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IMPACT OF USING VARIOUS X-RAY DATASET IN DETECTING
TUBERCULOSIS BASED ON DEEP LEARNING

The subject matter isthat the characteristics oftuberculosis are difficult to study visually. Therefore, a computer -
aided system based on deep learning can be applied to X-ray image recognition. Many studies have been
conducted in this area but have yet to achieve a high accuracy rate. The goal of this study is to determine the
effect of using various datasets in developing deep learning models. The tasks to be solved include exploring
various deep learning architectures and deep fine-tuning hyperparameters, as well as using various dataset
sources. The method used is the development of a deep learning model of convolutional neural network (CNN)
using transfer learning to classify X-ray images into binary classes of normal and tuberculosis (TB). The CNN
architectures used are the pretrained networks of ResNet and EfficientNet, along with their variants. The pre-
trained network was trained on a dataset obtained from four sources: Shenzhen, Montgomery, RSNA CXR, and
Belarus. The dataset isdivided into three schemes: Scheme one consists of the Shenzhen dataset with low-quality
X-ray images; Scheme two is the Montgomery, RSNA, and Belarus datasets that show good contrast in the
indicated TB area; and Scheme three contains datasets from all sourcesto allow for more datasetsto b e learned.
The augmentation, dropout,and L2 regularization methodswere also applied to enhance learning performance.
The following results were obtained: the models performed better with the high-quality X-ray images in Scheme
Two butnot with the large dataset in Scheme Three. Regarding network performance, the models resulting from
ResNet-101 and EfficientNetBO0 outperformed the otherswith good fit learning and capability in recognizing X -
ray images with an accuracy rate of 99.2%. In conclusion, the best approach to enhance learning performance

is to use high-quality inputand apply regularizations.
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1. Introduction

1.1. Research Motivation

Tuberculosis (TB) is a chronic infectious disease
caused by Mycobacterium tuberculosis (Mtb). This dis-
ease has become a global health threat because of the
high number of cases that were resistant to multiple drugs
and extremely difficult to treat [1]. According to the
World Health Organization (WHO), in 2018, nearly 10
million people were diagnosed with tuberculosis, of
which 1.45 million died [2]. The limited number of doc-
tors and equipment makes it difficult for many people to
detect TB disease early; thus, patients only become aware
of the disease when its symptoms are severe enough.
Early detectionis very useful so that infected individuals
can start treatment immediately without waiting for their
symptoms to worsen. This has motivated work on devel-
oping a computer-aided systemthat is user-friendly and
can assist health workers in detecting TB disease quickly,
supporting early treatment, and preventing the spread of

this infectious disease.

Deep learning (DL), particularly convolutionalneural
networks (CNNs), has shown potential in extracting use-
ful features for image classification tasks. The feature ex-
traction process requires transfer learning, where a previ-
ously trained CNN model learns general features from a
large-scale dataset like ImageNet and then transfers that
knowledge to the required task [3]. Toraman et al. [4]
stated that the images on X-rays must be examined and
interpreted in detail by specialists. Yusoff et al. [5] re-
ported that the classification of tuberculosis (TB) based
on chest X-ray (CXR) was a time-consuming procedure
that required expert interpretation. However, automated
TB classification using CXR could become a significant
clinical utility in addressing this issue due to its associa-
tion with innovative technology.

T. Rahman et al. [6] used nine different CNN archi-
tectures to classify TB and non-TB cases as normal. Res-
Net-101 achieved 94.55% accuracy. Munadietal. [7] im-
plemented the ResNet18, ResNet50, and EfficientNetB4
architectures to train TB images. EfficientNetB4
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achieved the highest scores, reaching 89.92% and 94.8%
in classification accuracy and AUC (Area Under Curve)
scores, respectively. Harahap et al. [8] constructed a
CNN classifier on an imbalanced dataset consisting of
3500 normal and 718 tuberculosis cases. They obtained
an accuracy rate 0f98%. Nafisah et al. [9] applied various
CNN models and compared their classification perfor-
mances. They found that ResNet-50 achieved an accu-
racy of 79.5%, and EfficientNetB3 achieved an accuracy
of 89.4%.

Chowdhury et al. [10] stated that EfficientNet is
known for its high accuracy with fewer parameters and
faster than the best existing CNN architectures. Oloko-
Oba and S. Viriri [11] applied their proposed CNN model
trained on Montgomery County (MC) Tuberculosis radi-
ography and achieved a validation accuracy of 87.1%.
Then, they applied five variants of EfficientNets [12],
and they demonstrated that EfficientNet-B4 achieved the
bestaccuracy of 92.%.

