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EXPLORING THE POSSIBILITIES OF MADDPG FOR UAV SWARM CONTROL  

BY SIMULATING IN PAC-MAN ENVIRONMENT 

This paper explores the application of the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) for 

model training to control UAV swarms in dynamic and adversarial scenarios. Using a modified Pac -Man envi-

ronment, Pac-Man represents a target UAV, and Ghosts represents the UAV swarm that counteracts it. The grid-

based representation of Pac-Man mazes is used as an abstraction of a two-dimensional terrain model, which 

serves as a plane of pathways with obstacles that correspond to the UAV flight conditions a t a certain altitude. 

The proposed approach provides a clear discretization of space, simplifying pathfinding, collision avoidance, 

and the planning of reconnaissance or interception routes by combining decentralized local autonomy with cen-

tralized training, which enables UAVs to coordinate effectively and quickly adapt to changing conditions. This 

study evaluates the performance of MADDPG-trained model-controlled adversaries against heuristic navigation 

strategies, such as A* and Breadth-First Search (BFS). Traditional Rule-Based Pursuit and Prediction Algo-

rithms inspired by the behaviors of Blinky and Pinky ghosts from the classic Pac-Man game are included as 

benchmarks to assess the impact of learning-based methods. The purpose of this study was to determine the 

effectiveness of MADDPG-trained models in enhancing UAV swarm control by analyzing its adaptability and 

coordination capabilities in adversarial environments by computer modeling in simplified missions -like 2D en-

vironments. Experiments conducted across varying levels of terrain complexity revealed that MADDPG-trained 

model demonstrated superior adaptability and strategic coordination compared to the rule -based methods. 

Ghosts controlled by a model trained via MADDPG significantly reduce the success rate of Pac-Man agents, 

particularly in highly constrained environments, emphasizing the potential of learning -based adversarial strat-

egies in UAV applications such as urban navigation, defense, and surveillance. Conclusions. MADDPG is a 

promising robust framework for training models to control UAV swarms, particularly in adversarial settings. 

This study highlights its adaptability and ability to outperform traditional rule -based methods in dynamic and 

complex environments. Future research should focus on comparing the effectiveness of MADDPG-trained mod-

els with multi-agent algorithms, such as Expectimax, Alpha-Beta Pruning, and Monte Carlo Tree Search 

(MCTS), to further understand the advantages and limitations of learning -based approaches compared with 

traditional decision-making methods in collaborative and adversarial UAV operations. Additionally, the explo-

ration of 3D implementations, integrating maze height decomposition and flight restrictions, as well as incorpo-

rating cybersecurity considerations and real-world threats like anti-drone systems and electronic warfare, will 

enhance the robustness and applicability of these methods in realistic UAV scenarios. 

Keywords: multi-agent reinforcement learning; navigation; adversarial UAV strategies; computer modelling. 

 

1. Introduction 

The rapid advancement of unmanned aerial vehicles 

(UAVs) has transformed numerous industries, ranging 

from logistics and disaster response to surveillance and 

agriculture. UAVs are increasingly being employed for 

their ability to operate autonomously, even in complex 

and obstacle-ridden environments, enabling applications 

such as reliable data transmission and communication in 

hard-to-reach areas as shown in papers [1, 2]. However, 

effective coordination and navigation strategies for UAV 

swarms remain critical challenges, particularly in dy-

namic and adversarial environments where swift deci-

sion-making and adaptability are required according to 

review from the paper [3]. In addition, recent advance-

ments in UAV swarm technology have emphasized the 

importance of high-speed communication links and flex-

ible control strategies to enhance collaborative decision-

making and coordination among UAVs, particularly in 

dense urban environments where efficient, autonomous 

operation improves reliability and reduces mission time, 

as highlighted in previous studies  [4]. 
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In this context, multi-agent reinforcement learning 

(MARL) techniques, such as Multi-Agent Deep Deter-

ministic Policy Gradient (MADDPG), have gained trac-

tion for their potential to solve complex coordination 

problems — as demonstrated by the analysis in paper [5] 

and for improving target tracking, as evidenced by the 

review in paper [6] through collaborative learning. 

The adoption of MARL solutions, particularly  

MADDPG, for UAV control has demonstrated promising 

results in areas such as path optimization that shown in 

papers [7, 8], collision avoidance as highlighted in [5, 9], 

and resource allocation demonstrated in the researches 

[10, 11]. These methods enable agents to operate with a 

degree of autonomy while considering both individual 

objectives and team-wide goals. This is essential for tasks 

like surveillance missions described in previous studies 

[12, 13] or disaster relief operations researched in [14]. 

Despite these advancements, challenges persist in evalu-

ating MARL approaches in environments that accurately 

simulate real-life scenarios, especially those involving 

adversarial agents or unpredictable dynamics, as shown 

in the study [15]. 

