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EXPLORING THE POSSIBILITIES OF MADDPG FOR UAV SWARM CONTROL
BY SIMULATING IN PAC-MAN ENVIRONMENT

This paper explores the application of the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) for
model training to control UAV swarms in dynamic and adversarial scenarios. Using a modified Pac-Man envi-
ronment, Pac-Man represents a target UAV, and Ghosts representsthe UAV swarm that counteractsit. The grid-
based representation of Pac-Man mazes is used as an abstraction of a two-dimensional terrain model, which
serves as a plane of pathwayswith obstaclesthat correspond to the UAV flight conditionsata certain altitude.
The proposed approach provides a clear discretization of space, simplifying pathfinding, collision avoidance,
and the planning ofreconnaissance or interception routes by combining decentralized local autonomy with cen-
tralized training, which enables UAVs to coordinate effectively and quickly adaptto changing conditions. This
study evaluatesthe performance of MADDPG-trained model-controlled adversariesagainst heuristic navigation
strategies, such as A* and Breadth-First Search (BFS). Traditional Rule-Based Pursuit and Prediction Algo-
rithms inspired by the behaviors of Blinky and Pinky ghosts from the classic Pac-Man game are included as
benchmarks to assess the impact of learning-based methods. The purpose of this study was to determine the
effectiveness of MADDPG-trained models in enhancing UAV swarm control by analyzing its adaptability and
coordination capabilitiesin adversarial environments by computer modeling in simplified missions-like 2D en-
vironments. Experiments conducted acrossvarying levels of terrain complexity revealed that MADDPG-trained
model demonstrated superior adaptability and strategic coordination compared to the rule-based methods.
Ghosts controlled by a model trained via MADDPG significantly reduce the success rate of Pac-Man agents,
particularlyin highly constrained environments, emphasizing the potential oflearning -based adversarial strat-
egies in UAV applications such as urban navigation, defense, and surveillance. Conclusions. MADDPG is a
promising robust framework for training models to control UAV swarms, particularly in adversarial settings.
This study highlights its adaptability and ability to outperform traditional rule-based methods in dynamic and
complex environments. Future research should focus on comparing the effectiveness of MADDPG-trained mod-
els with multi-agent algorithms, such as Expectimax, Alpha-Beta Pruning, and Monte Carlo Tree Search
(MCTS), to further understand the advantages and limitations of learning-based approaches compared with
traditional decision-making methodsin collaborative and adversarial UAV operations. Additionally, the explo-
ration of 3D implementations, integrating maze height decomposition and flight restrictions, aswell as incorpo-
rating cybersecurity considerationsand real-world threats like anti-drone systems and electronic warfare, will
enhance the robustness and applicability ofthese methods in realistic UAV scenarios.
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swarms remain critical challenges, particularly in dy-

1. Introduction namic and adversarial environments where swift deci-

Therapid advancement of unmanned aerial vehicles
(UAVs) has transformed numerous industries, ranging
from logistics and disaster response to surveillance and
agriculture. UAVs are increasingly being employed for
their ability to operate autonomously, even in complex
and obstacle-ridden environments, enabling applications
such as reliable data transmission and communication in
hard-to-reach areas as shown in papers [1, 2]. However,
effective coordination and navigation strategies for UAV

sion-making and adaptability are required according to
review from the paper [3]. In addition, recent advance-
ments in UAV swarm technology have emphasized the
importance of high-speed communication links and flex-
ible control strategies to enhance collaborative decision-
making and coordination among UAVs, particularly in
dense urban environments where efficient, autonomous
operation improves reliability and reduces mission time,
as highlighted in previous studies [4].
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In this context, multi-agent reinforcement learning
(MARL) techniques, such as Multi-Agent Deep Deter-
ministic Policy Gradient (MADDPG), have gained trac-
tion for their potential to solve complex coordination
problems — as demonstrated by the analysis in paper [5]
and for improving target tracking, as evidenced by the
review in paper [6] through collaborative learning.

The adoption of MARL solutions, particularly
MADDPG, for UAV control has demonstrated promising
results in areas such as path optimization that shown in
papers [7, 8], collision avoidance as highlighted in [5, 9],
and resource allocation demonstrated in the researches
[10, 11]. These methods enable agents to operate with a
degree of autonomy while considering both individual
objectives and team-wide goals. This is essential for tasks
like surveillance missions described in previous studies
[12, 13] or disaster relief operations researched in [14].
Despite these advancements, challenges persist in evalu-
ating MARL approaches in environments that accurately
simulate real-life scenarios, especially those involving
adversarial agents or unpredictable dynamics, as shown
in the study [15].

To address these challenges, game-based environ-
ments have emerged as effective platforms to simulate
complex agent interactions and navigation tasks. The
Pac-Man game, which is widely recognized for its intri-
cate navigation dynamics, offers a unique testbed, as it
used inthe paper[16] toexplore UAV coordination strat-
egies in a simplified yet representative setting. By lever-
aging this environment, we can emulate scenarios where
UAVs must navigate, evade adversaries, and achieve
mission objectives—paralleling real-world applications
like urban navigation, as shown in the paper [17], and
military missions, as researched in [18, 19].