1.2. Objectives
and State -of-the-art Approaches

Based on our literature study on existing similar
works, various techniques such as augmentation [13]
[14], image quality enhancement [15], and segmentation
[16], were employed. Previous studies have used various
combinations of datasets to develop deep learning-based
models [17 - 19]. Pasa et al. combined the Montgomery
datasets of Shenzhen and Belarus [17], whereas Inbaraj
et al., only combined Montgomery with Shenzhen [18].
Natarajan et al. used four public X-ray datasets for TB
detection; however, they excluded the Montgomery da-
taset. Therefore, to date, no study has explored the per-
formance of deep learning networks trained using various
X-ray datasets in the development of deep learning mod-
els. This work provides knowledge about the impact of
using various X-ray datasets for developing early TB de-
tection based on deep learning.

Therefore, we conducted research that provides
state-of-the-art contributions as follows:

1. This study provides information about the char-
acteristic features of chest X-rays that indicate tuberculo-
sis. Deep analyses include the statistical analysis of the
visual and statistical analysis of histograms and the mean
average value of CXR from the datasets used in this re-
search.

2. We develop a CNN model using the transfer
learning of pre-trained ResNet and EfficientNet along
with their variants. Deep training and fine-tuning of hy-
perparameter settings to recognize the CXR images re-
sulted in a high-performance and novel model.

3. We performed a deep analysis of the simulation
results using the training results of the learning curves

and evaluation metrics of accuracy, sensitivity,and spec-
ificity usingthe confusion matrix of the good fit model.

4. We suggest some recommendations for future
work to develop a robust CNN model to aid tuberculosis
detection using CXR images.

The following sections describe ourwork. Section 2
explains the method, the dataset characteristics, prepro-
cess, network architectures, hyperparameter settings, and
regularization approach. Section 3 discusses network
training results and testing performance in recognizing
tuberculosis and normal CXR images. Section 4 provides
recommendations for future work. Finally, Section 5
summarizes our research findings.

2. Materials and methods of research

2.1.Dataset

The characteristic features of tuberculosis are pri-
marily observed inthe lungs, specifically in chest X-rays.
The typical radiological findings in chest X-rays (thorax)
for tuberculosis are abnormalities in the apex (upper part)
of the lungs. There are several types of radiographic im-
ages of pulmonary tuberculosis, such as infiltrates, cavi-
ties, and nodules. Infiltrates appear as small spots ordots
scattered throughout the lungs. The cavities are rounded
with visible walls. Nodules are small round lesions larger
than infiltrates. If any of these three findings are present
in the X-ray images may indicate tuberculosis. However,
further examination is required to confirm the presence
of Mycobacterium tuberculosis bacteria [20].

We utilized X-ray images obtained from Kaggle,
consisting of four different sources:the Shenzhen dataset
[21], the Montgomery dataset [22], the RSNA dataset
[23], and the Belarus dataset [24]. The dataset comprised
1304 images. The Shenzhen and Montgomery datasets
have two classes: normal and tuberculosis. The RSNA
dataset contains only normal images, and the Belarus da-
tasetexclusively contains tuberculosis images.

Figure 1 shows some X-ray images from each da-
taset source. In fact, visually, it was not easy to distin-
guish between TB and normal images in the Shenzhen
dataset because they appeared very similar. However, on
the Montgomery, RSNA, and Belarus datasets, there
were clear differences between normal and TB images.

The pixel intensity values are shown in Figs. 2 and
3. In the Shenzhen data, both TB and normal images had
pixel intensities above 100. This indicates that both da-
tasets tend to have higher brightness levels compared to
other normal datasets. Meanwhile, the Montgomery im-
ages showed more distinct differences. The images indi-
cating tuberculosis showed high pixel intensity values
above 100, indicating brighter areas in the image. On the
other hand, normal Montgomery images tend to have
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pixel intensity values approaching O, indicating darker ar-
eas or closer to black in grayscale images. Thus, Mont-
gomery's dataset provides better quality input for the
learning approach than Shenzhen's.

}

© (d)

©) ®

Fig. 1. X-ray images of (a) normal Shenzhen, (b)
tuberculosis Shenzhen, (c) normal Montgomery, (d)
tuberculosis Montgomery, () normal RSNA,
and (f) tuberculosis Belarus datasets

Furthermore, to gain more insight into the image
characteristics, we applied a statistical approach to both
datasets. As shown in Figs. 4, Fig. 5, Fig. 6, and Fig. 7, it
can be observed that the pixel intensity distribution
patterns in the histograms of tuberculosis images are
similar to those of normal images in both the
Montgomery and Shenzhen datasets. The intensity
distribution in the histograms showed a similar range,
with frequency concentration in the medium-to-high-
intensity range and a significant peak in the high-
intensity range (200-255), representing bone structures
and otherbright areas.
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Fig. 2. Pixel value of X-ray image from Shenzhen
dataset (a) normal and (b) tuberculosis
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Fig. 3. Pixel value of X-ray image from Montgomery
dataset (a) normal and (b) tuberculosis
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Fig. 4. Histogram of the Shenzhen normal image dataset
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Fig. 5. Histogram of the Shenzhen tuberculosis image dataset
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Fig. 8. Mean values of normal and tuberculosis groups
of (a) Shenzhen and (b) Montgomery dataset

In addition, we also plotted the mean values of the
CXR images from both datasets, Shenzhen and Mont-
gomery, as shown in Fig. 9. The mean values of Shen-
zhen normal and tuberculosis CXR images were similar.
However, the normal and tuberculosis CXR images from
Montgomery exposed significantly different mean val-
ues.

