
ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 1(113)               ISSN 2663-2012 (online) 
298 

UDC 004.4  doi: 10.32620/reks.2025.1.19 
 

Oleksii VYNOKUR1, Iryna PEROVA1, Polina ZHERNOVA2  
 
1 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine 
2 American University Kyiv, Kyiv, Ukraine 
 

ANALYTICAL REVIEW OF VISUALIZATION METHODS FOR LAUNCH  

AND LANDING OF SPACECRAFT WITH CONSIDERATION  

OF 64-BIT SYSTEM BOUNDARY VALUE ISSUES 
  

The subject matter of this article is the contemporary software solutions used for modeling and visualizing 
spacecraft missions, specifically during the stages of launch, flight, and landing. The goal of this article is to 

critically evaluate popular game engines like Unity and Unreal Engine 5, along with specialized flight simulation 

software such as OpenRocket and Orbiter, focusing on their application in space simulations. The tasks are as 

follows: to investigate and assess the capabilities of the Unity and Unreal Engine 5 game engines in the context 

of space missions; to identify the limitations of 64-bit floating-point precision for large-scale space simulations 

and propose the potential for transitioning to 128-bit systems; to evaluate specialized tools like OpenRocket and 

Orbiter regarding their use for simulating spacecraft behavior; to analyze the existing limitations in integrating 

real-time data and suggest directions for further research and development. The obtained results of the article: 

It was established that Unity and Unreal Engine 5, although primarily developed for the gaming industry, can 

be adapted for aerospace simulations. However, due to the limitations of 64-bit precision, they are prone to 

visualization artifacts and computational errors that compromise the accuracy of the simulations. The transition 
to 128-bit systems was identified as a promising approach for enhancing the precision and flexibility of space 

mission modeling. This shift would allow better handling of the extensive scales and detailed aspects of space 

simulations. Specialized tools like OpenRocket and Orbiter demonstrated high capabilities in modeling aerody-

namic characteristics and space missions. Nevertheless, they also face limitations in handling large-scale phe-

nomena or integrating real-time data. The need for further research and development of new algorithms and 

data structures to ensure high precision and support for large datasets was identified. Additionally, improving 

the integration of real-time data and user interfaces is necessary to make these tools more accessible. Conclu-

sions. The development of 128-bit systems for space simulations is critically important for enhancing the accu-

racy and realism of the modeling. The Unity and Unreal Engine 5 game engines although having the potential 

for adaptation to aerospace simulations, require significant improvements in handling large scales and detailed 

aspects. The tools OpenRocket and Orbiter have significant potential in specialized areas but also need enhance-

ment to expand their capabilities. Further research and development are necessary to create new solutions that 
will increase the accuracy and functionality of the software for simulating space missions, as well as to develop 

new hardware such as more powerful processors and increased memory. 

 

Keywords: Software; Launch vehicles; LEO; Visualization of calculations; limit states of computer systems; 

aircraft landing; game engines; simulation of physical phenomena. 

 

Introduction 

 

Space mission simulations play a crucial role in ad-

vancing the efficacy and safety of space missions. The 

main tools in this field include game engines such as 

Unity [1] and Unreal Engine 5 [2], and specialized flight 

simulation software such as OpenRocket [3] and Orbiter 

[5]. Each of these tools has its own advantages and limi-

tations that should be considered when planning mis-

sions. Game engines, while not traditionally associated 

with the space industry, offer significant visualization 

and interactivity capabilities, but their use is limited due 

to the lack of accuracy in large-scale computations that 

are critical to spaceflight [7, 1]. 

Motivation. The current 64-bit architecture [8, 9] 

imposes limitations on the accuracy and scale of space 

simulations, leading to issues such as visualization arti-

facts and computational errors. There is a pressing need 

to explore and develop alternative approaches that can 

overcome these limitations. This research aims to criti-

cally analyze existing tools and propose enhancements to 

improve spacecraft launch and landing simulations. This 

paper discusses the impact of the limitations of the cur-

rent 64-bit architecture [8, 9] on the accuracy and scale 

 
 Creative Commons Attribution  

NonCommercial 4.0 International 

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk


Information technologies and models of management 
 

299 

of space simulations. Problems, such as visualization ar-

tifacts and computational errors, often arise as a result of 

the limitations of these systems. Potential solutions and 

alternative approaches are also discussed, including the 

development of 128-bit computing systems, which can 

provide significant improvements in data processing and 

space mission simulation. 

State of the Art. Existing mathematical modeling 

and flight simulation software, such as MatLab and 

OpenRocket [3], suffer from disadvantages in terms of 

visualization and accuracy. They face challenges in add-

ing more parameters that describe the physical phenom-

ena experienced by the spacecraft during flight, such as 

calculations of support points, interaction of support ma-

terials with surfaces, and stability of the structure relative 

to its geometry. Despite their visualization strengths, 

game engines are hindered by the limitations of 64-bit ar-

chitecture in handling complex simulations [7 - 9]. 

Objective. This study aims to evaluate and compare 

various tools and technologies used for spacecraft land-

ing and launch simulations. The focus is on identifying 

the most effective methods for enhancing these simula-

tions, particularly through the use of game engines and 

the development of advanced computational systems like 

128-bit architecture. 

Approach and Structure. The paper begins with a 

detailed examination of each tool and technique, analyz-

ing their strengths and weaknesses. It then discusses the 

potential of 128-bit computing systems to address the 

current limitations. The structure of the paper is as fol-

lows: 

Case Studies. Evaluation of recent advancements in 

landing systems and simulation methods, including inno-

vative approaches in mechanical adaptation, real-time 

force sensing, and deep learning for powered landing 

guidance. 

Review of Simulation Tools. Analysis of the game 

engines and specialized simulation software, highlight-

ing their capabilities and limitations. 

Impact of the 64-bit architecture. Discussion on 

how the current architecture affects the simulation accu-

racy and scale, with examples of common issues. 

Potential Solutions. Exploration of advanced com-

puting systems and their benefits for space mission sim-

ulations. 

This introduction sets the stage for a more detailed 

look at each of the tools and techniques that will be ana-

lyzed in the following sections of the paper, intending to 

identify the most effective ways to improve spacecraft 

launch and landing simulations. 

Mathematical modeling or flight simulation soft-

ware such as MatLab and OpenRocket [3] have several 

disadvantages in terms of the visualization and accuracy 

of the representation of the flight and landing process. 

