4 374822KE  0D:02:31

] Video #3 (City Day, Cloudy, Snow) 827880KE  00:05:34

] Video #4 (City, Day, Sunny) 01.05.2025 16:08 aiin MP4

T
@
@
21.11.2024 15:50 aiin MP4
@ 100453 KB 00:00:52
@

B Video #5 (City, Day, Sunny) 23.04.2025 16:08 aiin MP4 76693 KE  00:00:38

Fig. 4. Video files for test dataset formation

The preparation (annotation) of data for testing the neural
network model is necessary to define the categories,
sizes, and locations of objects in the frame that the neural
network model must recognize.

The identified categories are vehicles, people, and
traffic lights (Figure 5).

To obtain a dataset to test machine learning meth-
ods under real-world conditions, video files were
defragmented into frames at a rate of 30 frames per sec-
ond. As a result, we obtained a test dataset containing
31,920 frames.
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Since the test videos in this experiment were col-
lected using only video cameras, without considering dis-
tance estimation to objects, the chosen annotation type
was 2D bounding boxes, which conveniently represent
the coordinates of an object within the frame and provide
effective neural network training. 2D bounding boxes do
not contain depth information, which is important for de-
termining distance. This form of annotation is among the
most commonly used in computer vision tasks for train-
ing neural networks, particularly for models such as
YOLO or SSD, where each object is defined by its
bounding box coordinates and class.

To automate the research process, a software tool
was developed that enables rapid video annotation, auto-
matically initiated by the YOLOv11 model, followed by
manual correction and the ability to evaluate the perfor-
mance of a wide range of models (YOLOv8-11, Faster
R-CNN, Mask R-CNN, SSD, DETR, RetinaNet).

The research tasks include the creation of a user-

{"v’ =]

Fig. 5. Sample frames used for testng

friendly interface for viewing and editing bounding
boxes automatically annotated by the YOLO model, in-
tegration of recognition models, performance analysis
using metrics suchas F1-score, mAP, loU, Precision, Re-
call, and FPS, as well as result visualization. Figure 6
shows that each detected object (e.g., vehicles and pedes-
trians) is marked with a bounding box and a correspond-
ing class label.

Figure 7 contains a fragment of a text file contain-
ing the detection results generated by the model during
inference (prediction). Each line corresponds to one of
the objects found in the image and contains the following
data: object class (e.g., car or person), the model’s confi-
dence score, and bounding box coordinates in a normal-
ized format — values [x_center, y_center, width, height],
usually relative to the image size. These coordinates are
used for result visualization, but specifically during
model performance evaluation, such as when calculating
mAP or other quality metrics.

Fig. 6. Examples of corrected video frame annotations

used to test the aforementioned neural network models (ground truth annotation)

T ! 4 4 frame 0002€ frame 0003C frame 0007C frame 0000C detrixt

| @ain Peaaryeatu MepernaHyTn

Uwl .

car 0.34820186915887846 ©@.37332982392026576 0.066910738317757 ©.07131964784053156 0.669636
car 0.14980164485981307 @.408864 ©.17997328971962617 ©.132134 0.666406
person 0.23149568224299064 0.3241651860465116 ©.01574553271028037 0.04773107308970099 0.33432

|
|
car ©.22128257943925234 0.4371 0.21224315887850467 ©.180152 ©.896875

Fig. 7. The image annotation results are suitable for further analysis and comparison with ground truth data



72

Radioelectronic and Computer Systems, 2025, no. 2(114)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

The next stage involves the analysis of the video
files annotated by the detector based on Al methods. The
task of this stage is to ensure the verification of annota-
tion quality and preliminary testing of the speed and effi-
ciency of existing models, as well as to identify the
strengths and weaknesses of the selected model in the
specific task for their further improvement prior to im-
plementation in a hardware-software solution for assist-
ing visually impaired individuals on city streets. The
comparative analysis demonstrates the model’s effective-
ness under different recording conditions for detecting
various objects, such as snowy, rainy, overcast weather
in the morning or during evening twilight (Tables 5-6).

All studied models are shown in Figure 8 — YOLO,
SSD, Mask R-CNN, Faster R-CNN, DETR, RetinaNet.

The developed software tool input frames to each
model. Each model performs annotation, after which the
annotation is compared with the ground truth, and the key
metrics are calculated. Using the example of the
YOLOv11 model, the annotation results for all frames
shown in Figures 8 and 9 are presented below.

