208 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
UDC 004.4 doi: 10.32620/reks.2025.1.19

Oleksii VYNOKURY?, Iryna PEROVA?, Polina ZHERNOVA?

! Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
2 American University Kyiv, Kyiv, Ukraine

ANALYTICAL REVIEW OF VISUALIZATION METHODS FOR LAUNCH
AND LANDING OF SPACECRAFT WITH CONSIDERATION
OF 64-BIT SYSTEM BOUNDARY VALUE ISSUES

The subject matter of this article is the contemporary software solutions used for modeling and visualizing
spacecraft missions, specifically during the stages of launch, flight, and landing. The goal of this article is to
critically evaluate popular game engines like Unity and Unreal Engine 5, along with specialized flight simulation
software such as OpenRocket and Orbiter, focusing on their application in space simulations. The tasks are as
follows: to investigate and assess the capabilities of the Unity and Unreal Engine 5 game engines in the context
of space missions; to identify the limitations of 64-bit floating-point precision for large-scale space simulations
and propose the potential for transitioning to 128-bit systems; to evaluate specialized tools like OpenRocket and
Orbiter regarding their use for simulating spacecraft behavior; to analyze the existing limitations in integrating
real-time data and suggest directions for further research and development. The obtained results of the article:
It was established that Unity and Unreal Engine 5, although primarily developed for the gaming industry, can
be adapted for aerospace simulations. However, due to the limitations of 64-bit precision, they are prone to
visualization artifacts and computational errors that compromise the accuracy of the simulations. The transition
to 128-bit systems was identified as a promising approach for enhancing the precision and flexibility of space
mission modeling. This shift would allow better handling of the extensive scales and detailed aspects of space
simulations. Specialized tools like OpenRocket and Orbiter demonstrated high capabilities in modeling aerody-
namic characteristics and space missions. Nevertheless, they also face limitations in handling large-scale phe-
nomena or integrating real-time data. The need for further research and development of new algorithms and
data structures to ensure high precision and support for large datasets was identified. Additionally, improving
the integration of real-time data and user interfaces is necessary to make these tools more accessible. Conclu-
sions. The development of 128-bit systems for space simulations is critically important for enhancing the accu-
racy and realism of the modeling. The Unity and Unreal Engine 5 game engines although having the potential
for adaptation to aerospace simulations, require significant improvements in handling large scales and detailed
aspects. The tools OpenRocket and Orbiter have significant potential in specialized areas but also need enhance-
ment to expand their capabilities. Further research and development are necessary to create new solutions that
will increase the accuracy and functionality of the software for simulating space missions, as well as to develop
new hardware such as more powerful processors and increased memory.

Keywords: Software; Launch vehicles; LEO; Visualization of calculations; limit states of computer systems;
aircraft landing; game engines; simulation of physical phenomena.

to the lack of accuracy in large-scale computations that
are critical to spaceflight [7, 1].

Introduction

Space mission simulations play a crucial role in ad-
vancing the efficacy and safety of space missions. The
main tools in this field include game engines such as
Unity [1] and Unreal Engine 5 [2], and specialized flight
simulation software such as OpenRocket [3] and Orbiter
[5]. Each of these tools has its own advantages and limi-
tations that should be considered when planning mis-
sions. Game engines, while not traditionally associated
with the space industry, offer significant visualization
and interactivity capabilities, but their use is limited due

Motivation. The current 64-bit architecture [8, 9]
imposes limitations on the accuracy and scale of space
simulations, leading to issues such as visualization arti-
facts and computational errors. There is a pressing need
to explore and develop alternative approaches that can
overcome these limitations. This research aims to criti-
cally analyze existing tools and propose enhancements to
improve spacecraft launch and landing simulations. This
paper discusses the impact of the limitations of the cur-
rent 64-bit architecture [8, 9] on the accuracy and scale

Creative Commons Attribution
NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

Information technologies and models of management

299

of space simulations. Problems, such as visualization ar-
tifacts and computational errors, often arise as a result of
the limitations of these systems. Potential solutions and
alternative approaches are also discussed, including the
development of 128-bit computing systems, which can
provide significant improvements in data processing and
space mission simulation.

State of the Art. Existing mathematical modeling
and flight simulation software, such as MatLab and
OpenRocket [3], suffer from disadvantages in terms of
visualization and accuracy. They face challenges in add-
ing more parameters that describe the physical phenom-
ena experienced by the spacecraft during flight, such as
calculations of support points, interaction of support ma-
terials with surfaces, and stability of the structure relative
to its geometry. Despite their visualization strengths,
game engines are hindered by the limitations of 64-bit ar-
chitecture in handling complex simulations [7 - 9].

Objective. This study aims to evaluate and compare
various tools and technologies used for spacecraft land-
ing and launch simulations. The focus is on identifying
the most effective methods for enhancing these simula-
tions, particularly through the use of game engines and
the development of advanced computational systems like
128-bit architecture.

Approach and Structure. The paper begins with a
detailed examination of each tool and technique, analyz-
ing their strengths and weaknesses. It then discusses the
potential of 128-bit computing systems to address the
current limitations. The structure of the paper is as fol-
lows:

Case Studies. Evaluation of recent advancements in
landing systems and simulation methods, including inno-
vative approaches in mechanical adaptation, real-time
force sensing, and deep learning for powered landing
guidance.

Review of Simulation Tools. Analysis of the game
engines and specialized simulation software, highlight-
ing their capabilities and limitations.

Impact of the 64-bit architecture. Discussion on
how the current architecture affects the simulation accu-
racy and scale, with examples of common issues.

Potential Solutions. Exploration of advanced com-
puting systems and their benefits for space mission sim-
ulations.

This introduction sets the stage for a more detailed
look at each of the tools and techniques that will be ana-
lyzed in the following sections of the paper, intending to
identify the most effective ways to improve spacecraft
launch and landing simulations.

Mathematical modeling or flight simulation soft-
ware such as MatLab and OpenRocket [3] have several
disadvantages in terms of the visualization and accuracy
of the representation of the flight and landing process.
One of the main ones is the difficulty in adding more

parameters describing the physical phenomena experi-
enced by the aircraft during the flight. These include: cal-
culations of the support points of the landing aircraft, the
interaction of the support materials and the surfaces with
which they interact, and calculations of the stability of
the structure relative to its geometry, etc. Accordingly,
game engines are a good option for speeding up and re-
fining the results of aircraft landing simulations. How-
ever, both simulation programs and game engines have
the problem of calculations on a large scale. Existing
computers use a 64-bit architecture [8, 9], which provides
3 types of data for processing: float - 4 bytes, double - 8
bytes, decimal - 16 bytes [8, 9]. Game engines, in turn,
do not use the decimal type out of necessity, as conven-
tional games do not perform complex simulations on a
planet scale, which leads to difficulties in calculating the
trajectories of even suborbital flights [7].

