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IMPACT OF USING VARIOUS X-RAY DATASET IN DETECTING  

TUBERCULOSIS BASED ON DEEP LEARNING 
 

The subject matter is that the characteristics of tuberculosis are difficult to study visually. Therefore, a computer-

aided system based on deep learning can be applied to X-ray image recognition. Many studies have been 

conducted in this area but have yet to achieve a high accuracy rate. The goal of this study is to determine the 

effect of using various datasets in developing deep learning models. The tasks to be solved include exploring 

various deep learning architectures and deep fine-tuning hyperparameters, as well as using various dataset 

sources. The method used is the development of a deep learning model of convolutional neural network (CNN) 

using transfer learning to classify X-ray images into binary classes of normal and tuberculosis (TB). The CNN 

architectures used are the pretrained networks of ResNet and EfficientNet, along with their variants. The pre -

trained network was trained on a dataset obtained from four sources: Shenzhen, Montgomery, RSNA CXR, and 

Belarus. The dataset is divided into three schemes: Scheme one consists of the Shenzhen dataset with low-quality 

X-ray images; Scheme two is the Montgomery, RSNA, and Belarus datasets that show good contrast in the 

indicated TB area; and Scheme three contains datasets from all sources to allow for more datasets to b e learned. 

The augmentation, dropout, and L2 regularization methods were also applied to enhance learning performance. 
The following results were obtained: the models performed better with the high-quality X-ray images in Scheme 

Two but not with the large dataset in Scheme Three. Regarding network performance, the models resulting from 

ResNet-101 and EfficientNetB0 outperformed the others with good fit learning and capability in recognizing X -
ray images with an accuracy rate of 99.2%. In conclusion, the best approach to enhance learning performance 

is to use high-quality input and apply regularizations. 
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1. Introduction 

 

1.1. Research Motivation 

 

Tuberculosis (TB) is a chronic infectious disease 

caused by Mycobacterium tuberculosis (Mtb). This dis-

ease has become a global health threat because of the 

high number of cases that were resistant to multiple drugs 

and extremely difficult to treat [1]. According to the 

World Health Organization (WHO), in 2018, nearly 10 

million people were diagnosed with tuberculosis, of 

which 1.45 million died [2]. The limited number of doc-

tors and equipment makes it difficult for many people to 

detect TB disease early; thus, patients only become aware 

of the disease when its symptoms are severe enough. 

Early detection is very useful so that infected individuals 

can start treatment immediately without waiting for their 

symptoms to worsen. This has motivated work on devel-

oping a computer-aided system that is user-friendly and 

can assist health workers in detecting TB disease quickly, 

supporting early treatment, and preventing the spread of 

this infectious disease. 

Deep learning (DL), particularly convolutional neural 

networks (CNNs), has shown potential in extracting use-

ful features for image classification tasks. The feature ex-

traction process requires transfer learning, where a previ-

ously trained CNN model learns general features from a 

large-scale dataset like ImageNet and then transfers that 

knowledge to the required task [3]. Toraman et al. [4] 

stated that the images on X-rays must be examined and 

interpreted in detail by specialists. Yusoff et al. [5] re-

ported that the classification of tuberculosis (TB) based 

on chest X-ray (CXR) was a time-consuming procedure 

that required expert interpretation. However, automated 

TB classification using CXR could become a significant 

clinical utility in addressing this issue due to its associa-

tion with innovative technology. 

T. Rahman et al. [6] used nine different CNN archi-

tectures to classify TB and non-TB cases as normal. Res-

Net-101 achieved 94.55% accuracy. Munadi et al. [7] im-

plemented the ResNet18, ResNet50, and EfficientNetB4 

architectures to train TB images. EfficientNetB4 
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achieved the highest scores, reaching 89.92% and 94.8% 

in classification accuracy and AUC (Area Under Curve) 

scores, respectively. Harahap et al. [8] constructed a 

CNN classifier on an imbalanced dataset consisting of 

3500 normal and 718 tuberculosis cases. They obtained 

an accuracy rate of 98%. Nafisah et al. [9] applied various 

CNN models and compared their classification perfor-

mances. They found that ResNet-50 achieved an accu-

racy of 79.5%, and EfficientNetB3 achieved an accuracy 

of 89.4%.  

Chowdhury et al. [10] stated that EfficientNet is 

known for its high accuracy with fewer parameters and 

faster than the best existing CNN architectures. Oloko-

Oba and S. Viriri [11] applied their proposed CNN model 

trained on Montgomery County (MC) Tuberculosis radi-

ography and achieved a validation accuracy of 87.1%. 

Then, they applied five variants of EfficientNets [12], 

and they demonstrated that EfficientNet-B4 achieved the 

best accuracy of 92.%. 

 

1.2. Objectives  

and State-of-the-art Approaches 

 
Based on our literature study on existing similar 

works, various techniques such as augmentation [13] 

[14], image quality enhancement [15], and segmentation 

[16], were employed. Previous studies have used various 

combinations of datasets to develop deep learning-based 

models [17 - 19]. Pasa et al. combined the Montgomery 

datasets of Shenzhen and Belarus [17], whereas Inbaraj 

et al., only combined Montgomery with Shenzhen [18]. 