3. Results discussion

The test results of the models under snowy, overcast
weather early in the morning are shown in Table 6.

Based on the results presented in Table 6, the best
models in terms of F1-score were YOLOv10-b (0.55),
YOLOv10-m (0.54), and YOLOv1l-x (0.54). They
demonstrate a balance between precision and recall. The
fastest models according to the research results are
YOLOvV8-n, YOLOv10-n, and YOLOv10-s; however,
their F1-score is noticeably lower (up to 0.48), making
them suitable for tasks where speed is critical rather than
maximum accuracy.

The YOLOv11-m model demonstrated the most ac-
curate object positioning (according to the loU metric),
but its F1-score was average (0.51), making it best suited
for tasks in which precise object localization is crucial.
The highest precision according to the precision metric
was obtained by the SSD model (0.75), but it had a low
Recall (0.14), indicating many missed objects. According
to the mAP@.5:.95 metric, all models showed extremely

Select Models =i: YOLOWT1(x)
YOLOW11(s)
YOLOw11(n)
YOLOw1T1(m)}

YOLOw11(l) YOLOv10()

YOLOW10(x)

YOLOW10(n)

YOLOV10(s)

YOLOw10(m)

YOLOv10(b)

low results (up to 0.06), which can be explained by the
challenging conditions (overcast, snowy weather in the
morning). The YOLOv10-m model demonstrated the
best overall performance according to this metric.

Thus, insnowy, overcast weather early in the morn-
ing, the best-performing model across all metrics was
YOLOvV10-m, whichachieved a high F1-score (0.54), the
highest mMAP@.5:.95 (0.06), high FPS (34), sufficiently
high loU (0.92), and balanced Precision (0.66) and Recall
(0.45). An alternative with a higher F1-score is
YOLOvV10-b (0.55); however, this model has slightly
lower metrics in other areas. If speed is more critical, at
the cost of reduced accuracy, good results were obtained
by YOLOv10-n (FPS = 49, F1 = 0.35) or YOLOvV8-n
(FPS =56, F1=0.41).

The test results of the models under overcast and
rainy weather conditions during the day are presented in
Table 7.

Based on the results presented in Table 7, the lead-
ers in object detection quality in this study were
YOLOvV10-l and YOLOv11-m. These models demon-
strated the highest F1-score values (0.77-0.78) and
mAP@.5:.95 (0.53-0.59) with acceptable FPS (11-15),
making them optimal for tasks where recognition quality
in challenging weather conditions is critical. A compro-
mise between speed and quality is offered by the
YOLOV8-s, YOLOv11-s, and YOLOvV8-m models. They
provide higher performance (FPS) with moderate quality
(0.36-0.38 mMAP@.5:.95). The YOLOvV8-n and
YOLOv11-n models exhibit the highest processing speed
(26-32 FPS) but at the expense of recognition quality.
These models are suitable for preliminary selection or
tracking. The Non-YOLO models (RetinaNet, Faster R-
CNN, Mask R-CNN, DETR) demonstrated poorer per-
formance in terms of both speed and quality.

Thus, in overcast, rainy weather during the day, the
best model overall was YOLOv11-m, which showed a
high F1-score (0.78), mAP@.5:.95 (0.47), sufficiently
high FPS (15), high loU (0.91), and balanced Precision
(0.79) and Recall (0.76).

The test results of the models under sunny weather
during the day are presented in Table 8.

YOLOVI(t) YOLOWS(n) Faster R-CNN

YOLOVS(s) YOLOWE(s) Mask R-CNN

YOLOVS(m) YOLOw8(m) sSD

YOLOVI(c) YOLOwB(l) DETR

YOLOvS(e) YOLOVE(x) RetinaMNet

Run Analysis »

Fig. 8. Studied neural network models
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Table 6
Research results of analyzers in snowy, overcast weather early in the morning
Model F1-score FPS loU Precision Recall MAP@.5:.95 | mAP@0.5