One of the main ones is the difficulty in adding more  

parameters describing the physical phenomena experi-

enced by the aircraft during the flight. These include: cal-

culations of the support points of the landing aircraft, the 

interaction of the support materials and the surfaces with 

which they interact, and calculations of the stability of 

the structure relative to its geometry, etc. Accordingly, 

game engines are a good option for speeding up and re-

fining the results of aircraft landing simulations. How-

ever, both simulation programs and game engines have 

the problem of calculations on a large scale. Existing 

computers use a 64-bit architecture [8, 9], which provides 

3 types of data for processing: float - 4 bytes, double - 8 

bytes, decimal - 16 bytes [8, 9]. Game engines, in turn, 

do not use the decimal type out of necessity, as conven-

tional games do not perform complex simulations on a 

planet scale, which leads to difficulties in calculating the 

trajectories of even suborbital flights [7]. 

As highlighted in the introduction, the advance-

ments in spacecraft landing systems and simulation tech-

nologies are crucial for enhancing the efficacy and safety 

of space missions. Significant research efforts have been 

directed toward developing innovative landing systems 

and simulation methods, addressing the unique chal-

lenges presented by space exploration. In the review [24], 

the authors proposed a novel landing leg with electro-

magnetic damping and anchoring capabilities for small 

celestial bodies where microgravity and unpredictable 

surface conditions prevail. This study integrates a com-

prehensive approach combining mechanical adaptation 

and real-time force sensing to stabilize the landing pro-

cess and prevent post-landing drift, reflecting a substan-

tial evolution from traditional passive buffering methods 

like honeycomb aluminum used in lunar and Martian 

missions. 

Survey [25] discusses a new spacecraft attitude re-

covery method that leverages platform vibration to miti-

gate errors and losses in attitude data critical for space-

craft maneuvering. This paper provides an extensive re-

view of the challenges in attitude data acquisition and 

presents a validated recovery strategy using the ZY302 

satellite, highlighting the method's applicability and high 

correlation with true attitude data. 

In the context of simulation technologies, the paper 

[26] introduced a real-time simulation framework for 

rocket control using the visual programming environ-

ments LabVIEW and X-Plane. The authors focus on the 

development of a robust simulation interface that facili-

tates comprehensive testing and iterative enhancements 

of rocket control algorithms, a critical aspect in reducing 

the risk associated with live launches. 

Furthermore, [27] explored agile mission planning 

for emergency space launches. This paper systematically 

constructs a flexible and responsive mission planning  

framework that incorporates multitask and multiplatform 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 1(113)               ISSN 2663-2012 (online) 
300 

considerations. This method is pivotal for rapid deploy-

ment missions, enabling efficient resource scheduling 

and on-the-fly adjustments to launch plans. 

The use of deep learning for improving the powered 

landing guidance on reusable rockets is examined in [28]. 

The authors developed a network-based framework that 

categorizes initial flight conditions to optimize thrust 

profiles and landing trajectories, significantly advancing 

the adaptability and accuracy of autonomous guidance 

systems. 

The paper structure. In Section 1, "Materials and 

Methods of Research," we explore the fundamental con-

cepts and methods required for spacecraft trajectory cal-

culations. This section begins with a detailed discussion 

of the ballistic trajectories, examining the factors affect-

ing flight and landing in both two-dimensional and three-

dimensional spaces. We then cover methods for visualiz-

ing these trajectories using simulation tools. Further-

more, the section highlights the use of Tsiolkovsky’s for-

mula for velocity change, the role of the Earth’s curvature 

in trajectory planning, and the challenges of designing 

landing supports. The integration of game engines for 

modeling spacecraft landing processes and the issues re-

lated to boundary values in 64-bit systems are also dis-

cussed. 

In Section 2, "Results and Discussion," we review 

software for visualizing spacecraft trajectories, focusing 

on OpenRocket, Kerbal Space Program, Unity, Unreal 

Engine 5, and Orbiter. Each tool’s capabilities are as-

sessed for accuracy, visualization quality, and handling 

complex physics such as air resistance and object geom-

etry. In addition, limitations such as artifact generation in 

Unity and outdated graphic engines in Orbiter are dis-

cussed. 

The paper concludes with the Conclusions section, 

which outlines the key findings from the review of avail-

able tools for spacecraft flight and landing simulations. It 

emphasizes the limitations of the current solutions for 

non-standard scenarios and proposes potential improve-

ments. Two main development paths are suggested: opti-

mizing game engine algorithms for more efficient use of 

virtual space and upgrading older software like Orbiter to 

modern graphics standards. The section also points to fu-

ture research directions, including integrating machine 

learning to enhance the analysis and simulation of land-

ing sequences. 

 

1. Materials and methods of research 

 

Let's take a look at the simplest 2D visualization of 

a spacecraft flight, as well as what is needed for a more 

accurate calculation of both flight and landing in 3-di-

mensional space, taking into account more parameters. 

 

1.1. Ballistic Trajectory 

 

The ballistic trajectory of a spacecraft is a funda-

mental concept in space dynamics that determines the 

path of an object in space under the influence of external 

forces alone, without any additional propulsive maneu-

vering after the initial launch phase. In the context of the 

Earth, this usually means gravity and, in the initial stages, 

the aerodynamic drag of the atmosphere. 

At the simplest level, the ballistic trajectory can be 

thought of as a parabolic motion when atmospheric drag 

is ignored, or as a more complex flight under the influ-

ence of aerodynamic drag. It is the result of the initial 

speed and launch angle, which together determine the 

range, altitude and duration of the flight. 

Equation for calculating the flight range (excluding 

air resistance):  

 

  2
0D v sin 2 g   , (1) 

  

where D is the flight range; 

v0 is the initial velocity; 

θ is the launch angle relative to the horizon;  

g is the free fall acceleration (9.81m/s2 on the Earth's 

surface). 

Maximum height reached by the object: 

 

  2 2
0H v sin 2g   , (2) 

    

where H is the maximum height. 

The simulation software allows you to visually 

model the trajectory, considering various external fac-

tors, and assess potential risks and options during the crit-

ical phases of the mission. 

 

1.2. Methods for visualizing 2D trajectories 

 

The use of two-dimensional graphs to show key 

driving parameters, such as distance, speed, and angle of 

ascent, allows you to analyze the effectiveness of the 

planned route and make the necessary adjustments. 

The simulation software allows you to visually 

model the trajectory, taking into account various external 

factors, and assess potential risks and options during crit-

ical phases of the mission (Fig. 1). 

 

1.3. Cialkowski's formula 

 

In modern launch vehicles, the largest mass fraction 

is occupied by fuel, not payloads or control systems. The 

mass fraction of fuel ranges from 90-97% [29] of the total 

weight of the aircraft. Accordingly, we need to use the 

Tsiolkovsky formula in our calculations. It expresses the 



Information technologies and models of management 
 

301 

 
Fig. 1. An example of using Open Rocket to calculate a ballistic trajectory 

 

relationship between the mass of fuel burned and the 

rocket's ability to change its speed. The Tsiolkovsky for-

mula is a key equation in astrodynamics that allows us to 

calculate the required change in velocity (Δv Δv) that is 

needed for a spacecraft to reach a certain orbit or perform 

a manoeuvre in space [33]. 