To address these challenges, game-based environ-

ments have emerged as effective platforms to simulate 

complex agent interactions and navigation tasks. The 

Pac-Man game, which is widely recognized for its intri-

cate navigation dynamics, offers a unique testbed, as it 

used in the paper [16] to explore UAV coordination strat-

egies in a simplified yet representative setting. By lever-

aging this environment, we can emulate scenarios where 

UAVs must navigate, evade adversaries, and achieve 

mission objectives—paralleling real-world applications 

like urban navigation, as shown in the paper [17], and 

military missions, as researched in  [18, 19]. 

The modified Pac-Man environment used in this 

study represents a novel approach for simulating UAV 

operations. In this setup, the agents' roles are redefined: 

Pac-Man serves as a stand-in for a UAV tasked with nav-

igating complex terrain to achieve specific goals, such as 

reaching designated targets (capsules). Conversely, the 

Ghosts embody adversarial forces that intend to disrupt 

the mission. This configuration not only allows for test-

ing the efficacy of MARL methods like MADDPG but 

also facilitates a direct comparison with traditional navi-

gation algorithms, such as Breadth-First Search (BFS) 

and A* search, as well as pre-defined heuristic behaviors 

modeled after the original game’s Blinky and Pinky al-

gorithms described in the articles [20, 21]. 

The primary objective of this research was to eval-

uate the potential of MADDPG-trained neural network 

models in controlling adversarial teams (e.g., Ghosts) 

against various navigation strategies, thereby assessing 

its suitability for swarm-based UAV missions. By juxta-

posing the performance of MADDPG-trained model with 

the traditional and heuristic-based algorithms, we aim to 

identify its strengths and limitations in dynamic and ad-

versarial settings. This study’s findings are expected to 

contribute valuable insights into MARL’s applicability to 

UAV navigation, with potential implications for advanc-

ing coordination mechanisms in real-world multi-agent  

systems for UAV swarm coordination in navigation and 

path planning as well as for adversaries’ environments 

and missions like military applications, surveillance, and 

rescue operations.  

The article is structured as follows. Section 2 pre-

sents an analysis of the current state of the issue under 

study. Section 3 describes the objective of this study was 

to evaluate the efficiency and coordination capabilities of 

UAV swarms controlled by a trained MADDPG model. 

Section 4 outlines the materials and methods used in this 

study, detailing the modified Pac-Man environment as a 

simulation framework for UAV control, algorithms, and 

models. Section 5 presents the experimental setup de-

signed to evaluate agents’ performance and stages of ex-

periments. Section 6 presents the results of the experi-

ments, comparing the performance of MADDPG-trained  

models to that of the heuristic algorithms and rule-based 

methods at varying levels of complexity. Section 7 pro-

vides a detailed discussion of the findings, highlighting 

their alignment with previous studies, identifying limita-

tions, and exploring the implications for real-world UAV 

applications. Finally, Section 7 concludes the paper by 

summarizing the key contributions, highlighting 

MADDPG’s potential in training neural network models  
for UAV swarm control, and proposing directions for fu-

ture research, including the integration of cybersecurity 

considerations and exploration of additional multi-agent  

algorithms. 

2. State of the Art 

Pac-man Game Applicability for Navigation. 

The Pac-Man game, initially designed as a recreational 

pursuit, has emerged as a valuable platform for studying 

navigation and decision-making in controlled environ-

ments as it used in the papers [16, 22]. The game presents 

a dynamic, grid-based environment where an agent nav-

igates complex mazes to balance objectives, such as tar-

get acquisition and adversary evasion. These attributes 

make Pac-Man an effective abstraction for real-world  

navigation tasks, where UAVs may need to traverse ur-

ban environments, avoid obstacles, and fulfill mission 

objectives under time constraints like the challenges of 

the papers [23, 24]. 

Studies [16, 25] have demonstrated how Pac-Man 

can be used as a model to develop and evaluate naviga-

tion algorithms. The structured grid layout simulates real-

world navigation challenges, and its adversarial dynam-

ics provide an opportunity to explore algorithms in com-

petitive settings. For instance, the game has been em-

ployed to test reinforcement learning strategies, enabling 
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researchers to assess the trade-offs between exploration 

and exploitation in decision-making, as shown in the pa-

per [25].  

BFS Algorithm for Navigation and UAVs . The 

Breadth-First Search (BFS) algorithm, which is a classic 

graph traversal method, is widely recognized for its sim-

plicity and optimality in unweighted environments. BFS 

operates by exploring all possible paths from a given 

node level by level, ensuring that the shortest path to  a 

target is found, as described in [26]. In the context of 

UAV navigation, BFS has been employed for tasks re-

quiring exhaustive search in structured environments, 

such as grid-based path planning or obstacle detection 

that described in [27, 28]. 

