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FACE AUTISTIC CLASSIFICATION BASED ON THERMAL USING IMAGE
ENSEMBLE LEARNING OF VGG-19, RESNETS50V2, AND EFFICIENTNET

The subject of this paper is the detection of Autism Spectrum Disorder (ASD) traits using facial recognition
based onthermal images. The goal of this study was to evaluate and compare the performance of various Con-
volutional Neural Network (CNN) architecturesin classifying thermal facial images of children with ASD,
thereby facilitating the early identification ofautistic traits. The tasks addressed include preprocessing a dataset
of thermal facial images to prepare them for model training; conducting classification using three CNN archi-

tectures VGG-19, ResNet50V2, and EfficientNet; and assessing their performance based on accuracy, precision,
recall, and F1-score metrics. The methods employed involved training these CNN models on a balanced dataset
of 4,120 thermal facial images and splitting theminto training, validation, and test sets. Each model underwent
extensive training to determine its ability to effectively classify autism and non-autism classes. The results re-
vealed that ResNet50V2 achieved the highest accuracy of 98.82%, followed by VGG-19 and EfficientNet with
accuraciesof 96.47% and 96.07%, respectively. ResNet50V2 also demonstrated superior generalizability due to
its lower validation loss and higher classification accuracy compared to other architectures. Conclusion. The
scientificnovelty lies in: 1) introducing thermal imaging as an effective tool for detecting ASD traits; 2) demon-
strating the superior performance of ResNet50V2 in classifying thermal facial images with high accuracy and
generalization; and 3) exploring EfficientNet for the first time in this domain, highlighting its potential for im-
proving autism diagnostic systems. This study contributesto advancing noninvasive methodsfor ASD detection
and paves the way for further applicationsofdeep learningin clinical diagnostics.

Keywords: Autism Spectrum Disorder (ASD); Thermal Image; EfficientNet; ResNet50V2; VGG-19.

financial burden of caring for a child with ASD exceeds
$20,000 annually in the United States [4].

Early diagnosis is critical because timely
interventions can improve social functioning and overall
quality of life [5]. A promising approach for early
detection involves facial recognition technologies,
particularly ~ thermal imaging, which  captures
physiological signals in a non-intrusive manner [6].
Thermal imaging was based on the hypothesis that skin
temperature changes due to pulsatile blood flow in facial
vessels reflect ASD-specific affective states [7].

Machine Learning (ML) algorithms, such as Con-

1. Introduction

1.1.Motivation for Research

Autism Spectrum Disorder (ASD) is a neurodevel-
opmental condition in humans characterized by impair-
ments in social interactions, communication (both verbal
and non-verbal), and restricted or repetitive behaviors
[1, 2]. ASD is a spectrum disorder that manifests in var-
ying severity, with each individual displaying unique
symptoms [3]. The latest Centers for Disease Control and
Prevention’s (CDC) study in 2023 showed that one in 36

children will now be diagnosed with autism. That is up
from one in 44 two years ago. Because the report was just
released. The data are likely to remain the same through
2024. Across regions such as Asia, Europe, and Africa,
the prevalence varies between 0.48% and 3.13%, and the

volutional Neural Networks (CNNs), have demonstrated
exceptional performance in image-processing tasks,
including facial recognition [8]. However, research into
facial recognition systems tailored for children with
autism, particularly thosethat leverage thermal imaging,
remains relatively underexplored.
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Fig. 1. Research flow in thermal image classification

1.2.State ofthe Art

Previous studies have extensively investigated
facial recognition systems using various CNN
architectures [9, 10]. For instance, [11] demonstrated a
CNN-based facial classification systemfor children with
ASD, achieving an accuracy of 98%. It can be said that
this is the closestanalog, and it is also based on a thermal
imaging dataset. In this study, the dataset used was a
previous study [11]. Here, we compare the performance
of several architectures, such as ResNet50V2,
EfficientNet, and VGG-19, in classifying the faces of
autistic children using thermal images. This is because,
in the study [11], the authors only tested the dataset using
the CNN classification method.

Similarly, [12] employed architectures such as
VGG-19, ResNet50V2, and EfficientNet for autism
diagnosis, with accuracy rates of 86.5%, 94%, and
85.8%, respectively. The work of [13] used MTCNN for
raw data preprocessing and ResNet50V2 for ASD
diagnosis based on facial images, achieving an accuracy
0f93.97% and an AUC of 96.33%.

Thermal imaging enhances diagnostic accuracy by
providing unique physiological data. The integration of
advanced CNN architectures, such as VGG-19,
ResNet50V2, and EfficientNet, with thermal imaging has
demonstrated significant potential for ASD detection

[12]. However, EfficientNet remains relatively
unexplored in the context of facial recognition for
children with autism.