The modified Pac-Man environment used in this
study represents a novel approach for simulating UAV
operations. In this setup, the agents' roles are redefined:
Pac-Man serves as astand-in for a UAV tasked with nav-
igating complex terrain to achieve specific goals, such as
reaching designated targets (capsules). Conversely, the
Ghosts embody adversarial forces that intend to disrupt
the mission. This configuration not only allows for test-
ing the efficacy of MARL methods like MADDPG but
also facilitates a direct comparison with traditional navi-
gation algorithms, such as Breadth-First Search (BFS)
and A* search, as well as pre-defined heuristic behaviors
modeled after the original game’s Blinky and Pinky al-
gorithms described in the articles [20, 21].

The primary objective of this research was to eval-
uate the potential of MADDPG-trained neural network
models in controlling adversarial teams (e.g., Ghosts)
against various navigation strategies, thereby assessing
its suitability for swarm-based UAV missions. By juxta-
posing the performance of MADDPG-trained model with
the traditional and heuristic-based algorithms, we aim to

identify its strengths and limitations in dynamic and ad-
versarial settings. This study’s findings are expected to
contribute valuable insights into MARL’s applicability to
UAYV navigation, with potential implications for advanc-
ing coordination mechanisms in real-world multi-agent
systems for UAV swarm coordination in navigation and
path planning as well as for adversaries’ environments
and missions like military applications, surveillance, and
rescue operations.

The article is structured as follows. Section 2 pre-
sents an analysis of the current state of the issue under
study. Section 3 describes the objective of this study was
to evaluate the efficiency and coordination capabilities of
UAYV swarms controlled by a trained MADDPG model.
Section 4 outlines the materials and methods used in this
study, detailing the modified Pac-Man environment as a
simulation framework for UAV control, algorithms, and
models. Section 5 presents the experimental setup de-
signed to evaluate agents’ performance and stages of ex-
periments. Section 6 presents the results of the experi-
ments, comparing the performance of MADDPG-trained
models to that of the heuristic algorithms and rule-based
methods at varying levels of complexity. Section 7 pro-
vides a detailed discussion of the findings, highlighting
their alignment with previous studies, identifying limita-
tions, and exploring the implications for real-world UAV
applications. Finally, Section 7 concludes the paper by
summarizing the key contributions, highlighting
MADDPG’s potential in training neural network models
for UAV swarm control, and proposing directions for fu-
ture research, including the integration of cybersecurity
considerations and exploration of additional multi-agent
algorithms.

2. State of the Art

Pac-man Game Applicability for Navigation.
The Pac-Man game, initially designed as a recreational
pursuit, has emerged as a valuable platform for studying
navigation and decision-making in controlled environ-
ments as it used in the papers [16, 22]. The game presents
a dynamic, grid-based environment where an agent nav-
igates complex mazes to balance objectives, such as tar-
get acquisition and adversary evasion. These attributes
make Pac-Man an effective abstraction for real-world
navigation tasks, where UAVs may need to traverse ur-
ban environments, avoid obstacles, and fulfill mission
objectives under time constraints like the challenges of
the papers [23, 24].

Studies [16, 25] have demonstrated how Pac-Man
can be used as a model to develop and evaluate naviga-
tion algorithms. The structured grid layout simulates real-
world navigation challenges, and its adversarial dynam-
ics provide an opportunity to explore algorithms in com-
petitive settings. For instance, the game has been em-
ployed to test reinforcement learning strategies, enabling
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researchers to assess the trade-offs between exploration
and exploitation in decision-making, as shown in the pa-
per [25].

BFS Algorithm for Navigation and UAVs. The
Breadth-First Search (BFS) algorithm, which is a classic
graph traversal method, is widely recognized for its sim-
plicity and optimality in unweighted environments. BFS
operates by exploring all possible paths from a given
node level by level, ensuring that the shortest path to a
target is found, as described in [26]. In the context of
UAYV navigation, BFS has been employed for tasks re-
quiring exhaustive search in structured environments,
such as grid-based path planning or obstacle detection
thatdescribed in [27, 28].

Although computationally expensive in large-scale
or high-dimensional settings, BFS remains a benchmark
for comparing more sophisticated pathfinding tech-
niques. In the Pac-Man environment, BFS is often used
to model deterministic navigation strategies, allowing re-
searchers to evaluate its performance relative to adver-
sarial dynamics and other algorithms, as highlighted in
[16, 25].

A* Algorithm in Navigation and UAVs. The A*
algorithm, which is an extension of BFS, incorporates
heuristics to optimize search efficiency. By combining
the actual cost of reaching a node with the estimated cost
to the target, A* achieves superior performance in envi-
ronments where computational efficiency is critical ac-
cording to the research [29]. This makes A* particularly
suitable for UAV pathfinding tasks, where real-time de-
cisions are essential for avoiding collisions and reaching
designated waypoints as shown in the paper[30].

In UAV applications, A* is often used to plan opti-
mal paths in obstacle-rich environments, including urban
terrains and disasterzones considered in [31, 32]. Theal-
gorithm’s adaptability to varying heuristics further en-
hances its applicability to scenarios that require both pre-
cision and flexibility.