There was no noticeable difference between the his-
tograms of normal and tuberculosis conditions, indicat-
ing that the visual characteristics of tuberculosis in X-
rays are notalways explicitly reflected in the pixel inten-
sity distribution. Thus, the deep learning approach is a
good way to distinguish the complex characteristics of
the CXR images.

In this study, we used three dataset schemes to deter-
mine the effect of each dataset on the learning approach.
Scheme One uses only the Shenzhen dataset, Scheme
Two incorporates the Montgomery, RSNA, and Belarus
datasets,and Scheme Three uses all images from all da-
tasets.

2.2.1mage Preprocessing

As illustrated in Figs. 1, 2, and 3, each image is of
various sizes and qualities. The images from Belarus da-
tasets sized 2248x2248, Montgomery normal and Mont-
gomery TB 4020x4892, RSNA 1024x1024, while Shen-
zhen normal and Shenzhen TB 3000x2939. Thus, we
resized the dataset prior to feeding it into the network. All
networks required the same size of images of 224x224
pixels. The distribution of the datasets was 60% for train-
ing, 20% for validation, and 20% for testing data. The
number of datasets for the normal and tuberculosis clas-
ses are detailed in Table 1.

2.3.Residual Network (ResNet)

The convolutional neural network (CNN) is a neural
network model that is usedto find relationships and pat-
terns between data items according to their relative

positions. CNNs are mostly used to learn image data. Im-
plementing CNNs has been widely used in many areas
[25 - 27]. The function of the convolutional operation is
to break down the spatial features of data that are initially
complex into smaller subsets of data by trying to learn
more features from the data that has been studied. The
basic CNN architecture contains multiple convolution
and pooling layers, with a fully-connected layer at the
end, as shown in Fig. 9. Each of these stages has a differ-
ent process; convolution is the first layer that takes the
input image, pooling reduces the dimensions of the input
image, and the fully connected layer performs the classi-
fication [28].

Table 1
Dataset Distribution
Database Data type | Normal Tuberculosis
Training 196 196
Shenzhen Validation 65 65
Test 65 65
Montgomery, Training 196 196
RSNA, and Validation 65 65
Belarus Test 65 65
Shenzhen, Training 392 392
Montgomery, | Validation 130 130
R%ﬁg;uind Test 130 130
Total 1304 1304

One good CNN architecture that demonstrated the
best performance in the ImageNet Large-Scale Visual
Recognition Challenge competition [29] is ResNet. Res-
Net is a deep neural network with residual learning [30,
31] that has a network structure designed to address the
vanishing gradient problem in deep network training.

The architecture begins with an initial convolu-
tional layer (Convl) that uses a 7x7 kernel with a stride
of 2, followed by a max pooling operation. Thereafter,
there are several stages of residual blocks, the number
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Fig. 9. The structure of the CNN algorithm [32]

of which depends on the depth ofthe model, such as Res-
Net-18, ResNet-34, or ResNet-50. Each stage contains
residual blocks consisting of 2 or 3 convolutional layers
equipped with batch normalization and ReLU activation
functions. The key innovation of ResNet is the skip con-
nection, which bypassesone ormore layers in each resid-
ual block, allowing gradients to flow directly to the ear-
lier layers. This structure includes a fully connected layer
for classification, which is preceded by a global average
pooling operation [30].

Table 2
ResNet architecture [30]
Layer Output 50-layer 101-Tayer
name size

Convl 112x112 7X7,64,stride 2

Conv2_x | 56x56 3x3 max pool, stride 2
[1Xx1, 64] [1xX1, 64]
3x3, 64 3x3, 64
1x1, 256 11x1, 256l
X3 X3

Conv3_x | 28x28 1x1, 128 1x1, 128
3x3, 128 3x3, 128
1x1, 512] 1x1, 512]
X 4 X 4

Conv4_x | 14x14 1X1I, 256 1X1, 256
3x3, 256 3x3, 256
1x1, 1024] 1x1, 1024]
X 6 X 23

Conv5_x | 7x7 1x1, 512 1x1, 512
3x3, 512 3x3, 512
1x1, 2048l 1x1, 2048l
X3 X3

1x1 Average pool, 1000-d fc, softmax
FLOPs 3.8x107 [ 7.6x10°

Table 2 describes the architecture of ResNet-50 and
ResNet-101. ResNet 50-layer uses 3-layer bottleneck
blocks with the following structure: conv2.x (64 filters, 3
blocks), conv3.x (128 filters, 4 blocks), conv4.x (256 fil-
ters, 6 blocks), and conv5.x (512 filters, 3 blocks), result-
ing in a complexity of 3.8 billion FLOPs. In addition, the
ResNet 101 layer has more bottleneckblocks to conv4.x,
increasing it to 23 blocks, with a total complexity of 7.6

billion FLOPs, making it deeper yet still efficient. Both
models demonstrated improved performance compared
to shallower models [30].