As highlighted in the introduction, the advance-
ments in spacecraft landing systems and simulation tech-
nologies are crucial for enhancing the efficacy and safety
of space missions. Significant research efforts have been
directed toward developing innovative landing systems
and simulation methods, addressing the unique chal-
lenges presented by space exploration. In the review [24],
the authors proposed a novel landing leg with electro-
magnetic damping and anchoring capabilities for small
celestial bodies where microgravity and unpredictable
surface conditions prevail. This study integrates a com-
prehensive approach combining mechanical adaptation
and real-time force sensing to stabilize the landing pro-
cess and prevent post-landing drift, reflecting a substan-
tial evolution from traditional passive buffering methods
like honeycomb aluminum used in lunar and Martian
missions.

Survey [25] discusses a new spacecraft attitude re-
covery method that leverages platform vibration to miti-
gate errors and losses in attitude data critical for space-
craft maneuvering. This paper provides an extensive re-
view of the challenges in attitude data acquisition and
presents a validated recovery strategy using the ZY302
satellite, highlighting the method's applicability and high
correlation with true attitude data.

In the context of simulation technologies, the paper
[26] introduced a real-time simulation framework for
rocket control using the visual programming environ-
ments LabVIEW and X-Plane. The authors focus on the
development of a robust simulation interface that facili-
tates comprehensive testing and iterative enhancements
of rocket control algorithms, a critical aspect in reducing
the risk associated with live launches.

Furthermore, [27] explored agile mission planning
for emergency space launches. This paper systematically
constructs a flexible and responsive mission planning
framework that incorporates multitask and multiplatform

300

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

considerations. This method is pivotal for rapid deploy-
ment missions, enabling efficient resource scheduling
and on-the-fly adjustments to launch plans.

The use of deep learning for improving the powered
landing guidance on reusable rockets is examined in [28].
The authors developed a network-based framework that
categorizes initial flight conditions to optimize thrust
profiles and landing trajectories, significantly advancing
the adaptability and accuracy of autonomous guidance
systems.

The paper structure. In Section 1, "Materials and
Methods of Research," we explore the fundamental con-
cepts and methods required for spacecraft trajectory cal-
culations. This section begins with a detailed discussion
of the ballistic trajectories, examining the factors affect-
ing flight and landing in both two-dimensional and three-
dimensional spaces. We then cover methods for visualiz-
ing these trajectories using simulation tools. Further-
more, the section highlights the use of Tsiolkovsky’s for-
mula for velocity change, the role of the Earth’s curvature
in trajectory planning, and the challenges of designing
landing supports. The integration of game engines for
modeling spacecraft landing processes and the issues re-
lated to boundary values in 64-bit systems are also dis-
cussed.

In Section 2, "Results and Discussion," we review
software for visualizing spacecraft trajectories, focusing
on OpenRocket, Kerbal Space Program, Unity, Unreal
Engine 5, and Orbiter. Each tool’s capabilities are as-
sessed for accuracy, visualization quality, and handling
complex physics such as air resistance and object geom-
etry. In addition, limitations such as artifact generation in
Unity and outdated graphic engines in Orbiter are dis-
cussed.

The paper concludes with the Conclusions section,
which outlines the key findings from the review of avail-
able tools for spacecraft flight and landing simulations. It
emphasizes the limitations of the current solutions for
non-standard scenarios and proposes potential improve-
ments. Two main development paths are suggested: opti-
mizing game engine algorithms for more efficient use of
virtual space and upgrading older software like Orbiter to
modern graphics standards. The section also points to fu-
ture research directions, including integrating machine
learning to enhance the analysis and simulation of land-
ing sequences.

1. Materials and methods of research

Let's take a look at the simplest 2D visualization of
a spacecraft flight, as well as what is needed for a more
accurate calculation of both flight and landing in 3-di-
mensional space, taking into account more parameters.

1.1. Ballistic Trajectory

The ballistic trajectory of a spacecraft is a funda-
mental concept in space dynamics that determines the
path of an object in space under the influence of external
forces alone, without any additional propulsive maneu-
vering after the initial launch phase. In the context of the
Earth, this usually means gravity and, in the initial stages,
the aerodynamic drag of the atmosphere.

At the simplest level, the ballistic trajectory can be
thought of as a parabolic motion when atmospheric drag
is ignored, or as a more complex flight under the influ-
ence of aerodynamic drag. It is the result of the initial
speed and launch angle, which together determine the
range, altitude and duration of the flight.

Equation for calculating the flight range (excluding
air resistance):

D:(V%sin(ze))+g, 1)

where D is the flight range;
Vo is the initial velocity;
0 is the launch angle relative to the horizon;
g is the free fall acceleration (9.81m/s? on the Earth's
surface).
Maximum height reached by the object:

H=(v§sin? (0))+29, @

where H is the maximum height.

The simulation software allows you to visually
model the trajectory, considering various external fac-
tors, and assess potential risks and options during the crit-
ical phases of the mission.

1.2. Methods for visualizing 2D trajectories

The use of two-dimensional graphs to show key
driving parameters, such as distance, speed, and angle of
ascent, allows you to analyze the effectiveness of the
planned route and make the necessary adjustments.

The simulation software allows you to visually
model the trajectory, taking into account various external
factors, and assess potential risks and options during crit-
ical phases of the mission (Fig. 1).

1.3. Cialkowski's formula

In modern launch vehicles, the largest mass fraction
is occupied by fuel, not payloads or control systems. The
mass fraction of fuel ranges from 90-97% [29] of the total
weight of the aircraft. Accordingly, we need to use the
Tsiolkovsky formula in our calculations. It expresses the

73
S
S

N
]
S

Res

PV e S SRR, %

17,5

25

10,0

Information technologies and models of management 301
Simulation 1
Custom
2000 oo 5 21 200
bt £ 2 g =
£, 11000 F 5 £ E 175
QIR ol i H Z
> 2150 | £ £ = Cl 150
£ = = & >
g 1250 | | [125 09
S 3 g &
2 = 1000 =3 L1000 S
sE 5
28 ™ 50§
- -
= g
83
Eg
<

=250

S Sira———

v
-2,5

0 1 2 3 4 56 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Time (s)

- Altitude (m)
-~ Lateral distance (m)

- Vertical velocity (m/s)

Vertical acceleration (m/s?)
Angle of attack(*)

Fig. 1. An example of using Open Rocket to calculate a ballistic trajectory

relationship between the mass of fuel burned and the
rocket's ability to change its speed. The Tsiolkovsky for-
mula is a key equation in astrodynamics that allows us to
calculate the required change in velocity (Av Av) that is
needed for a spacecraft to reach a certain orbit or perform
a manoeuvre in space [33].

Av:lspxgoxln(m0+mf), (3)
where: Av —required speed change (m/s);

Isp — specific impulse response of the engine (sec);

Jo — standard acceleration of free fall on the Earth's
surface (9.81m/s?);

Mo — initial mass of the rocket (kg);

m¢ — final mass of the rocket after fuel combustion
(kg).

There are two ways to visualize this formula: a

graph of Av versus fuel weight and a simulation of the
specific impulse response.

1.4. Curvature of the Earth's surface

The curvature of the Earth is a crucial factor in the
planning and analysis of spacecraft flight paths. This as-
pect is of particular importance when calculating the or-
bital parameters, in-flight course correction, and when
designing missions with a return to Earth. Considering
the surface curvature allows for more accurate prediction
and adaptation of trajectories to achieve the required mis-
sion objectives.

