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RESEARCH ON MACHINE LEARNING METHODS FOR DETECTING  

OBJECTS IN DIFFICULT SHOOTING CONDITIONS  
 

The subject matter of the article is research into machine learning methods for object detection in images and 

videos under complex urban conditions, particularly under poor lighting, the presence of precipitation, high 
scene complexity, and limited computational resources. The goal of this research is to identify the most effective 

deep learning models based on convolutional neural networks for object detection tasks under challenging im-
aging conditions, considering the practical requirements for accuracy and processing speed. The tasks to be 

solved are: analysis of object detectors (YOLO v8–11, DETR, SSD, Mask R-CNN, Faster R-CNN, RetinaNet); 

preparation of a dataset with real weather conditions and pedestrian environments in Ukraine; experimental 

evaluation of selected detectors using the metrics mAP@0.5, mAP@.5:.95, Recall, Precision, IoU, FPS, and F1-
Score; and analysis of the obtained results. The methods used are: convolutional neural networks, automated 

image annotation, comparative analysis of quality metrics (F1-score, mAP@0.5:.95, Precision, Recall, IoU, 
FPS), and manual correction of annotations. The following results were obtained: the YOLOv10-m and 

YOLOv11-m models demonstrated the best quality indicators under conditions of limited visibility and varying 

lighting. The YOLOv11-m model was the most balanced in terms of accuracy and speed across all tested condi-

tions - snow, rain, and sunshine. YOLOv11-m is recommended as the baseline model for implementation in real-
time systems, particularly in intelligent assistants for people with visual impairments. Conclusions: The scien-

tific novelty of the results obtained is as follows: 1) a comprehensive evaluation of modern deep learning archi-

tectures for object detection (YOLOv8–v11, Faster R-CNN, SSD, Mask R-CNN, DETR, RetinaNet) was carried 

out under non-laboratory conditions, including real weather scenarios such as snow, rain, and poor lighting, 

which are typical for urban environments in Eastern Europe; 2) the software tool for automated model evalua-

tion was developed, allowing simultaneous testing of multiple architectures and visualization of performance 

metrics (F1-score, mAP@0.5, mAP@.5:.95, IoU, Precision, Recall, FPS) with support for manual annotation 

correction and comparative model analysis; 3) it was experimentally established that the YOLOv11-m model 

demonstrates the best balance of accuracy and inference speed across various complex imaging conditions, 

justifying its recommendation as a baseline model for real-time vision-based assistive systems. 

. 
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1. Introduction 
 

Despite the active development of deep learning ap-

proaches for road object detection, most existing studies 

have been conducted under controlled or laboratory con-

ditions that do not reflect the complexity of real-world 

environments. In particular, many state-of-the-art solu-

tions have been designed for use in countries with well-

structured road infrastructure, consistent markings, pre-

dictable traffic behavior, and relatively homogeneous 

weather conditions. In contrast, Ukrainian urban environ-

ments are significantly more variable, featuring non-

standard infrastructure, inconsistent or missing road 

markings, a high density of vulnerable road users, and 

frequent adverse weather conditions. Given the absence 

of a universal architecture that would simultaneously en-

sure high accuracy, robustness against environmental 

factors, and real-time performance, this work focuses on 

experimentally evaluating and comparing modern object 

detection models using a custom dataset. The dataset in-

cludes real-world video sequences captured under vari-

ous weather and times of day in Ukrainian cities. This 

allows for the identification of architectures that provide 

the best trade-off between detection accuracy, processing 

speed, and adaptability to practical road monitoring 

tasks. 

 

1.1 Motivation 

 

The development of intelligent assistance systems 

for people with visual impairments involves the imple-

mentation of some tasks. These include the design, re-

search, and improvement of methods that ensure the op-

eration of the system’s modules. The main goal of such a 

system is to analyze information about the surrounding 

environment and to provide support to people with visual 
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impairments during movement. The implementation of 

these tasks is possible by using computer vision methods 

and devices that accompany the user in the following se-

quence: 

- development of a method to determine environ-

mental conditions (lighting, weather conditions, etc.) us-

ing highly heterogeneous data (images, data from LiDAR 

sensors, audio data from microphones); 

- improvement of an adaptive method (consider-

ing environmental conditions) for preprocessing data 

from cameras and LiDAR sensors; 

- improvement of a method for object detection 

and tracking in images or videos based on data from cam-

eras and LiDAR sensors; 

- improvement of a method for predicting the tra-

jectories of dynamic objects with consideration of envi-

ronmental conditions; 

- study and application of audio analysis methods 

aimed at improving the detection of environmental con-

ditions. This includes the development of a high-preci-

sion voice interface for data input, clarification of obsta-

cles, route correction, and conducting dialogue to obtain 

necessary information; 

- development of a prototype device to assist peo-

ple with visual impairments in everyday life. 

After studying the factors affecting environmental 

conditions and the safety, comfort, mobility, and inde-

pendence of users, the following groups were identified: 

- obstacles and hazards in the environment; 

- difficulties in mobility; 

- lack of access to information; 

- social interaction and risk of criminal assaults; 

- transportation-related dangers; 

- dependence on external assistance. 

Particular attention in the research is given to 

groups 1–3: obstacles and hazards in the environment 

(obstructions on the path such as uneven surfaces, stairs, 

uncovered manholes, curbs, and objects on the road can 

cause injuries; lack of accessible navigation tools; en-

counters with stray or wild animals); mobility difficulties 

(people with visual impairments often face challenges 

when crossing roads, using public transportation, or even 

navigating familiar places due to the lack of clear under-

standing of their surroundings; absence of tactile markers 

or auditory signals); lack of access to information (ab-

sence of visual information or failure to consider the 

needs of people with visual impairments can lead to una-

wareness of potential threats or dangers). 

 

1.2 State of the art 
 

Since the accuracy of identifying objects in the sur-

rounding environment is significantly affected by 

weather conditions, which can complicate object detec-

tion, this study includes a review of research that specif-

ically focused on weather condition recognition as one of 

the preparatory steps for detecting moving objects.  