 

 sp 0 0 fv I g ln m m     , (3) 

 

where: Δv ‒ required speed change (m/s); 

Isp ‒ specific impulse response of the engine (sec); 

g0 ‒ standard acceleration of free fall on the Earth's 

surface (9.81m/s2); 

m0 ‒ initial mass of the rocket (kg); 

mf ‒ final mass of the rocket after fuel combustion 

(kg). 

There are two ways to visualize this formula: a 

graph of Δv versus fuel weight and a simulation of the 

specific impulse response. 

 

1.4. Curvature of the Earth's surface 

 

The curvature of the Earth is a crucial factor in the 

planning and analysis of spacecraft flight paths. This as-

pect is of particular importance when calculating the or-

bital parameters, in-flight course correction, and when 

designing missions with a return to Earth. Considering 

the surface curvature allows for more accurate prediction 

and adaptation of trajectories to achieve the required mis-

sion objectives. 

The curvature of the Earth's surface affects the cal-

culation of orbits and trajectories because it requires 

spacecraft control systems to make corrections to com-

pensate for this curvature. For example, without taking 

the curvature into account, planning a return to the launch 

point on Earth would not be possible because the space-

craft would simply fly past the target point. 

The visualization techniques for this parameter in-

clude: 

– Global Earth models, which use three-dimen-

sional Earth models to simulate trajectories, allow us to 

visually consider the curvature of the Earth's surface and 

analyze potential spacecraft trajectories on a global scale; 

– Globe mapping for projecting a flight path on a 

physical or virtual globe helps to determine the actual 

distances and orientation of the trajectory relative to the 

Earth's surface, contributing to a better understanding of 

mission parameters; 

– Orbit analysis software such as Ansys STK 

(Systems Tool Kit) [34], which is proprietary and expen-

sive, or Orbiter [5] - which has some quite old code bases 

and was released to the public in April 2021 [5] - allows 

the integration of physical and astro-dynamic parameters 

of the Earth, including its curvature, to accurately model 

flight paths; 

– Demonstration of ways to correct trajectories to 

account for the Earth's curvature, such as using gravity 

maneuvers or speed changes to achieve the required or-

bital parameters. 

 

1.5. Problem of calculation of aircraft geometry  

supports at landing and physics of their  

interactions with the surface 

 

The design of a spacecraft landing system is a com-

plex task that requires consideration of numerous factors 

to ensure the safety and stability of the vehicle during 

landing.  



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 1(113)               ISSN 2663-2012 (online) 
302 

Main challenges: 

– Load distribution - the pores should be designed 

to effectively distribute the weight of the vehicle on the 

surface, minimizing the risk of sinking or tipping over 

during landing. 

– Surface adaptation - pores must adapt to the va-

riety of surfaces they may encounter, which requires flex-

ibility in design and material use. 

– Shock absorption - landing can be accompanied 

by strong impacts, so the support system must include 

shock absorption elements to protect the vehicle and its 

equipment. 

Modern engineering software tools allow for the 

creation of detailed three-dimensional models of the sup-

port system, which simplifies the analysis of potential 

problems and design improvements [34]. 

Simulations can demonstrate how the supports in-

teract with different types of surfaces under different 

landing conditions, allowing for load distribution analy-

sis and identification of potential failure points. The use 

of dynamic simulations helps to assess how the support 

system absorbs shocks and ensures the stability of the ve-

hicle when it comes into contact with the surface. In turn, 

the virtual environment allows engineers to test different 

configurations and landing conditions, finding optimal 

solutions without risking the real vehicle. 

 

1.6. Use of a game engine to calculate  

the supports of the aircraft geometry during 

landing and the physics of their interactions 

with the surface 
 

Game engines such as Unreal Engine [2] and  

Unity [1] has opened up new possibilities for spacecraft 

engineering and design, including simulations of landing 

processes. Thanks to their powerful visualization and 

physics capabilities, these engines allow for detailed,  

realistic simulations that can mimic the complex interac-

tions between the aircraft and the surface during landing. 

Game engines integrate advanced physics  

engines [35] to accurately simulate the gravitational 

forces, friction, damping, and other physical properties 

necessary for landing analysis. 

Modern game engines are capable of producing 

high quality visual effects, including realistic lighting and 

shadows, which allows you to visually analyze the be-

havior of the vehicle under different lighting conditions 

during landing. 

Advantages of using game engines: 

– game engines allow users to interact with the 

model in real time, changing parameters and conditions 

to analyze different landing scenarios. This contributes to 

a better understanding of the potential problems and the 

effectiveness of the solutions developed; 

– the use of game engines provides access to var-

ious modeling, visualization, and analysis tools that al-

low for detailed calculation of every aspect of the landing 

process, from motion dynamics to surface impact; 

– the use of game engines for preliminary model-

ing can significantly reduce costs [2, 7] as it allows po-

tential problems to be identified and addressed early in 

the design process, avoiding costly mistakes and reduc-

ing the need for physical tests; 

– game engines allow simulating a variety of 

landing scenarios on any surface, from Earth to Mars or 

even asteroids, with the ability to easily scale the design 

to meet specific mission needs. 

The use of game engines for modeling and visualiz-

ing landing processes opens up new perspectives for de-

signing and analyzing space missions, allowing develop-

ers to create more efficient, safe and reliable lander sys-

tems. 

 

1.7. The problem of boundary values  

of 64-bit systems 

 

The limitations of precision and number size in 64-

bit computing systems pose challenges not only for tra-

ditional scientific and engineering applications, but also 

for game engines such as Unity and Unreal Engine, espe-

cially when working with space simulations and large-

scale virtual environments. 

Unity uses the float type for physics calculations 

and rendering, which provides sufficient accuracy for 

most game projects and virtual reality applications [1]. 

However, the float type has limited accuracy, especially 

when working with very large or small values, which is 

typical for cosmic distances or simulating microscopic 

processes. This can lead to rounding errors and other in-

accuracies in the visualization and physical calculations. 

Unreal Engine 5, despite its advanced technology 

foundation, also faces challenges in handling large and 

small values, even when using double-precision  

numbers [7]. Although double precision increases the 

range and accuracy of the numbers that can be repre-

sented, game engines often encounter problems when 

rendering large-scale scenes or accurately modeling 

physical processes on a cosmic scale. This can include 

errors in calculations, inaccuracies in object mapping, 

and other artifacts that make it difficult to create virtual 

environments that require high accuracy and realism 

(Fig. 2). 