The curvature of the Earth's surface affects the cal-
culation of orbits and trajectories because it requires
spacecraft control systems to make corrections to com-
pensate for this curvature. For example, without taking

the curvature into account, planning a return to the launch
point on Earth would not be possible because the space-
craft would simply fly past the target point.

The visualization techniques for this parameter in-
clude:
Global Earth models, which use three-dimen-
sional Earth models to simulate trajectories, allow us to
visually consider the curvature of the Earth's surface and
analyze potential spacecraft trajectories on a global scale;
Globe mapping for projecting a flight path on a
physical or virtual globe helps to determine the actual
distances and orientation of the trajectory relative to the
Earth's surface, contributing to a better understanding of
mission parameters;
Orbit analysis software such as Ansys STK
(Systems Tool Kit) [34], which is proprietary and expen-
sive, or Orbiter [5] - which has some quite old code bases
and was released to the public in April 2021 [5] - allows
the integration of physical and astro-dynamic parameters
of the Earth, including its curvature, to accurately model
flight paths;
Demonstration of ways to correct trajectories to
account for the Earth's curvature, such as using gravity
maneuvers or speed changes to achieve the required or-
bital parameters.

1.5. Problem of calculation of aircraft geometry
supports at landing and physics of their
interactions with the surface

The design of a spacecraft landing system is a com-
plex task that requires consideration of numerous factors
to ensure the safety and stability of the vehicle during
landing.

302

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Main challenges:

— Load distribution - the pores should be designed
to effectively distribute the weight of the vehicle on the
surface, minimizing the risk of sinking or tipping over
during landing.

— Surface adaptation - pores must adapt to the va-
riety of surfaces they may encounter, which requires flex-
ibility in design and material use.

— Shock absorption - landing can be accompanied
by strong impacts, so the support system must include
shock absorption elements to protect the vehicle and its
equipment.

Modern engineering software tools allow for the
creation of detailed three-dimensional models of the sup-
port system, which simplifies the analysis of potential
problems and design improvements [34].

Simulations can demonstrate how the supports in-
teract with different types of surfaces under different
landing conditions, allowing for load distribution analy-
sis and identification of potential failure points. The use
of dynamic simulations helps to assess how the support
system absorbs shocks and ensures the stability of the ve-
hicle when it comes into contact with the surface. In turn,
the virtual environment allows engineers to test different
configurations and landing conditions, finding optimal
solutions without risking the real vehicle.

1.6. Use of a game engine to calculate
the supports of the aircraft geometry during
landing and the physics of their interactions

with the surface

Game engines such as Unreal Engine [2] and
Unity [1] has opened up new possibilities for spacecraft
engineering and design, including simulations of landing
processes. Thanks to their powerful visualization and
physics capabilities, these engines allow for detailed,
realistic simulations that can mimic the complex interac-
tions between the aircraft and the surface during landing.

Game engines integrate advanced physics
engines [35] to accurately simulate the gravitational
forces, friction, damping, and other physical properties
necessary for landing analysis.

Modern game engines are capable of producing
high quality visual effects, including realistic lighting and
shadows, which allows you to visually analyze the be-
havior of the vehicle under different lighting conditions
during landing.

Advantages of using game engines:

— game engines allow users to interact with the
model in real time, changing parameters and conditions
to analyze different landing scenarios. This contributes to
a better understanding of the potential problems and the
effectiveness of the solutions developed;

— the use of game engines provides access to var-
ious modeling, visualization, and analysis tools that al-
low for detailed calculation of every aspect of the landing
process, from motion dynamics to surface impact;

— the use of game engines for preliminary model-
ing can significantly reduce costs [2, 7] as it allows po-
tential problems to be identified and addressed early in
the design process, avoiding costly mistakes and reduc-
ing the need for physical tests;

— game engines allow simulating a variety of
landing scenarios on any surface, from Earth to Mars or
even asteroids, with the ability to easily scale the design
to meet specific mission needs.

The use of game engines for modeling and visualiz-
ing landing processes opens up new perspectives for de-
signing and analyzing space missions, allowing develop-
ers to create more efficient, safe and reliable lander sys-
tems.

1.7. The problem of boundary values
of 64-bit systems

The limitations of precision and number size in 64-
bit computing systems pose challenges not only for tra-
ditional scientific and engineering applications, but also
for game engines such as Unity and Unreal Engine, espe-
cially when working with space simulations and large-
scale virtual environments.

Unity uses the float type for physics calculations
and rendering, which provides sufficient accuracy for
most game projects and virtual reality applications [1].
However, the float type has limited accuracy, especially
when working with very large or small values, which is
typical for cosmic distances or simulating microscopic
processes. This can lead to rounding errors and other in-
accuracies in the visualization and physical calculations.

Unreal Engine 5, despite its advanced technology
foundation, also faces challenges in handling large and
small values, even when using double-precision
numbers [7]. Although double precision increases the
range and accuracy of the numbers that can be repre-
sented, game engines often encounter problems when
rendering large-scale scenes or accurately modeling
physical processes on a cosmic scale. This can include
errors in calculations, inaccuracies in object mapping,
and other artifacts that make it difficult to create virtual
environments that require high accuracy and realism
(Fig. 2).

Developing and using adaptive coordinate systems
that can change scale depending on the context of the
scene, allowing for high accuracy calculations in differ-
ent parts of the virtual world [2]. Review and optimize
algorithms to minimize the impact of accuracy con-
straints, including the use of high fidelity algorithms

Information technologies and models of management

303

UNREAL ENGINE 4

In Unrea! Engin © fimited to 32-bit floating po

T Vake Teral Fiat |

3200 Pl

UNREAL ENGINE 5
a Unreal Engine 5, Large Weeld Coordinate

—p | 3204 F0st

Fig. 2. Changes in the new version of the Unreal Engine 5 engine added
the ability to use the double precision method [7]

where appropriate. In the context of overcoming the lim-
itations of number precision and magnitude, 128-bit com-
puting systems represent a potential future development
offering an even greater range of number representation
and increased computing accuracy (Table 1). Although
128-bit systems are currently in the early stages of re-
search and development, their potential implementation
could radically change the way data is processed in re-
search, engineering, and the gaming industry. This tran-
sition will require significant efforts in the development
of software and hardware solutions but promises to sig-
nificantly improve the ability to model complex systems
and processes that require high computational accuracy
on a large scale or when working with very small values.

Table 1
Bit capacity of the system and the number
of its possible states

Bits States
1 2
2 4
4 16
8 256
166 | 65,536

32 | 4,294,967,296

64 | 18,446,744,073,709,551,616

128 | 340,282,366,920,938,463,463,374,607,
431,768,211,456

2.Results and Discussion

As mentioned above, the best way to visualize the
calculations of the aircraft launch is to use software that
graphically displays the trajectory, inclination and, for
example, air friction. Let's move on to reviewing the
available solutions.