The ResNet-50 architecture comprises 50 layers.
This architecture combines residual blocks, which con-
sist of multiple convolution layers, batch normalization,
and activation functions, with shortcut connections [33].
ResNet-101 works with the same idea as ResNet-50 but
has 101 layers; thus, it can go deeper than ResNet50 and
extract more advanced features [34].

2.4 EfficientNet

The EfficientNet model is based ona multiple scal-
ing method that expands the basic convolutional network
model size to efficiently target the model size, thereby
achieving the highest model accuracy gain. The com-
bined scaling method allows networks to scale uniformly
across width, depth, and resolution [35]. This architec-
ture had fewer parameters, approximately 8.4 times
less, and ran faster, approximately 6.1 times faster
[36]. The EfficientNet model comprises a deeper net-
work than the base model, which understands complex
and richer features and generalizations. In addition, Effi-
cientNet comprises a wider network that can extract op-
timal features and patterns usefulfor classification tasks.
The basic component of EfficientNet is known as Effi-
cientNetBO0, and its latestvariant is EfficientNetB7 [37].

EfficientNet is a neural network architecture uti-
lizes compound scaling technigques to improve accuracy
and computational efficiency. The network begins with
an initial layer (stem) consisting of a 3x3 convolution
with a stride of 2 and 32 filters. The main structure con-
sists of a series of MBConv (Mobile Inverted Bottleneck
Convolution) blocks that leverage separable convolu-
tions and squeeze-and-excitation modules to enhance ef-
ficiency and channel feature modeling. Each stage has a
specific block count, kernel size, expansion ratio, and fil-
ter number configuration. The Swish activation function
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replaces ReLU toimprove performance. Atthe end of the
network, there is a head layer consisting of a 1x1 convo-
lution, followed by global average pooling and a fully
connected layer. EfficientNet is designed to balance
depth, width, and input resolution optimally, achieving
high performance with efficient resource utilization [38].

2.6.Hyperparameters

In this study, 10 deep learning architectures were
applied to learn chest X-ray images. These architectures
include ResNet-50, ResNet-101, EfficientNetB0, Effi-
cientNetB1, EfficientNetB2, EfficientNetB3, Efficient-
NetB4, EfficientNetB5, EfficientNetB6, and Efficient-
NetB7.

Table 3
EfficientNet-B0O baseline network [37] In developing the model, all networks were initial-
ized with pre-trained weights obtained from large
Stage Operator Resolu- #Chlan- #Lay- ImageNet datasets. The final layers of the model are then
tion neis ers adjusted by modifying the hyperparameters and record-
1 | Conv3x3 224x224 32 1 ing the best values (Table 4). These hyperparameter val-
2| MBConvl, 112x112 16 1 ues were applied to all networks trained to classify chest
k3x3 X-ray images into two classes:normal and tuberculosis.
3 MBConve, 112x112 24 2
k3x3
4 | MBConve, 56x56 40 2 _ Table 4
K5x 5 The learning parameters
5 M BConvé, 28x28 80 3 Hyper-parameter Values
k3x3
& | MBConvd, Tax14 112 3 Epoch 200
K5x 5 Batch_Slze 4
7 | MBConvi, 14x14 192 4 Learning Rate 0.001
k5x 5 Optimizer SGD
8 MBConvl, <7 320 1 Momentum 0.9
k3x3 Input Size 224%224%3
9 Convlixl & X7 1280 1
Pooling & FC 2.7.Regularization

Table 3 describes the architecture of EfficientNet BO.
EfficientNet is designed using nine structured stages to
balance efficiency and accuracy. In the initial stages, sim-
ple operations with high resolution and a low number of
channels are performed. As the stages progress, the im-
age resolution decreases, while the number of channek
and the complexity of operations, such as the use of
MBConv with 3x3 or 56 kernels, increase. In the final
stage, a Conv1xl operation with pooling and fully con-
nected layers is performed to produce the final output.
This approach allows the network to process features ef-
ficiently while maintaining strong representational capa-
bilities [37].

2.5.Transfer Learning

Transfer learning is a machine learning technique in
which a previously trained model learns common fea-
tures on large-scale datasets,such as ImageNet, which is
then transferred to the required task[3]. Transfer learning
has several advantages, the most important of which is
time efficiency, because under certain data conditions, it
can take days or even weeks to train a neural network
from scratch on complex tasks [39].

One indication of not good fit learning is low training
loss but high validation loss. This indicates that the model
is over-adjusting to the training data without capturing
generalizable patterns. The strategies to address this issue
include the use of data augmentation to provide more
learning input, dropout rate to reduce dependency on cer-
tain features, L2 regularization to control model weights,
and early termination to stop training when validation loss
no longer improves. With the implementation of these
regularizations [40], the training loss and validation loss
graphs became more consistent without significant differ-
ences, and the model exhibited bettergeneralizability.