YOLO_10_m 0.54 34.00 0.92 0.66 0.45 0.06 0.07
YOLO_10_I 0.53 23.00 0.91 0.61 0.47 0.05 0.06
YOLO 9 e 0.52 12.00 0.89 0.50 0.54 0.05 0.06
YOLO_10 b 0.55 27.00 0.91 0.64 0.48 0.04 0.05
YOLO_11 1 0.53 27.00 0.90 0.62 0.45 0.04 0.05
YOLO_8_m 0.47 30.00 0.90 0.47 0.47 0.04 0.05
YOLO 9 ¢ 0.50 25.00 0.90 0.53 0.48 0.04 0.05
RETINA_ net 0.42 4.00 0.85 0.57 0.34 0.02 0.04
YOLO 10 _n 0.35 49.00 0.91 0.50 0.27 0.03 0.04
YOLO_10_s 0.48 48.00 0.91 0.62 0.39 0.04 0.04
YOLO_10_x 0.49 16.00 0.91 0.49 0.50 0.04 0.04
YOLO 11 _m 0.51 30.00 0.96 0.62 0.43 0.03 0.04
YOLO 11 s 0.45 45.00 0.89 0.47 0.44 0.03 0.04
YOLO 11 x 0.54 13.00 0.91 0.61 0.48 0.04 0.04
YOLO_8_|I 0.52 18.00 0.89 0.53 0.51 0.03 0.04
YOLO 8 s 0.44 50.00 0.90 0.44 0.44 0.04 0.04
YOLO_8_x 0.50 12.00 0.89 0.48 0.52 0.03 0.04
YOLO 9 m 0.51 31.00 0.89 0.52 0.51 0.04 0.04
YOLO_9s 0.44 28.00 0.90 0.48 0.41 0.03 0.04
SSD 0.23 14.00 0.87 0.75 0.14 0.02 0.03
YOLO_11 _n 0.39 43.00 0.88 0.43 0.36 0.02 0.03
YOLO 8 n 0.41 56.00 0.89 0.54 0.33 0.02 0.03
YOLO 9t 0.33 28.00 0.89 0.34 0.33 0.02 0.03
FASTER_RCNN 0.31 4.00 0.81 0.25 0.43 0.01 0.02
MASK_RCNN 0.38 4.00 0.81 0.31 0.48 0.01 0.02

Table 7

Research results of analyzers under overcast, rainy weather during the day
Model F1-score FPS loU Precision Recall MAP@.5:.95 | mAP@0.5

YOLO_10_I 0.77 11.00 0.86 0.81 0.74 0.47 0.59
YOLO 11 m 0.78 15.00 0.91 0.79 0.76 0.47 0.53
YOLO_ 10 b 0.72 13.00 0.88 0.76 0.69 0.40 0.48
YOLO_10_x 0.78 8.00 0.85 0.80 0.77 0.31 0.42
YOLO_8_| 0.77 10.00 0.86 0.76 0.77 0.33 0.42
YOLO_11 _n 0.55 26.00 0.84 0.61 0.51 0.31 0.41
YOLO_8 x 0.76 7.00 0.85 0.73 0.79 0.32 0.40
YOLO 9 m 0.71 13.00 0.86 0.71 0.71 0.32 0.40
YOLO_11 s 0.68 23.00 0.85 0.66 0.69 0.33 0.39
YOLO_10_n 0.55 23.00 0.86 0.67 0.47 0.30 0.38
YOLO 8 s 0.68 28.00 0.82 0.67 0.70 0.27 0.38
RETINA net 0.62 4.00 0.82 0.74 0.54 0.27 0.37
YOLO 9 ¢ 0.72 12.00 0.85 0.70 0.75 0.29 0.37
YOLO_8_m 0.73 15.00 0.86 0.70 0.76 0.29 0.36
YOLO_11 1| 0.74 12.00 0.87 0.72 0.75 0.27 0.34
YOLO_11 x 0.74 7.00 0.85 0.72 0.77 0.26 0.34
YOLO _10_m 0.70 15.00 0.87 0.72 0.68 0.26 0.33
YOLO_9_s 0.65 12.00 0.87 0.69 0.62 0.26 0.33
YOLO 9 e 0.74 6.00 0.86 0.70 0.79 0.25 0.32
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Continuation of the Table 7
Model F1-score FPS loU Precision Recall MAP@.5:.95 | mAP@0.5
YOLO 10 s 0.64 15.00 0.86 0.68 0.59 0.26 0.31
YOLO 8 n 0.58 32.00 0.83 0.62 0.55 0.23 0.30
FASTER_RCNN 0.66 4.00 0.80 0.57 0.77 0.20 0.28
MASK_RCNN 0.62 4.00 0.81 0.54 0.75 0.19 0.26
YOLO 9t 0.59 13.00 0.84 0.68 0.53 0.20 0.26
DETR 0.51 22.00 0.79 0.41 0.66 0.15 0.25
Table 8
Research results of analyzers in sunny weather
Model F1-score FPS loU Precision Recall mAP@.5:.95 | mAP@0.5
YOLO 11 m 0.87 16.00 0.93 0.87 0.87 0.76 0.83
YOLO _8_s 0.83 27.00 0.88 0.86 0.80 0.59 0.76
YOLO 9 ¢ 0.86 13.00 0.90 0.88 0.83 0.53 0.59
YOLO_10_s 0.84 23.00 0.89 0.91 0.78 0.48 0.58
YOLO 9 m 0.86 14.00 0.89 0.85 0.87 0.46 0.56
YOLO 8 | 0.86 11.00 0.90 0.87 0.85 0.48 0.55
YOLO_11_x 0.86 5.00 0.90 0.85 0.87 0.43 0.52
RETINA_net 0.84 4.00 0.89 0.93 0.76 0.41 0.51
YOLO_10 | 0.82 11.00 0.90 0.84 0.80 0.40 0.49
FASTER_RCNN | 0.70 4.00 0.85 0.58 0.89 0.34 0.47
MASK _rcnn 0.74 4.00 0.86 0.64 0.87 0.37 0.47
YOLO_8 _x 0.82 8.00 0.90 0.78 0.87 0.38 0.47
YOLO 9 e 0.90 7.00 0.90 0.92 0.87 0.39 0.47
YOLO 9t 0.79 15.00 0.89 0.90 0.70 0.38 0.45
YOLO 10 m 0.80 16.00 0.91 0.85 0.76 0.41 0.45
YOLO 8 n 0.77 37.00 0.89 0.84 0.70 0.38 0.44
YOLO 9 s 0.84 13.00 0.89 0.86 0.81 0.37 0.42
YOLO 11 s 0.77 23.00 0.88 0.75 0.80 0.33 0.40
YOLO 10 x 0.83 9.00 0.90 0.83 0.83 0.36 0.39
YOLO_ 8 m 0.81 16.00 0.89 0.80 0.81 0.28 0.35
YOLO_10 b 0.83 15.00 0.91 0.86 0.80 0.32 0.35
YOLO_ 10 n 0.71 22.00 0.92 0.85 0.61 0.32 0.35
SSD 0.62 12.00 0.88 1.00 0.44 0.27 0.34
YOLO 11 1 0.79 13.00 0.91 0.77 0.81 0.28 0.32
YOLO 11 _n 0.73 27.00 0.90 0.80 0.67 0.27 0.31