2.1. OpenRocket

One of the simplest programs for visualizing rocket
flight is OpenRocket. It is a free program for simple cal-
culations of small amateur solid rockets. It has a large list
of settings for both the appearance of the rocket and the
fuel components it will have (Fig. 3).

The software has both a schematic and 3D visuali-
zation of the finished rocket and takes into account its
geometry, air friction, temperature and pressure differ-
ences at different stages of flight (Fig. 4).

To visualize the calculations, this program uses
simple continuous charts that show both simple indica-
tors such as flight altitude, and more complex ones such
as rotation about all axes according to the geometry and
solid propellant impulse (Fig. 5).

2.2. Kerbal Space Program

Kerbal Space Program is a space mission simulator
with the ability to design and control an aircraft. Unlike
OpenRocket, the results of the design can be viewed im-
mediately after completion in 3D, as well as participate
in the process of controlling the aircraft by launching it
into orbit and editing the mission according to the current
situation (Fig. 6). The program has an interactive inter-
face with a lot of information about the mission status and
the most realistic visualization.

It also has two types of mission status view: local,
when we see the aircraft in our immediate vicinity, and
global, where we see only the flight path and orbit
(Fig. 7). Unfortunately, the program has a small list of
aircraft modifications and provides the possibility of
landing only with parachutes, which is problematic for
medium and large launch vehicles.

304 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)

Rocket design | Motors & Configuration | Flight simulations| Add new

TestRodeet s > [AssemblyC |
[<48 Sustainer Move up t Qjé
E] <D g J Stage Boosters Pods
Mass Component Move down < 155 . ~ |Body Components and Fin Sets l
[Bukhead o 1
] Body Tube - ' =
E Trwe 2idal FinSet Nose Cone Body Tube Transition Trapezoidal Eliptical Freeform Tube Fins Rail Button Launch Lug
Gr? Mass Component =) m I T RS
[Mass Component Battery Edit P it Inner Tube Coupler Cel'{‘if"i"g Bulkhead [;;';E:l'f
— 2
[<] === Booster Set i
N Duplicate 3 Dugate @ g M
<D Nose Cone < T Mass
C By Tbe Parachute Streamer Shock Cord ‘omponent
) gy '
= m Buganutn | ‘¥
—

Fig. 3. A set of design tools in the OpenRocket software

Flight

View Type: Zoom: Stability: Stages: configuration:

[9XHP-H195NT-10; D21T-4]

Top view /Fit (49,4%) / Show CG/CP/ Sustainer Booster Set

T- TestRocket . Stability: 0,457 cal / 4.86%
Length 94.1 cm. max. diameter 10 cm 4 CG: 49,9 cm
- Mass with no motors 2365 g . @CP:545em

at M-0,300

" Mass with motors 4213 g

Apogee: 1327 m
“Max. velocity: 434 m/s (Mach 1,282)
“ Max. acceleration: 544 m/s*

Fig. 4. 2D visualization of a rocket in OpenRocket software

Simulation 2
Vertical motion vs, time

.g = = =
12 H H
5 & & [1300
g 1000 28
H - :
E B " 250
= 750 \ .
ko) \ 1200
8 50 §
1
g 500 :’
= 00 8
b3 =
"E 250 50 é
) <3
|]
> 0 () .
=] o 2
= 2250
)
= -100
=
-500 -150

00 25 50 75 100 125 150 175200 225 250 275 300 25 350 375 400 425 450 475 00 25 550 575 600 625 650 67500 25 750 TI5 800 825 850
- Altitude (m) - Vertical velocity (m/s) -+~ Vertical acceleration (m/s?)

Fig. 5. Graph of the main parameters and flight stages in OpenRocket

Information technologies and models of management

305

2.3. Unity

Unity is a game engine with full integration of ob-
ject and light physics [1]. The software allows you to cre-
ate custom scenarios, write your own personal flight and
landing control systems, calculate the physical interac-
tion of materials, and simulate the physics of the launch

vehicle supports, taking into account the center of mass
of the structure.

In this example, we have a sphere that emulates the
Earth in an appropriate 1:1 size. The launch considered
the geometry of the planet, its gravity, air resistance ac-
cording to the flight altitude, structural streamlining, and
the center of mass of all booster modules (Fig. 8).

Fig. 6. Launch of a carrier rocket in the Kerbal Space Program

Fig. 7. Kerbal Space Program interface when switching to a large-scale view

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Fig. 8. A designed two-stage rocket on the Unity desktop

Unfortunately, when trying to simulate the real size
of the globe, we get undesirable artifacts when moving
away from the zero coordinate point. Fig. 9 shows an ex-
ample of the so-called glitch effect, when at each frame
the accuracy of calculating the coordinates of the vertices
of objects has a large error, which increases with distance
from the center of the coordinates (Fig. 9). This problem
is observed in all 64-bit systems that do not have ways to
optimize and avoid the problem of boundary values.

Since the visualization was unsuccessful, it was de-
cided to conduct a similar experiment with a scale of

1:100. An example can be seen in Fig. 10 This experi-
ment was successful and the visualization had no prob-
lems. This solution is a good way to simulate both the
flight and landing of an aircraft and limits the number of
parameters to the hardware capacity and conditions of the
experiment.

Among the disadvantages is the complexity of cal-
culations on a real-world scale; the engine uses the C#
float type to calculate the orientation of objects, which
has accuracy limits ranging from +£1.5 x 10—45 till £3.4 x
1038 [8].

Fig. 9. The glitch effect of the vertices of game objects
at a distance from the initial coordinates

Information technologies and models of management

307

-

Fig. 10. Scenario with a scale of 1:100

Fig. 11. An example of rendering objects on a real scale in Unreal Engine

2.4. Unreal Engine 5

Unreal Engine 5 is a more advanced game engine
that is more professionally oriented. The engine allows
you to easily manipulate a large virtual volume without
any discomfort. Fig. 11 shows an example of objects that
have realistic sizes of the Moon (3474800 m in diameter)

and the Earth (12742000 m in diameter) by the standards
of the game space. At the same time, this does not prevent
the emulation of the physical interaction of objects or
their animation without the glitch effects observed in the
Unity game engine. This improvement is the result of the
new version of the engine using the double precision
method, namely its implementation in the double type

308

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

(Fig. 11). Despite this, some visual and error issues still
occur, such as light and shadows being rendered with
noise, errors when editing large spaces, and the applica-
tion sometimes crashing and closing due to overloads and
errors in object calculations (Fig. 12)

2.5. A few words about Orbiter

The software is quite advanced for a free open
source solution. The software allows you to simulate
take-off, orbit correction and landing scenarios, but
unfortunately does not allow you to describe the vertical
landing of the first stage of the launch vehicle. Unfortu-

5. 63«
320k
0.00

=) TRIN
& 0.0

i uuuas
00042

00041

wnt fuorz § pro | et § s | v | vowo
rot L || aro | Gro L | ALT

nately, the software uses an old graphics engine - Di-
rectX7 [9] (1999) and supports only 32-bit architecture,
which imposes its limitations [5] (Fig. 13).

2.6. JSBSim and FlightGear

JSBSim is a powerful tool for aerospace flight dy-
namics simulation, offering high-precision calculations.
Unlike game engines, it focuses on aerodynamic accu-
racy without graphical limitations.