3. Results and Discussion

The simulation results were recorded for each da-
taset usage scenario in each network learning. During
training, we captured the best learning curves to analyze
the network learning performance. Among the best learn-
ing curves, we saved and tested the model. The testing
results are presented in a confusion matrix displaying the
evaluation metrics values of accuracy, sensitivity, and
specificity. We then compared the performance of the
model in terms of its learning ability and accuracy rate in
recognizing images.
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Fig. 10. Training result using (8) Scheme One on ResNet-50 and (b) ResNet-101,;
(c) Scheme Two on ResNet-50 and (d) ResNet-101; (e) Scheme Three on ResNet-50 and (f) ResNet-101

3.1. Scheme One

In In Scheme one, the Shenzhen dataset was used to
train the ResNet-50, ResNet-101, and EfficientNet, along
with the variants, by fine-tuning the hyperparameters.
Fig. 10 (@) and (b) show the learning performances of
ResNet-50 and ResNet-101 when trained on Shenzhen
datasets.

The graphs show a significant difference between
the training and validation loss curves, along with a con-
tinuous increase in the validation loss as the number of

epochs increases, indicating the occurrence of overfit-
ting. Additionally, the graphs also displayed chaotic fluc-
tuations in the validation loss, indicating instability and
inconsistency in the model’s predictions. In this scheme,
the models have difficulty learning the dataset because
chest X-ray images from Shenzhen expose the presence
of bones with high white color intensity in the lung area,
which is considered tuberculosis, while it is actually nor-
mal. Similar trends are shown in Fig. 11 when Efficient-
Net variants were trained on the Shenzhen dataset.
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Fig. 11. Training result using Scheme One on (a) EfficientNetB0, (b) EfficientNetB1, (c) EfficientNetB2,
(d) EfficientNetB3, (e) EfficientNetB4, (f) EfficientNetB5, (g) EfficientNetB6, and (h) EfficientNetB7
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3.2. Scheme Two

In Scheme Two, the images were from datasets of
the Montgomery, RSNA, and Belarus. Fig. 10 (c) and (d)
and Fig. 12 displayed the training results using X-ray im-
ages from Scheme 2, which show better quality com-
pared to Scheme One. In Fig. 10 (c), there are initial in-
dications of overfitting as the validation loss curve in-
creases overtime. In Fig. 10 (d), the training loss and val-
idation loss curves exhibit stability, with close and con-
verging trends, indicating a good fit. The graphs shown
in Fig. 12 exhibit significant fluctuations; however, the
gap between training loss and validation loss remained
low, which indicates that the models were a good fit.

When fluctuations occurred while maintaining a
low gap, the models were considered capable of recog-
nizing common patterns in the validation data and were
not overly influenced by small variations in the data.
Thus, ResNet-101 demonstrated the best learning on da-
taset Scheme 2.

3.3. Scheme Three

In this scheme, we combined the datasets from
Schemes One and Two to increase the number of datasets
and allow for more learning. X-ray images from the
Shenzhen, Montgomery, RSNA, and Belarus datasets
were used to train the ResNet and EfficientNet. The
learning performances are shown in Fig. 10 (e) and (f)
and Fig. 13.

In Fig. 10 (e) and (f), the upward trend of validation
loss with increasing number of epochs indicates overfit-
ting. This phenomenon, where the model becomes too
specialized in the training data and loses its ability to
adapt to new data, can have significant implications for
the model's real-world performance. Overfitting is a
common problem in complex models or when training
data are limited.

In Fig. 13, the small fluctuations in the training loss
curves indicate that the model was "memorizing" the
training data. However, the large or erratic fluctuations in
the validation loss curves indicated that the model could
not generalize well to unseen data. The learning curves
confirmed significant overfitting. The model performed
very well on the training data but experienced a drastic
decline in performance when faced with unseen data or
validation datasets. Thus,the model could not recognize
more general patterns and was too specific to the training
data.

3.4. Applying Regularization

The overfitting problem observed in the initial train-
ing of all architectures (ResNet-50, ResNet-101, and Ef-
ficientNet BO to B7) is characterized by very low training
loss or increased validation loss. This indicates that the

model is over-adjusting to the training data without cap-
turing generalizable patterns. We applied augmentation
to increase the model's ability to capture pattern diversity
and enhance the generalizability of the new data. The
data augmentation includes rotation, flip, and zoom.

The data augmentation was dynamic and applied
only through code during the model training process.
Augmentation techniques such as rotation, shifting,
shearing, zooming, and horizontal flipping, are applied
directly to the images when processed in batches by the
data generator. Therefore, even though the augmentation
generates different variations of the images during train-
ing, the number of images in the dataset folder remains
the same as the original data. No augmented images were
permanently saved in the dataset storage folder because
the augmentation was used only to enrich the data virtu-
ally during model training.