MADDPG Background and Usage. The Multi-
Agent Deep Deterministic Policy Gradient (MADDPG)
[33] is a state-of-the-art MARL framework designed for
continuous and discrete multi-agent environments that
explained in thearticle [33]. The proposed algorithm ex-
tends Deep Deterministic Policy Gradient (DDPG) by in-
corporating a centralized training mechanism with decen-
tralized execution, which makes it highly effective for
environments with multiple interacting agents, as de-
scribed in [33].

MADDPG has demonstrated remarkable success in
solving complex coordination problems across various
domains, including autonomous driving, that shown in
the paper [34], robotic control, demonstrated in the pa-
pers [35, 36], and UAV swarm control [19]. Its ability to
handle dynamic and adversarial scenarios, such as UAV

swarm coordination and competitive games, highlights
its versatility and robustness [19].

In adversarial setups, MADDPGSs centralized train-
ing allows agents to learn from shared experiences,
which enhances their ability to predict and counter op-
posing agents'strategies according to the [33].

This study leverages MADDPG to controladversar-
ial agents (Ghosts) in the Pac-Man environment, provid-
ing insights into its potential for real-world UAV appli-
cations that require coordination and adaptability.

For UAV swarm control, the proposed approach is
a procedure that blends decentralized decision-making
with centralized training. Each UAV uses local sensory
inputs for navigation while exchanging critical data—
such as positions and obstacle detections (that corre-
sponds to maze walls treated as terrain obstacles in pro-
posed 2D modelling environment)—through adaptive
communication protocols, as previously researched in the
paper [19]. This framework supports basic route planning
and swarm coordination in near-realistic scenarios and
forms the theoretical basis of the proposed model.

A hierarchical control architecture further refines
coordination by combining high-level strategy genera-
tion with precise low-level execution. MADDPG makes
trained neural network models formulate cooperative ma-
neuvers that balance mission goals and adversarial con-
ditions, while controllers like PID or model predictive
control ensure accurate flight dynamics. Although our
work focuses on the theoretical aspects of these algo-
rithms, their application to dynamic real-world settings
requires additional experiments and simulation modifica-
tions using actual terrain data.

3. Problem Statement

The objective of this research was to evaluate the
effectiveness ofthe Multi-Agent Deep Deterministic Pol-
icy Gradient (MADDPG) in training neural network
models for enhancing UAV swarn control in dynamic
and adversarial scenarios. To guide UAV swarm control
processes, we propose a layered procedure: each UAV
relies on environment data that simulates getting data
from local sensors in real UAV to manage immediate col-
lision avoidance and pathfinding while simultaneously
sharing critical positional and environmental updates
with fellow swarm members through adaptive communi-
cation protocols. At the same time, a centralized training
mechanism integrates these distributed experiences, re-
fining cooperative policies that enable the swarm to han-
dle adversarial conditions, navigate maze-like terrain,
and adapt swiftly to changing environments. Specifically,
this study aimed to assess the effectiveness and coordi-
nation capabilities of UAV swarms controlled by a
MADDPG-trained model when countering atarget UAV,
represented by Pac-Man, in amodified simulation 2D en-
vironment.
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This study explores the effectiveness of MADDPG-
trained models when acting as adversarial agents against
heuristic navigation strategies, such as A* and Breadth-
First Search (BFS). Inaddition, this study compares these
learning-based adversarial strategies with traditional
rule-based algorithms inspired by the behaviors of Blinky
and Pinky from the classic Pac-Man game.

To achieve the objective, amodified Pac-Man envi-
ronment was utilized to simulate various levels of terrain
complexity, providing a controlled yet dynamic frame-
work for experimentation, where the grid-based repre-
sentation of mazes is used as an abstraction of a two-di-
mensional terrain view serving as a model of a plane of
pathways with obstacles that correspond tothe conditions
of UAV flight at a certain altitude, that provides a clear
discretization of space, simplifying pathfinding, collision
avoidance, and the planning of reconnaissance or inter-
ception routes. The Pac-Man serves as a target UAV by
completing tasks while navigating mazes, such as collect-
ing objectives and avoiding adversaries. The Ghosts, act-
ing as a swarm of adversarial UAVs, were controlled ei-
ther by MADDPG-trained models or by rule-based algo-
rithms for comparison. Through this setup, the study in-
vestigates the ability of MADDPG-trained models to dy-
namically adaptto changing scenarios, reduce the suc-
cess rates of Pac-Man agents, and outperform rule-based
methods in adversarial settings. This study aims to meas-
ure the effectiveness of MADDPG-trained models in
simulated UAV mission scenarios and highlight their po-
tential for real-world UAV applications, such as urban
navigation, surveillance, and defense operations.

4. Materials and Methods

The modified Pac-Man environment serves as a
simplified yet dynamic framework for modeling UAV
control strategies in adversarial settings. This environ-
ment adapts the classic Pac-Man game mechanics to sim-
ulate navigation, decision-making, and team-based coor-
dination tasks, with Pac-Man acting as a UAV and the
Ghosts representing adversarial forces. The goal is to
evaluate the effectiveness of various algorithms, includ-
ing heuristic-based and machine learning-based ap-
proaches, under diverse conditions.