FlightGear, an open-source flight simulator, inte-
grates with JSBSim to visualize real-time flight data.

o I s o

Fig. 13. Orbiter simulator interface during the LEO reentry scenario

Information technologies and models of management

309

This combination enables realistic space mission model-
ing, trajectory analysis, and the optimization of flight
control systems. Numerical integration in JSBSim mini-
mizes errors in long-duration simulations, which is essen-
tial for space missions. Numerical integration in JSBSim
minimizes errors in long-duration simulations, which is
essential for space missions. Integrating JSBSim with
real telemetry data also requires additional setup, making
the simulations complex.

Despite these challenges, JSBSim and FlightGear
provide an effective solution for spacecraft flight simula-
tion, requiring further improvements for enhanced accu-
racy and flexibility. To better understand the strengths

and weaknesses of the different simulation tools, the fol-
lowing table (Table 2) provides a comparative analysis of
the key characteristics, including physical accuracy, vis-
ualization quality, reinforcement learning (RL) integra-
tion, performance, and availability. This overview helps
highlight the most suitable tools for various space and
aeronautics applications.

In addition to the qualitative comparison, a numeri-
cal evaluation system was used to rank the simulators
based on key attributes. Each simulator is rated on a scale
from 0 to 3 in five categories: physical accuracy, visual-
ization, RL integration, performance, and availability.
The total score, as shown in Table 3, provides an overall
assessment of each simulator’s capabilities.

Table 2
Comparison of Flight Simulators
Simulator Physical Visualization RL Integration Performance Availability
Accuracy
JSBSim + | High —JSBSim Medium — Offers | High — Ready-to- | High — Can run Open-source —
FlightGear | provides a highly | 3D visualization | use interfaces in real-time or Fully free solu-
accurate flight (supports pano- (OpenAl Gym) faster; JSBSim tion (distributed
dynamics model | ramic view enable RL-agent | can operate with- | under GPL) [14].
used in ~190° across training [11]. out graphics for
FlightGear [32]. | three screens), speedup [12].
but graphics lag
behind modern
engines [4].
Orbiter High — Uses real- | Medium — 3D Low — No direct | High — Efficient | Freeware
istic Newtonian planetary and RL support; engine working (closed) — Propri-
physics for or- spacecraft ren- however, it has on moderate sys- | etary software
bital flights, in- dering (DirectX | an API for creat- | tems; time accel- | for Windows
cluding precise engine), but out- | ing modules and | eration available | (free to use but
orbital mechanics | dated graphics external flight for long-duration | with closed-
[20]. [14]. control [15]. maneuvers. source code)
[16].
Kerbal Medium — Fea- Medium — Full Medium — No di- | Low — Perfor- Commercial —
Space Pro- | tures realistic or- | 3D graphics with | rect RL support, | mance limited by | Paid game with
gram bital mechanics, | a cartoonish style | but modding/API | Unity engine; closed-source
but other physi- (green Kerbal (e.g., KRPC) al- | physics simula- code (available
cal aspects are characters, etc.); | lows RL agent tion speed-up via digital stores,
simplified [18]. not photorealistic | training [23]. >4x isnot possi- | has an active
[17]. ble, and complex | modding com-
scenes slow munity).
down the game.

OpenRocket | High (for rock- Low — lacks real- | Low — no inter- High —resource- | Open-source —
ets) — Accurately | time 3D visuali- | active interac- efficient; calcula- | free open-source
models rocket zation (results tion; lacks RL tions are exe- software (source
aerodynamics are presented as | tools (calcula- cuted very code available to
and flight trajec- | graphs and nu- tions are per- quickly, allowing | the community)
tories, validated | merical reports) | formed offline). | thousands of [13].
up to~Mach 1.5. | [22]. simulations to be
[30]. run

310 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
. Physical e . -
Simulator Accuracy Visualization RL Integration Performance Availability
Unreal En- | Medium — built- | High —supports | Medium —no Low — very re- Conditionally
gine 5 in Chaos physics | photorealistic built-in RL inte- | source-intensive; | free —the engine
engine is simpli- | graphics with grations, but parallel or accel- | can be freely
fied for gaming modern lighting | plugins and erated execution | downloaded with
tasks [10]; high- | and detailing ef- | frameworks (e.g., | of multiple simu- | access to the
precision physics | fects (high-qual- | Microsoft's Air- | lations is difficult | source code, but
modules (e.g., ity scene render- | Sim) enable RL | (game engines it is proprietary
AGX Dynamics | ing possible) applications in are not optimized | (not open-source;
plugin) are avail- | [31]. UES5 [6]. for massive royalty-based li-
able if needed physics calcula- | cense for com-
[18]. tions) [22]. mercial use) [20].
Unity Medium — built- | High —supports | Medium —lacks | Medium — per- Conditionally
in PhysX engine | realistic 3D built-in RL sup- | formance de- free — a free ver-
is not designed graphics with port, but exten- pends on scene sion is available
for high-preci- shaders and visu- | sions (ML- complexity; mul- | for personal use,
sion physics but | alization, but re- | Agents) enable tithreading is but commercial
allows integra- quires optimiza- | agents in interac- | limited, but GPU | use requires a
tion of custom tion for complex | tive environ- computing paid subscription
modules scenes ments (Compute
Shaders) is avail-
able
Table 3
Quantitative Evaluation of Simulators
Simulator Physical Vlsgallza- RL Iptegra— Perfor- Availability | Total Score
Accuracy tion tion mance
JSBSim + FlightGear 3 2 3 3 1 12
Orbiter 3 2 1 3 0 9
Kerbal Space Program 2 2 2 1 0 7
OpenRocket 3 1 1 3 1 9
Unreal Engine 5 2 3 2 1 0 8
Unity 2 3 2 2 0 9
Conclusions integration, making it the best option for scientific

A review of the available tools for modeling the full
sequence of flight and landing of a spacecraft, consider-
ing for the curvature of the earth's surface, air friction,
changes in the density of the atmosphere, fuel consump-
tion and the geometry of the aircraft and its supports, was
carried out. Their main advantages and disadvantages are
also analyzed, and flight and landing simulation experi-
ments are carried out, as well as experiments with differ-
ent dimensions of virtual space. As demonstrated in the
Quantitative Evaluation of Simulators, JSBSim +
FlightGear provides the most well-rounded solution due
to its high accuracy and reinforcement learning

applications. Other tools, such as Orbiter and
OpenRocket, also show strong results but have
limitations in RL integration and visualization. Game
engines like Unity and Unreal Engine 5 stand out in terms
of visualization but require further optimization to be
viable for aerospace research. These findings highlight
the need for hybrid approaches that combine high-
accuracy physics models with advanced visualization
capabilities.

As a result of the analysis of existing specialized
software solutions, it can be concluded that there are no
ready-made solutions for the full visual simulation of
non-standard solutions. OpenRocket is not suitable for

Information technologies and models of management

311

small or medium-sized launch vehicles, has a very simple
editor, and visualization is limited to 2D graphs. Other
programs have prepared parameters and scenarios and do
not have a hot-landing option.