Natarajan et al. used four public X-ray datasets for TB 

detection; however, they excluded the Montgomery da-

taset. Therefore, to date, no study has explored the per-

formance of deep learning networks trained using various 

X-ray datasets in the development of deep learning mod-

els. This work provides knowledge about the impact of 

using various X-ray datasets for developing early TB de-

tection based on deep learning.  

Therefore, we conducted research that provides 

state-of-the-art contributions as follows: 

1. This study provides information about the char-

acteristic features of chest X-rays that indicate tuberculo-

sis. Deep analyses include the statistical analysis of the 

visual and statistical analysis of histograms and the mean 

average value of CXR from the datasets used in this re-

search.  

2. We develop a CNN model using the transfer 

learning of pre-trained ResNet and EfficientNet along 

with their variants. Deep training and fine-tuning of hy-

perparameter settings to recognize the CXR images re-

sulted in a high-performance and novel model. 

3. We performed a deep analysis of the simulation  

results using the training results of the learning curves 

and evaluation metrics of accuracy, sensitivity, and spec-

ificity using the confusion matrix of the good fit model. 

4. We suggest some recommendations for future 

work to develop a robust CNN model to aid tuberculosis 

detection using CXR images.  

The following sections describe our work. Section 2 

explains the method, the dataset characteristics, prepro-

cess, network architectures, hyperparameter settings, and 

regularization approach. Section 3 discusses network 

training results and testing performance in recognizing 

tuberculosis and normal CXR images. Section 4 provides 

recommendations for future work. Finally, Section 5 

summarizes our research findings . 

 

2. Materials and methods of research 
 

2.1. Dataset 

 

The characteristic features of tuberculosis are pri-

marily observed in the lungs, specifically in chest X-rays. 

The typical radiological findings in chest X-rays (thorax) 

for tuberculosis are abnormalities in the apex (upper part) 

of the lungs. There are several types of radiographic im-

ages of pulmonary tuberculosis, such as infiltrates, cavi-

ties, and nodules. Infiltrates appear as small spots or dots 

scattered throughout the lungs. The cavities are rounded 

with visible walls. Nodules are small round lesions larger 

than infiltrates. If any of these three findings are present 

in the X-ray images may indicate tuberculosis. However, 

further examination is required to confirm the presence 

of Mycobacterium tuberculosis bacteria [20].  

We utilized X-ray images obtained from Kaggle, 

consisting of four different sources: the Shenzhen dataset 

[21], the Montgomery dataset [22], the RSNA dataset 

[23], and the Belarus dataset [24]. The dataset comprised 

1304 images. The Shenzhen and Montgomery datasets 

have two classes: normal and tuberculosis. The RSNA 

dataset contains only normal images, and the Belarus da-

taset exclusively contains tuberculosis images.  

Figure 1 shows some X-ray images from each da-

taset source. In fact, visually, it was not easy to distin-

guish between TB and normal images in the Shenzhen 

dataset because they appeared very similar. However, on 

the Montgomery, RSNA, and Belarus datasets, there 

were clear differences between normal and TB images.  

The pixel intensity values are shown in Figs. 2 and 

3. In the Shenzhen data, both TB and normal images had 

pixel intensities above 100. This indicates that both da-

tasets tend to have higher brightness levels compared to 

other normal datasets. Meanwhile, the Montgomery im-

ages showed more distinct differences. The images indi-

cating tuberculosis showed high pixel intensity values 

above 100, indicating brighter areas in the image. On the 

other hand, normal Montgomery images tend to have 
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pixel intensity values approaching 0, indicating darker ar-

eas or closer to black in grayscale images. Thus, Mont-

gomery's dataset provides better quality input for the 

learning approach than Shenzhen's. 
 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 1. X-ray images of (a) normal Shenzhen, (b) 

tuberculosis Shenzhen, (c) normal Montgomery, (d) 

tuberculosis Montgomery, (e) normal RSNA,  

and (f) tuberculosis Belarus datasets 

Furthermore, to gain more insight into the image 

characteristics, we applied a statistical approach to both 

datasets. As shown in Figs. 4, Fig. 5, Fig. 6, and Fig. 7, it 

can be observed that the pixel intensity distribution 

patterns in the histograms of tuberculosis images are 

similar to those of normal images in both the 

Montgomery and Shenzhen datasets. The intensity 

distribution in the histograms showed a similar range, 

with frequency concentration in the medium-to-high -

intensity range and a significant peak in the high-

intensity range (200–255), representing bone structures 

and other bright areas . 

 
(a) 

 

 
(b) 

 

Fig. 2. Pixel value of X-ray image from Shenzhen 

dataset (a) normal and (b) tuberculosis  

 

 

(a) 

 

 

(b) 

Fig. 3. Pixel value of X-ray image from Montgomery  

dataset (a) normal and (b) tuberculosis  
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Fig. 4. Histogram of the Shenzhen normal image dataset 

 

  

  

Fig. 5. Histogram of the Shenzhen tuberculosis image dataset 
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Fig. 6. Histogram of the Montgomery normal image dataset 

 

 

  

  

Fig. 7. Histogram of the Montgomery tuberculosis image dataset 
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(a) (b) 

Fig. 8. Mean values of normal and tuberculosis groups  

of (a) Shenzhen and (b) Montgomery dataset  

In addition, we also plotted the mean values of the 

CXR images from both datasets, Shenzhen and Mont-

gomery, as shown in Fig. 9. The mean values of Shen-

zhen normal and tuberculosis CXR images were similar. 