Developing and using adaptive coordinate systems 

that can change scale depending on the context of the  

scene, allowing for high accuracy calculations in differ-

ent parts of the virtual world [2]. Review and optimize 

algorithms to minimize the impact of accuracy con-

straints, including  the  use  of  high  fidelity  algorithms 



Information technologies and models of management 
 

303 

 
 

Fig. 2. Changes in the new version of the Unreal Engine 5 engine added  

the ability to use the double precision method [7] 

 

where appropriate. In the context of overcoming the lim-

itations of number precision and magnitude, 128-bit com-

puting systems represent a potential future development 

offering an even greater range of number representation 

and increased computing accuracy (Table 1). Although 

128-bit systems are currently in the early stages of re-

search and development, their potential implementation 

could radically change the way data is processed in re-

search, engineering, and the gaming industry. This tran-

sition will require significant efforts in the development 

of software and hardware solutions but promises to sig-

nificantly improve the ability to model complex systems 

and processes that require high computational accuracy 

on a large scale or when working with very small values. 

 

Table 1  

Bit capacity of the system and the number  

of its possible states 

Bits States 

1 2 

2 4 

4 16 

8 256 

166 65,536 

32 4,294,967,296 

64 18,446,744,073,709,551,616 

128 340,282,366,920,938,463,463,374,607, 

431,768,211,456 

 

2. Results and Discussion 

 

As mentioned above, the best way to visualize the 

calculations of the aircraft launch is to use software that 

graphically displays the trajectory, inclination and, for 

example, air friction. Let's move on to reviewing the 

available solutions. 

2.1. OpenRocket 

 

One of the simplest programs for visualizing rocket 

flight is OpenRocket. It is a free program for simple cal-

culations of small amateur solid rockets. It has a large list 

of settings for both the appearance of the rocket and the 

fuel components it will have (Fig. 3). 

The software has both a schematic and 3D visuali-

zation of the finished rocket and takes into account its 

geometry, air friction, temperature and pressure differ-

ences at different stages of flight (Fig. 4). 

To visualize the calculations, this program uses 

simple continuous charts that show both simple indica-

tors such as flight altitude, and more complex ones such  

as rotation about all axes according to the geometry and 

solid propellant impulse (Fig. 5). 

 

2.2. Kerbal Space Program 

 

Kerbal Space Program is a space mission simulator 

with the ability to design and control an aircraft. Unlike 

OpenRocket, the results of the design can be viewed im-

mediately after completion in 3D, as well as participate 

in the process of controlling the aircraft by launching it 

into orbit and editing the mission according to the current 

situation (Fig. 6). The program has an interactive inter-

face with a lot of information about the mission status and 

the most realistic visualization. 

It also has two types of mission status view: local, 

when we see the aircraft in our immediate vicinity, and 

global, where we see only the flight path and orbit  

(Fig. 7). Unfortunately, the program has a small list of 

aircraft modifications and provides the possibility of 

landing only with parachutes, which is problematic for 

medium and large launch vehicles. 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 1(113)               ISSN 2663-2012 (online) 
304 

 
 

Fig. 3. A set of design tools in the OpenRocket software 

 
 

Fig. 4. 2D visualization of a rocket in OpenRocket software 

 

Fig. 5. Graph of the main parameters and flight stages in OpenRocket 



Information technologies and models of management 
 

305 

2.3. Unity 

 

Unity is a game engine with full integration of ob-

ject and light physics [1]. The software allows you to cre-

ate custom scenarios, write your own personal flight and 

landing control systems, calculate the physical interac-

tion of materials, and simulate the physics of the launch 

vehicle supports, taking into account the center of mass 

of the structure. 

In this example, we have a sphere that emulates the 

Earth in an appropriate 1:1 size. The launch considered 

the geometry of the planet, its gravity, air resistance ac-

cording to the flight altitude, structural streamlining, and 

the center of mass of all booster modules (Fig. 8).  

 

 
 

Fig. 6. Launch of a carrier rocket in the Kerbal Space Program 

 
 

Fig. 7. Kerbal Space Program interface when switching to a large-scale view 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 1(113)               ISSN 2663-2012 (online) 
306 

 
 

Fig. 8. A designed two-stage rocket on the Unity desktop 

 

Unfortunately, when trying to simulate the real size 

of the globe, we get undesirable artifacts when moving 

away from the zero coordinate point. Fig. 9 shows an ex-

ample of the so-called glitch effect, when at each frame 

the accuracy of calculating the coordinates of the vertices 

of objects has a large error, which increases with distance 

from the center of the coordinates (Fig. 9). This problem 

is observed in all 64-bit systems that do not have ways to 

optimize and avoid the problem of boundary values. 

Since the visualization was unsuccessful, it was de-

cided to conduct a similar experiment with a scale of 

1:100. An example can be seen in Fig. 10 This experi-

ment was successful and the visualization had no prob-

lems. This solution is a good way to simulate both the 

flight and landing of an aircraft and limits the number of 

parameters to the hardware capacity and conditions of the 

experiment. 

Among the disadvantages is the complexity of cal-

culations on a real-world scale; the engine uses the C# 

float type to calculate the orientation of objects, which 

has accuracy limits ranging from ±1.5 x 10−45 till ±3.4 x 

1038 [8]. 

 

 
 

Fig. 9. The glitch effect of the vertices of game objects  

at a distance from the initial coordinates 



Information technologies and models of management 
 

307 

 
 

Fig. 10. Scenario with a scale of 1:100 

 
 

Fig. 11. An example of rendering objects on a real scale in Unreal Engine 

 

2.4. Unreal Engine 5 

 

Unreal Engine 5 is a more advanced game engine 

that is more professionally oriented. The engine allows 

you to easily manipulate a large virtual volume without 

any discomfort. Fig. 11 shows an example of objects that 

have realistic sizes of the Moon (3474800 m in diameter) 

and the Earth (12742000 m in diameter) by the standards 

of the game space. At the same time, this does not prevent 

the emulation of the physical interaction of objects or 

their animation without the glitch effects observed in the 

Unity game engine. This improvement is the result of the 

new version of the engine using the double precision 

method, namely its implementation in the double type 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 1(113)               ISSN 2663-2012 (online) 
308 

(Fig. 11). Despite this, some visual and error issues still 

occur, such as light and shadows being rendered with 

noise, errors when editing large spaces, and the applica-

tion sometimes crashing and closing due to overloads and 

errors in object calculations (Fig. 12) 

 

2.5. A few words about Orbiter 

 

The software is quite advanced for a free open 

source solution. The software allows you to simulate 

take-off, orbit correction and landing scenarios, but  

unfortunately does not allow you to describe the vertical 

landing of the first stage of the launch vehicle. Unfortu-

nately, the software uses an old graphics engine - Di-

rectX7 [9] (1999) and supports only 32-bit architecture, 

which imposes its limitations [5] (Fig. 13). 