Game engines, on the other hand, are highly cus-
tomizable, allowing you to describe any number of flight
and landing parameters, including hot landing, taking
into account the geometry of the supports and the physics
of the interacting materials. However, unfortunately, they
have their limitations when visualizing large virtual
spaces due to the limitations of 64-bit architecture.
128-bit systems are currently only theoretical and do not
have real working prototypes, so it is not economically
feasible to continue research until a working system is
available.

According to the available research, two develop-
ment options are proposed.

The first is to improve the algorithms for custom-
ized scenarios in game engines to reduce the virtual space
used by the relative coordinate method used in the Kerbal
Space Program simulator. The Unreal Engine 5 engine is
particularly interesting as it uses double-precision num-
bers. An alternative solution would be to upgrade the ex-
isting free Orbiter solution to a new graphic engine such
as DX11 and integrate a hot landing scenario.

In future research, it is planned to use the selected
tools and their integration to model the behaviour of
launch vehicle components and develop a system for
recognizing and analyzing video data using machine
learning for aircraft landing.

Contributions of authors: conceptualization and
methodology —Oleksii Vynokur; formulation of tasks —
Iryna Perova; analysis, writing — original draft prepara-
tion — Oleksii Vynokur; review and editing —Polina
Zhernova.

Conflict of interest
The authors declare that they have no conflict of in-
terest concerning this research, whether financial, per-
sonal, authorship or otherwise, that could affect the re-
search and its results presented in this paper.

Financing
The study was conducted without financial support.
Data availability
The manuscript has no associated data.

Use of artificial intelligence
The authors confirm that they did not use artificial
intelligence technologies when creating the current work.

Acknowledgments
We wish to thank Kharkiv National University of
Radio Electronics for providing the resources necessary

for this study. Our appreciation extends to the editorial
team of the journal RECS at the National Aerospace Uni-
versity "Kharkiv Aviation Institute” for considering and
publishing our article.

All the authors have read and agreed to the pub-
lished version of the manuscript.

References

1. Unity Engine. Unity Technologies, 2024. Avail-
able at: https://unity.com (accessed 01 March 2024).

2. Day, S., Smallwood, W. K., & Kuhn, J. Simu-
lating Industrial Control Systems Using Node-RED and
Unreal Engine 4. National Cyber Summit (NCS) Re-
search Track, Springer, 2021, vol. 310. Available at:
https://link.springer.com/chapter/10.1007/978-3-030-
84614-5 2 (accessed 01 March 2024).

3. Durnyak, B. OpenRocket Technical Documen-
tation, 2013.

4. Berndt, J. JSBSim Development Team JSBSim:
An Open Source Flight Dynamics Model in C++, 2011.

5. Orbiter is Now Open Source. Orbiter Forum,
2021. Available at: https://www.orbiter-fo-
rum.com/threads/orbiter-is-now-open-source.40023/
(accessed 04 March 2024).

6. Unreal Engine Forums. How to speed up the en-
gine. Unreal Engine Forums, 2018. Available at:
https://forums.unrealengine.com/t/how-to-speed-up-the-
engine-for-reinforcement-learning/426647 (accessed 19
December 2024).

7. Large World Coordinates in Unreal Engine 5.
Epic Games, 2022. Available at: https://dev.epicgames.
com/documentation/en-us/unreal-engine/large-world-
coordinates-in-unreal-engine-5?application_version=5.0
(accessed 04 March 2024).

8. Float and Double Type (C#* reference). Mi-
crosoft Docs, 2022. Available at: https://learn.mi-
crosoft.com/en-us/dotnet/csharp/language-refer-
ence/builtin-types/floating-point-numeric-types
cessed 07 March 2024).

9. Direct3D. Microsoft, 2021. Awvailable at:
https://learn.microsoft.com/en-us/windows/win32/di-
rect3d (accessed 07 March 2024).

10. Epic Games. Physics in Unreal Engine. Epic
Games Developer Hub. Available at:
https://dev.epicgames.com/documentation/en-us/unreal-
engine/physics-in-unreal-engine (accessed 14 December
2024).

11. Gor-Ren. Pre-built OpenAl Gym interfaces for
RL training with JSBSim/FlightGear. GitHub, 2018
Available at: https://github.com/Gor-Ren/gym-jsbsim#
(accessed 14 December 2024).

12.JSBSim-Team. Frequently Asked Questions.
GitHub, 2022. Available at: https://github.com/JSBSim-
Team/jsbsim/wiki/Frequently-Asked-Questions (ac-
cessed 14 December 2024).

13. OpenRocket. Open-source software with pub-
licly available source code. GitHub, 2023. Available at:

(ac-

https://unity.com/
https://doi.org/10.1007/978-3-030-84614-5_2
https://link.springer.com/chapter/10.1007/978-3-030-84614-5_2
https://link.springer.com/chapter/10.1007/978-3-030-84614-5_2
https://www.orbiter-forum.com/threads/orbiter-is-now-open-source.40023/
https://www.orbiter-forum.com/threads/orbiter-is-now-open-source.40023/
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/floating-point-numeric-types
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/floating-point-numeric-types
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/floating-point-numeric-types
https://learn.microsoft.com/en-us/windows/win32/direct3d
https://learn.microsoft.com/en-us/windows/win32/direct3d
https://learn.microsoft.com/en-us/windows/win32/direct3d

312

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

https://github.com/openrocket/openrocket (accessed 19
December 2024).

14. FlightGear open-source flight simulator,
FlightGear, GitLab, 2015. Available at:
https://gitlab.com/flightgear/flightgear#:~:text (accessed
15 December 2024).

15.Making a Space Flight Sim, 2012.
GameDev.net. Available at: https://www.gamedev.net/
forums/topic/626934-making-a-space-flight-
sim/#:~:text (accessed 15 December 2024).

16. Orbiter 2005 A Real-Physics Spaceflight Simu-
lation. SimHQ.net, 2006. Available at:
https://www.simhg.net/_air6/air_211a.html# (accessed
15 December 2024).

17. Whiteastercom. Kerbal Space Program - com-
plex environment for Reinforcement Learning. Me-
dium.com., 2018. Available at: https://me-
dium.com/@whiteastercom/kerbal-space-program-com-
plex-environment-for-reinforcement-learning-
12318db065f5#:~:text= (accessed 17 December 2024).

18. Algoryx brings high-fidelity physics simulation
to Unreal Engine. Unreal Engine, Epic Games, 2023.
Available at: https://www.unrealengine.com/en-
US/spotlights/algoryx-brings-high-fidelity-physics-sim-
ulation-to-unreal-engine (accessed 19 December 2024).

19. How realistic is Kerbal Space Program. Space
Stack Exchange, 2014 Available at:
https://space.stackexchange.com/questions/4505/ (ac-
cessed 14 December 2024).

20. Question: Is Unreal Engine Open Source?
DragonflyDB. Available at: https://www.dragon-
flydb.io/fag/is-unreal-engine-open-source (accessed 19
December 2024).