Although computationally expensive in large-scale 

or high-dimensional settings, BFS remains a benchmark 

for comparing more sophisticated pathfinding tech-

niques. In the Pac-Man environment, BFS is often used 

to model deterministic navigation strategies, allowing re-

searchers to evaluate its performance relative to adver-

sarial dynamics and other algorithms, as highlighted in 

[16, 25]. 

A* Algorithm in Navigation and UAVs . The A* 

algorithm, which is an extension of BFS, incorporates 

heuristics to optimize search efficiency. By combining  

the actual cost of reaching a node with the estimated cost 

to the target, A* achieves superior performance in envi-

ronments where computational efficiency is critical ac-

cording to the research [29]. This makes A* particularly  

suitable for UAV pathfinding tasks, where real-time de-

cisions are essential for avoiding collisions and reaching 

designated waypoints as shown in the paper [30]. 

In UAV applications, A* is often used to plan opti-

mal paths in obstacle-rich environments, including urban 

terrains and disaster zones considered in [31, 32]. The al-

gorithm’s adaptability to varying heuristics further en-

hances its applicability to scenarios that require both pre-

cision and flexibility. 

MADDPG Background and Usage. The Multi-

Agent Deep Deterministic Policy Gradient (MADDPG) 

[33] is a state-of-the-art MARL framework designed for 

continuous and discrete multi-agent environments that 

explained in the article [33]. The proposed algorithm ex-

tends Deep Deterministic Policy Gradient (DDPG) by in-

corporating a centralized training mechanism with decen-

tralized execution, which makes it highly effective for 

environments with multiple interacting agents, as de-

scribed in [33]. 

MADDPG has demonstrated remarkable success in 

solving complex coordination problems across various 

domains, including autonomous driving, that shown in 

the paper [34], robotic control, demonstrated in the pa-

pers [35, 36], and UAV swarm control [19]. Its ability to 

handle dynamic and adversarial scenarios, such as UAV 

swarm coordination and competitive games, highlights 

its versatility and robustness  [19]. 

In adversarial setups, MADDPG's centralized train-

ing allows agents to learn from shared experiences, 

which enhances their ability to predict and counter op-

posing agents' strategies according to the [33].  

This study leverages MADDPG to control adversar-

ial agents (Ghosts) in the Pac-Man environment, provid-

ing insights into its potential for real-world UAV appli-

cations that require coordination and adaptability. 

For UAV swarm control, the proposed approach is 

a procedure that blends decentralized decision-making  

with centralized training. Each UAV uses local sensory 

inputs for navigation while exchanging critical data—

such as positions and obstacle detections (that corre-

sponds to maze walls treated as terrain obstacles in pro-

posed 2D modelling environment)—through adaptive 

communication protocols, as previously researched in the 

paper [19]. This framework supports basic route planning 

and swarm coordination in near-realistic scenarios and 

forms the theoretical basis of the proposed model. 

A hierarchical control architecture further refines 

coordination by combining high-level strategy genera-

tion with precise low-level execution. MADDPG makes  

trained neural network models formulate cooperative ma-

neuvers that balance mission goals and adversarial con-

ditions, while controllers like PID or model predictive 

control ensure accurate flight dynamics. Although our 

work focuses on the theoretical aspects of these algo-

rithms, their application to dynamic real-world settings 

requires additional experiments and simulation modifica-

tions using actual terrain data. 

3. Problem Statement 

The objective of this research was to evaluate the 

effectiveness of the Multi-Agent Deep Deterministic Pol-

icy Gradient (MADDPG) in training neural network 

models for enhancing UAV swarn control in dynamic 

and adversarial scenarios. To guide UAV swarm control 

processes, we propose a layered procedure: each UAV 

relies on environment data that simulates getting data 

from local sensors in real UAV to manage immediate col-

lision avoidance and pathfinding while simultaneously 

sharing critical positional and environmental updates 

with fellow swarm members through adaptive communi-

cation protocols. At the same time, a centralized training 

mechanism integrates these distributed experiences, re-

fining cooperative policies that enable the swarm to han-

dle adversarial conditions, navigate maze-like terrain, 

and adapt swiftly to changing environments. Specifically , 

this study aimed to assess the effectiveness and coordi-

nation capabilities of UAV swarms controlled by a 

MADDPG-trained model when countering a target UAV, 

represented by Pac-Man, in a modified simulation 2D en-

vironment. 
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This study explores the effectiveness of MADDPG-

trained models when acting as adversarial agents against 

heuristic navigation strategies, such as A* and Breadth-

First Search (BFS). In addition, this study compares these 

learning-based adversarial strategies with traditional 

rule-based algorithms inspired by the behaviors of Blinky  

and Pinky from the classic Pac-Man game. 