Game Conditions:

Pac-Man Objectives: The primary goal is to eatall
capsules (analogous to UAVs completing mission-criti-
cal tasks, such as scanning all designated targets) while
avoiding adversarial Ghosts (representing hostile UAVs
or environmental threats, emphasizing evasion and sur-
vivability). Points are awarded for specific actions that
emphasize efficiency and adaptability:

— Eating a capsule: +500 points (reflects a sig-
nificant milestone in a UAV mission, such as success-
fully completing a high-priority task or neutralizing a ma-
jor threat).

— FEating food: +10 points (analogous to second-
ary or routine objectives, such as collecting environmen-
tal data or securing minor waypoints).

— Eating a Ghost (during the scared timer):
+200 points (represents a UAV taking a tactical ad-
vantage over an adversary, such as disabling a hostile
drone or exploiting a momentary weakness in the sys-
tem).

Penalties: A time penalty of -1 point per mowe is
applied to discourage inactivity, ensuring the agents pri-
oritize efficient navigation (similar to fuel or battery de-
pletion penalties in UAV missions, where prolonged de-
lays can compromise success).

Scared Timer: Upon eating a capsule, Ghosts be-
come vulnerable (scared) for the next 10 mowes, during
which they can be eaten by Pac-Man (akin to UAVs gain-
ing a temporary tactical advantage, such as deploying
countermeasures or exploiting an adversary's signal dis-
ruption).

Environment Setup:

Mazes: Three distinct layouts (SM1, SM2, SM3)
with increasing wall density were designed to simulate
different levels of navigation complexity:

— SM1: 15x15 grid, 2 Ghosts, 2 capsules, 10%
walls (See Fig. 1a) - low complexity, suitable for UAVs
in open terrain;

— SM2: 15x15 grid, 2 Ghosts, 2 capsules, 25%
walls (See Fig. 1b) - moderate complexity, akin to UAVs
navigating semi-urban areas;

— SM3: 15x15 grid, 2 Ghosts, 2 capsules, 40%
walls (See Fig. 1c) - high complexity, resembling dense
urban environments or forests.

[ X ] Pacman Research

Pacman Research Pacman Research

Fig. 1. Mazelayouts used in the experiments:
a) SM1 — low complexity, b) SM 2 — moderate comp lexity,
¢) SM3 — high comp lexity
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This variety allows testing the adaptability of algo-
rithms to different levels of spatial complexity and adver-
sarial dynamics.

Pac-Man Agents:

1. Random Agent: Implements random decision-
making for movement, serving as a baseline for compar-
ing performance (equivalent to a UAV without pre-de-
fined or learned strategies).

2. BFS Search Agent: The BFS search algorithm
utilizes an algorithm for deterministic pathfinding, opti-
mizing movement to the nearest objective in unweighted
scenarios (useful for UAVs in structured environments,
such as grid-based search areas).

3. A Search Agent*: This algorithm employs the
A* algorithm, combining actual path cost and heuristic
estimations to efficiently navigatethrougha maze (anal-
ogous to UAVs using GPS and terrain data for optimized
pathfinding).

Ghost Agents:

1. Rule-Based Pursuit and Prediction Algo-
rithms: Inspired by Blinky and Pinky from the classic
Pac-Man game [20, 21], these algorithms implement pre-
defined behavioralrules. The Pursuit Algorithm aggres-
sively follows the Pac-Man's current position, while the
Prediction Algorithm anticipates future movements to
simulate simple adversarial UAV strategies.

2. Neural Network Ghosts: Controlled as a coor-
dinated team by a model trained using Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) [33]. This ap-
proach enables Ghosts to collaborate, anticipate Pac-
Man's movements, and dynamically adapt their strategies
(paralleling adversarial UAV swarms learning to coun-
teract a target UAV).

MADDPG Implementation:

The proposed MADDPG model was trained using a
centralized training and decentralized execution ap-
proach proposed in the paper [33]. The Ghosts (as agents)
learned optimal policies by interacting with the environ-
ment and adjusting their strategies based on Pac-Man's
actions. The training process emphasized collaborative
behavior, exploiting adversarial opportunities to maxim-
ize their effectiveness as a team (similar to UAV swarms
optimizing interception strategies in real-time).

5. Simulation

Objective of the Experiments:

The experiments were designed to evaluate the per-
formance of Pac-Man and Ghost agents across all mazes.
The gathered metrics include the following:

1. Awerage Score: Points accumulated by Pac-
Man during gameplay.

2. Awerage Game Time: The time in seconds be-
fore a game is concluded (reflecting operational effi-
ciency, analogous to measuring how quickly a UAV
completes its mission).

3. Win Rate: The percentage of games in which
Pac-Man successfully ate all capsules (analogous to
UAVs achieving mission goals without interception).

The mazes used in the simulation are approxima-
tions of real-world terrains, whether urban or natural,
with obstacles representing buildings, trees, or other im-
pediments. These obstacles simulate the UAV flight con-
ditions at certain altitudes, where navigation and obstacke
avoidance are critical. This approach allows testing the
adaptability of algorithms in scenarios that closely mimic
real-life challenges faced by UAVs in dynamic and con-
strained environments.