However, the normal and tuberculosis CXR images from 

Montgomery exposed significantly different mean val-

ues.  

There was no noticeable difference between the his-

tograms of normal and tuberculosis conditions, indicat-

ing that the visual characteristics of tuberculosis in X-

rays are not always explicitly reflected in the pixel inten-

sity distribution. Thus, the deep learning approach is a 

good way to distinguish the complex characteristics of 

the CXR images.  

In this study, we used three dataset schemes to deter-

mine the effect of each dataset on the learning approach. 

Scheme One uses only the Shenzhen dataset, Scheme 

Two incorporates the Montgomery, RSNA, and Belarus 

datasets, and Scheme Three uses all images from all da-

tasets. 

 

2.2. Image Preprocessing 

 

As illustrated in Figs. 1, 2, and 3, each image is of 

various sizes and qualities. The images from Belarus da-

tasets sized 2248×2248, Montgomery normal and Mont-

gomery TB 4020×4892, RSNA 1024×1024, while Shen-

zhen normal and Shenzhen TB 3000×2939. Thus, we 

resized the dataset prior to feeding it into the network. All 

networks required the same size of images of 224×224 

pixels. The distribution of the datasets was 60% for train-

ing, 20% for validation, and 20% for testing data. The 

number of datasets for the normal and tuberculosis clas-

ses are detailed in Table 1. 
 

2.3. Residual Network (ResNet) 
 

The convolutional neural network (CNN) is a neural 

network model that is used to find relationships and pat-

terns between data items according to their relative  

positions. CNNs are mostly used to learn image data. Im-

plementing CNNs has been widely used in many areas  

[25 - 27]. The function of the convolutional operation is 

to break down the spatial features of data that are initially 

complex into smaller subsets of data by trying to learn 

more features from the data that has been studied. The 

basic CNN architecture contains multiple convolution 

and pooling layers, with a fully-connected layer at the 

end, as shown in Fig. 9. Each of these stages has a differ-

ent process; convolution is the first layer that takes the 

input image, pooling reduces the dimensions of the input 

image, and the fully connected layer performs the classi-

fication [28]. 

 

Table 1 

Dataset Distribution 

Database Data type Normal Tuberculosis 

Shenzhen 

Training 196 196 

Validation 65 65 

Test 65 65 

Montgomery, 

RSNA, and 

Belarus 

Training 196 196 

Validation 65 65 

Test 65 65 

Shenzhen, 

Montgomery, 

RSNA, and 

Belarus 

Training 392 392 

Validation 130 130 

Test 130 130 

Total  1304 1304 

 

One good CNN architecture that demonstrated the 

best performance in the ImageNet Large-Scale Visual 

Recognition Challenge competition [29] is ResNet. Res-

Net is a deep neural network with residual learning [30, 

31] that has a network structure designed to address the 

vanishing gradient problem in deep network training. 

The architecture begins with an initial convolu-

tional layer (Conv1) that uses a 7×7 kernel with a stride 

of 2, followed by a max pooling operation. Thereafter, 

there are several stages of residual blocks,  the  number 
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Fig. 9. The structure of the CNN algorithm [32]

of which depends on the depth of the model, such as Res-

Net-18, ResNet-34, or ResNet-50. Each stage contains 

residual blocks consisting of 2 or 3 convolutional layers 

equipped with batch normalization and ReLU activation 

functions. The key innovation of ResNet is the skip con-

nection, which bypasses one or more layers in each resid-

ual block, allowing gradients to flow directly to the ear-

lier layers. This structure includes a fully connected layer 

for classification, which is preceded by a global average 

pooling operation  [30]. 

 

Table 2 

ResNet architecture [30] 

Layer 

name 

Output 

size 

50-layer 101-layer 

Conv1 112×112 7×7, 64, stride 2 

Conv2_x 56×56 3×3 max pool, stride 2 

[
𝟏 × 𝟏, 𝟔𝟒
𝟑 × 𝟑, 𝟔𝟒
𝟏 × 𝟏, 𝟐𝟓𝟔

]

× 𝟑 

[
𝟏 × 𝟏, 𝟔𝟒
𝟑 × 𝟑, 𝟔𝟒
𝟏 × 𝟏, 𝟐𝟓𝟔

]

× 𝟑 

Conv3_x 28×28 
[
𝟏 × 𝟏, 𝟏𝟐𝟖
𝟑 × 𝟑, 𝟏𝟐𝟖
𝟏 × 𝟏, 𝟓𝟏𝟐

]

× 𝟒 

[
𝟏 × 𝟏, 𝟏𝟐𝟖
𝟑 × 𝟑, 𝟏𝟐𝟖
𝟏 × 𝟏, 𝟓𝟏𝟐

]

× 𝟒 

Conv4_x 14×14 
[
𝟏 × 𝟏, 𝟐𝟓𝟔
𝟑 × 𝟑, 𝟐𝟓𝟔
𝟏 × 𝟏, 𝟏𝟎𝟐𝟒

]

× 𝟔 

[
𝟏 × 𝟏, 𝟐𝟓𝟔
𝟑 × 𝟑, 𝟐𝟓𝟔
𝟏 × 𝟏, 𝟏𝟎𝟐𝟒

]