To achieve the objective, a modified Pac-Man envi-

ronment was utilized to simulate various levels of terrain 

complexity, providing a controlled yet dynamic frame-

work for experimentation, where the grid-based repre-

sentation of mazes is used as an abstraction of a two-di-

mensional terrain view serving as a model of a plane of 

pathways with obstacles that correspond to the conditions 

of UAV flight at a certain altitude, that provides a clear 

discretization of space, simplifying pathfinding, collision 

avoidance, and the planning of reconnaissance or inter-

ception routes. The Pac-Man serves as a target UAV by 

completing tasks while navigating mazes, such as collect-

ing objectives and avoiding adversaries. The Ghosts, act-

ing as a swarm of adversarial UAVs, were controlled ei-

ther by MADDPG-trained models or by rule-based algo-

rithms for comparison. Through this setup, the study in-

vestigates the ability of MADDPG-trained models to dy-

namically adapt to changing scenarios, reduce the suc-

cess rates of Pac-Man agents, and outperform rule-based 

methods in adversarial settings. This study aims to meas-

ure the effectiveness of MADDPG-trained models in 

simulated UAV mission scenarios and highlight their po-

tential for real-world UAV applications, such as urban 

navigation, surveillance, and defense operations. 

 

4. Materials and Methods 

The modified Pac-Man environment serves as a 

simplified yet dynamic framework for modeling UAV 

control strategies in adversarial settings. This environ-

ment adapts the classic Pac-Man game mechanics to sim-

ulate navigation, decision-making, and team-based coor-

dination tasks, with Pac-Man acting as a UAV and the 

Ghosts representing adversarial forces. The goal is to 

evaluate the effectiveness of various algorithms, includ-

ing heuristic-based and machine learning-based ap-

proaches, under diverse conditions. 

Game Conditions: 

Pac-Man Objectives: The primary goal is to eat all 

capsules (analogous to UAVs completing mission-criti-

cal tasks, such as scanning all designated targets) while 

avoiding adversarial Ghosts (representing hostile UAVs 

or environmental threats, emphasizing evasion and sur-

vivability). Points are awarded for specific actions that 

emphasize efficiency and adaptability: 

─ Eating a capsule: +500 points  (reflects a sig-

nificant milestone in a UAV mission, such as success-

fully completing a high-priority task or neutralizing a ma-

jor threat). 

─ Eating food: +10 points  (analogous to second-

ary or routine objectives, such as collecting environmen-

tal data or securing minor waypoints). 

─ Eating a Ghost (during the scared timer): 

+200 points  (represents a UAV taking a tactical ad-

vantage over an adversary, such as disabling a hostile 

drone or exploiting a momentary weakness in the sys-

tem). 

Penalties: A time penalty of -1 point per move is 

applied to discourage inactivity, ensuring the agents pri-

oritize efficient navigation (similar to fuel or battery de-

pletion penalties in UAV missions, where prolonged de-

lays can compromise success). 

Scared Timer: Upon eating a capsule, Ghosts be-

come vulnerable (scared) for the next 10 moves , during 

which they can be eaten by Pac-Man (akin to UAVs gain-

ing a temporary tactical advantage, such as deploying 

countermeasures or exploiting an adversary's signal dis-

ruption). 

Environment Setup: 

Mazes: Three distinct layouts (SM1, SM2, SM3) 

with increasing wall density were designed to simulate 

different levels of navigation complexity: 

─ SM1: 15x15 grid, 2 Ghosts, 2 capsules, 10% 

walls (See Fig. 1a) - low complexity, suitable for UAVs  

in open terrain; 

─ SM2: 15x15 grid, 2 Ghosts, 2 capsules, 25% 

walls (See Fig. 1b) - moderate complexity, akin to UAVs  

navigating semi-urban areas; 

─ SM3: 15x15 grid, 2 Ghosts, 2 capsules, 40% 

walls (See Fig. 1c) - high complexity, resembling dense 

urban environments or forests . 

 

 

Fig. 1. Maze layouts used in the experiments:  

a) SM1 – low complexity, b) SM2 – moderate complexity, 

 c) SM3 – high complexity 



Information technologies and models of management 
 

331 

This variety allows testing the adaptability of algo-

rithms to different levels of spatial complexity and adver-

sarial dynamics. 

Pac-Man Agents:  

1. Random Agent: Implements random decision-

making for movement, serving as a baseline for compar-

ing performance (equivalent to a UAV without pre-de-

fined or learned strategies). 

2. BFS Search Agent: The BFS search algorithm 

utilizes an algorithm for deterministic pathfinding, opti-

mizing movement to the nearest objective in unweighted 

scenarios (useful for UAVs in structured environments, 

such as grid-based search areas). 