The review [1] considered almost all common types 

of weather phenomena that negatively affect the ability 

of sensors to perceive and measure data, including rain, 

snow, fog, haze, strong light, and contamination. In addi-

tion, it presented datasets, simulators, and experimental 

tools with weather-condition support. This review was 

conducted in the context of applying weather recognition 

methods to automated driving systems (ADS). The au-

thors of [1] assessed the impact of each type of adverse 

weather condition (light rain <4 mm/h, heavy rain >25 

mm/h, dense smoke/fog vis<0.1 km, fog vis<0.5 km, 

haze/smoke height>2 km, heavy snow, temperature) on 

the main types of sensors (LiDARs, radars, ground-pen-

etrating radar, cameras, stereo cameras) (Table 1). The 

intensity of the impact is evaluated on a scale ranging 

from 0 to 5, where: 

0 – negligible: effects that can be almost ignored; 

1 – minor: effects that rarely cause detection errors; 

2 – slight: effects that cause minor errors in special cases; 

3 – moderate: effects that cause perception errors up to 

30% of the time; 

4 – severe: effects that cause perception errors in more 

than 30% but less than 50% of cases; 

5 – critical: noise or obstruction leading to false detec-

tion or detection failure. 

Thus, LiDAR is affected by heavy snow and fog, 

which significantly limits its effectiveness. Radar is the 

most resistant to weather conditions and is almost unaf-

fected by rain and fog. Cameras are vulnerable to bright 

light and contamination, which can completely block 

their perception.  

Table 1 

Impact of weather conditions on sensors in automated driving systems [1] 

Weather condition LiDAR Radar  Camera Thermal imager 

Light rain (< 4 mm/h) 2 0 3 2 

Heavy rain (> 25 mm/h) 3 1 4 3 

Fog (visibility < 0.5 km) 4 0 4 1 

Snow 5 2 2 2 

Bright light 2 2 5 2 

Sensor contamination 3 2 5 4 
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Thermal imagers operate reliably at night but have limi-

tations when contaminated or at low temperatures.  

To compensate for the weaknesses of individual sen-

sors, various sensor combinations were used, resulting in 

improved object detection accuracy under challenging 

weather conditions. The "Camera + LiDAR + Radar" con-

figuration provides the highest reliability in snow and fog. 

Some of the main sensor fusion configurations in a single 

system are summarized in Table 2. 

This study also demonstrates the use of machine 

learning algorithms and image processing methods - De-

raining, HDDM+ (fog removal), De-noising (Weather-

Net), and point cloud segmentation. 

 

Table 2 

Sensor fusion configuration [1] 

Sensor config-

uration 

Target 

weather 

condi-

tion 

Comment 

Radar + Li-

DAR 
Rain 

Combines the ad-

vantages of radar accu-

racy and LiDAR range 

Camera + Li-

DAR (SLS-

Fusion) 

Fog 
Improves object detec-

tion in fog 

RGB Camera 

+ Thermal im-

ager 

Night, 

Snow 

Thermal imagers are 

effective at night and in 

snow 

Camera + Li-

DAR + Radar 

Snow, 

Rain, 

Fog 

The most reliable con-

figuration 

 

The study [2] proposed a weather phenomenon clas-

sification model based on a deep convolutional neural 

network called MeteCNN. The classification accuracy of 

the MeteCNN model reached 92.68%, which demon-

strates competitive classification performance among 

some of the main models (such as VGG16, ResNet34, 

EfficientNet-B7) on the dataset created by the authors - 

WEAPD (Weather Phenomenon Database).  

The weather phenomenon image database, con-

structed according to meteorological criteria, contains 

6,877 images for 11 types of weather phenomena, featur-

ing complex and noisy backgrounds, with each image in-

cluding additional objects that create interference. The 

best recognized categories are: rainbow, lightning, and 

frost with accuracy of 100%, 99%, and 98%, respec-

tively. The lowest performing categories are "snow" and 

"glaze," each with an accuracy of 85% (Table 3). 

The results presented in Table 3 and Figure 1 were 

obtained using the following hyperparameters and set-

tings: 13 convolutional layers (conv layers) and 6 pooling 

layers, batch size - 16, initial learning rate - 0.001, learn-

ing rate decay applied, optimizer - stochastic gradient de-

scent (SGD) with a momentum of 0.9. 

Table 3 

Quality evaluation metrics of the optimized architecture 

of the MeteCNN neural network model [2] 

Category 
Preci-

sion 
Recall 

F1-Meas-

ure 

Hail 0.98 0.98 0.98 

Rainbow 1.00 1.00 1.00 

Snow 0.85 0.85 0.85 

Rain 0.91 0.96 0.93 

Lightning 1.00 0.97 0.99 

Dew 0.97 0.99 0.98 

Sandstorm 0.93 0.99 0.96 

Frost 0.93 0.85 0.89 

Smog/Fog 0.98 0.94 0.96 

Rime 0.88 0.89 0.88 

Glaze 0.85 0.84 0.85 

Average value 0.93 0.93 0.93 

 

 
Fig. 1. Predicted labels [2] 

 

A drawback of the proposed model is that it confuses cer-

tain categories of weather phenomena, which may be at-

tributed to the similarity and complexity of the images. 

Among the other studies considered, one that stands 

out because of its significant achievements and relevance 

to the related problem area is the study [3]. The research-

ers proposed a new approach, IA-YOLO (Image-Adap-

tive YOLO), to improve object detection under adverse 

weather conditions – in fog and low-light environments. 

The main distinction of the proposed approach from 

existing ones is the introduction of an additional image 

processing module, which enables the extraction of hid-

den useful information by removing weather-specific 

content. The proposed DIP (digital image processing) 

module consists of six differentiated filters, namely: 

Defog, White Balance (WB), Gamma correction, Con-

trast, Tone adjustment, and Sharpen. 

The qualitative indicators from the previous 

study [3] demonstrate the object detection results using 
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YOLOv3 II (columns 1, 3, and 5) and the proposed  

IA-YOLO (columns 2, 4, and 6) on synthetic images 

from VOC_Foggy_test (top row) and real fog images 

from the RTTS foggy dataset (bottom row). The pro-

posed method learns to reduce fogginess and sharpen im-

age edges, which ensures better detection performance  

with fewer missed and false detections. 

The results shown in Figure 2 confirm that the pro-

posed image enhancement steps for foggy or low-light 

conditions provide an advantage for IA-YOLO over var-

ious YOLOv3 detector modifications across different da-

tasets.  