Based on the results presented in Table 8, the model
with the best overall performance in this study is
YOLOv11l-m. It demonstrated the highest F1-score
(0.87), the highest mMAP@.5:.95 (0.76), a suitable real-
time processing speed (16 FPS), a high localization level
with an loU of 0.93, and the best balance between Preci-
sion and Recall (0.87 for both metrics). A good trade-off
between speed and quality was also observed for the
YOLOVS8-s (F1 =0.83, mAP@.5:.95 = 0.59, FPS = 27),
YOLOvV10-s (F1 =0.84, mAP@.5:.95 = 0.48, FPS = 23),
and YOLOvV9-c (F1 = 0.86, mAP@.5:.95 = 0.53, FPS =
13) models. These models demonstrated a good level of
accuracy at higher speeds. The YOLOv8-n (FPS 37) and
YOLOv11-n (FPS 27) models were the fastest among all

models but exhibited lower accuracy (mAP@.5:.95 =
0.27-0.38). The models built on RetinaNet, Faster R-
CNN, Mask R-CNN, and SSD showed weaker results in
most metrics: low FPS (around 4), moderate F1-score
(0.62-0.74), and low mAP@.5:.95 (0.27-0.41).

Thus, under sunny weather conditions, the best
model based on all the indicators, as in the previous
study, was YOLOv11-m.

4. Conclusions

This study focuses on the evaluation and analysis of
the performance of a wide range of neural network mod-
els (YOLOv8-11, Faster R-CNN, Mask R-CNN, SSD,
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DETR, RetinaNet) in the task of detecting moving ob-
jects in video sequences under challenging recording
conditions, such as poor lighting, precipitation, and a
large number of scene objects. To automate this process
and enable detailed analysis, a specialized software tool
was developed that allows rapid video annotation, anno-
tation correction, and evaluation of model performance
based on key metrics: Fl-score, mMAP@O0.5,
mAP@.5:.95, loU, Precision, Recall, and FPS.