3. A Search Agent*: This algorithm employs the 

A* algorithm, combining actual path cost and heuristic 

estimations to efficiently navigate through a maze (anal-

ogous to UAVs using GPS and terrain data for optimized  

pathfinding). 

Ghost Agents: 

1. Rule-Based Pursuit and Prediction Algo-

rithms: Inspired by Blinky and Pinky from the classic 

Pac-Man game [20, 21], these algorithms implement pre-

defined behavioral rules. The Pursuit Algorithm aggres-

sively follows the Pac-Man's current position, while the 

Prediction Algorithm anticipates future movements to 

simulate simple adversarial UAV strategies . 

2. Neural Network Ghosts: Controlled as a coor-

dinated team by a model trained using Multi-Agent Deep 

Deterministic Policy Gradient (MADDPG) [33]. This ap-

proach enables Ghosts to collaborate, anticipate Pac-

Man's movements, and dynamically adapt their strategies 

(paralleling adversarial UAV swarms learning to coun-

teract a target UAV). 

MADDPG Implementation: 

The proposed MADDPG model was trained using a 

centralized training and decentralized execution ap-

proach proposed in the paper [33]. The Ghosts (as agents) 

learned optimal policies by interacting with the environ-

ment and adjusting their strategies based on Pac-Man's 

actions. The training process emphasized collaborative 

behavior, exploiting adversarial opportunities to maxim-

ize their effectiveness as a team (similar to UAV swarms 

optimizing interception strategies in real-time). 

5. Simulation 

Objective of the Experiments: 

The experiments were designed to evaluate the per-

formance of Pac-Man and Ghost agents across all mazes. 

The gathered metrics include the following: 

1. Average Score: Points accumulated by Pac-

Man during gameplay. 

2. Average Game Time: The time in seconds be-

fore a game is concluded (reflecting operational effi-

ciency, analogous to measuring how quickly a UAV 

completes its mission). 

3. Win Rate: The percentage of games in which 

Pac-Man successfully ate all capsules (analogous to 

UAVs achieving mission goals without interception). 

The mazes used in the simulation are approxima-

tions of real-world terrains, whether urban or natural, 

with obstacles representing buildings, trees, or other im-

pediments. These obstacles simulate the UAV flight con-

ditions at certain altitudes, where navigation and obstacle 

avoidance are critical. This approach allows testing the 

adaptability of algorithms in scenarios that closely mimic 

real-life challenges faced by UAVs in dynamic and con-

strained environments . 

Experiments and Comparison: 

 Phase 1: Experiments were conducted against 

Ghosts controlled by the Rule-Based Pursuit and Pre-

diction Algorithms  (Blinky and Pinky algorithms from 

classic game [20, 21]). For each Pac-Man agent (Ran-

dom, BFS, A*), 100 games were played in each maze 

configuration (SM1, SM2, SM3), and performance met-

rics were generated in tabular format. 

 Phase 2: The same experiments were repeated 

with Neural Network Ghosts controlled by the 

MADDPG-trained model, following the same structure 

(3 Pac-Man agents x 3 mazes x 100 games). 

 

6. Results 

6.1. Performance in SM Maze 1 

In SM Maze 1, A* Search and BFS Search agents 

demonstrated comparable performance against Rule-

Based Pursuit and Prediction Algorithms, achieving win  

rates of 63% each, with average game times of approxi-

mately 3.4 s. However, when facing Ghosts controlled by 

the MADDPG-Trained Model, the A* agent's win rate 

decreased to 53%, while BFS maintained a slightly 

higher win rate of 60%. Notably, the MADDPG-Trained  

Model-Controlled Ghosts prolonged the game duration 

for all agents compared to Rule-Based Ghosts, indicating 

their enhanced adaptability and dynamic strategies (See 

Table 1). 

The Random agent performed poorly across all sce-

narios with no wins; thus, it lacks strategic navigation and 

serves as a baseline for comparison. 

 

6.2. Performance in SM Maze 2 

The increased wall density in SM Maze 2 poses ad-

ditional challenges. Against Rule-Based Ghosts, BFS 

outperformed A*, achieving a win rate of 68% compared 

to A*’s 58%. However, when facing MADDPG-Trained  
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Model-Controlled Ghosts, performance declined sharply: 

BFS managed only a 10%-win rate, while A* recorded 

no wins. This indicates that the adaptability of 

MADDPG-Trained Model-Controlled Ghosts became 

more pronounced in complex terrains (See Table 2). 