Study [4] is dedicated to the creation of the multi-

modal OLIMP dataset, which was designed for training 

artificial intelligence models to perceive the surrounding 

environment. It includes four types of data (modalities): 

- images; 

- ultra-wideband radar signatures; 

- narrow-band data streams; 

- acoustic data. 

 
 

Fig. 2. Quantitative performance indicators  

of the study [4] 
 

A distinctive feature of the dataset is that it includes sig-

nals from ultra-wideband radar and acoustic sensors, and 

it is primarily focused on dense urban traffic situations. 

To demonstrate the effectiveness of the prepared 

dataset, experiments were conducted, which demon-

strated that the use of individual modalities yields signif-

icantly lower accuracy in determining environmental 

conditions, indicating the necessity of expanding input 

data modalities by utilizing various sensors for data ac-

quisition (Table 4). The obtained results confirmed that 

combining multiple data sources (datasets of RGB im-

ages, UWB Radar data, and Acoustic data into a dataset 

named Fusion) helped reduce errors and improve detec-

tion quality. 

The article [5], we present a detailed comparative 

analysis of various early fusion techniques for combining 

visible and thermal images to enhance object detection 

using convolutional neural networks. The authors 

demonstrate that static fusion methods, particularly chan-

nel summation and concatenation, significantly improve 

CNN performance under low-light and thermally com-

plex scenarios. This research is relevant for computer vi-

sion tasks in nighttime surveillance and can be applied to 

autonomous monitoring systems. 

The review article [6] focuses on methods for fusing 

LiDAR data with other sources (e.g., optical, radar) to 

improve the accuracy of forest attribute estimation. 

While the primary application is environmental monitor-

ing, this paper systematizes multimodal data fusion ap-

proaches that are applicable to object detection tasks in 

complex scene geometry or poor visibility situations. The 

article is especially relevant for those exploring LiDAR 

integration into object detection systems in urban or road 

environments. 

Several recent studies have focused on object detec-

tion under complex environmental conditions, emphasiz-

ing the growing need for robust computer vision systems 

for real-world scenarios. In the work by Chan et al. [7], 

the authors proposed a non-machine-learning-based sys-

tem for detecting preceding vehicles under various light-

ing and weather conditions. The proposed method com-

bined four vehicular structure-related visual cues with a 

particle filter to improve detection stability. This study 

demonstrated that when carefully designed, traditional 

model-based approaches can still be competitive under 

non-ideal visual conditions. 

Table 4 

Evaluation results of object detection accuracy (pedestrian, cyclist, vehicle, tram) using different training  

data modalities: ImageNet (for MobileNet-v2), UWB Radar, Acoustic, and Fusion.  

The table presents key metrics: Precision (P), Recall (R) [4] 

Object 

Mo-

bileNet 

(P), % 

Mo-

bileNet 

(R), % 

Mo-

bileNet 

(AP), % 

UWB 

Ra-

dar 

(P), 

% 

UWB 

Ra-

dar 

(R), 

% 

Acous-

tic (P), 

% 

Acous-

tic (R), 

% 

Fu-

sion 

(P), % 

Fu-

sion 

(R), % 

Pedestrian 84 54 53 46 36 20 17 86 54 

Cyclist 77 70 67 45 52 44 15 81 69 

Vehicle 81 48 47 8 0 40 38 82 48 

Tram 86 76 75 0 0 61 64 90 76 
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Table 5 

Comparative table of video file analyzer performances 

YOLOvX [11] 

Features 

One-stage approach to object detection, fast processing due to simple architecture. The 

model is implemented based on a convolutional neural network with single-shot prediction, 

optimized for real-time operation. 

Weaknesses Low accuracy for small objects, sensitivity to lighting.  

Application Real-time detection, simultaneous identification of multiple objects. 

Faster R-CNN [12] 

Features 

Two-stage detection, high accuracy for complex scenes. The model is implemented based 

on a Region Proposal Network (RPN) for generating regions of interest, with VGG or Res-

Net as the backbone architecture. 

Weaknesses Slow processing, high computational complexity. 

Application High-precision applications: medical diagnostics, security systems.  

SSD [11, 13] 

Features 
One-stage approach, a compromise between speed and accuracy. Utilizes multiple scales 

for predicting objects of different sizes. 

Weaknesses Low accuracy for small objects, limited adaptability.  

Application Pedestrian detection, vehicle monitoring in surveillance systems.  

Mask R-CNN [14] 

Features 

Two-stage approach: first, region detection, then classification and segmentation using de-

tailed object masks. The model is implemented based on a Region Proposal Network 

(RPN) for object localization. 

Weaknesses Slow processing, high computational requirements.  

Application Segmentation: medical diagnostics, object labeling.  

DETR [15] 

Features Based on transformer architecture for object detection in a scene.  

Weaknesses Slow processing, high resource requirements. 

Application Research, general-purpose object detection tasks. 

RetinaNet [11] 

Features Based on transformer architecture for object detection in a scene. 

Weaknesses Slow processing, high resource requirements. 

Application Research, general-purpose object detection tasks. 

 

However, the absence of learning-based adaptability lim-

its the scalability of the model to highly dynamic envi-

ronments. 

Chellappa et al. [8] explored the fusion of acoustic 

and visual sensors for vehicle tracking to address visibil-

ity issues caused by poor weather or occlusions. Their 

system integrates data from multiple modalities to im-

prove detection accuracy, especially in cases where vis-

ual input alone may be unreliable. The research high-

lights the value of multi-sensor fusion; however, it also 

notes challenges in synchronizing and calibrating hetero-

geneous sensor data streams for real-time applications. 

In a more recent deep-learning-based approach, 

Ghosh [9] proposed an enhancement to Faster R-CNN by 

incorporating several region proposal networks (RPNs) 

of varying sizes. This modification allows the detector to 

capture objects of different scales more effectively, par-

ticularly in adverse weather conditions such as blizzards, 

snowfalls, and wet road conditions. The system was eval-

uated on three public datasets (DAWN, CDNet 2014, and 

LISA) and achieved notable average precision improve-

ments (up to 95.16%), outperforming conventional sin-

gle-RPN architectures. The results of this study under-

score the benefit of architectural modification for im-

proving robustness in vehicle detection tasks.  