Within the framework of the assigned tasks:

- an overview of modern object detectors
(YOLOv8-11, DETR, SSD, Mask R-CNN, Faster R-
CNN, RetinaNet) was conducted with an analysis of their
architectural features, advantages, and disadvantages in
the context of road obstacle recognition;

- adataset of 31,920 files was prepared, reflecting
real weather conditions of Ukrainian cities, in particular
- the city of Obukhov and the city of Kremenchuk (sunny,
rainy, snowy weather, various lighting conditions), as
well as typical pedestrian conditions. The dataset was an-
notated using Bounding Box annotations;

- asoftware tool was developed to enable the au-
tomated testing and evaluation of models using key met-
rics: F1-score, MAP@0.5, mMAP@0.5:.95, loU, Precision,
Recall, FPS;

- experimental testing of YOLOv8-11, DETR,
SSD, Mask R-CNN, Faster R-CNN, and RetinaNet mod-
els was conducted on real video fragments collected in
urban environments of Ukraine under various weather
conditions, which allowed us to identify the dependence
of model accuracy and performance on weather condi-
tions and time of day.

The analysis results showed that under challenging
conditions (snow, dusk, rain), the YOLOv10-m and
YOLOv11-m models demonstrated the best balance be-
tween accuracy and speed. In particular, YOLOv10-m
achieved the highest F1-score in snowy weather, while
YOLOv11-m achieved the highest F1-score under rainy
and sunny conditions. High-FPS models, such as
YOLOvV10-n and YOLOV8-n, are suitable for scenarios
in which high speed is critical but maximum accuracy is
not required. The two-stage models (Faster R-CNN,
Mask R-CNN) and transformer-based models (DETR)
are inferior to YOLO in terms of speed and flexibility,
making the latter more suitable for mobile solutions.

Thus, the YOLOv11l-m model demonstrated the
highest stability across all recording conditions and can
be recommended as a baseline model for further devel-
opment of real-time object recognition systems, particu-
larly intelligent assistance systems for visually impaired
individuals.

The scientific significance of this study lies in the
comprehensive evaluation of state-of-the-art convolu-
tional neural network architectures (YOLOv8-11, Faster
R-CNN, SSD, Mask R-CNN, DETR, RetinaNet) under

non-ideal environmental conditions, including low light,
precipitation, and complex urban scenes. This study con-
tributes to the development of deep learning-based object
detection for solving real-world problems specific to the
infrastructure of Eastern European cities. The compara-
tive analysis of models using several performance met-
rics (F1-score, mMAP@0.5, mAP@0.5:.95, loU, Preci-
sion, Recall, FPS) under different weather scenarios im-
proves the understanding of the robustness and adaptabil-
ity of detection algorithms and paves the way for the de-
velopment of context-aware perception systems.

The practical significance of this research lies in the
further implementation of the results in real-time assis-
tive technologies for people with visual impairments, au-
tonomous driving systems, and intelligent solutions for
urban monitoring. The proposed methodology allows for
the adaptation and optimization of detection systems for
deployment in heterogeneous, dynamic, and visually
complex environments typical of Ukrainian infrastruc-
ture.

Future research involves the integration of fusion
data (LIDAR, audio, RGB) to improve the reliability of
the system under limited visibility conditions.
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JOCJIIKEHHSI METO/JIB MAIIIMHHOT O HABYAHHS
JJISA JETEKTYBAHHS OBF’EKTIB Y CKJIAJTHUX YMOBAX 3MOMKHA
B. C. Cepoeunuii, O. IO. bapkoecvka, A. I0. Koeanenxo,
A. O. I'aspawenko, B. 0. Mapmoesuubkuii