Experiments and Comparison:

e Phase 1: BExperiments were conducted against
Ghosts controlled by the Rule-Based Pursuit and Pre-
diction Algorithms (Blinky and Pinky algorithms from
classic game [20, 21]). For each Pac-Man agent (Ran-
dom, BFS, A*), 100 games were played in each maze
configuration (SM1, SM2, SM3), and performance met-
rics were generated in tabular format.

e Phase 2: The same experiments were repeated
with  Neural Network Ghosts controlled by the
MADDPG-trained model, following the same structure
(3 Pac-Man agents x 3 mazes x 100 games).

6. Results

6.1. Performance in SM Maze 1

In SM Maze 1, A* Search and BFS Search agents
demonstrated comparable performance against Rule-
Based Pursuit and Prediction Algorithms, achieving win
rates of 63% each, with average game times of approxi-
mately 3.4 s. However, when facing Ghosts controlled by
the MADDPG-Trained Model, the A* agent's win rate
decreased to 53%, while BFS maintained a slightly
higher win rate of 60%. Notably, the MADDPG-Trained
Model-Controlled Ghosts prolonged the game duration
for all agents compared to Rule-Based Ghosts, indicating
their enhanced adaptability and dynamic strategies (See
Table 1).

The Random agent performed poorly across all sce-
narios with no wins; thus, it lacks strategic navigation and
serves as a baseline for comparison.

6.2. Performance in SM Maze 2

The increased wall density in SM Maze 2 poses ad-
ditional challenges. Against Rule-Based Ghosts, BFS
outperformed A*,achieving a win rate of 68% compared
to A*’s 58%. However, when facing MADDPG-Trained
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Model-Controlled Ghosts, performance declined sharply:
BFS managed only a 10%-win rate, while A* recorded
no wins. This indicates that the adaptability of
MADDPG-Trained Model-Controlled Ghosts became
more pronounced in complex terrains (See Table 2).

Table 1
Performance in SM Maze 1
Pac- Ghost Average | Average Win
Man Acent S Ti Rate
Agent gents core ime (s) %)
Rule-Based
Random ] 72.97 3.47 0.00
Algorithms
* -
A Rule-Based | oo ¢ 342 | 63.00
Search | Algorithms
BES ) Rule-Based | o) oo | 541 | 63.00
Search | Algorithms ’ ’ ’
MADDPG-
Random Trained 169.34 7.66 0.00
Model
A* MADDPG-
Trained 763.47 2.78 53.00
Search
Model
BFS MADPPG-
Search Trained 853.17 3.06 60.00
car Model
Table 2
Performance in SM Maze 2
Pac- Ghost Average | Average Win
Man A ; S Ty Rate
Agent gents core ime (s) %)
Rule-Based
Random ] 54.37 2.50 0.00
Algorithms
* -
A Rule-Based | /¢ o9 364 | 58.00
Search | Algorithms
BES | Rule-Based | o0y 20 1 540 | 68.00
Search | Algorithms ’ ’ |
MADDPG-
Random Trained 127.14 3.72 0.00
Model
MADDPG-
A*
Trained 47.16 1.78 0.00
Search
Model
BES MADPPG-
Search Trained 161.18 2.86 10.00
ear Model

The Random agent's scores and win rates remained
negligible, thereby reducing the difficulty of navigating
without strategic guidance in more complex mazes.

6.3. Performance in SM Maze 3

In the most challenging scenario (SM Maze 3) with
40% wall density, all agents experienced significant per-
formance reductions. Against Rule-Based Ghosts, A*
marginally outperformed BFS in both score and win rate
(55% vs. 53%). Against Ghosts controlled by the
MADDPG-Trained Model, BFS's performance declined
further, achieving only a 19%-win rate compared to A*s
43%. This highlights MADDPG-trained model's superior
ability to adaptto constrained environments, mirroring
the UAV swarm behavior in dense urban terrains (See
Table 3).

Table 3
Performance in SM Maze 3
Pac- Ghost Average | Average | Win
Man Agents Score Time (s) | Rate
Agent (%)
Random | Rule-Based 48.90 3.59 0.00
Algorithms
A* Rule-Based | 1134.65 4.23 55.00
Search | Algorithms
BFS Rule-Based | 1003.78 3.91 53.00
Search | Algorithms
Random | MADDPG- 77.14 4.43 0.00
Trained
Model
A* MADDPG- 886.50 3.62 43.00
Search Trained
Model
BFS MADDPG- 280.26 2.34 19.00
Search Trained
Model

As expected, the Random agent failed to navigate
effectively, which demonstrates the impact of increased
maze complexity on performance.

6.4. Summary and Key Observations

1. Ghosts controlled by the MADDPG-Trained
Model significantly reduced Pac-Man agent win rates,
particularly in complex mazes (SM Maze 2 and SM
Maze 3), demonstrating their adaptability and strategic
coordination.
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2. A* Search generally outperformed BFS in sim-
pler settings, but BFS demonstrated greater resilience in
mazes with higher wall density.