 

2.6. JSBSim and FlightGear 

 

JSBSim is a powerful tool for aerospace flight dy-

namics simulation, offering high-precision calculations. 

Unlike game engines, it focuses on aerodynamic accu-

racy without graphical limitations.  

FlightGear, an open-source flight simulator, inte-

grates with JSBSim to visualize real-time flight data.  
 

 

 
 

Fig. 12. An example of errors in rendering objects on a real scale

 
 

Fig. 13. Orbiter simulator interface during the LEO reentry scenario 

 



Information technologies and models of management 
 

309 

This combination enables realistic space mission model-

ing, trajectory analysis, and the optimization of flight 

control systems. Numerical integration in JSBSim mini-

mizes errors in long-duration simulations, which is essen-

tial for space missions. Numerical integration in JSBSim 

minimizes errors in long-duration simulations, which is 

essential for space missions. Integrating JSBSim with 

real telemetry data also requires additional setup, making 

the simulations complex. 

Despite these challenges, JSBSim and FlightGear 

provide an effective solution for spacecraft flight simula-

tion, requiring further improvements for enhanced accu-

racy and flexibility. To better understand the strengths 

and weaknesses of the different simulation tools, the fol-

lowing table (Table 2) provides a comparative analysis of 

the key characteristics, including physical accuracy, vis-

ualization quality, reinforcement learning (RL) integra-

tion, performance, and availability. This overview helps 

highlight the most suitable tools for various space and 

aeronautics applications.  

In addition to the qualitative comparison, a numeri-

cal evaluation system was used to rank the simulators 

based on key attributes. Each simulator is rated on a scale 

from 0 to 3 in five categories: physical accuracy, visual-

ization, RL integration, performance, and availability. 

The total score, as shown in Table 3, provides an overall 

assessment of each simulator’s capabilities. 

 

Table 2  

Comparison of Flight Simulators 

Simulator 
Physical  

Accuracy 
Visualization RL Integration Performance Availability 

JSBSim + 

FlightGear 

High – JSBSim 

provides a highly 

accurate flight 

dynamics model 

used in 

FlightGear [32]. 

Medium – Offers 

3D visualization 

(supports pano-

ramic view 

~190° across 

three screens), 

but graphics lag 
behind modern 

engines [4]. 

High – Ready-to-

use interfaces 

(OpenAI Gym) 

enable RL-agent 

training [11]. 

High – Can run 

in real-time or 

faster; JSBSim 

can operate with-

out graphics for 

speedup [12]. 

Open-source – 

Fully free solu-

tion (distributed 

under GPL) [14]. 

Orbiter High – Uses real-

istic Newtonian 

physics for or-

bital flights, in-

cluding precise 

orbital mechanics 
[20]. 

Medium – 3D 

planetary and 

spacecraft ren-

dering (DirectX 

engine), but out-

dated graphics 
[14]. 

Low – No direct 

RL support; 

however, it has 

an API for creat-

ing modules and 

external flight 
control [15]. 

High – Efficient 

engine working 

on moderate sys-

tems; time accel-

eration available 

for long-duration 
maneuvers. 

Freeware 

(closed) – Propri-

etary software 

for Windows 

(free to use but 

with closed-
source code) 

[16]. 

Kerbal 

Space Pro-

gram 

Medium – Fea-

tures realistic or-

bital mechanics, 

but other physi-

cal aspects are 

simplified [18]. 

Medium – Full 

3D graphics with 

a cartoonish style 

(green Kerbal 

characters, etc.); 

not photorealistic 

[17]. 

Medium – No di-

rect RL support, 

but modding/API 

(e.g., kRPC) al-

lows RL agent 

training [23]. 

Low – Perfor-

mance limited by 

Unity engine; 

physics simula-

tion speed-up 

>4× is not possi-

ble, and complex 
scenes slow 

down the game. 

Commercial – 

Paid game with 

closed-source 

code (available 

via digital stores, 

has an active 

modding com-
munity). 

OpenRocket High (for rock-

ets) – Accurately 

models rocket 

aerodynamics 

and flight trajec-

tories, validated 
up to ~Mach 1.5. 

[30]. 

Low – lacks real-

time 3D visuali-

zation (results 

are presented as 

graphs and nu-

merical reports) 
[22]. 

Low – no inter-

active interac-

tion; lacks RL 

tools (calcula-

tions are per-

formed offline). 

High – resource-

efficient; calcula-

tions are exe-

cuted very 

quickly, allowing 

thousands of 
simulations to be 

run 

Open-source – 

free open-source 

software (source 

code available to 

the community) 

[13]. 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 1(113)               ISSN 2663-2012 (online) 
310 

Simulator 
Physical  

Accuracy 
Visualization RL Integration Performance Availability 

Unreal En-

gine 5 

Medium – built-

in Chaos physics 

engine is simpli-

fied for gaming 

tasks [10]; high-
precision physics 

modules (e.g., 

AGX Dynamics 

plugin) are avail-

able if needed 

[18]. 

High – supports 

photorealistic 

graphics with 

modern lighting 

and detailing ef-
fects (high-qual-

ity scene render-

ing possible) 

[31]. 

Medium – no 

built-in RL inte-

grations, but 

plugins and 

frameworks (e.g., 
Microsoft's Air-

Sim) enable RL 

applications in 

UE5 [6]. 

Low – very re-

source-intensive; 

parallel or accel-

erated execution 

of multiple simu-
lations is difficult 

(game engines 

are not optimized 

for massive 

physics calcula-

tions) [22]. 

Conditionally 

free – the engine 

can be freely 

downloaded with 

access to the 
source code, but 

it is proprietary 

(not open-source; 

royalty-based li-

cense for com-

mercial use) [20]. 