Then, we used the dropout rate to reduce depend-
ency on certain features, L2 regularization to control
model weights, and early termination to stop training
when validation loss no longer improved. Each regulari-
zation is individually applied to measure its effective-
ness. However, the learning results demonstrate that the
individual implementation of each technique cannot fully
overcome the overfitting problem. This was indicated by
the model performance, which still showed a large devi-
ation between the accuracy rates of the training and vali-
dation data.

Next, we applied all regularizations in each network
learning. For data augmentation, the transformation pa-
rameters used include rotation up to 10 degrees, width and
height shifts up to 0.1 of the image dimensions, shear
transformation of 0.1, zoom up to 0.1, and random hori-
zontal flipping. These transformations help create diver-
sity in the training data, whereas the validation and test
data were only rescaled without additional transfor-
mations.

In the model architecture, L2 regularization was ap-
plied with a penalty parameter of 0.01 for each dense
layer. Two dense layers were added, each with 64 and 32
neurons, respectively, and ReLU activation. After each
dense layer, dropout was applied at a ratio of 0.5, ran-
domly deactivating half of the neurons during training.
This was combined with batch normalization to stabilize
the output distribution between layers. The output layer
employs a single neuron with sigmoid activation to sup-
portbinary classification.

Early stopping was implemented by monitoring the
loss value in the validation data. If the loss value did not
improve over five consecutive epochs, training was termi-
nated, and the best weights were automatically restored.
The proposed method ensures that training stops at the
right time, thereby preventing overfitting due to pro-
longed training.
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Fig. 12. Training result using Scheme Two on (a) EfficientNetBO0, (b) EfficientNetB1, (c) EfficientNetB2,
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As a result, when all the regularizations were com-
bined, the model performance showed a significant im-
provement. The results became more stable with an align-
ment between the accuracy of the training and validation
data, as shown in Fig. 14, Fig. 15, and Fig. 16. Figure 14
shows that ResNet50 learning was difficult to achieve sta-
bility in either Scheme One or Scheme Three, but Res-
Net101 learning tended to improve along the training pro-
cess. The learning curves demonstrate that applying regu-
larizations effectively improves model stability for deep-
layer networks.

In addition, applying regularizations to EfficientNet
was effective for nearly all EfficientNet variants. As
shown in Fig. 15 and Fig. 16, training the network with
regularizations on Scheme One improved the learning
performance of EfficientNetB1, EfficientNetB3, and Ef-
ficientNetB7, and on Scheme Three, EfficientNetB0, Ef-
ficientNetB1, EfficientNetB2, and EfficientNetB6. How-
ever, more work is required to obtain a good fit model us-
ing various hyperparameter settings and regularizations.

3.5. Classification Performance

The models with the best learning performance
were then tested using unseen test data to ensure their

ability to perform well on new data. Scheme Two re-
sulted in the bestlearning, and from Fig. 10 and Fig. 12,
we find that ResNet-101, EfficientNetBO, Efficient-
NetB1, EfficientNetB2, EfficientNetB4, and Efficient-
NetB6 show a good learning curve or good fit results;
thus, it should increase confidence in the evaluation of
the model's performance. The model was evaluated using
a confusion matrix that describes the performance of the
model when classifying the dataset by providing detailed
information about the accuracy, sensitivity,and specific-
ity rates.

Fig. 17 displayed the confusion matrix of the testing
results using the ResNet-101, EfficientNetB0, Efficient-
NetB1, EfficientNetB2, EfficientNetB4, and Efficient-
NetB6 architectures in Scheme 2. Based on the confusion
matrix, the accuracy, sensitivity, specificity, and values
were calculated to assess the performance of each archi-
tecture (Table 5). The results confirmed that the ResNet-
101 and EfficientNetBO architectures outperformed the
otherarchitectures in testing images.

Based on the testing results, using a good dataset
(Scheme 2) resulted in a model capable of recognizing
negative images effectively. This is indicated by the false
positive value of O for each model. Table 5 confirms this
finding. According to Table 5, the specificity value was
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100%. Furthermore, from the confusion matrix that re-
sulted ina non-zero false negative value, we can conclude
that there are positive images that are mistakenly identi-
fied as negative. This possibility arises because positive
images in the testing dataset are considered negative.

These results also affirm the importance of dataset
selection in model development. A non-representative da-
taset canresult in poorly performing models with limited
generalizability. Scheme Two, which combines multiple
good and representative datasets, also yields a good
model. However, when the dataset in Scheme Two is
merged with apooror non-representative dataset (Scheme
Three), the model’s performance deteriorates or de-
creases.
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Fig. 17. Confusion matrix of thetesting results from
Scheme Two without regularizations: (a) ResNet-101,
(b) EfficientNetB0, (c) EfficientNetB1,

(d) EfficientNetB2, (e) EfficientNetB4,
and (f) EfficientNetB6

Furthermore, we also tested the models resulting
from Schemes One and Three, which were improved us-
ing regularizations. From Fig. 14, Fig. 15, and Fig. 16, ap-
plying regularizations to ResNet 101, EfficientNetB1, Ef-
ficientNetB3, and EfficientNetB7 effectively increased

the learning stability of Scheme One. In addition, apply-
ing regularizations to Scheme Three effectively increased
the learning performance on networks EfficientNetBO,
EfficientNetB1, EfficientNetB2, and EfficientNetB6.