3. The Random agent's negligible performance
confirmed its role as a baseline for evaluating the strate-
gic value of navigation algorithms.

4. Increased maze complexity (wall density) heav-
ily influenced agent performance, emphasizing the im-
portance of adaptable strategies for UAV operations in
constrained environments.

5. These results affirm MADDPGSs potential for
training models to control adversarial UAV swarms, of-
fering valuable insights into real-world applications, such
as urban navigation, defense, and cooperative adversarial
tasks.

7. Discussion

The findings of this study align with previous re-
search, demonstrating the advantages of reinforcement
learning-based approaches, such as MADDPG, in multi-
agent coordination and adversarial tasks. In comparison
to the traditional algorithms explored in a previous paper
[33], which addressed the challenges of non-stationarity
and variance in multi-agent domains, the proposed
MADDPG-Trained Model proved effective in dynamic
and competitive scenarios. Similar to Lowe et al.’s find-
ings, the MADDPG model in our experiments exhibited
enhanced coordination strategies and adaptability, espe-
cially in complex environments such as SM Maze 2 and
SM Maze 3, where wall density and adversarial interac-
tions added significant complexity. These results further
validate the potential of MADDPG for UAV swarm con-
trol in real-world settings.

The comparison between heuristic navigation algo-
rithms and rule-based models mirrors the findings of Sa-
lem etal. (2024) [16] and Zou (2021) [25], who identified
the superior performance of A* in pathfinding tasks due
to its optimality and efficiency. However, our experi-
ments revealed that Ghosts controlled by the MADDPG-
Trained Modelsignificantly disrupted the performance of
A*, reducing its win rate to 43% in the most challenging
maze. This highlights the limitations of static pathfinding
algorithms in adversarial contexts and supports Zou’s ar-
gument that reinforcement learning is a more robust so-
lution for competitive environments [25].

Moreover, the dynamic adaptability of MADDPG-
controlled agents observed in this study complements the
results of Bachiri et al. (2023) [37], who demonstrated
the utility of MADDPG in managing dynamic demands
in electric vehicle charging networks. Similar to UAV
coordination challenges, EV charging scenarios require
real-time  decision-making under constraints, and
MADDPG’s centralized training and decentralized

execution strategy has proved instrumental in both do-
mains [37].

Finally, our results echo the findings of Ding et al.
(2022) [38], who emphasized the importance of trajec-
tory optimization and coordination in hybrid action space
environments. The ability of MADDPG-trained Ghosts
to adapt their trajectories dynamically to counter Pac-
Man’s strategies reflects its capacity to address complex
multi-agent problems, underscoring its relevance for
UAV swarm operations in constrained and competitive
environments.

In summary, this study builds upon and extends ex-
isting research, demonstrating MADDPG’s capacity to
train robust adversarial neural network models for UAV
swarm control. The proposed approach leverages a lay-
ered control architecture that combines decentralized lo-
cal decision-making with centralized training, thereby fa-
cilitating dynamic route planning and real-time coordina-
tion in near-realistic, obstacle-rich 2D environments. The
comparison of the proposed learning-based strategies
with heuristic and rule-based approaches further high-
lights the potential of learning-based strategies to excel
in dynamic and adversarial settings.

8. Conclusions

This study evaluated the performance of a model
trained by the Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) in controlling a Ghost team against
traditional Rule-Based Pursuit and Prediction Algorithms
in a modified Pac-Man environment to simulate naviga-
tion and adversarial scenarios relevant to UAV control.
The findings demonstrated the MADDPG-trained mod-
el's superior adaptability and strategic coordination, par-
ticularly in complex and constrained environments, high-
lighting its potential for training UAV swarms in real-
world scenarios.

Key observations include the significant reduction
in win rates for Pac-Man agents when facing Ghosts con-
trolled by the MADDPG-trained model, which highlights
the efficacy of learning-based adversarial strategies. A*
Search exhibited better performance in simpler settings,
whereas BFS Search demonstrated resilience in more
complex mazes, emphasizing the importance of matching
navigation algorithms to specific terrain complexities for
UAYV operations.

This study affirms MADDPG’s value in UAV ap-
plications requiring real-time decision-making and ad-
versarial interaction, such as urban navigation, surveil-
lance, and defense. By combining decentralized local au-
tonomy with centralized training, the proposed approach
enables UAVs to coordinate effectively and quickly
adapt to changing conditions. The results also underscore
the potential for learning-based approaches to outperform
traditional rule-based methods in dynamic multi-agent
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settings. Moreover, integrating real-world data and so-
phisticated communication strategies can furtherenhance
these findings, thereby facilitating a smooth transition
from theoretical modeling to practical swarm deploy-
ment.

Future research will focus on extending experi-
ments to include other multi-agent algorithms, such as
Bxpectimax, Alpha-Beta Pruning, and Monte Carlo Tree
Search (MCTS), to further explore collaborative and ad-
versarial strategies in UAV swarm control. In addition,
scaling to larger and more complex environments will
help assess the scalability and robustness ofthese meth-
ods under real-world-like conditions. In the case of a 3D
implementation, the problem requires decomposition
into maze heights depending on the restrictions on UAV
flight heights, introducing the restrictions on the possible
heights for drones in a certain area, as well as maze
heights (different), considering maze heights, organizing
them, and considering decomposition then.