× 𝟐𝟑 

Conv5_x 7×7 
[
𝟏 × 𝟏, 𝟓𝟏𝟐
𝟑 × 𝟑, 𝟓𝟏𝟐
𝟏 × 𝟏, 𝟐𝟎𝟒𝟖

]

× 𝟑 

[
𝟏 × 𝟏, 𝟓𝟏𝟐
𝟑 × 𝟑, 𝟓𝟏𝟐
𝟏 × 𝟏, 𝟐𝟎𝟒𝟖

]

× 𝟑 

 1×1 Average pool, 1000-d fc, softmax 

FLOPs 3.8×109 7.6×109 

 

Table 2 describes the architecture of ResNet-50 and 

ResNet-101. ResNet 50-layer uses 3-layer bottleneck 

blocks with the following structure: conv2.x (64 filters, 3 

blocks), conv3.x (128 filters, 4 blocks), conv4.x (256 fil-

ters, 6 blocks), and conv5.x (512 filters, 3 blocks), result-

ing in a complexity of 3.8 billion FLOPs. In addition, the 

ResNet 101 layer has more bottleneck blocks to conv4.x, 

increasing it to 23 blocks, with a total complexity of 7.6 

billion FLOPs, making it deeper yet still efficient. Both 

models demonstrated improved performance compared 

to shallower models [30]. 

The ResNet-50 architecture comprises 50 layers. 

This architecture combines residual blocks, which con-

sist of multiple convolution layers, batch normalization , 

and activation functions, with shortcut connections  [33]. 

ResNet-101 works with the same idea as ResNet-50 but 

has 101 layers; thus, it can go deeper than ResNet50 and 

extract more advanced features  [34]. 

 

2.4. EfficientNet 

 

The EfficientNet model is based on a multiple scal-

ing method that expands the basic convolutional network 

model size to efficiently target the model size, thereby 

achieving the highest model accuracy gain. The com-

bined scaling method allows networks to scale uniformly  

across width, depth, and resolution [35]. This architec-

ture had fewer parameters, approximately 8.4 times  

less, and ran faster, approximately 6.1 times faster 

[36]. The EfficientNet model comprises a deeper net-

work than the base model, which understands complex 

and richer features and generalizations. In addition, Effi-

cientNet comprises a wider network that can extract op-

timal features and patterns useful for classification tasks. 

The basic component of EfficientNet is known as Effi-

cientNetB0, and its latest variant is EfficientNetB7 [37]. 

EfficientNet is a neural network architecture uti-

lizes compound scaling techniques to improve accuracy 

and computational efficiency. The network begins with 

an initial layer (stem) consisting of a 3×3 convolution 

with a stride of 2 and 32 filters. The main structure con-

sists of a series of MBConv (Mobile Inverted Bottleneck 

Convolution) blocks that leverage separable convolu-

tions and squeeze-and-excitation modules to enhance ef-

ficiency and channel feature modeling. Each stage has a 

specific block count, kernel size, expansion ratio, and fil-

ter number configuration. The Swish activation function 
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replaces ReLU to improve performance. At the end of the 

network, there is a head layer consisting of a 1×1 convo-

lution, followed by global average pooling and a fully  

connected layer. EfficientNet is designed to balance 

depth, width, and input resolution optimally, achieving 

high performance with efficient resource utilization [38]. 

 

Table 3 

EfficientNet-B0 baseline network [37] 

Stage Operator 
Resolu-

tion 

#Chan-

nels 

#Lay-

ers 

1 Conv3×3 224×224 32 1 

2 MBConv1, 

k3×3 

112×112 16 1 

3 MBConv6, 

k3×3 

112×112 24 2 

4 MBConv6, 

k5× 𝟓 

56×56 40 2 

5 MBConv6, 

k3×3 

28×28 80 3 

6 MBConv1, 

k5× 𝟓 

14×14 112 3 

7 MBConv1, 

k5× 𝟓 

14×14 192 4 

8 MBConv1, 

k3×3 

7×7 320 1 

9 Conv1×1 & 

Pooling & FC 

7×7 1280 1 

 

Table 3 describes the architecture of EfficientNetB0. 

EfficientNet is designed using nine structured stages to 

balance efficiency and accuracy. In the initial stages, sim-

ple operations with high resolution and a low number of 

channels are performed. As the stages progress, the im-

age resolution decreases, while the number of channels 

and the complexity of operations, such as the use of 

MBConv with 3x3 or 5x5 kernels, increase. In the final 

stage, a Conv1x1 operation with pooling and fully con-

nected layers is  performed to produce the final output. 

This approach allows the network to process features ef-

ficiently while maintaining strong representational capa-

bilities [37]. 

 

2.5. Transfer Learning 
 

Transfer learning is a machine learning technique in 

which a previously trained model learns common fea-

tures on large-scale data sets, such as ImageNet, which is 

then transferred to the required task [3]. Transfer learning 

has several advantages, the most important of which is 

time efficiency, because under certain data conditions, it 

can take days or even weeks to train a neural network 

from scratch on complex tasks [39]. 

2.6. Hyperparameters 
 

In this study, 10 deep learning architectures were 

applied to learn chest X-ray images. These architectures 

include ResNet-50, ResNet-101, EfficientNetB0, Effi-

cientNetB1, EfficientNetB2, EfficientNetB3, Efficien t -

NetB4, EfficientNetB5, EfficientNetB6, and Efficien t -

NetB7. 