21. Orbiter. OrbiterWiki, 2024 Available at:
https://www.orbiterwiki.org/wiki/Orbiter#: (accessed 14
December 2024).

22. What is OpenRocket. OpenRocket Wiki, 2023.
Available at: https://wiki.openrocket.info/Introduc-
tion#:~:text (accessed 18 December 2024).

23. Kerbal Space Program Differential Game Chal-
lenge. MIT Lincoln Laboratory, 2024. Available at:
https://www.1l.mit.edu/conferences-events/2024/01/ker-
bal-space-program-differential-game-challenge#:~:text
(accessed 17 December 2024).

24. Zhao, Z., Xiao, T., Tang, Z., Gao, X., Liu, X,
Zhang, W., & Liu, B. Development of a Landing Leg
with Active Buffering and Anchoring Functions Applied
to the Small Body Landing Mechanism. 2020 Interna-
tional Conference on Mechatronics and Automation
(ICMA), Beijing, China, IEEE, 2020, pp. 695-699. DOI:
10.1109/ICMA49215.2020/9.

25. Mo, F., Ye, F., Xie, J., Zhu, H., Liu, R., & Jin,
J. A Novel Spacecraft Attitude Recovery Method Based
on Platform Vibration. 2019 9th International Confer-
ence on Recent Advances in Space Technologies (RAST),
Istanbul, Turkey, IEEE, 2019, pp. 117-122. DOI:
10.1109/RAST.2019.8767849.

26.Peng, C. C., Chan, C. Y., Lin, J. H., & Hsieh, T.
Y. Spacecraft 6-DoF Localization in a GPS denied Envi-
ronment. International Conference on Consumer Elec-
tronics-Taiwan (ICCE-TW), Penghu, Taiwan, IEEE,
2021, pp. 1-2. DOI: 10.1109/ICCE-
TW52618.2021.9603214.

27. Cantri, F. M., Bisri, M. H., & Irwanto, H. Y.
Realtime Simulation for Rocket Using Visual Program-
ming. 2022 8th Information Technology International
Seminar (ITIS), Surabaya, Indonesia, IEEE, 2022, pp.
150-155. DOI: 10.1109/1T1S57155.2022.10010182.

28. Wang, J., Ma, H., Li, H., & Hongbo, C. Real-
time guidance for powered landing of reusable rockets
via deep learning. Neural Computing & Applications,
Springer, 2023, vol. 35. Available at:
https://link.springer.com/article/10.1007/s00521-022-
08024-4 (accessed 10 March 2024).

29. Abate, M., Anandapadmanaban, E., Bao, L.,
Challani, S., Gaughan, J., Jiang, A., Lingineni, A., Vora,
A., Yang, C., & Zhao, D. Correlation Between Simu-
lated, Calculated, and Measured Model Rocket Flight.
2014. Available at: http://ftp.demec.ufpr.br/foguete/bib-
liografia/Abate_et al 2014.pdf (accessed 12 March
2024).

30. Niskanen, S. Development of an Open Source
model rocket simulation software. MSc thesis. Helsinki
University of Technology, 2009 Available at:
https://openrocket.sourceforge.net/thesis.pdf#:~:text (ac-
cessed 18 December 2024).

31. Chander, S. Rendering & Lighting a Photoreal-
istic Abandoned Scene in Unreal Engine 5. 80 Level,
2023. Available at: https://80.Iv/articles/rendering-light-
ing-a-photorealistic-abandoned-scene-in-unreal-engine-
5/ (accessed 19 December 2024).

32.Wood, A., Sydney, A., Chin, P., Thapa, B., &
Ross, R. GymFG: A Framework with a Gym Interface
for FlightGear. 2020. ArXiv. Available at:
https://arxiv.org/pdf/2004.12481# (accessed 14 Decem-
ber 2024).

33. Eerland, W., Box, S., & Sobester, A. Cambridge
rocketry simulator-a stochastic six-degrees-of-freedom
rocket flight simulator. Journal of Open Research Soft-
ware, 2017, vol. 5, no 1, pp. 1-6. Available at:
https://openresearchsoftware.metajnl.com/arti-
cles/10.5334/jors.137 (accessed 12 March 2024).

34.Ansys STK. Ansys, 2024. Available at:
https://www.ansys.com/products/missions/ansys-stk (ac-
cessed 03 March 2024).

35. Bykerk, T., & Karl, S. Preparatory CFD Studies
for Subsonic Analyses of a Reusable First Stage
Launcher during Landing within the RETPRO Project.
Aerospace Europe Conference 2023, Goettingen, 2023,
pp. 1-10. Available at: https://elib.dlr.de/194477/3/
ELIB-Eintrag-2023-BykerkT-194477-Paper-
Published.pdf (accessed 07 March 2024).

Received 17.06.2024, Accepted 17.02.2025

https://doi.org/10.1109/RAST.2019.8767849
https://doi.org/10.1109/RAST.2019.8767849
https://doi.org/10.1109/ICCE-TW52618.2021.9603214
https://doi.org/10.1109/ICCE-TW52618.2021.9603214
https://doi.org/10.1109/ITIS57155.2022.10010182
https://doi.org/10.1007/s00521-022-08024-4
https://link.springer.com/article/10.1007/s00521-022-08024-4
https://link.springer.com/article/10.1007/s00521-022-08024-4
http://ftp.demec.ufpr.br/foguete/bibliografia/Abate_et_al_2014.pdf
http://ftp.demec.ufpr.br/foguete/bibliografia/Abate_et_al_2014.pdf
https://doi.org/10.5334/jors.137
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.137
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.137
https://www.ansys.com/products/missions/ansys-stk
https://www.ansys.com/products/missions/ansys-stk

Information technologies and models of management 313

OI'JISII METOIB BI3YAJIIBAILI JIJIA PO3PAXYHKIB 3AITYCKY TA TOCAIKH
KOCMIYHHUX AITAPATIB TA IPOBJIEMA T'PAHUYHUX 3HAYEHD 64-BITHUX CUCTEM