The integration of cybersecurity considerations, as
discussed by Veprytska and Kharchenko [39], can pro-
vide valuable insights into assessing and mitigating Al-
powered threats in UAV systems and ensure the reliabil-
ity of adversarial strategies and their applications in se-
cure missions. Modeling real threats such as anti-drone
systems, electronic warfare (EW), and other military fac-
tors can further enhance the realism of such simulations.
The cybersecurity-informed safety models for UAV op-
erations by llliashenko et al [40]. also highlights the im-
portance of aligning Al-based methodologies, such as
MADDPG, with robust safety and protection frameworks
to address vulnerabilities in adversarial settings. Further
research could focus on adding appropriate threat models
and integrating algorithms to dynamically revise routes
depending on changing risk parameters.

Advances in hybrid sensornetworks, as explored by
Skorobohatko et al. [41], can enhance the operational re-
liability of UAV swarms, particularly for missions re-
quiring environmental and emergency monitoring. Tech-
niques for reliable LiFi communication in obstacle-rid-
den environments, as presented by Leichenko et al. [2,
42], may complement future MADDPG experiments by
addressing challenges in multi-agent coordination under
communication constraints. Similarly, Chen et al.'s [43]
work on human-in-the-loop control mechanisms opens
possibilities for integrating human oversight into UAV
adversarial strategies, enhancing adaptability in complex
real-world missions. Further consideration could include
the use of real circumstances in the flight of UAVs
(swarms, groups), which are associated with terrain and
obstacles of both natural and human activity (industry,
urban obstacles, etc.).

These directions not only aim to improve the scala-
bility and robustness of learning-based models and align
MADDPG’s capabilities  with  interdisciplinary

advancements to create more resilient, efficient, and se-
cure UAV swarm control systems.
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JOCJUIKEHHS MOMJIMBOCTEN MADDPG JIUISI KOMAHAHOTO YIPABJIHHS BILIA
MPU MOJETIOBAHHI B CEPEIOBHIII PAC-MAN