Table 5

Evaluation matrix of the testing result for Scheme Two

Evaluation Matrix
Architecture — pp—
Accuracy | Sensitivity | Specificity
ResNet-101 99.2% 98.5% 100%
EfficientNetBO 99.2% 98.5% 100%
EfficientNetB1 98.5% 96.9% 100%
EfficientNetB2 99.2% 98.4% 100%
EfficientNetB4 99.2% 98.4% 100%
EfficientNetB6 99.2% 98.4% 100%

Tables 6 and 7 present the evaluation results of the
models using the accuracy, sensitivity, and specificity
metrics after regularization in the two schemes, respec-
tively. Table 6 presents the results fromScheme One, and
Table 7 presents the testing results of the best model in
Scheme Three.

True Label
True Label

FN
: 14

Normal
Predicted Label

Normal B
Predicted Label

(b)

True Label
True Label

FN
7

B

Normal B
Predicted Label

Normal B
Predicted Label

© (d)

Fig. 18. Confusion matrix of thetesting results from
Scheme One with regularizations: (a) ResNet-101,
(b) EfficientNetB1, (c) EfficientNetB3,

(d) EfficientNetB7

Under Scheme One, the best model was obtained
using EfficientNetB1, EfficientNetB3, EfficientNetB7,
and ResNet-101. Based on the evaluation results
presented in Table 6, EfficientNetB7 demonstrated the
best overall performance with an accuracy of 87.6%,
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sensitivity of 89.2%, and specificity of 86.1%. In
addition, EfficientNetB1 achieved the highest specificity
(93.8%) despite having a relatively low sensitivity
(78.4%). The ResNet-101 and EfficientNetB3
architectures demonstrated balanced outcomes across
several metrics, although with variations in accuracy,
sensitivity, and specificity.
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Fig. 19. Confusion matrix of thetesting results from
Scheme Three with regularizations: (a)EfficientNetBO,
(b) EfficientNetB1, (d) EfficientNetB2,
and (c) EfficientNetB6

Table 6

Evaluation matrix of testing results from Scheme One
after using regularizations

Evaluation Matrix
Architecture — —
Accuracy | Sensitivity | Specificity
EfficientNetB1 86.1% 78.4% 93.8%
EfficientNetB3 83.8% 90.7% 76.9%
EfficientNetB7 87.6% 89.2% 86.1%
ResNet-101 83.8% 83% 84.6%

In addition, Table 7 presents the evaluation results
obtained in Scheme Three, which demonstrate a
significant performance improvement compared to
Scheme 1. The tested models were EfficientNetBO,
EfficientNetB1, EfficientNetB2, and EfficientNetB6.
EfficientNetBO demonstrated the highest performance
with an accuracy of 95%, sensitivity of 95.7%, and

specificity of 94.2%. The EfficientNetB1 and
EfficientNetB2 models also demonstrated excellent
results, with accuracy exceeding 94% and high
specificity. Although EfficientNetB6 demonstrated the
lowest accuracy (93.6%), its sensitivity and specificity
remained high at 90.7% and 96.5%, respectively.

Table 7

Evaluation matrix of testing results from Scheme Three
after using regularizations

Evaluation Matrix
Architecture — —
Accuracy | Sensitivity | Specificity
EfficientNetBO 95% 95.7% 94.2%
EfficientNetB1 94.2% 90.7% 97.6%
EfficientNetB2 94.2% 91.9% 96.5%
EfficientNetB6 93.6% 90.7% 96.5%

4. Future Works

Applying regularizations and fine-tuning the hy-
perparameter settings effectively improved learning per-
formance. However, the testing results showed that the
model trained on high-quality input achieved the highest
accuracy. Thus, work on enhancing images, such as con-
trast image preprocessing and region of interest segmen-
tation, is required to construct a robust CXR classifica-
tion model.

Poor-quality images or data biases can interfere
with the learning process and degrade the model's gener-
alizability. Therefore, it is important to prepare data with
optimal preprocessing, proper dataset selection, and
training strategies that consider data variations to avoid
overfitting and improve accuracy in real clinical applica-
tions.

In addition, other CNN networks with an optimal
learning algorithm should be used to achieve high model
performance. A self-supervised or reinforcement learn-
ing approach may be a good choice for developing robust
models.