 
Table 1  

Performance in SM Maze 1 

Pac-

Man 

Agent 

Ghost 

Agents  

Average 

Score  

Average 

Time (s) 

Win 

Rate 

(%) 

Random 
Rule-Based 

Algorithms 
72.97 3.47 0.00 

A* 

Search 

Rule-Based 

Algorithms 
891.81 3.42 63.00 

BFS 

Search 

Rule-Based 

Algorithms 
861.50 3.41 63.00 

Random 

MADDPG-

Trained 

Model 

169.34 7.66 0.00 

A* 

Search 

MADDPG-

Trained 

Model 

763.47 2.78 53.00 

BFS 

Search 

MADDPG-

Trained 

Model 

853.17 3.06 60.00 

 

Table 2  

Performance in SM Maze 2 

Pac-

Man 

Agent 

Ghost 

Agents  

Average 

Score  

Average 

Time (s) 

Win 

Rate 

(%) 

Random 
Rule-Based 

Algorithms 
54.37 2.50 0.00 

A* 

Search 

Rule-Based 

Algorithms 
738.69 3.64 58.00 

BFS 

Search 

Rule-Based 

Algorithms 
851.76 3.49 68.00 

Random 

MADDPG-

Trained 

Model 

127.14 3.72 0.00 

A* 

Search 

MADDPG-

Trained 

Model 

47.16 1.78 0.00 

BFS 

Search 

MADDPG-

Trained 

Model 

161.18 2.86 10.00 

 

The Random agent's scores and win rates remained  

negligible, thereby reducing the difficulty of navigating 

without strategic guidance in more complex mazes . 

 

6.3. Performance in SM Maze 3 

In the most challenging scenario (SM Maze 3) with 

40% wall density, all agents experienced significant per-

formance reductions. Against Rule-Based Ghosts, A* 

marginally outperformed BFS in both score and win rate 

(55% vs. 53%). Against Ghosts controlled by the 

MADDPG-Trained Model, BFS's performance declined 

further, achieving only a 19%-win rate compared to A*'s 

43%. This highlights MADDPG-trained model's superior 

ability to adapt to constrained environments, mirroring  

the UAV swarm behavior in dense urban terrains (See 

Table 3). 

 

Table 3  

Performance in SM Maze 3 

 

Pac-

Man 

Agent 

Ghost 

Agents  

Average 

Score  

Average 

Time (s) 

Win 

Rate 

(%) 

Random Rule-Based 

Algorithms  

48.90 3.59 0.00 

A* 

Search 

Rule-Based 

Algorithms  

1134.65 4.23 55.00 

BFS 

Search 

Rule-Based 

Algorithms  

1003.78 3.91 53.00 

Random MADDPG-

Trained 

Model 

77.14 4.43 0.00 

A* 

Search 

MADDPG-

Trained 

Model 

886.50 3.62 43.00 

BFS 

Search 

MADDPG-

Trained 

Model 

280.26 2.34 19.00 

 

 

As expected, the Random agent failed to navigate 

effectively, which demonstrates the impact of increased 

maze complexity on performance.  

6.4. Summary and Key Observations 

1. Ghosts controlled by the MADDPG-Trained  

Model significantly reduced Pac-Man agent win rates , 

particularly in complex mazes (SM Maze 2 and SM 

Maze 3), demonstrating their adaptability and strategic 

coordination. 
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2. A* Search generally outperformed BFS in sim-

pler settings, but BFS demonstrated greater resilience in 

mazes with higher wall density. 

3. The Random agent's negligible performance 

confirmed its role as a baseline for evaluating the strate-

gic value of navigation algorithms. 

4. Increased maze complexity (wall density) heav-

ily influenced agent performance, emphasizing the im-

portance of adaptable strategies for UAV operations in 

constrained environments. 

5. These results affirm MADDPG's potential for 

training models to control adversarial UAV swarms, of-

fering valuable insights into real-world applications, such 

as urban navigation, defense, and cooperative adversarial 

tasks. 

7. Discussion 

The findings of this study align with previous re-

search, demonstrating the advantages of reinforcement 

learning-based approaches, such as MADDPG, in multi-

agent coordination and adversarial tasks. In comparison 

to the traditional algorithms explored in a previous paper 

[33], which addressed the challenges of non-stationarity 

and variance in multi-agent domains, the proposed 

MADDPG-Trained Model proved effective in dynamic 

and competitive scenarios. Similar to Lowe et al.’s find-

ings, the MADDPG model in our experiments exhibited  

enhanced coordination strategies and adaptability, espe-

cially in complex environments such as SM Maze 2 and 

SM Maze 3, where wall density and adversarial interac-

tions added significant complexity. These results further 

validate the potential of MADDPG for UAV swarm con-

trol in real-world settings. 

The comparison between heuristic navigation algo-

rithms and rule-based models mirrors the findings of Sa-

lem et al. (2024) [16] and Zou (2021) [25], who identified  

the superior performance of A* in pathfinding tasks due 

to its optimality and efficiency. However, our experi-

ments revealed that Ghosts controlled by the MADDPG-

Trained Model significantly disrupted the performance of 

A*, reducing its win rate to 43% in the most challenging 

maze. This highlights the limitations of static pathfinding 

algorithms in adversarial contexts and supports Zou’s ar-

gument that reinforcement learning is a more robust so-

lution for competitive environments [25]. 