Finally, the work by Tumas et al. [10] introduced 

the ZUT dataset, which includes thermal imaging and 

weather annotations for pedestrian detection in low-visi-

bility scenarios. Their experiments revealed that the ex-

isting datasets lack adequate environmental variability 

and often suffer from insufficient thermal resolution. By 

using a modified YOLOv3 on 16-bit thermal data, their 

system achieved up to 89.1% mAP, confirming the po-

tential of sensor-specific datasets to improve detection 

under fog, snow, or rain. This study contributes not only 

a valuable dataset and a benchmark for testing detection 

systems under real-world environmental constraints. 
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It is worth noting that modern computer vision sys-

tems focused on object detection in complex environ-

ments use various types of annotations, which signifi-

cantly affect the accuracy of model training and the ef-

fectiveness of detection under real-world conditions: 

- ROI (Region of Interest); 

- AOI (Area of Interest); 

- POI (Point of Interest); 

- Bounding Box; 

- Polygonal Segmentation; 

- Keypoints Annotation; 

- Line Annotations; 

- Semantic Segmentation; 

- Object Tracking; 

3D Bounding Boxes.The correct choice of data an-

notation format determines not only the efficiency of the 

training process but also the flexibility of further model 

adaptation to new tasks. 

Based on the analysis of existing solutions, the most 

common types of annotations used in object recognition 

tasks can be identified: ROI (Region of Interest), AOI 

(Area of Interest), POI (Point of Interest), classical rec-

tangular bounding boxes, polygonal segmentation, key-

points annotation, line annotations, semantic segmenta-

tion, object tracking in video streams, and 3D bounding 

boxes. 

In most cases, for the task of object detection on 

roads - both in static images and in video streams—an-

notations of the Bounding Box, Semantic Segmentation, 

or Object Tracking types are used. This is explained by 

the balance between object positioning accuracy and the 

relative ease of generating such annotations by the cho-

sen model. 

Before selecting a model, we reviewed the existing 

neural network analyzers designed for detecting moving 

objects in video sequences: YOLO (You Only Look 

Once), Faster R-CNN (Region-based Convolutional 

Neural Network), SSD (Single Shot Multibox Detector), 

Mask R-CNN, DETR (DEtection TRansformer), Reti-

naNet (Table 5). Based on the analysis of modern object 

detection models, including YOLOv11, Faster R-CNN, 

SSD, Mask R-CNN, DETR, and RetinaNet, it can be con-

cluded that one-stage models, such as YOLOv11 and 

SSD, provide high processing speed, which is critically 

important for real-time tasks; however, they are inferior 

to two-stage approaches in terms of accuracy when rec-

ognizing small or partially occluded objects. In contrast, 

models based on the Region Proposal Network (such as 

Faster R-CNN, Mask R-CNN) demonstrate higher accu-

racy but require significantly more computational re-

sources and exhibit lower frame rates (FPS). In addition, 

next-generation models built on transformers (DETR, 

RetinaNet) demonstrate potential for task universaliza-

tion in detection; however, they are characterized by the 

highest resource requirements and slow processing 

speeds. 

Therefore, the problem arises of insufficient accu-

racy of existing obstacle recognition systems under real 

operating conditions in Ukraine. This makes the develop-

ment of an adaptive road obstacle recognition system 

highly relevant, one capable of operating on images ob-

tained in complex and heterogeneous urban conditions of 

Ukrainian cities and demonstrating improved accuracy 

through targeted fine-tuning of the model on localized 

datasets. 

 

1.3 Aims and tasks of the work 

 

The aim of this work was to investigate machine 

learning methods based on convolutional neural net-

works for object detection under challenging imaging 

conditions, such as poor lighting, precipitation, and a 

large number of scene objects, considering the limited re-

sources of the video recorder. 

To achieve the stated goal, the following tasks must 

be accomplished: 

- to analyze object detectors (YOLO v8–11, 

DETR, SSD, Mask R-CNN, Faster R-CNN, RetinaNet); 

- to prepare a dataset with real weather conditions 

and pedestrian environments in Ukraine; 

- to conduct an experimental study of the selected 

detectors using the metrics mAP@0.5, mAP@.5:.95, Re-

call, Precision, IoU, FPS, F1-Score; 

- to analyze the obtained results. 

Further research will involve the implementation of 

the proposed method and testing on real data using fu-

sion-sensor inputs. 

The proposed approach and experimental results 

can be used to create intelligent assistance systems for 

people with visual impairments, autonomous driving sys-

tems, and urban navigation systems [16-17]. 

The structure of the paper is designed to systemati-

cally investigate and evaluate the effectiveness of mod-

ern deep learning methods for object detection under 

complex visual conditions. In Section 1. Introduction, the 

paper outlines the relevance of the problem in the context 

of urban infrastructure in Ukraine, highlighting the prob-

lems of object detection under poor lighting, precipita-

tion, and non-standard conditions. This is further con-

firmed in Section 1.1 Motivation, which emphasizes the 

need for assistive systems for people with visual impair-

ments and discusses in detail practical issues related to 

navigation and obstacle avoidance in real-world condi-

tions. Section 1.2 State of the art provides a detailed re-

view of the existing literature on environmental recogni-

tion and object detection in adverse scenarios, analyzing 

approaches such as IA-YOLO and MeteCNN, and pre-

senting the importance of multisensor data fusion and 

contextual adaptation. Section 1.3 Aims and tasks of the 

work defines the main objectives of the research, namely 
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the experimental comparison of object detectors such as 

YOLO v8–11, DETR, SSD, Mask R-CNN, Faster R-

CNN, and RetinaNet on real data obtained in Ukrainian 

cities, using metrics such as mAP@0.5, mAP@.5:.95, 

IoU, Precision, Recall, FPS, and F1-Score. The experi-

mental process is given in Section 2.2 Materials and 

methods of research, which describe the collection of the 

dataset, annotation procedures, and development of a 

special software tool for testing models and visualization 

of metrics. This section also describes in detail the con-

ditions under which the testing was performed, including 

snow, rain, sunny weather, as well as different levels of 

illumination and scene complexity. The evaluation re-

sults are discussed in Section 3. Results discussion, 

which presents a comparative analysis of the perfor-

mance of all tested models, identifying YOLOv10-m and 

YOLOv11-m as the most efficient architectures under 

different conditions. Finally, Section 4 Conclusions sum-

marizes the key findings, highlights the suitability of 

YOLOv11-m as a baseline model for real-time vision-

based systems, and outlines future directions, including 

the integration of LiDAR and audio inputs, to improve 

detection reliability in complex environments. The paper 

concludes with declarations regarding conflicts of inter-

est, funding sources, data availability, and a comprehen-

sive literature section that confirms the scientific validity 

of the study. 