Unity Medium – built-

in PhysX engine 

is not designed 
for high-preci-

sion physics but 

allows integra-

tion of custom 

modules 

High – supports 

realistic 3D 

graphics with 
shaders and visu-

alization, but re-

quires optimiza-

tion for complex 

scenes 

Medium – lacks 

built-in RL sup-

port, but exten-
sions (ML-

Agents) enable 

agents in interac-

tive environ-

ments 

Medium – per-

formance de-

pends on scene 
complexity; mul-

tithreading is 

limited, but GPU 

computing 

(Compute 

Shaders) is avail-

able 

Conditionally 

free – a free ver-

sion is available 
for personal use, 

but commercial 

use requires a 

paid subscription 

 

Table 3  

Quantitative Evaluation of Simulators 

Simulator 
Physical 

Accuracy 

Visualiza-

tion 

RL Integra-

tion 

Perfor-

mance 
Availability Total Score 

JSBSim + FlightGear 3 2 3 3 1 12 

Orbiter 3 2 1 3 0 9 

Kerbal Space Program 2 2 2 1 0 7 

OpenRocket 3 1 1 3 1 9 

Unreal Engine 5 2 3 2 1 0 8 

Unity 2 3 2 2 0 9 

 

Conclusions 
 

A review of the available tools for modeling the full 

sequence of flight and landing of a spacecraft, consider-

ing for the curvature of the earth's surface, air friction, 

changes in the density of the atmosphere, fuel consump-

tion and the geometry of the aircraft and its supports, was 

carried out. Their main advantages and disadvantages are 

also analyzed, and flight and landing simulation experi-

ments are carried out, as well as experiments with differ-

ent dimensions of virtual space. As demonstrated in the 

Quantitative Evaluation of Simulators, JSBSim + 

FlightGear provides the most well-rounded solution due 

to its high accuracy and reinforcement learning 

integration, making it the best option for scientific 

applications. Other tools, such as Orbiter and 

OpenRocket, also show strong results but have 

limitations in RL integration and visualization. Game 

engines like Unity and Unreal Engine 5 stand out in terms 

of visualization but require further optimization to be 

viable for aerospace research. These findings highlight 

the need for hybrid approaches that combine high-

accuracy physics models with advanced visualization 

capabilities.  

As a result of the analysis of existing specialized 

software solutions, it can be concluded that there are no 

ready-made solutions for the full visual simulation of 

non-standard solutions. OpenRocket is not suitable for 



Information technologies and models of management 
 

311 

small or medium-sized launch vehicles, has a very simple 

editor, and visualization is limited to 2D graphs. Other 

programs have prepared parameters and scenarios and do 

not have a hot-landing option. 

Game engines, on the other hand, are highly cus-

tomizable, allowing you to describe any number of flight 

and landing parameters, including hot landing, taking 

into account the geometry of the supports and the physics 

of the interacting materials. However, unfortunately, they 

have their limitations when visualizing large virtual 

spaces due to the limitations of 64-bit architecture.  

128-bit systems are currently only theoretical and do not 

have real working prototypes, so it is not economically 

feasible to continue research until a working system is 

available. 

According to the available research, two develop-

ment options are proposed. 

The first is to improve the algorithms for custom-

ized scenarios in game engines to reduce the virtual space 

used by the relative coordinate method used in the Kerbal 

Space Program simulator. The Unreal Engine 5 engine is 

particularly interesting as it uses double-precision num-

bers. An alternative solution would be to upgrade the ex-

isting free Orbiter solution to a new graphic engine such 

as DX11 and integrate a hot landing scenario. 

In future research, it is planned to use the selected 

tools and their integration to model the behaviour of 

launch vehicle components and develop a system for 

recognizing and analyzing video data using machine 

learning for aircraft landing. 

 
Contributions of authors: conceptualization and 

methodology –Oleksii Vynokur; formulation of tasks – 

Iryna Perova; analysis, writing – original draft prepara-

tion – Oleksii Vynokur; review and editing –Polina 

Zhernova.  
 

Conflict of interest 

The authors declare that they have no conflict of in-

terest concerning this research, whether financial, per-

sonal, authorship or otherwise, that could affect the re-

search and its results presented in this paper. 

 

Financing 

The study was conducted without financial support. 

Data availability 

The manuscript has no associated data. 

 

Use of artificial intelligence 

The authors confirm that they did not use artificial 

intelligence technologies when creating the current work. 

 

Acknowledgments 

We wish to thank Kharkiv National University of 

Radio Electronics for providing the resources necessary 

for this study. Our appreciation extends to the editorial 

team of the journal RECS at the National Aerospace Uni-

versity "Kharkiv Aviation Institute" for considering and 

publishing our article. 

 

All the authors have read and agreed to the pub-

lished version of the manuscript. 

 

References 
 

1. Unity Engine. Unity Technologies, 2024. Avail-

able at: https://unity.com (accessed 01 March 2024). 
2. Day, S., Smallwood, W. K., & Kuhn, J. Simu-

lating Industrial Control Systems Using Node-RED and 

Unreal Engine 4. National Cyber Summit (NCS) Re-

search Track, Springer, 2021, vol. 310. Available at:  

https://link.springer.com/chapter/10.1007/978-3-030-

84614-5_2  (accessed 01 March 2024).  

3. Durnyak, B. OpenRocket Technical Documen-

tation, 2013. 

4. Berndt, J. JSBSim Development Team JSBSim: 

An Open Source Flight Dynamics Model in C++, 2011.  

5. Orbiter is Now Open Source. Orbiter Forum, 

2021. Available at: https://www.orbiter-fo-
rum.com/threads/orbiter-is-now-open-source.40023/ 

(accessed 04 March 2024). 

6. Unreal Engine Forums. How to speed up the en-

gine. Unreal Engine Forums, 2018. Available at: 

https://forums.unrealengine.com/t/how-to-speed-up-the-

engine-for-reinforcement-learning/426647 (accessed 19 

December 2024). 

7. Large World Coordinates in Unreal Engine 5. 

Epic Games, 2022. Available at: https://dev.epicgames. 

com/documentation/en-us/unreal-engine/large-world-

coordinates-in-unreal-engine-5?application_version=5.0 
(accessed 04 March 2024). 

8. Float and Double Type (C#* reference). Mi-

crosoft Docs, 2022. Available at: https://learn.mi-

crosoft.com/en-us/dotnet/csharp/language-refer-

ence/builtin-types/floating-point-numeric-types (ac-

cessed 07 March 2024). 

9. Direct3D. Microsoft, 2021. Available at: 

https://learn.microsoft.com/en-us/windows/win32/di-

rect3d (accessed 07 March 2024). 

10. Epic Games. Physics in Unreal Engine. Epic 

Games Developer Hub. Available at: 

https://dev.epicgames.com/documentation/en-us/unreal-
engine/physics-in-unreal-engine (accessed 14 December 

2024). 

11. Gor-Ren. Pre-built OpenAI Gym interfaces for 

RL training with JSBSim/FlightGear. GitHub, 2018 

Available at: https://github.com/Gor-Ren/gym-jsbsim# 

(accessed 14 December 2024). 

12. JSBSim-Team. Frequently Asked Questions. 

GitHub, 2022. Available at: https://github.com/JSBSim-

Team/jsbsim/wiki/Frequently-Asked-Questions (ac-

cessed 14 December 2024). 