Moreover, the dynamic adaptability of MADDPG-

controlled agents observed in this study complements the 

results of Bachiri et al. (2023) [37], who demonstrated 

the utility of MADDPG in managing dynamic demands 

in electric vehicle charging networks. Similar to UAV 

coordination challenges, EV charging scenarios require 

real-time decision-making under constraints, and 

MADDPG’s centralized training and decentralized   

execution strategy has proved instrumental in both do-

mains [37]. 

Finally, our results echo the findings of Ding et al. 

(2022) [38], who emphasized the importance of trajec-

tory optimization and coordination in hybrid action space 

environments. The ability of MADDPG-trained Ghosts 

to adapt their trajectories dynamically to counter Pac-

Man’s strategies reflects its capacity to address complex 

multi-agent problems, underscoring its relevance for 

UAV swarm operations in constrained and competitive 

environments. 

In summary, this study builds upon and extends ex-

isting research, demonstrating MADDPG’s capacity to 

train robust adversarial neural network models for UAV 

swarm control. The proposed approach leverages a lay-

ered control architecture that combines decentralized lo-

cal decision-making with centralized training, thereby fa-

cilitating dynamic route planning and real-time coordina-

tion in near-realistic, obstacle-rich 2D environments. The 

comparison of the proposed learning-based strategies 

with heuristic and rule-based approaches further high-

lights the potential of learning-based strategies to excel 

in dynamic and adversarial settings. 

8. Conclusions 

This study evaluated the performance of a model 

trained by the Multi-Agent Deep Deterministic Policy  

Gradient (MADDPG) in controlling a Ghost team against 

traditional Rule-Based Pursuit and Prediction Algorithms 

in a modified Pac-Man environment to simulate naviga-

tion and adversarial scenarios relevant to UAV control. 

The findings demonstrated the MADDPG-trained mod-

el's superior adaptability and strategic coordination, par-

ticularly in complex and constrained environments, high-

lighting its potential for training UAV swarms in real-

world scenarios. 

Key observations include the significant reduction 

in win rates for Pac-Man agents when facing Ghosts con-

trolled by the MADDPG-trained model, which highlights 

the efficacy of learning-based adversarial strategies. A* 

Search exhibited better performance in simpler settings, 

whereas BFS Search demonstrated resilience in more 

complex mazes, emphasizing the importance of matching 

navigation algorithms to specific terrain complexities for 

UAV operations. 

This study affirms MADDPG’s value in UAV ap-

plications requiring real-time decision-making and ad-

versarial interaction, such as urban navigation, surveil-

lance, and defense. By combining decentralized local au-

tonomy with centralized training, the proposed approach 

enables UAVs to coordinate effectively and quickly  

adapt to changing conditions. The results also underscore 

the potential for learning-based approaches to outperform 

traditional rule-based methods in dynamic multi-agent  
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settings. Moreover, integrating real-world data and so-

phisticated communication strategies can further enhance 

these findings, thereby facilitating a smooth transition 

from theoretical modeling to practical swarm deploy-

ment. 

Future research will focus on extending experi-

ments to include other multi-agent algorithms, such as 

Expectimax, Alpha-Beta Pruning, and Monte Carlo Tree 

Search (MCTS), to further explore collaborative and ad-

versarial strategies in UAV swarm control. In addition, 

scaling to larger and more complex environments will 

help assess the scalability and robustness of these meth-

ods under real-world-like conditions. In the case of a 3D 

implementation, the problem requires decomposition 

into maze heights depending on the restrictions on UAV 

flight heights, introducing the restrictions on the possible 

heights for drones in a certain area, as well as maze 

heights (different), considering maze heights, organizing  

them, and considering decomposition then. 

The integration of cybersecurity considerations, as 

discussed by Veprytska and Kharchenko [39], can pro-

vide valuable insights into assessing and mitigating AI-

powered threats in UAV systems and ensure the reliabil-

ity of adversarial strategies and their applications in se-

cure missions. Modeling real threats such as anti-drone 

systems, electronic warfare (EW), and other military fac-

tors can further enhance the realism of such simulations. 

The cybersecurity-informed safety models for UAV op-

erations by Illiashenko et al [40]. also highlights the im-

portance of aligning AI-based methodologies, such as 

MADDPG, with robust safety and protection frameworks 

to address vulnerabilities in adversarial settings. Further 

research could focus on adding appropriate threat models 

and integrating algorithms to dynamically revise routes 

depending on changing risk parameters. 