In developing the model, all networks were initial-

ized with pre-trained weights obtained from large 

ImageNet datasets. The final layers of the model are then 

adjusted by modifying the hyperparameters and record-

ing the best values (Table 4). These hyperparameter val-

ues were applied to all networks trained to classify chest 

X-ray images into two classes: normal and tuberculosis . 

 

Table 4 

The learning parameters  

Hyper-parameter Values 

Epoch 200 

Batch Size 4 

Learning Rate 0.001 

Optimizer SGD 

Momentum 0.9 

Input Size 224×224×3 

 

2.7. Regularization 

 

One indication of not good fit learning is low training 

loss but high validation loss. This indicates that the model 

is over-adjusting to the training data without capturing 

generalizable patterns. The strategies to address this issue 

include the use of data augmentation to provide more 

learning input, dropout rate to reduce dependency on cer-

tain features, L2 regularization to control model weights, 

and early termination to stop training when validation loss 

no longer improves. With the implementation of these 

regularizations [40], the training loss and validation loss 

graphs became more consistent without significant differ-

ences, and the model exhibited better generalizability. 
 

3. Results and Discussion 
 

The simulation results were recorded for each da-

taset usage scenario in each network learning. During 

training, we captured the best learning curves to analyze 

the network learning performance. Among the best learn-

ing curves, we saved and tested the model. The testing 

results are presented in a confusion matrix displaying the 

evaluation metrics values of accuracy, sensitivity, and 

specificity. We then compared the performance of the 

model in terms of its learning ability and accuracy rate in 

recognizing images. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 10. Training result using (a) Scheme One on ResNet-50 and (b) ResNet-101;  

(c) Scheme Two on ResNet-50 and (d) ResNet-101; (e) Scheme Three on ResNet-50 and (f) ResNet-101 

3.1. Scheme One 

 
In In Scheme one, the Shenzhen dataset was used to 

train the ResNet-50, ResNet-101, and EfficientNet, along 

with the variants, by fine-tuning the hyperparameters. 

Fig. 10 (a) and (b) show the learning performances of 

ResNet-50 and ResNet-101 when trained on Shenzhen 

datasets.  

The graphs show a significant difference between 

the training and validation loss curves, along with a con-

tinuous increase in the validation loss as the number of 

epochs increases, indicating the occurrence of overfit-

ting. Additionally, the graphs also displayed chaotic fluc-

tuations in the validation loss, indicating instability and 

inconsistency in the model’s predictions. In this scheme, 

the models have difficulty learning the dataset because 

chest X-ray images from Shenzhen expose the presence 

of bones with high white color intensity in the lung area, 

which is considered tuberculosis, while it is actually nor-

mal. Similar trends are shown in Fig. 11 when Efficien t -

Net variants were trained on the Shenzhen dataset. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 11. Training result using Scheme One on (a) EfficientNetB0, (b) EfficientNetB1, (c) EfficientNetB2,  

(d) EfficientNetB3, (e) EfficientNetB4, (f) EfficientNetB5, (g) EfficientNetB6, and (h) EfficientNetB7 
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3.2. Scheme Two 
 

In Scheme Two, the images were from datasets of 

the Montgomery, RSNA, and Belarus. Fig. 10 (c) and (d) 

and Fig. 12 displayed the training results using X-ray im-

ages from Scheme 2, which show better quality com-

pared to Scheme One. In Fig. 10 (c), there are initial in-

dications of overfitting as the validation loss curve in-

creases over time. In Fig. 10 (d), the training loss and val-

idation loss curves exhibit stability, with close and con-

verging trends, indicating a good fit. The graphs shown 

in Fig. 12 exhibit significant fluctuations; however, the 

gap between training loss and validation loss remained  

low, which indicates that the models were a good fit.  

When fluctuations occurred while maintaining a 

low gap, the models were considered capable of recog-

nizing common patterns in the validation data and were 

not overly influenced by small variations in the data. 

Thus, ResNet-101 demonstrated the best learning on da-

taset Scheme 2. 
 

3.3. Scheme Three 
 

In this scheme, we combined the datasets from 

Schemes One and Two to increase the number of datasets 

and allow for more learning. X-ray images from the 

Shenzhen, Montgomery, RSNA, and Belarus datasets 

were used to train the ResNet and EfficientNet. The 

learning performances are shown in Fig. 10 (e) and (f) 

and Fig. 13. 

In Fig. 10 (e) and (f), the upward trend of validation 

loss with increasing number of epochs indicates overfit-

ting. This phenomenon, where the model becomes too 

specialized in the training data and loses its ability to 

adapt to new data, can have significant implications for 

the model's real-world performance. Overfitting is a 

common problem in complex models or when training 

data are limited.  

In Fig. 13, the small fluctuations in the training loss 

curves indicate that the model was "memorizing" the 

training data. However, the large or erratic fluctuations in 

the validation loss curves indicated that the model could 

not generalize well to unseen data. The learning curves 

confirmed significant overfitting. The model performed  

very well on the training data but experienced a drastic 

decline in performance when faced with unseen data or 

validation datasets. Thus, the model could not recognize 

more general patterns and was too specific to the training 

data.  
 