 

2. Materials and methods of research 
 

Based on the identified environmental conditions 

affecting the safety of visually impaired pedestrians, the 

first task was to develop a method for determining envi-

ronmental conditions - lighting, weather conditions, etc. 

- using highly heterogeneous data such as images, Li-

DAR sensor data, and audio data from microphones) will 

be addressed by evaluating the quality of obstacle detec-

tion using existing artificial intelligence-based models 

(Figure 3).  

This will make it possible to identify the weak-

nesses of models in detecting vehicles, people, animals, 

stairs, open manholes, and general obstacles for further 

improvement and optimization of methods under specific 

imaging conditions (precipitation, fog, complex scenes) 

and for certain object categories. 

The diagram illustrates the workflow of developing 

and improving a neural network model for analyzing ob-

jects in real-world environments. The five stages of this 

process are described below. 

Dataset collection under real environmental condi-

tions. In this stage, video files of various real-world ob-

jects and environmental conditions (vehicles, people, 

traffic lights, etc.). The task of this stage is to provide the 

model with real test data corresponding to the actual con-

ditions in which the developed intelligent assistant will 

record video with the following parameters: 

- constant camera movement during walking; 

- footage captured by medium-accuracy cameras; 

- various weather conditions; 

- different lighting conditions; 

- varying scene complexity; 

- a variable number of objects in the frame. 

 

 
Fig. 3. Research workflow diagram to justify the need to 

improve the accuracy and speed of object detection 

under various imaging conditions 
 

Data collection was conducted in different environ-

ments (urban, natural), considering changes in lighting, 

weather conditions, and shooting perspectives, to create 

a representative dataset that ensured effective model 

training. 

The statistical indicators of the data prepared for 

training the model under real-world conditions are as fol-

lows (Fig. 4): 

- the duration of video files that took part in test-

ing the neural network models varied from 40 to 480 sec-

onds; 

- dataset characteristics: number of files - 5 files, 

including 3 in cloudy weather, 2 in snowy weather, 1 in 

rainy weather, 2 in sunny weather, and 1 in twilight 

weather. 
 

 
 

Fig. 4. Video files for test dataset formation 
 

The preparation (annotation) of data for testing the neural 

network model is necessary to define the categories, 

sizes, and locations of objects in the frame that the neural 

network model must recognize. 

The identified categories are vehicles, people, and 

traffic lights (Figure 5). 

To obtain a dataset to test machine learning meth-

ods under real-world conditions, video files were 

defragmented into frames at a rate of 30 frames per sec-

ond. As a result, we obtained a test dataset containing 

31,920 frames. 
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Fig. 5. Sample frames used for testing 

 

Since the test videos in this experiment were col-

lected using only video cameras, without considering dis-

tance estimation to objects, the chosen annotation type 

was 2D bounding boxes, which conveniently represent 

the coordinates of an object within the frame and provide 

effective neural network training. 2D bounding boxes do 

not contain depth information, which is important for de-

termining distance. This form of annotation is among the 

most commonly used in computer vision tasks for train-

ing neural networks, particularly for models such as 

YOLO or SSD, where each object is defined by its 

bounding box coordinates and class. 

To automate the research process, a software tool 

was developed that enables rapid video annotation, auto-

matically initiated by the YOLOv11 model, followed by 

manual correction and the ability to evaluate the perfor-

mance of a wide range of models (YOLOv8–11, Faster 

R-CNN, Mask R-CNN, SSD, DETR, RetinaNet). 

The research tasks include the creation of a user-

friendly interface for viewing and editing bounding 

boxes automatically annotated by the YOLO model, in-

tegration of recognition models, performance analysis 

using metrics such as F1-score, mAP, IoU, Precision, Re-

call, and FPS, as well as result visualization. Figure 6 

shows that each detected object (e.g., vehicles and pedes-

trians) is marked with a bounding box and a correspond-

ing class label. 

Figure 7 contains a fragment of a text file contain-

ing the detection results generated by the model during 

inference (prediction). Each line corresponds to one of 

the objects found in the image and contains the following 

data: object class (e.g., car or person), the model’s confi-

dence score, and bounding box coordinates in a normal-

ized format – values [x_center, y_center, width, height], 

usually relative to the image size. These coordinates are 

used for result visualization, but specifically during 

model performance evaluation, such as when calculating 

mAP or other quality metrics.  

 

     

     
Fig. 6.  Examples of corrected video frame annotations  

used to test the aforementioned neural network models (ground truth annotation) 

 

 
 

Fig. 7. The image annotation results are suitable for further analysis and comparison with ground truth data  
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The next stage involves the analysis of the video 

files annotated by the detector based on AI methods. The 

task of this stage is to ensure the verification of annota-

tion quality and preliminary testing of the speed and effi-

ciency of existing models, as well as to identify the 

strengths and weaknesses of the selected model in the 

specific task for their further improvement prior to im-

plementation in a hardware-software solution for assist-

ing visually impaired individuals on city streets. The 

comparative analysis demonstrates the model’s effective-

ness under different recording conditions for detecting 

various objects, such as snowy, rainy, overcast weather 

in the morning or during evening twilight (Tables 5–6). 

All studied models are shown in Figure 8 – YOLO, 

SSD, Mask R-CNN, Faster R-CNN, DETR, RetinaNet. 

The developed software tool input frames to each 

model. Each model performs annotation, after which the 

annotation is compared with the ground truth, and the key 

metrics are calculated. Using the example of the 

YOLOv11 model, the annotation results for all frames 

shown in Figures 8 and 9 are presented below. 

 

3. Results discussion 

 
The test results of the models under snowy, overcast 

weather early in the morning are shown in Table 6. 

Based on the results presented in Table 6, the best 

models in terms of F1-score were YOLOv10-b (0.55), 

YOLOv10-m (0.54), and YOLOv11-x (0.54). They 

demonstrate a balance between precision and recall. The 

fastest models according to the research results are 

YOLOv8-n, YOLOv10-n, and YOLOv10-s; however, 

their F1-score is noticeably lower (up to 0.48), making 

them suitable for tasks where speed is critical rather than 

maximum accuracy. 