13. OpenRocket. Open-source software with pub-
licly available source code. GitHub, 2023. Available at: 

https://unity.com/
https://doi.org/10.1007/978-3-030-84614-5_2
https://link.springer.com/chapter/10.1007/978-3-030-84614-5_2
https://link.springer.com/chapter/10.1007/978-3-030-84614-5_2
https://www.orbiter-forum.com/threads/orbiter-is-now-open-source.40023/
https://www.orbiter-forum.com/threads/orbiter-is-now-open-source.40023/
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/floating-point-numeric-types
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/floating-point-numeric-types
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/floating-point-numeric-types
https://learn.microsoft.com/en-us/windows/win32/direct3d
https://learn.microsoft.com/en-us/windows/win32/direct3d
https://learn.microsoft.com/en-us/windows/win32/direct3d


ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 1(113)               ISSN 2663-2012 (online) 
312 

https://github.com/openrocket/openrocket (accessed 19 

December 2024). 

14. FlightGear open-source flight simulator, 

FlightGear, GitLab, 2015. Available at: 

https://gitlab.com/flightgear/flightgear#:~:text (accessed 

15 December 2024). 

15. Making a Space Flight Sim, 2012. 

GameDev.net. Available at: https://www.gamedev.net/ 

forums/topic/626934-making-a-space-flight-

sim/#:~:text (accessed 15 December 2024). 

16. Orbiter 2005 A Real-Physics Spaceflight Simu-
lation. SimHQ.net, 2006. Available at: 

https://www.simhq.net/_air6/air_211a.html# (accessed 

15 December 2024). 

17. Whiteastercom. Kerbal Space Program - com-

plex environment for Reinforcement Learning. Me-

dium.com., 2018. Available at: https://me-

dium.com/@whiteastercom/kerbal-space-program-com-

plex-environment-for-reinforcement-learning-

12318db065f5#:~:text= (accessed 17 December 2024). 

18. Algoryx brings high-fidelity physics simulation 

to Unreal Engine. Unreal Engine, Epic Games, 2023. 
Available at: https://www.unrealengine.com/en-

US/spotlights/algoryx-brings-high-fidelity-physics-sim-

ulation-to-unreal-engine (accessed 19 December 2024). 

19. How realistic is Kerbal Space Program. Space 

Stack Exchange, 2014 Available at: 

https://space.stackexchange.com/questions/4505/ (ac-

cessed 14 December 2024). 

20. Question: Is Unreal Engine Open Source? 

DragonflyDB. Available at: https://www.dragon-

flydb.io/faq/is-unreal-engine-open-source (accessed 19 

December 2024). 

21. Orbiter. OrbiterWiki, 2024 Available at: 
https://www.orbiterwiki.org/wiki/Orbiter#: (accessed 14 

December 2024). 

22. What is OpenRocket. OpenRocket Wiki, 2023. 

Available at: https://wiki.openrocket.info/Introduc-

tion#:~:text (accessed 18 December 2024). 

23. Kerbal Space Program Differential Game Chal-

lenge. MIT Lincoln Laboratory, 2024. Available at: 

https://www.ll.mit.edu/conferences-events/2024/01/ker-

bal-space-program-differential-game-challenge#:~:text 

(accessed 17 December 2024). 

24. Zhao, Z., Xiao, T., Tang, Z., Gao, X., Liu, X., 
Zhang, W., & Liu, B. Development of a Landing Leg 

with Active Buffering and Anchoring Functions Applied 

to the Small Body Landing Mechanism. 2020 Interna-

tional Conference on Mechatronics and Automation 

(ICMA), Beijing, China, IEEE, 2020, pp. 695-699. DOI: 

10.1109/ICMA49215.2020/9. 

25. Mo, F., Ye, F., Xie, J., Zhu, H., Liu, R., & Jin, 

J. A Novel Spacecraft Attitude Recovery Method Based 

on Platform Vibration. 2019 9th International Confer-

ence on Recent Advances in Space Technologies (RAST), 

Istanbul, Turkey, IEEE, 2019, pp. 117-122. DOI: 

10.1109/RAST.2019.8767849. 

26. Peng, C. C., Chan, C. Y., Lin, J. H., & Hsieh, T. 

Y. Spacecraft 6-DoF Localization in a GPS denied Envi-

ronment. International Conference on Consumer Elec-

tronics-Taiwan (ICCE-TW), Penghu, Taiwan, IEEE, 

2021, pp. 1-2. DOI: 10.1109/ICCE-

TW52618.2021.9603214. 

27. Cantri, F. M., Bisri, M. H., & Irwanto, H. Y. 

Realtime Simulation for Rocket Using Visual Program-

ming. 2022 8th Information Technology International 

Seminar (ITIS), Surabaya, Indonesia, IEEE, 2022, pp. 

150-155. DOI: 10.1109/ITIS57155.2022.10010182. 
28. Wang, J., Ma, H., Li, H., & Hongbo, C. Real-

time guidance for powered landing of reusable rockets 

via deep learning. Neural Computing & Applications, 

Springer, 2023, vol. 35. Available at:  

https://link.springer.com/article/10.1007/s00521-022-

08024-4  (accessed 10 March 2024). 

29. Abate, M., Anandapadmanaban, E., Bao, L., 

Challani, S., Gaughan, J., Jiang, A., Lingineni, A., Vora, 

A., Yang, C., & Zhao, D. Correlation Between Simu-

lated, Calculated, and Measured Model Rocket Flight. 

2014. Available at: http://ftp.demec.ufpr.br/foguete/bib-
liografia/Abate_et_al_2014.pdf (accessed 12 March 

2024). 

30. Niskanen, S. Development of an Open Source 

model rocket simulation software. MSc thesis. Helsinki 

University of Technology, 2009 Available at: 

https://openrocket.sourceforge.net/thesis.pdf#:~:text (ac-

cessed 18 December 2024). 

31. Chander, S. Rendering & Lighting a Photoreal-

istic Abandoned Scene in Unreal Engine 5. 80 Level, 

2023. Available at: https://80.lv/articles/rendering-light-

ing-a-photorealistic-abandoned-scene-in-unreal-engine-

5/ (accessed 19 December 2024). 
32. Wood, A., Sydney, A., Chin, P., Thapa, B., & 

Ross, R.  GymFG: A Framework with a Gym Interface 

for FlightGear. 2020. ArXiv. Available at: 

https://arxiv.org/pdf/2004.12481# (accessed 14 Decem-

ber 2024). 

33. Eerland, W., Box, S., & Sobester, A. Cambridge 

rocketry simulator-a stochastic six-degrees-of-freedom 

rocket flight simulator. Journal of Open Research Soft-

ware, 2017, vol. 5, no 1, pp. 1-6. Available at:  

https://openresearchsoftware.metajnl.com/arti-

cles/10.5334/jors.137 (accessed 12 March 2024). 
34. Ansys STK. Ansys, 2024. Available at: 

https://www.ansys.com/products/missions/ansys-stk (ac-

cessed 03 March 2024). 