3.4. Applying Regularization  
 

The overfitting problem observed in the initial train-

ing of all architectures (ResNet-50, ResNet-101, and Ef-

ficientNet B0 to B7) is characterized by very low training 

loss or increased validation loss. This indicates that the 

model is over-adjusting to the training data without cap-

turing generalizable patterns. We applied augmentation 

to increase the model's ability to capture pattern diversity 

and enhance the generalizability of the new data. The 

data augmentation includes rotation, flip, and zoom.  

The data augmentation was dynamic and applied 

only through code during the model training process. 

Augmentation techniques such as rotation, shifting, 

shearing, zooming, and horizontal flipping, are applied 

directly to the images when processed in batches by the 

data generator. Therefore, even though the augmentation 

generates different variations of the images during train-

ing, the number of images in the dataset folder remains  

the same as the original data. No augmented images were 

permanently saved in the dataset storage folder because 

the augmentation was used only to enrich the data virtu-

ally during model training. 

Then, we used the dropout rate to reduce depend-

ency on certain features, L2 regularization to control 

model weights, and early termination to stop training 

when validation loss no longer improved. Each regulari-

zation is individually applied to measure its effective-

ness. However, the learning results demonstrate that the 

individual implementation of each technique cannot fully 

overcome the overfitting problem. This was indicated by 

the model performance, which still showed a large devi-

ation between the accuracy rates of the training and vali-

dation data. 

Next, we applied all regularizations in each network 

learning. For data augmentation, the transformation pa-

rameters used include rotation up to 10 degrees, width and 

height shifts up to 0.1 of the image dimensions, shear 

transformation of 0.1, zoom up to 0.1, and random hori-

zontal flipping. These transformations help create diver-

sity in the training data, whereas the validation and test 

data were only rescaled without additional transfor-

mations. 

In the model architecture, L2 regularization was ap-

plied with a penalty parameter of 0.01 for each dense 

layer. Two dense layers were added, each with 64 and 32 

neurons, respectively, and ReLU activation. After each 

dense layer, dropout was applied at a ratio of 0.5, ran-

domly deactivating half of the neurons during training. 

This was combined with batch normalization to stabilize 

the output distribution between layers. The output layer 

employs a single neuron with sigmoid activation to sup-

port binary classification. 

Early stopping was implemented by monitoring the 

loss value in the validation data. If the loss value did not 

improve over five consecutive epochs, training was termi-

nated, and the best weights were automatically restored. 

The proposed method ensures that training stops at the 

right time, thereby preventing overfitting due to pro-

longed training. 
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Fig. 12. Training result using Scheme Two on (a) EfficientNetB0, (b) EfficientNetB1, (c) EfficientNetB2,  

(d) EfficientNetB3, (e) EfficientNetB4, (f) EfficientNetB5, (g) EfficientNetB6, and (h) EfficientNetB7 
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Fig. 13. Training result using Scheme Three on (a) EfficientNetB0, (b) EfficientNetB1, (c) EfficientNetB2,  

(d) EfficientNetB3, (e) EfficientNetB4, (f) EfficientNetB5, and (g) EfficientNetB6, and (h) EfficientNetB7 
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(c) (d) 

Fig. 14. Training result using regularizations from Scheme One on (a) ResNet-50  

and (b) ResNet-101; Scheme Three on (c) ResNet-50 and (d) ResNet-101 
 

 

As a result, when all the regularizations were com-

bined, the model performance showed a significant im-

provement. The results became more stable with an align-

ment between the accuracy of the training and validation 

data, as shown in Fig. 14, Fig. 15, and Fig. 16. Figure 14 

shows that ResNet50 learning was difficult to achieve sta-

bility in either Scheme One or Scheme Three, but Res-

Net101 learning tended to improve along the training pro-

cess. The learning curves demonstrate that applying regu-

larizations effectively improves model stability for deep-

layer networks. 

In addition, applying regularizations to EfficientNet  

was effective for nearly all EfficientNet variants. As 

shown in Fig. 15 and Fig. 16, training the network with 

regularizations on Scheme One improved the learning 

performance of EfficientNetB1, EfficientNetB3, and Ef-

ficientNetB7, and on Scheme Three, EfficientNetB0, Ef-

ficientNetB1, EfficientNetB2, and EfficientNetB6. How-

ever, more work is required to obtain a good fit model us-

ing various hyperparameter settings and regularizations .  
 

3.5. Classification Performance  
 

The models with the best learning performance 

were then tested using unseen test data to ensure their 

ability to perform well on new data. Scheme Two re-

sulted in the best learning, and from Fig. 10 and Fig. 12, 

we find that ResNet-101, EfficientNetB0, Efficien t -

NetB1, EfficientNetB2, EfficientNetB4, and Efficien t -

NetB6 show a good learning curve or good fit results; 

thus, it should increase confidence in the evaluation of 

the model's performance. The model was evaluated using 

a confusion matrix that describes the performance of the 

model when classifying the dataset by providing detailed 

information about the accuracy, sensitivity, and specific-

ity rates.  

Fig. 17 displayed the confusion matrix of the testing 

results using the ResNet-101, EfficientNetB0, Efficient -

NetB1, EfficientNetB2, EfficientNetB4, and Efficient -

NetB6 architectures in Scheme 2. Based on the confusion 

matrix, the accuracy, sensitivity, specificity, and values 

were calculated to assess the performance of each archi-

tecture (Table 5). The results confirmed that the ResNet-

101 and EfficientNetB0 architectures outperformed the 

other architectures in testing images. 