The YOLOv11-m model demonstrated the most ac-

curate object positioning (according to the IoU metric), 

but its F1-score was average (0.51), making it best suited 

for tasks in which precise object localization is crucial. 

The highest precision according to the precision metric 

was obtained by the SSD model (0.75), but it had a low 

Recall (0.14), indicating many missed objects. According 

to the mAP@.5:.95 metric, all models showed extremely 

low results (up to 0.06), which can be explained by the 

challenging conditions (overcast, snowy weather in the 

morning). The YOLOv10-m model demonstrated the 

best overall performance according to this metric. 

Thus, in snowy, overcast weather early in the morn-

ing, the best-performing model across all metrics was 

YOLOv10-m, which achieved a high F1-score (0.54), the 

highest mAP@.5:.95 (0.06), high FPS (34), sufficiently 

high IoU (0.92), and balanced Precision (0.66) and Recall 

(0.45). An alternative with a higher F1-score is 

YOLOv10-b (0.55); however, this model has slightly 

lower metrics in other areas. If speed is more critical, at 

the cost of reduced accuracy, good results were obtained 

by YOLOv10-n (FPS = 49, F1 = 0.35) or YOLOv8-n 

(FPS = 56, F1 = 0.41). 

The test results of the models under overcast and 

rainy weather conditions during the day are presented in 

Table 7. 

Based on the results presented in Table 7, the lead-

ers in object detection quality in this study were 

YOLOv10-l and YOLOv11-m. These models demon-

strated the highest F1-score values (0.77–0.78) and 

mAP@.5:.95 (0.53–0.59) with acceptable FPS (11–15), 

making them optimal for tasks where recognition quality 

in challenging weather conditions is critical. A compro-

mise between speed and quality is offered by the 

YOLOv8-s, YOLOv11-s, and YOLOv8-m models. They 

provide higher performance (FPS) with moderate quality 

(0.36–0.38 mAP@.5:.95). The YOLOv8-n and 

YOLOv11-n models exhibit the highest processing speed 

(26–32 FPS) but at the expense of recognition quality. 

These models are suitable for preliminary selection or 

tracking. The Non-YOLO models (RetinaNet, Faster R-

CNN, Mask R-CNN, DETR) demonstrated poorer per-

formance in terms of both speed and quality. 

Thus, in overcast, rainy weather during the day, the 

best model overall was YOLOv11-m, which showed a 

high F1-score (0.78), mAP@.5:.95 (0.47), sufficiently 

high FPS (15), high IoU (0.91), and balanced Precision 

(0.79) and Recall (0.76). 

The test results of the models under sunny weather 

during the day are presented in Table 8. 

 

 

 
Fig. 8. Studied neural network models 



Intelligent information technologies 
 

73 

Table 6 

Research results of analyzers in snowy, overcast weather early in the morning 

Model F1-score FPS IoU Precision Recall mAP@.5:.95 mAP@0.5 

YOLO_10_m 0.54 34.00 0.92 0.66 0.45 0.06 0.07 

YOLO_10_l 0.53 23.00 0.91 0.61 0.47 0.05 0.06 

YOLO_9_e 0.52 12.00 0.89 0.50 0.54 0.05 0.06 

YOLO_10_b 0.55 27.00 0.91 0.64 0.48 0.04 0.05 

YOLO_11_l 0.53 27.00 0.90 0.62 0.45 0.04 0.05 

YOLO_8_m 0.47 30.00 0.90 0.47 0.47 0.04 0.05 

YOLO_9_c 0.50 25.00 0.90 0.53 0.48 0.04 0.05 

RETINA_net 0.42 4.00 0.85 0.57 0.34 0.02 0.04 

YOLO_10_n 0.35 49.00 0.91 0.50 0.27 0.03 0.04 

YOLO_10_s 0.48 48.00 0.91 0.62 0.39 0.04 0.04 

YOLO_10_x 0.49 16.00 0.91 0.49 0.50 0.04 0.04 

YOLO_11_m 0.51 30.00 0.96 0.62 0.43 0.03 0.04 

YOLO_11_s 0.45 45.00 0.89 0.47 0.44 0.03 0.04 

YOLO_11_x 0.54 13.00 0.91 0.61 0.48 0.04 0.04 

YOLO_8_l 0.52 18.00 0.89 0.53 0.51 0.03 0.04 

YOLO_8_s 0.44 50.00 0.90 0.44 0.44 0.04 0.04 

YOLO_8_x 0.50 12.00 0.89 0.48 0.52 0.03 0.04 

YOLO_9_m 0.51 31.00 0.89 0.52 0.51 0.04 0.04 

YOLO_9_s 0.44 28.00 0.90 0.48 0.41 0.03 0.04 

SSD 0.23 14.00 0.87 0.75 0.14 0.02 0.03 

YOLO_11_n 0.39 43.00 0.88 0.43 0.36 0.02 0.03 

YOLO_8_n 0.41 56.00 0.89 0.54 0.33 0.02 0.03 

YOLO_9_t 0.33 28.00 0.89 0.34 0.33 0.02 0.03 

FASTER_RCNN 0.31 4.00 0.81 0.25 0.43 0.01 0.02 

MASK_RCNN 0.38 4.00 0.81 0.31 0.48 0.01 0.02 

 

Table 7 

Research results of analyzers under overcast, rainy weather during the day 

Model F1-score FPS IoU Precision Recall mAP@.5:.95 mAP@0.5 

YOLO_10_l 0.77 11.00 0.86 0.81 0.74 0.47 0.59 

YOLO_11_m 0.78 15.00 0.91 0.79 0.76 0.47 0.53 

YOLO_10_b 0.72 13.00 0.88 0.76 0.69 0.40 0.48 

YOLO_10_x 0.78 8.00 0.85 0.80 0.77 0.31 0.42 

YOLO_8_l 0.77 10.00 0.86 0.76 0.77 0.33 0.42 

YOLO_11_n 0.55 26.00 0.84 0.61 0.51 0.31 0.41 

YOLO_8_x 0.76 7.00 0.85 0.73 0.79 0.32 0.40 

YOLO_9_m 0.71 13.00 0.86 0.71 0.71 0.32 0.40 

YOLO_11_s 0.68 23.00 0.85 0.66 0.69 0.33 0.39 

YOLO_10_n 0.55 23.00 0.86 0.67 0.47 0.30 0.38 

YOLO_8_s 0.68 28.00 0.82 0.67 0.70 0.27 0.38 

RETINA_net 0.62 4.00 0.82 0.74 0.54 0.27 0.37 

YOLO_9_c 0.72 12.00 0.85 0.70 0.75 0.29 0.37 

YOLO_8_m 0.73 15.00 0.86 0.70 0.76 0.29 0.36 

YOLO_11_l 0.74 12.00 0.87 0.72 0.75 0.27 0.34 

YOLO_11_x 0.74 7.00 0.85 0.72 0.77 0.26 0.34 

YOLO_10_m 0.70 15.00 0.87 0.72 0.68 0.26 0.33 

YOLO_9_s 0.65 12.00 0.87 0.69 0.62 0.26 0.33 

YOLO_9_e 0.74 6.00 0.86 0.70 0.79 0.25 0.32 
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Continuation of the Table 7  