35. Bykerk, T., & Karl, S. Preparatory CFD Studies 

for Subsonic Analyses of a Reusable First Stage 

Launcher during Landing within the RETPRO Project. 

Aerospace Europe Conference 2023, Goettingen, 2023, 

pp. 1-10. Available at: https://elib.dlr.de/194477/3/ 

ELIB-Eintrag-2023-BykerkT-194477-Paper-

Published.pdf (accessed 07 March 2024). 

 

Received 17.06.2024, Accepted 17.02.2025 

 

https://doi.org/10.1109/RAST.2019.8767849
https://doi.org/10.1109/RAST.2019.8767849
https://doi.org/10.1109/ICCE-TW52618.2021.9603214
https://doi.org/10.1109/ICCE-TW52618.2021.9603214
https://doi.org/10.1109/ITIS57155.2022.10010182
https://doi.org/10.1007/s00521-022-08024-4
https://link.springer.com/article/10.1007/s00521-022-08024-4
https://link.springer.com/article/10.1007/s00521-022-08024-4
http://ftp.demec.ufpr.br/foguete/bibliografia/Abate_et_al_2014.pdf
http://ftp.demec.ufpr.br/foguete/bibliografia/Abate_et_al_2014.pdf
https://doi.org/10.5334/jors.137
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.137
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.137
https://www.ansys.com/products/missions/ansys-stk
https://www.ansys.com/products/missions/ansys-stk


Information technologies and models of management 
 

313 

 

ОГЛЯД МЕТОДІВ ВІЗУАЛІЗАЦІЇ ДЛЯ РОЗРАХУНКІВ ЗАПУСКУ ТА ПОСАДКИ  

КОСМІЧНИХ АПАРАТІВ ТА ПРОБЛЕМА ГРАНИЧНИХ ЗНАЧЕНЬ 64-БІТНИХ СИСТЕМ 

О. О. Винокур, І. Г. Перова, П. Є. Жернова 

Предмет статті ‒ сучасні програмні рішення, що використовуються для моделювання та візуалізації ко-

смічних місій, зокрема на етапах запуску, польоту та посадки. Метою статті є критична оцінка популярних 

ігрових рушіїв, таких як Unity та Unreal Engine 5, а також спеціалізованого програмного забезпечення для 

симуляції польотів, як-от OpenRocket і Orbiter, з фокусом на їх застосування у космічних симуляціях. Завдання 

дослідження включають: вивчення та оцінку можливостей ігрових рушіїв Unity та Unreal Engine 5 у контексті 

космічних місій; виявлення обмежень точності 64-бітових чисел з плаваючою комою для великомасштабних 

космічних симуляцій та пропозицію потенціалу переходу на 128-бітові системи; оцінку спеціалізованих ін-
струментів, таких як OpenRocket та Orbiter, щодо їх використання для моделювання поведінки космічних апа-

ратів; аналіз існуючих обмежень в інтеграції даних у реальному часі та пропозицію напрямків для подальших 

досліджень та розробок. Результати. Було встановлено, що Unity та Unreal Engine 5, хоча і розроблені в першу 

чергу для ігрової індустрії, можуть бути адаптовані для аерокосмічних симуляцій. Проте через обмеження 64-

бітової точності вони схильні до візуальних артефактів та обчислювальних помилок, які компрометують точ-

ність симуляцій. Перехід на 128-бітові системи було визначено як перспективний підхід до підвищення точ-

ності та гнучкості моделювання космічних місій. Цей перехід дозволив би краще обробляти великі масштаби 

та детальні аспекти космічних симуляцій. Спеціалізовані інструменти, такі як OpenRocket та Orbiter, проде-

монстрували високі можливості у моделюванні аеродинамічних характеристик та космічних місій. Водночас 

вони також стикаються з обмеженнями при обробці великомасштабних явищ або інтеграції даних у реальному 

часі. Виявлено потребу у подальших дослідженнях та розробці нових алгоритмів і структур даних для забез-
печення високої точності та підтримки великих наборів даних. Крім того, необхідно покращити інтеграцію 

даних у реальному часі та користувацькі інтерфейси, щоб зробити ці інструменти більш доступними. Висно-

вки. Розробка 128-бітових систем для космічних симуляцій є критично важливою для підвищення точності та 

реалістичності моделювання. Ігрові рушії Unity та Unreal Engine 5, хоча мають потенціал для адаптації до 

аерокосмічних симуляцій, потребують значного покращення в обробці великих масштабів та детальних аспе-

ктів. Інструменти OpenRocket та Orbiter мають значний потенціал у спеціалізованих галузях, але також пот-

ребують вдосконалення для розширення своїх можливостей. Необхідні подальші дослідження та розробки 

для створення нових рішень, які підвищать точність і функціональність програмного забезпечення для моде-

лювання космічних місій, а також розробки нового апаратного забезпечення, такого як більш потужні проце-

сори та збільшена пам'ять. 

Ключові слова: програмне забезпечення; ракети-носії; ННО; візуалізація розрахунків; граничні стани 

комп'ютерних систем; посадка літаків; ігрові рушії; моделювання фізичних явищ. 
 

 

Винокур Олексій Олександрович – здобувач ступеня доктора філософії з комп’ютерних наук, Харків-

ський національний університет радіоелектроніки, Харків, Україна. 

Перова Ірина Геннадіївна – д-р техн. наук, проф., каф. системотехніки, Харківський національний уні-

верситет радіоелектроніки, Харків, Україна. 

Жернова Поліна Євгеніївна – канд. техн. наук, старший викладач, факультет цифрових технологій, 

American University Kyiv; провідний спеціаліст з розвитку талантів, керівник проєкту, Познань, Польща. 

 

 

Oleksii Vynokur – PhD Student in Computer Science, Kharkiv National University of Radio Electronics, 
Kharkiv, Ukraine,  

e-mail: avinokur4@gmail.com, ORCID: 0009-0001-4328-3886. 

Iryna Perova – Dr. Tech. Sc., Professor, Department of System Engineering, Kharkiv National University of 

Radio Electronics, Kharkiv, Ukraine, 

e-mail: rikywenok@gmail.com, ORCID: 0000-0003-2089-5609, Scopus Author ID: 57189383519,  

Researcher ID: V-7479-2017. 

Polina Zhernova – PhD, Senior Lecturer, Faculty of Digital Technologies, American University Kyiv; Lead 

Talent Development Specialist, Project Manager, Poznan, Poland,  

e-mail: polina.zhernova@gmail.com, Scopus Author ID: 57202212660. 

 