Based on the testing results, using a good dataset 

(Scheme 2) resulted in a model capable of recognizing 

negative images effectively. This is indicated by the false 

positive value of 0 for each model. Table 5 confirms this 

finding. According to Table 5, the specificity value was  
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(e) (f) 
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Fig. 15. Training result using regularizations from Scheme One on (a) EfficientNetB0, (b) EfficientNetB1,  

(c) EfficientNetB2, (d) EfficientNetB3, (e) EfficientNetB4, (f) EfficientNetB5, and (g) EfficientNetB6,  

and (h) EfficientNetB7 
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Fig. 16. Training result using regularizations from Scheme Three on (a) EfficientNetB0, (b) EfficientNetB1,  

(c) EfficientNetB2, (d) EfficientNetB3, (e) EfficientNetB4, (f) EfficientNetB5, and (g) EfficientNetB6,  

and (h) EfficientNetB7 
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100%. Furthermore, from the confusion matrix that re-

sulted in a non-zero false negative value, we can conclude 

that there are positive images that are mistakenly identi-

fied as negative. This possibility arises because positive 

images in the testing dataset are considered negative. 

These results also affirm the importance of dataset 

selection in model development. A non-representative da-

taset can result in poorly performing models with limited  

generalizability. Scheme Two, which combines multiple 

good and representative datasets, also yields a good 

model. However, when the dataset in Scheme Two is 

merged with a poor or non-representative dataset (Scheme 

Three), the model’s performance deteriorates or de-

creases. 

 

 
 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 17. Confusion matrix of the testing results from 

Scheme Two without regularizations: (a) ResNet-101, 

(b) EfficientNetB0, (c) EfficientNetB1,  

(d) EfficientNetB2, (e) EfficientNetB4,  

and (f) EfficientNetB6 

 

Furthermore, we also tested the models resulting 

from Schemes One and Three, which were improved us-

ing regularizations. From Fig. 14, Fig. 15, and Fig. 16, ap-

plying regularizations to ResNet 101, EfficientNetB1, Ef-

ficientNetB3, and EfficientNetB7 effectively increased 

the learning stability of Scheme One. In addition, apply-

ing regularizations to Scheme Three effectively increased 

the learning performance on networks EfficientNetB0, 

EfficientNetB1, EfficientNetB2, and EfficientNetB6. 

 

Table 5 

Evaluation matrix of the testing result for Scheme Two 

Architecture 
Evaluation Matrix 

Accuracy Sensitivity Specificity 

ResNet-101 99.2% 98.5% 100% 

EfficientNetB0 99.2% 98.5% 100% 

EfficientNetB1 98.5% 96.9% 100% 

EfficientNetB2 99.2% 98.4% 100% 

EfficientNetB4 99.2% 98.4% 100% 

EfficientNetB6 99.2% 98.4% 100% 

 

Tables 6 and 7 present the evaluation results of the 

models using the accuracy, sensitivity, and specificity 

metrics after regularization in the two schemes, respec-

tively. Table 6 presents the results from Scheme One, and 

Table 7 presents the testing results of the best model in 

Scheme Three. 

 

  
(a) (b) 

 

 
(c) (d) 

Fig. 18. Confusion matrix of the testing results from 

Scheme One with regularizations: (a) ResNet-101,  

(b) EfficientNetB1, (c) EfficientNetB3,  

(d) EfficientNetB7 

 

Under Scheme One, the best model was obtained 

using EfficientNetB1, EfficientNetB3, EfficientNetB7, 

and ResNet-101. Based on the evaluation results 

presented in Table 6, EfficientNetB7 demonstrated the 

best overall performance with an accuracy of 87.6%, 
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sensitivity of 89.2%, and specificity of 86.1%. In 

addition, EfficientNetB1 achieved the highest specificity 

(93.8%) despite having a relatively low sensitivity 

(78.4%). The ResNet-101 and EfficientNetB3 

architectures demonstrated balanced outcomes across 

several metrics, although with variations in accuracy, 

sensitivity, and specificity. 

 

  

(a) (b) 

 
 

(c) (d) 

Fig. 19. Confusion matrix of the testing results from 

Scheme Three with regularizations: (a)EfficientNetB0, 

(b) EfficientNetB1, (d) EfficientNetB2,  

and (c) EfficientNetB6 

 

Table 6 

Evaluation matrix of testing results from Scheme One  

after using regularizations 

Architecture 
Evaluation Matrix 

Accuracy Sensitivity Specificity 

EfficientNetB1 86.1% 78.4% 93.8% 

EfficientNetB3 83.8% 90.7% 76.9% 

EfficientNetB7 87.6% 89.2% 86.1% 

ResNet-101 83.8% 83% 84.6% 

 

 

In addition, Table 7 presents the evaluation results 

obtained in Scheme Three, which demonstrate a 

significant performance improvement compared to 

Scheme 1. The tested models were EfficientNetB0, 

EfficientNetB1, EfficientNetB2, and EfficientNetB6. 