Model F1-score FPS IoU Precision Recall mAP@.5:.95 mAP@0.5 

YOLO_10_s 0.64 15.00 0.86 0.68 0.59 0.26 0.31 

YOLO_8_n 0.58 32.00 0.83 0.62 0.55 0.23 0.30 

FASTER_RCNN 0.66 4.00 0.80 0.57 0.77 0.20 0.28 

MASK_RCNN 0.62 4.00 0.81 0.54 0.75 0.19 0.26 

YOLO_9_t 0.59 13.00 0.84 0.68 0.53 0.20 0.26 

DETR 0.51 22.00 0.79 0.41 0.66 0.15 0.25 

 

Table 8 

Research results of analyzers in sunny weather 

Model F1-score FPS IoU Precision Recall mAP@.5:.95 mAP@0.5 

YOLO_11_m 0.87 16.00 0.93 0.87 0.87 0.76 0.83 

YOLO_8_s 0.83 27.00 0.88 0.86 0.80 0.59 0.76 

YOLO_9_c 0.86 13.00 0.90 0.88 0.83 0.53 0.59 

YOLO_10_s 0.84 23.00 0.89 0.91 0.78 0.48 0.58 

YOLO_9_m 0.86 14.00 0.89 0.85 0.87 0.46 0.56 

YOLO_8_l 0.86 11.00 0.90 0.87 0.85 0.48 0.55 

YOLO_11_x 0.86 5.00 0.90 0.85 0.87 0.43 0.52 

RETINA_net 0.84 4.00 0.89 0.93 0.76 0.41 0.51 

YOLO_10_l 0.82 11.00 0.90 0.84 0.80 0.40 0.49 

FASTER_RCNN 0.70 4.00 0.85 0.58 0.89 0.34 0.47 

MASK_rcnn 0.74 4.00 0.86 0.64 0.87 0.37 0.47 

YOLO_8_x 0.82 8.00 0.90 0.78 0.87 0.38 0.47 

YOLO_9_e 0.90 7.00 0.90 0.92 0.87 0.39 0.47 

YOLO_9_t 0.79 15.00 0.89 0.90 0.70 0.38 0.45 

YOLO_10_m 0.80 16.00 0.91 0.85 0.76 0.41 0.45 

YOLO_8_n 0.77 37.00 0.89 0.84 0.70 0.38 0.44 

YOLO_9_s 0.84 13.00 0.89 0.86 0.81 0.37 0.42 

YOLO_11_s 0.77 23.00 0.88 0.75 0.80 0.33 0.40 

YOLO_10_x 0.83 9.00 0.90 0.83 0.83 0.36 0.39 

YOLO_8_m 0.81 16.00 0.89 0.80 0.81 0.28 0.35 

YOLO_10_b 0.83 15.00 0.91 0.86 0.80 0.32 0.35 

YOLO_10_n 0.71 22.00 0.92 0.85 0.61 0.32 0.35 

SSD 0.62 12.00 0.88 1.00 0.44 0.27 0.34 

YOLO_11_l 0.79 13.00 0.91 0.77 0.81 0.28 0.32 

YOLO_11_n 0.73 27.00 0.90 0.80 0.67 0.27 0.31 

 

Based on the results presented in Table 8, the model 

with the best overall performance in this study is 

YOLOv11-m. It demonstrated the highest F1-score 

(0.87), the highest mAP@.5:.95 (0.76), a suitable real-

time processing speed (16 FPS), a high localization level 

with an IoU of 0.93, and the best balance between Preci-

sion and Recall (0.87 for both metrics). A good trade-off 

between speed and quality was also observed for the 

YOLOv8-s (F1 = 0.83, mAP@.5:.95 = 0.59, FPS = 27), 

YOLOv10-s (F1 = 0.84, mAP@.5:.95 = 0.48, FPS = 23), 

and YOLOv9-c (F1 = 0.86, mAP@.5:.95 = 0.53, FPS = 

13) models. These models demonstrated a good level of 

accuracy at higher speeds. The YOLOv8-n (FPS 37) and 

YOLOv11-n (FPS 27) models were the fastest among all 

models but exhibited lower accuracy (mAP@.5:.95 ≈ 

0.27–0.38). The models built on RetinaNet, Faster R-

CNN, Mask R-CNN, and SSD showed weaker results in 

most metrics: low FPS (around 4), moderate F1-score 

(0.62–0.74), and low mAP@.5:.95 (0.27–0.41). 

Thus, under sunny weather conditions, the best 

model based on all the indicators, as in the previous 

study, was YOLOv11-m. 

 

4. Conclusions 
 

This study focuses on the evaluation and analysis of 

the performance of a wide range of neural network mod-

els (YOLOv8-11, Faster R-CNN, Mask R-CNN, SSD, 
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DETR, RetinaNet) in the task of detecting moving ob-

jects in video sequences under challenging recording 

conditions, such as poor lighting, precipitation, and a 

large number of scene objects. To automate this process 

and enable detailed analysis, a specialized software tool 

was developed that allows rapid video annotation, anno-

tation correction, and evaluation of model performance 

based on key metrics: F1-score, mAP@0.5, 

mAP@.5:.95, IoU, Precision, Recall, and FPS. 