O. O. Bunoxyp, I. I'. Ileposa, I1. €. Kepnosa

[Ipeamer crarTi — cydacHi MporpamHi pillIeHHs, 110 BUKOPUCTOBYIOTHCS /ISl MOJIETIIOBAHHS Ta Bizyatizamii Ko-
CMIYHHX MICIi, 30KpeMa Ha eTarnax 3aIrycKy, IMojbOoTy Ta NOCaaKh. MEeTOr CTaTTi € KPpUTHYHA OILIHKA MOMYJISIPHUX
irpoBux pymiiB, Takux sk Unity Ta Unreal Engine 5, a Takox cnenianxizoBaHOTO MPOrpaMHOTO 3a0e3MedeHHs s
CHUMYJISLIT TONIBOTIB, sIk-0T OpenRocket i Orbiter, 3 hokycom Ha IX 3acTOCyBaHHS Y KOCMIYHHX CUMYIISLISX. 3aBIaHHS
JIOCITi/PKEHHsI BKITFOYAIOTh: BUBYEHHSI Ta OLIIHKY MOXJIMBOCTeH irpoBux pymiiB Unity Ta Unreal Engine 5 y konTekcTi
KOCMIYHHX MICIi; BUSBIEHHS 00MEKEHh TOYHOCTI 64-01TOBHX YHCEN 3 [JIABAIOYOI0 KOMOKO ISl BETHKOMACIITa0HUX
KOCMIYHUX CHMYIISIIH Ta IPONO3UIII0 NOTEHIaly nepexoy Ha 128-01TOBi CHCTEMU; OLIHKY CHeliali30BaHHUX 1H-
cTpyMeHTiB, Takux sik OpenRocket Ta Orbiter, o0 X BUKOpUCTaHHS TSI MOZICITIOBAHHSI IOBEIIHKH KOCMIYHHX ara-
pariB; aHaIi3 iCHYIOUMX OOMEXEHb B IHTErpalii JaHuX y peaJIbHOMY Yaci Ta MPOIO3HILIiI0 HANPSMKIB JUIs MTOJAIBbIINX
JOCITiKEHB Ta po3po0ok. PesynbraTu. Byno Bcranosneno, mo Unity ta Unreal Engine 5, xoua i po3po0iieHi B repiiry
4epry Juis irpoBoil iHAyCTpii, MOXKYTh OYTH alaniTOBaHi AJIsl aepoKOCMivHNX cuMyJsiiiid. [Ipore uepe3 oOMexeHHs 64-
6i1TOBOT TOYHOCTI BOHM CXMJIBHI JIO Bi3yalIbHUX apTe(aKTiB Ta O0YHUCIIIOBATBHIX TOMUIIOK, SIKI KOMIIPOMETYIOTh TOY-
HicTh cumyssiniid. [Tepexin va 128-6iToBi cucTeMu Oyio BU3HAYEHO SIK MEPCIIEKTUBHUI TiIX1J] 10 MiABUILEHHS TOY-
HOCTI Ta THYYKOCTI MOJICITIOBaHHS KOCMIYHUX Miciil. Ll mepexis 103B0IMB OU Kpariie 0OpoOIsATH BETUKI MacIITadu
Ta JETabHI aCMEeKTH KOCMIUHMX cuMyisiiii. CrenianizoBaHi iHCTpyMeHTH, Taki sk OpenRocket Ta Orbiter, npose-
MOHCTpPYBAJIM BUCOKI MO>KJIMBOCT] Y MOJIE/TIOBaHHI aepOAMHAMIYHHUX XapaKTEPUCTHK Ta KOCMIUYHHX Miciil. BogHowac
BOHH TaKOXX CTUKAIOTHCS 3 OOMEKEHHIMH ITpY 00poO1Ii BETMKOMACIITAOHUX SIBUIIL 00 1HTErpallii JaHUX Y peallbHOM Yy
yaci. BusiieHo noTpely y moJanblKix JOCHIPKEHHSIX Ta po3po0I1li HOBUX aNTOPUTMIB 1 CTPYKTYp AaHHX s 3a0e3-
NIEYCHHSI BUCOKOI TOYHOCTI Ta MiTPUMKHU BEIMKUX HAOOpiB naHux. KpiM Toro, HeoOXiJHO MOKPAILIUTH 1HTErpaiito
JIAHUX y peaJIbHOMY 4aci Ta KOPUCTYBalbKi iHTepdeiicH, mo6 3poOUTH 1l IHCTPYMEHTH OB JOCTYMHUMU. BucHo-
BKHU. Po3poOka 128-0iTOBUX cHCTEM /ISt KOCMIYHUX CUMYJISILINA € KpUTHYHO BaXKIIMBOIO JUTS i IBUILIEHHSI TOYHOCTI Ta
peanicruuHocTi MoaemoBanHs. Irposi pymii Unity ta Unreal Engine 5, xoya MaroTh nmoTeHmian st ananraiii 10
AEPOKOCMIYHUX CUMYJISILIIH, MOTPEOYIOTh 3HAYHOTO MOKpAIIeHHs B 00poOIi BEMKUX MacIITa0iB Ta JeTabHUX acrie-
ktiB. [HcTpymenTn OpenRocket Ta Orbiter MaroTh 3HaUHHI TOTEHIIIAN Y CIEIialli30BaHUX Tajy3sX, ajle TAKOXK MOT-
peOyIOTh BIIOCKOHAIICHHST JIJIsl PO3LIMPEHHST CBOIX MOXJIMBOCTEi. HeoOXiHI moganbiii JOCHiPKEHHST Ta PO3POOKH
JUIsl CTBOPEHHSI HOBUX DillIeHb, sIKi MiIBUILATH TOUHICTH 1 (PYHKLIOHAIBHICTH MPOrPaMHOro 3a0e3neueHHs ISl MOJie-
JIIOBaHHSI KOCMIYHUX MICIiH, a TAKOXK pO3pOOKK HOBOT'O anapaTrHoro 3a0e3neveHHs, TAKOro sk OLIbII MOTYXKHI Mpolie-
copu Ta 301IblIeHa NaM'sITh.

Koarwuosi ciioBa: nporpamue 3ade3neuenns; pakeru-nocii; HHO; Bizyanizaliis po3paxyHKiB; IpaHHYHI CTaHU
KOMIT'FOTEPHUX CHCTEM; MOCaJIKa JITaKiB; irpOB1 PyILil; MOJEIIOBAHHS (DI3UUHUX SIBUILL.

Bunokyp Ouekciii OnexcanapoBu4 — 3100yBay cTymeHs 1okTopa ¢inocodii 3 KOMIT IOTEPHUX HAYK, XapKiB-
CHKHIA HAIllIOHAILHUI YHIBEPCUTET PalioeNeKTPpOoHiKH, XapKiB, YKpaiHa.

IepoBa Ipuna I'ennagiiBHa — 1-p TexH. HayK, MPod., Kad. CUCTEMOTEXHIKH, XapKiBCbKUl HAllIOHAIILHUN YHi-
BEPCUTET palioeNIeKTPOHIKH, XapKiB, YKpaiHa.

KepnoBa ITonina €BreniiBHa — KaHII. TeXH. HayK, CTApLINi BUKIana4, GakynbreT MUPPOBUX TEXHOIOTIH,
American University Kyiv; mpoBiguuii crieriamicT 3 po3BUTKY TAJIaHTIB, KEPiBHUK TPOEKTY, [To3Hamb, [Tombiia.

Oleksii Vynokur — PhD Student in Computer Science, Kharkiv National University of Radio Electronics,
Kharkiv, Ukraine,
e-mail: avinokur4@gmail.com, ORCID: 0009-0001-4328-3886.

Iryna Perova — Dr. Tech. Sc., Professor, Department of System Engineering, Kharkiv National University of
Radio Electronics, Kharkiv, Ukraine,
e-mail: rikywenok@gmail.com, ORCID: 0000-0003-2089-5609, Scopus Author ID: 57189383519,
Researcher ID: V-7479-2017.

Polina Zhernova — PhD, Senior Lecturer, Faculty of Digital Technologies, American University Kyiv; Lead
Talent Development Specialist, Project Manager, Poznan, Poland,
e-mail: polina.zhernova@gmail.com, Scopus Author ID: 57202212660.