A. O. Hogixos, C. B. fIkoenes, I. B. I'yujun

VY crarni  mochmimKyeThes 3actocyBaHHs anroputMy Multi-Agent Deep Deterministic  Policy Gradient
(MADDPG) a1 HaBYaHHS MOJEJEH, 110 BUKOPUCTOBYIOTHCS Ul yrpaBiiHHs posMu BITJIA B qMHaMiuHMX Ta aHTa-
TOHICTHYHHMX CI€Hapifx. BukopucrtoByroun moaudikoBaHe cepenosuie Pac-Man, ne Pac-Man mpencraBisie IUIbO -
Buit BIUIA, a Ilpumapu — piit BIUIA, mo npotuaie iiomy. [IpencraBnenns mabipuaTiB Pac-Man y Burmiai citku
BHKOPHUCTOBYETHCA K aOCTpaKIlis IBOBHUMIPHOI MOEI pelbedy, 0 BUCTYIIAC YV POJI INIONMHNA HUIIXIB 3 IEPEIIKO-
IaMH, BIAMIOBIAHUMH 10 YMOB oa60Ty BIIJIA Ha meBHiil BHCOTI. 3ampOITOHOBAaHUMT IMiaXig 3a0e3leuye 4itky AUCKpe-
TH3AI{I0 MIPOCTOPY, CIIPOIIYIOYH MOUIYK NUIIXIB, YHUKHEHHS 3iTKHCHb Ta IUNTAHYBaHHS MAapIIPYTIB VI PO3BIIKA UH
MEPEXOILIEHHS, MOCIHYIOUH AEIEHTPAT30BaHy MICIIEBY aBTOHOMIIO 3 LEHTPAIi30BaHUM HAaBYaHHS, IO JO3BOJIIE
BIUTA edexkTuBHO KOOPAMHYBATH [ii TAa IIBUAKO alalTyBaTHUCS OO0 MIHIMBHX YMOB. J{OCIDKEHHS OILIHIOE HIPOOYK-
THBHICTh QHTATOHICTIB, KEPOBAHUX MOJEIIMH, HABUEHIMH 3a fonoMoroo MADDPG, y nopiBHAHHI 3 eBpUCTUYHUMHU
cTpaTteriiMu Hapiraiil, Takumu sk A 1a [lomyk y mmpuny (BFS). Tpamuifiiini airopuTMu mepecaiayBaHHs Ta MIpo-
THO3YBaHHS, HATXHEHHI moBeaiHkoo [Ipumap bminki ta ITinki 3 kmacuunoi rpu Pac-Man, BUKOPHCTOBYIOTBCS SIK €Ta-
JIOH /Ul OI[HKH BIUIMBY METOMIB Ha OCHOBi HaBYaHHSI. MeTO0I0 LBOI0 AOCJHiAMKEHHSl € BU3HAUCHHS e()eKTUBHOCTI
mojenei, HaBueHux 3a MADDPG, y mokpainedsi ynpaBmaas posMu BIUIA mumixoMm aHamizy IXHbOT 3JaTHOCTI IO
ajanTaiii Ta KOOpAUHAIlll B aHTATOHICTHYHHUX CEPENOBHUINAX, 3aBAIKH 3aCTOCYBAHHIO KOMII FOTEPHOTO MOIEIIOBAHHS
B CIIPOILEHOMY MOJIOHOMY 0 KOHTEKCTY pealbHUX Miciii JBOBUMIpHOMY cepenoBuili. ExcrnepuMeHTH, NpoBeIeHi
Ha PI3HHUX PIBHSAX CKIAAHOCTI JaHmmuadTy, nokasamm, mo MADDPG-tpeHoBaHa MOJEIb JEMOHCTPYE Kpallly aJanTH -
BHICTh 1 CTpaTeriyHy KOOPIAMHAIII0 B MOPIBHIHHI 3 METOJAMH Ha OCHOBI IpaBuil. IIpumapu, kepoBaHi MOJIC/UTIO, Ha-
BYEHOIO 3a foromMoroo MADDPG, 3Ha4HO 3HMKYIOTh piBEHb yCIIixy areHTiB Pac-Man, 0co0JMBO B yMOBax i3 BHCO-
KHMHU 0OMEKEHHSIMH, 10 MIAKPECIIOE MMOTEHINAI CTpaTeridi Ha OCHOBI HaBYaHHS Iy 3acTocyBaHb BITJIA, Takux sk
MiCchbKa HaBiramis, 000poHa Ta croctepekeHHs. BucHoBkn. MADDPG neMoHCTpy€E cebe K ImepcreKkTHBHA IuaTdo-
pMa I HaBYaHHS Mojeneil yrnpasiiHnas posimu BITJIA, 0coOMMBO B aHTATOHICTHYHUX yMoOBaX. JlOCTiKEHHS MiaK-
pecioe Horo alanTHBHICTh 1 3[ATHICTh MEpeBEpIIyBaTH TPAJWIIHHI METOMM Ha OCHOBI MPaBWI y IMHAMIYHHUX Ta
CKJIAJHMX cepenoBhIax. MaiOyTHI JOCIDKEHHST OyIyTh 30CepepKeH] Ha MOPIBHAHHI e(EKTUBHOCTI MOJEJEH, Ha-
BUEHHMX 3a nonioMororo MADDPG, 3 GaratoareHTHUMM aJropuTMaMu, TakuMU gk Expectimax, AlphaBeta Prun-ning
Ta Monte Carlo Tree Search (MCTS), mo6 kparie 3p0o3yMiTu nepeBard i 00MeXEeHHS MIIX0iB Ha OCHOBI HABYAHHS Y
MOPIBHAHHI 3 TPaMIIMHUMKM METOJAaMH IIPUHHATT PIlIeHb V CIUIBHMX 1 aHTaroHictmyuux omnepamisx BITJIA. Kpim
TOTO, IOCHimKeHHs 3D-peaimizariii, 110 BKIIOYAIOTE PO3IIOIUT BUCOTH JIAOIpHHTY Ta 0OMEKEHHS Ha ITOJIBOTH, a TaKOXK
IHTETPAIlil0 ACTIEKTIB KiOepOe3NeKn Ta peaslbHUX 3arp0o3, TAKUX SIK CUCTEMH MPOTHUJIl JAPOHAM i 3aCO0M eIeKTPOHHO i
00poTEOM, MOXKYTh MABUIIUTA HAJHHICTE 1 MPAKTHYHY 3aCTOCOBHICTH ITMX METOJB Y PEaJiCTHIHUX CIICHAPIIX BU-
xopuctanus BIUIA.

KnrouoBi ciioBa: OaratoarcHTHe HaBYaHHS 3 IIKPIMJICHHSM,; HaBiramis, aHTaroHicTmuHi ctpaterii BIUIA;
KOMIT'FOTEpHE MO/ICJIFOBaHHS.

HogikoB Aprem OJjiekcaHIpOBHY — acIl. HABYAJbHO-HAYKOBOTO {HCTUTYTy KOMII'FOTEPHHX HAyK Ta IITy4HOTO
iHTeNekTy XapKiBCBKOTO HaLiOHaJIBHOTO yHiBepcuTeTy iMeni B. H. Kapasina, Xapkis, Ykpaina.

SIxoBiaeB Cepriii BeceBonogoBuu — 4in.-kop. HAH VYkpainu, a-p ¢i3.-mat. Hayk, npod., 3acT. IMp. MO HAyKOBIii
po060TH HaBUATbHO-HAYKOBOTO IHCTUTYTYy KOMII'IOTEPHHMX HAyK Ta IITyYHOTO iHTENEKTy XapKiBChKOTO HaliOHAb-
Horo yHiBepcuteTy imeni B. H. Kapasina, XapkiB, Ykpaina; npodecop-mocnigyBau [HctutyTy Matematuku Jlomsu-
HCBKOTO MOJITEXHIYHOTO yHiBepcuteTy, Jloms, [lombma.
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