Within the framework of the assigned tasks: 

- an overview of modern object detectors 

(YOLOv8–11, DETR, SSD, Mask R-CNN, Faster R-

CNN, RetinaNet) was conducted with an analysis of their 

architectural features, advantages, and disadvantages in 

the context of road obstacle recognition; 

- a dataset of 31,920 files was prepared, reflecting 

real weather conditions of Ukrainian cities, in particular 

- the city of Obukhov and the city of Kremenchuk (sunny, 

rainy, snowy weather, various lighting conditions), as 

well as typical pedestrian conditions. The dataset was an-

notated using Bounding Box annotations; 

- a software tool was developed to enable the au-

tomated testing and evaluation of models using key met-

rics: F1-score, mAP@0.5, mAP@0.5:.95, IoU, Precision, 

Recall, FPS; 

- experimental testing of YOLOv8–11, DETR, 

SSD, Mask R-CNN, Faster R-CNN, and RetinaNet mod-

els was conducted on real video fragments collected in 

urban environments of Ukraine under various weather 

conditions, which allowed us to identify the dependence 

of model accuracy and performance on weather condi-

tions and time of day. 

The analysis results showed that under challenging 

conditions (snow, dusk, rain), the YOLOv10-m and 

YOLOv11-m models demonstrated the best balance be-

tween accuracy and speed. In particular, YOLOv10-m 

achieved the highest F1-score in snowy weather, while 

YOLOv11-m achieved the highest F1-score under rainy 

and sunny conditions. High-FPS models, such as 

YOLOv10-n and YOLOv8-n, are suitable for scenarios 

in which high speed is critical but maximum accuracy is 

not required. The two-stage models (Faster R-CNN, 

Mask R-CNN) and transformer-based models (DETR) 

are inferior to YOLO in terms of speed and flexibility, 

making the latter more suitable for mobile solutions.  

Thus, the YOLOv11-m model demonstrated the 

highest stability across all recording conditions and can 

be recommended as a baseline model for further devel-

opment of real-time object recognition systems, particu-

larly intelligent assistance systems for visually impaired 

individuals.  

The scientific significance of this study lies in the 

comprehensive evaluation of state-of-the-art convolu-

tional neural network architectures (YOLOv8–11, Faster 

R-CNN, SSD, Mask R-CNN, DETR, RetinaNet) under 

non-ideal environmental conditions, including low light, 

precipitation, and complex urban scenes. This study con-

tributes to the development of deep learning-based object 

detection for solving real-world problems specific to the 

infrastructure of Eastern European cities. The compara-

tive analysis of models using several performance met-

rics (F1-score, mAP@0.5, mAP@0.5:.95, IoU, Preci-

sion, Recall, FPS) under different weather scenarios im-

proves the understanding of the robustness and adaptabil-

ity of detection algorithms and paves the way for the de-

velopment of context-aware perception systems. 

The practical significance of this research lies in the 

further implementation of the results in real-time assis-

tive technologies for people with visual impairments, au-

tonomous driving systems, and intelligent solutions for 

urban monitoring. The proposed methodology allows for 

the adaptation and optimization of detection systems for 

deployment in heterogeneous, dynamic, and visually 

complex environments typical of Ukrainian infrastruc-

ture. 

Future research involves the integration of fusion 

data (LiDAR, audio, RGB) to improve the reliability of 

the system under limited visibility conditions.  
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ДОСЛІДЖЕННЯ МЕТОДІВ МАШИННОГО НАВЧАННЯ  

ДЛЯ ДЕТЕКТУВАННЯ ОБ’ЄКТІВ У СКЛАДНИХ УМОВАХ ЗЙОМКИ  

В. С. Сердечний, О. Ю. Барковська, А. Ю. Коваленко,  

А. О. Гаврашенко, В. О. Мартовицький 

Предметом вивчення в статті є дослідження методів машинного навчання для виявлення об’єктів на 

зображеннях і відео в складних міських умовах, зокрема за поганого освітлення, наявності опадів, високої 
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Intelligent information technologies 
 

77 

складності сцени та обмежених обчислювальних ресурсів. Метою є визначення найбільш ефективних моде-

лей глибокого навчання на основі згорткових нейронних мереж для завдань виявлення об’єктів у складних 

умовах зйомки з урахуванням практичних вимог до точності та швидкості обробки. Завдання: аналіз детек-

торів об’єктів (YOLO v8–11, DETR, SSD, Mask R-CNN, Faster R-CNN, RetinaNet); підготовку набору даних з 

реальними погодними умовами та пішохідним середовищем в Україні; експериментальну оцінку обраних де-

текторів із використанням метрик mAP@0.5, mAP@.5:.95, Recall, Precision, IoU, FPS та F1-Score; аналіз отри-

маних результатів. Використані методи: згорткові нейронні мережі, автоматизоване анотування зображень, 

порівняльний аналіз метрик якості (F1-score, mAP@0.5:.95, Precision, Recall, IoU, FPS), ручна корекція анота-

цій. Отримані результати: моделі YOLOv10-m і YOLOv11-m показали найкращі показники якості в умовах 

обмеженої видимості та змінного освітлення. YOLOv11-m виявилась найбільш збалансованою з точки зору 

точності та швидкості за всіх протестованих умов - сніг, дощ, сонячна погода. Модель YOLOv11-m рекомен-

дована як базова для впровадження в системах реального часу, зокрема в інтелектуальних асистентах для 

людей з порушенням зору. Висновки. Наукова новизна отриманих результатів полягає в наступному: вперше 

проведено комплексну оцінку сучасних архітектур глибокого навчання для виявлення об’єктів (YOLOv8–v11, 

Faster R-CNN, SSD, Mask R-CNN, DETR, RetinaNet) в умовах, що не є лабораторними, зокрема за реальних 

погодних сценаріїв (сніг, дощ, погане освітлення), характерних для міських середовищ Східної Європи; роз-

роблено програмний інструмент для автоматизованої оцінки моделей, що дозволяє одночасно тестувати кі-

лька архітектур і візуалізувати метрики продуктивності (F1-міра, mAP@0.5, mAP@.5:.95, IoU, Precision, 

Recall, FPS) з підтримкою ручного коригування анотацій і порівняльного аналізу моделей; експериментально 

встановлено, що модель YOLOv11-m демонструє найкращий баланс між точністю та швидкістю обробки в 

різних складних умовах зйомки, що обґрунтовує її рекомендацію як базової моделі для систем допомоги в 

реальному часі на основі комп’ютерного зору. 

Ключові слова: метод; виявлення; зображення; об'єкт; відео; YOLO; погодні умови; модель. 
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