EfficientNetB0 demonstrated the highest performance 

with an accuracy of 95%, sensitivity of 95.7%, and 

specificity of 94.2%. The EfficientNetB1 and 

EfficientNetB2 models also demonstrated excellen t  

results, with accuracy exceeding 94% and high 

specificity. Although EfficientNetB6 demonstrated the 

lowest accuracy (93.6%), its sensitivity and specificity 

remained high at 90.7% and 96.5%, respectively. 
 

Table 7 

Evaluation matrix of testing results from Scheme Three 

after using regularizations 

Architecture 
Evaluation Matrix 

Accuracy Sensitivity Specificity 

EfficientNetB0 95% 95.7% 94.2% 

EfficientNetB1 94.2% 90.7% 97.6% 

EfficientNetB2 94.2% 91.9% 96.5% 

EfficientNetB6 93.6% 90.7% 96.5% 

 

4. Future Works 

 
Applying regularizations and fine-tuning the hy-

perparameter settings effectively improved learning per-

formance. However, the testing results showed that the 

model trained on high-quality input achieved the highest 

accuracy. Thus, work on enhancing images, such as con-

trast image preprocessing and region of interest segmen-

tation, is required to construct a robust CXR classifica-

tion model. 

Poor-quality images or data biases can interfere 

with the learning process and degrade the model's gener-

alizability. Therefore, it is important to prepare data with 

optimal preprocessing, proper dataset selection, and 

training strategies that consider data variations to avoid 

overfitting and improve accuracy in real clinical applica-

tions. 

In addition, other CNN networks with an optimal 

learning algorithm should be used to achieve high model 

performance. A self-supervised or reinforcement learn-

ing approach may be a good choice for developing robust 

models. 

 

5. Conclusions 

 

Based on the research findings, it was observed that 

the dataset in Scheme Two, utilizing the ResNet-101 and 

EfficientNetB0 architectures, performed well in learning 

chest X-ray images, enabling effective classification of 

TB and normal classes. Both models achieved an accu-

racy of 99.2%, sensitivity of 98.5%, and specificity of 

100%. Furthermore, the use of the Shenzhen dataset in 

Schemes One and Three resulted in overfitting the learn-

ing curves, while employing datasets other than Shenzhen 
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in Scheme Two improved the model’s performance. Ap-

plying regularization effectively improved the learning 

performance but did not significantly increase the testing 

accuracy rate. This demonstrates the significance of using 

high-quality images to enhance the model’s performance. 

However, it should be noted that simply combining im-

ages from different sources to enlarge the dataset did not 

guarantee improved learning outcomes. Therefore, the 

best approach to enhance learning performance is to im-

prove the image quality. However, using another deep 

learning network that has better potential in recognizing 

medical images with deep hyperparameter settings and 

regularizations should be performed to provide a good fit 

and high-performance model. 
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ВПЛИВ ВИКОРИСТАННЯ РІЗНИХ РЕНТГЕНОВСЬКИХ ДАНИХ ДЛЯ ВИЯВЛЕННЯ 

ТУБЕРКУЛЬОЗУ НА ОСНОВІ ГЛИБОКОГО НАВЧАННЯ 

Мухаммад Ірхамсіях, Куррата А'юні, Хайрун Саддамі,  

Насаруддін Насаруддін,  Хайрул Мунаді, Фітрі Арнія 

Предмет статті, що ознаки туберкульозу важко вивчити візуально. Тому для розпізнавання рентгенівсь-

ких зображень застосовується комп’ютерна система, заснована на глибокому навчанні. Багато робіт було про-

ведено в цій області, але ще не досягнуто високого рівня точності. Метою нашої роботи — є виявлення ефекту  

використання різних наборів даних для розробки моделі глибокого навчання. Використаний метод полягає  

в розробці моделі глибокого навчання згорткової нейронної мережі (CNN) з використанням трансферного 

навчання для класифікації рентгенівських зображень на бінарні класи норми та туберкульозу (ТБ). В якості 

архітектури CNN використовуються попередньо навчені мережі ResNet та EfficientNet, а також їхні варіанти. 

Попередньо навчена мережа була навчена на наборі даних, отрим аних з чотирьох різних джерел: Шеньчжень, 

Монтгомері, RSNA CXR та Білорусь. Набір даних розділено на три схеми: Перша схема складається з набору 

даних з Шеньчженя з низькоякісними рентгенівськими знімками; друга схема - це набори даних з Монтгомері, 

RSNA та Білорусі, які показують хороший контраст у зазначеній області туберкульозу; і третя схема містить 

набори даних з усіх джерел, щоб дозволити вивчити більше наборів даних. Для підвищення ефективності 

навчання також було застосовано регуляризацію доповнення, відсіювання та L2 регуляризацію. Було отри-

мано такі результати: моделі краще працювали з високоякісними рентгенівськими знімками набору даних 

Схеми два, але не з великим набором даних Схеми три. Щодо продуктивності мережі, моделі, отримані за 

допомогою ResNet-101 та EfficientNetB0, перевершують інші завдяки гарному навчанню та здатності розпі-

знавати рентгенівські зображення з точністю 99,2%.  Підсумовуючи, найкращим підходом до підвищення 

ефективності навчання є використання високоякісних вхідних даних та  застосування регуляризацій. 

Ключові слова: туберкульоз (ТБ); Коволюційна нейронна мережа (CNN); ResNet; EfficientNet . 
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