IIpeqMeTOoM BHUBYCHHS B CTATTi € JOCIHIHKCHHS METOJIB MAIMHHOTO HABYAHHS JIJIsl BUSBICHHS 00’€KTiB Ha
300pakEeHHSX 1 BiJIeO B CKIIAJHUX MICHKHX YMOBaX, 30KpeMa 3a MOTaHOTO OCBITIICHHS, HasIBHOCTI OIaJ(iB, BUCOKOI
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CKJIQJIHOCTI CLICHHM Ta OOMEKEHUX 00UHCIIOBAILHUX pecypciB. MeToX € BU3HAYCHHS HAHOLIbII e(DEKTUBHUX MOJIC-
Jiei TIIMOOKOro HaBYaHHS HA OCHOBI 3TrOPTKOBHX HEHMPOHHHMX MEPEX sl 3aBJaHb BUSBICHHS 00’ €KTIB Y CKIIQJIHUX
YMOBaXx 3HOMKH 3 ypaxyBaHHSIM IIPAKTUYHUX BUMOT JJO TOUYHOCTI Ta IIBUAKOCTI 0OpOOKH. 3aBJaHHSI: aHai3 JIeTeK-
topiB 06’extiB (YOLO v8-11, DETR, SSD, Mask R-CNN, Faster R-CNN, RetinaNet); miarotoBky Habopy JaHHX 3
peaJbHUMU HOTOIHUMU YMOBaMHU Ta ITILIOXIAHUM CEpPEeJOBHIIEM B YKpaiHi; eKCliepruMEHTaIbHY OLIIHKY 00paHUX Je-
TEKTOPIB i3 BUKoprcTanHsIM MeTpuk mAP @0.5, mAP@.5:.95, Recall, Precision, IoU, FPS ta F1-Score; anani3 otpu-
MaHHX pe3yJbTaTiB. BUKOpHCcTaHi MeTOIN: 3rOpPTKOBI HEMPOHHI MEpeKi, aBTOMaTH30BaHE aHOTYBaHHS 300paXKeHb,
MOPIBHSUIBHUY aHami3 MeTpuk sskocTi (F1-score, mAP@0.5:.95, Precision, Recall, IoU, FPS), py4na kopekiiis aHoTa-
uiid. Orpumani pesyasraTi: Mozeni YOLOv10-mi YOLOvI1-m noka3ann HaliKpamy MOKa3HUKH SIKOCTI B YMOBax
00MeKEeHOT BUMMOCTI Ta 3MIiHHOTO OcBiTIeHHS. YOLOVI1-m BusiBIIIach HAHO1TBIIT 30aJTaHCOBAHOO 3 TOYKH 30PY
TOYHOCTI Ta MIBUIKOCTI 3a BCiX MPOTECTOBAHUX YMOB - CHIT, 1011, cOHsigHa noroza. Monens YOLOv11-m pexomen-
JIoBaHa SIK 0a30Ba JUIS BIIPOBA/DKEHHS B CHCTEMax pPealbHOIro Yacy, 30KpeMa B IHTENEKTYaJbHUX aCUCTEHTaX IS
JIoziei 3 MOopyIIeHHIM 30py. BucHoBKkH. HaykoBa HOBH3HA OTPUMaHMX PE3yIbTATiB IOIATAE B HACTYITHOMY: BIIEpIIE
MIPOBEICHO KOMIUICKCHY OLIIHKY Cy9aCHUX apXiTEKTyp TITHOOKOT0 HaBYaHHS 115 BUSBICHHS 00’ €kTiB (YOLOvV8—V11,
Faster R-CNN, SSD, Mask R-CNN, DETR, RetinaNet) B yMoBax, 110 He € JJaOOPaTOPHUMH, 30KpeMa 33 PeaTbHIUX
MTOTOTHUX CLIEHAPiiB (CHIT, JOII, TOTaHe OCBITICHHA), XapaKTepHUX ISl MicbKHUX cepenoBul CxigHol €Bponu; po3-
poOIieHO MpOorpaMHUi IHCTPYMEHT I aBTOMaTH30BAHOI OLIHKH MOJETEH, o J03BOJIsE OJHOYACHO TECTYBaTH Ki-
JBKa apxiTeKTyp 1 BizyamizyBatu meTpuku npoxyktuBHocTi (F1-mipa, mAP@0.5, mAP@.5:.95, IoU, Precision,
Recall, FPS) 3 miaTpuMKOI py4HOTO KOPUTYBAHHS AHOTAIIIH 1 HOPIBHSUIBHOTO aHaIi3y MOJCIICH; eKCIIEPUMEHTAIBHO
BCTaHOBJICHO, 10 Mozaenb YOLOv11-m neMoHCTpye Halikpanpii OanaHc MiXK TOYHICTIO Ta MIBUIKICTIO 0OpOOKH B
PI3HHX CKJIQJHUX YMOBaX 3HOMKH, 1[0 OOIPYHTOBYE i1 peKOMEH/AIII0 K 0a30BOT MOJEII ISl CUCTEM JOIOMOTH B
pealbHOMY Yaci Ha OCHOBI KOMIT FOTEPHOTO 30DYy.
KurouoBi ciioBa: MeTo; BUSIBJICHHS, 300pakeHHs; 00'ekT; Bigeo; Y OLO; moroHi yMOBH ; MOJICIIb.
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