Advances in hybrid sensor networks, as explored by 

Skorobohatko et al. [41], can enhance the operational re-

liability of UAV swarms, particularly for missions re-

quiring environmental and emergency monitoring. Tech-

niques for reliable LiFi communication in obstacle-rid-

den environments, as presented by Leichenko et al. [2, 

42], may complement future MADDPG experiments by 

addressing challenges in multi-agent coordination under 

communication constraints. Similarly, Chen et al.'s [43] 

work on human-in-the-loop control mechanisms opens 

possibilities for integrating human overs ight into UAV 

adversarial strategies, enhancing adaptability in complex 

real-world missions. Further consideration could include 

the use of real circumstances in the flight of UAVs  

(swarms, groups), which are associated with terrain and 

obstacles of both natural and human activity (industry, 

urban obstacles, etc.). 

These directions not only aim to improve the scala-

bility and robustness of learning-based models and align 

MADDPG’s capabilities with interdisciplinary   

advancements to create more resilient, efficient, and se-

cure UAV swarm control systems. 
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ДОСЛІДЖЕННЯ МОЖЛИВОСТЕЙ MADDPG ДЛЯ КОМАНДНОГО УПРАВЛІННЯ БПЛА  

ПРИ МОДЕЛЮВАННІ В СЕРЕДОВИЩІ PAC-MAN 

А. О. Новіков, С. В. Яковлев, І. В. Гущин 

У статті досліджується застосування алгоритму Multi-Agent Deep Deterministic Policy Gradien t  

(MADDPG) для навчання моделей, що використовуються для управління роями БПЛА в динамічних та анта-

гоністичних сценаріях. Використовуючи модифіковане середовище Pac -Man, де Pac-Man представляє цільо-

вий БПЛА, а Примари — рій БПЛА, що протидіє йому. Представлення лабіринтів Pac-Man у вигляді сітки 

використовується як абстракція двовимірної моделі рельєфу, що виступає у ролі площини шляхів з перешко-

дами, відповідними до умов польоту БПЛА на певній висоті. Запропонований підхід забезпечує чітку дискре-

тизацію простору, спрощуючи пошук шляхів, уникнення зіткнень та планування маршрутів для розвідки чи 

перехоплення, поєднуючи децентралізовану місцеву автономію з централізованим навчання, що дозволяє  

БПЛА ефективно координувати дії та швидко адаптуватися до мінливих умов. Дослідження оцінює продук-

тивність антагоністів, керованих моделями, навченими за допомогою MADDPG, у порівнянні з евристичними 

стратегіями навігації, такими як A та Пошук у ширину (BFS). Традиційні алгоритми переслідування та про-

гнозування, натхненні поведінкою Примар Блінкі та Пінкі з класичної гри Pac -Man, використовуються як ета-

лон для оцінки впливу методів на основі навчання. Метою цього дослідження є визначення ефективності 

моделей, навчених за MADDPG, у покращенні управління роями БПЛА шляхом аналізу їхньої здатності до  

адаптації та координації в антагоністичних середовищах, завдяки застосуванню комп’ютерного моделювання 

в спрощеному подібному до контексту  реальних місій двовимірному середовищі. Експерименти, проведені 

на різних рівнях складності ландшафту, показали, що MADDPG-тренована модель демонструє кращу адапти-

вність і стратегічну координацію в порівнянні з методами на основі правил. Примари, керовані моделлю, на-

вченою за допомогою MADDPG, значно знижують рівень успіху агентів Pac-Man, особливо в умовах із висо-

кими обмеженнями, що підкреслює потенціал стратегій на основі навчання для застосувань БПЛА, таких як 

міська навігація, оборона та спостереження. Висновки. MADDPG демонструє себе як перспективна платфо-

рма для навчання моделей управління роями БПЛА, особливо в антагоністичних умовах. Дослідження підк-

реслює його адаптивність і здатність перевершувати традиційні методи на основі правил у динамічних та 

складних середовищах. Майбутні дослідження будуть зосереджені на порівнянні ефективності моделей, на-

вчених за допомогою MADDPG, з багатoагентними алгоритмами, такими як Expectimax, AlphaBeta Prun -ning 

та Monte Carlo Tree Search (MCTS), щоб краще зрозуміти переваги і обмеження підходів на основі навчання у 

порівнянні з традиційними методами прийняття рішень у спільних і антагоністичних операціях БПЛА.  Крім  

того, дослідження 3D-реалізацій, що включають розподіл висоти лабіринту та обмеження на польоти, а також 

інтеграцію аспектів кібербезпеки та реальних загроз, таких як системи протидії дронам і засоби електронної 

боротьби, можуть підвищити надійність і практичну застосовність цих методів у реалістичних сценаріях ви-

користання БПЛА. 

Ключові слова: багатoагентне навчання з підкріпленням ; навігація; антагоністичні стратегії БПЛА;  

комп’ютерне моделювання. 
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