5. Conclusions

Based on the research findings, it was observed that
the datasetin Scheme Two, utilizing the ResNet-101 and
EfficientNetBO architectures, performed well in learning
chest X-ray images, enabling effective classification of
TB and normal classes. Both models achieved an accu-
racy of 99.2%, sensitivity of 98.5%, and specificity of
100%. Furthermore, the use of the Shenzhen dataset in
Schemes One and Three resulted in overfitting the learn-
ing curves, while employing datasets otherthan Shenzhen
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in Scheme Two improved the model’s performance. Ap-
plying regularization effectively improved the learning
performance but did not significantly increase the testing
accuracy rate. This demonstrates the significance of using
high-quality images to enhance the model’s performance.
However, it should be noted that simply combining im-
ages from different sources to enlarge the dataset did not
guarantee improved learning outcomes. Therefore, the
best approach to enhance learning performance is to im-
prove the image quality. However, using another deep
learning network that has better potential in recognizing
medical images with deep hyperparameter settings and
regularizations should be performed to provide a good fit
and high-performance model.
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BIUVIMB BUKOPUCTAHHSA PI3BHUX PEHITEHOBCBKUX JAHUX JJIs1 BUABJIEHHSA
TYBEPKYJIBO3Y HA OCHOBI I'"IIBOKOI'O HABYAHHA

Myxammao Ipxamciax, Kyppama A'woni, Xaiipyn Caooami,
Hacapyooin Hacapyooin, Xaiipyn Mynaoi, @impi Apuin

MpeameT cTaTTi, 0 03HAKK TyOEPKyJIHO3y BaXXKO BUBUHTHU Bi3yanabHO. TOMY WIS po3mi3HaBaHHS PEHITCHIBCH-
KUX 300pakeHb 3aCTOCOBYETHCS KOMIT IOTEpHA CUCTEMa, 3aCHOBaHa Ha TIIMOOKOMY HaB4aHHI. barato po6ir Oyio npo-
BEJICHO B ITiif 00J1aCTi, aje I1e He JOCATHYTO BHCOKOTO PiBHA ToyHOCTI. MeTol0 Hamoi poO0oTH — € BUSBICHHS e(eKTy
BUKOPHUCTaHHS PI3HUX HAOOPIB JAHUX JUII PO3POOKH MOJENi IMOOKOTO HaBYaHHS. Bukopucranmii MeTo[ mossirae
B po3po0ii MoJjen IMOOKOTO HaBYaHHS 3ropTkoBoi HepoHHOT Mepexi (CNN) 3 BUKOpUCTaHHSIM TpaHC(HEPHOTO
HaBYaHHS I Kiacudikalii peHTreHIBChKUX 300pakeHb Ha OiHapHi Knacu HOpMH Ta TyOepkymnso3y (Th). B sxocti
apxitektypu CNN BHKOPHCTOBYIOTHCS HomepenHbo HaBueHi Mepexi ResNet ta EfficientNet, a Takox ixHi BapiaHTH.
INomepenHso HaBYCHA Meperka Oyra HaBdeHa Ha HAOOpiaHKUX, OTPUM aHMX 3 HOTUPHOX Pi3HUX mKepel: llleHpuxeHs,
Mountromepi, RSNA CXR Ta Binopyck. Habip manux po3smaiieHO Ha Tpu cxeMu: [lepia cxema CKIIamaeThesl 3 HAOOpy
nauux 3 [lleHbKeHs 3 HU3bKOSKICHUMH PEHTTCHIBCHKUMH 3HIMKAMU; Ipyra cxeMa - [e Habopu gaHux 3 MoHTromepi,
RSNA Ta Binopyci, ki OKa3ylOTh XOPOIINH KOHTPACT y 3a3HaUYEHIH 00acTi TyOepKyIb03y; 1 TpEeTI cXeMa MICTUTh
Habopu JaHUX 3 yciX JpKeped, 00 J03BOJUTH BHBYMTH Oulbile HaGopiB gaHux. J{nsd minBumieHHs edeKTHBHOCTI
HaBUaHHS TaKoX OyJIO 3aCTOCOBAHO PETYJSPHU3Alil0 JOMOBHEHHS, BincifoBaHHS Ta L2 perymapusamito. Byno otpu-
MaHO Taki pe3yJbTaTH: MOJEJi Kpalie NMpamlioBaiyd 3 BUCOKOSKICHIMH PEHITCHIBCHBKUMH 3HIMKaMU HaOopy JaHUX
Cxemu 1Ba, ayne He 3 BeIMKUM Habopowm manux Cxemu Tpu. [llo0 MpOAYKTHBHOCTI Mepeki, MOJeNi, OTprMaHi 3a
nonomoroto ResNet-101 ta EfficientNetB0, mepeBepuIyroTs iHII 3aBIIKH TapHOMY HaBYaHHIO Ta 3[aTHOCTI PO3ITi-
3HABAaTH PEHITCHIBCHKI 300pa)keHHS 3 TouHICTIO 99,2%. IlimcymoByIouM, HafKpamuM IIX0JOM JO ITiBHUIICHHS
e(eKTUBHOCTI HaBYaHHS € BUKOPUCTAHHS BUCOKOSIKICHMX BXITHMX JaHHX Ta 3aCTOCYBAaHHS peryJisipHu3ariil.

Knrouoi cioBa: ty6epkynbo3 (Th); KoBomouiiina neiiponna mepexa (CNN); ResNet; EfficientNet.
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