Recent studies have also demonstrated the
application of deep learning in various other domains.
For instance, in [14], a deep learning method for
detecting the nutritional status of children using facial
images was proposed, achieving accuracy rates of

99.75% and 100% with AlexNet and ResNet34. In [15],
the combination of CNN and LSTM for speech emotion
recognition, which addressed genderand style variations,
achieved an accuracy of 84.35%. In [16], the application
of transfer learning using VGGl6, VGG19, and
customized CNNs for skin lesion classification, with
VGG16 being the most effective for early skin cancer
detection, demonstrated the potential for high accuracy in
medical applications. In [17], DenseNet201 was used for
land  cover classification  with  high-resolution
multispectral data, achieving optimal accuracy and
highlighting the importance of quality datasets in
environmental monitoring.

This study compares the performance of several
architectures, such as ResNet50V2, EfficientNet, and
VGG-19, in classifying the faces of children with autism
using thermal images. Furthermore, this study was
proposed because of the differences in facial
characteristics between children with ASD and healthy
children.

1.3.Objective and Approach

This study investigated the effectiveness of the
VGG-19, ResNet50V2, and EfficientNet architectures in
facial recognition for ASD detection based on thermal
images. The performance of these models was evaluated
in terms of recognition accuracy, classification precision,
and computational efficiency.

The primary contributions of this study are as
follows:

1. Enhance the performance of thermal image-
based facial recognition systems for children with ASD
using advanced CNN architectures.
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2. We introduced EfficientNet to the facial
recognition domain for children with autism, marking its
first application in this context.

3. Demonstrating the superiority of ResNet50V2
over other architectures, such as VGG-19 and
EfficientNet.

4. We compared the classification accuracy of
autism facial thermal images between the VGG-19,
ResNet50V2, and EfficientNet architectures to determine
the most effective model.

The structure of this article is organized as follows.
Section 2 discusses the case study, including the dataset
and its preprocessing steps and the configurations of the
employed models. Section 3 presents the experimental
results and provides a comprehensive analysis of the
model performance, addressing key metrics, such as
accuracy and computational efficiency. Section 4
summarizes the conclusions and significant findings,
including potential directions for future research.

2. Case study

The workflow of this study is shown in Fig. 1, and
a description is explained in the next section.

2.1. Data Description

The dataset used in this study was a facial thermal
image database obtained from a previous study [11]. The
dataset was collected from a research project at
Universitas Syiah Kuala with My Hope School Banda
Aceh, Indonesia. The guardian has approved all the data
with proof of a statement of willingness to provide the
dataor a guidance form. These datasets have two classes:
the autism class with 2060 images and the normal class
with 2060 images, with a child age range of 3-10 years.
The thermal image we mean in the study is a collection
of facial data obtained from the study [11]. They usedan
FLIR E95 thermal camera with an emissivity of 0.98 and
resolution of 640x480 pixels. In addition, emissivity is
required to read the recorded skin temperature. In
addition, the thermal camera is designed to be used in the
temperature range of -4 to + 27320F. The thermal camera
provides effective identification of the source of hearing
and allows for consistentimage quality.

2.2. Data Preprocessing

Data preprocessing is a vital process in face
detection. This process involves a series of steps to
prepare facial images before use in model training. In this
stage, the image size of the autism and normal datasets
was changed from 180x180 to 224x224, corresponding
to the size used by the VGG-19, ResNet50V2, and
EfficientNet models. Next, the images were normalized
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Fig. 2. lllustration architecture of VGG-19

to alter the pixel values in the images to fall within a
consistent range, ensuring that the data were ready for the
training process.

2.3. Image Classification

Image classification in this study involved two main
phases:training and testing. During the training phase, a
classification model is developed using labeled training
data, which is further divided into subsets for training,
validation, and testing. In the testing phase, the devel-
oped classification model was applied to the unlabeled
test datato evaluate its performance.

Before initiating the training process, network pa-
rameters were configured to optimize performance and
ensure stability. The Adam optimizer was selected due to
its efficiency in handling sparse gradients and adapting
learning rates, which makes it particularly suitable for
deep learning tasks with high-dimensional parameter
spaces. To ensure adequate exposure to the dataset while
minimizing overfitting risks, the training process was
performed over 100 epochs. A batch size of 32 was cho-
sento strike a balance between computational efficiency
and gradient stability. Additionally, a learning rate of
0.0001 was employed to ensure a gradual learning pro-
cess. This relatively lower learning rate helps maintain
model stability and prevents divergence, facilitating
steady convergence during training.
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2.4. Visual Geometry Group 19

As shown in Fig. 2, the architecture of VGG-19
affirms its complexity. This artificial neural network is
composed of 19 layers, including 16 convolution layers,
3 fully connected, 5 maxpool, 1 SoftMax, and 1 output
layer, all of which are harnessed by CNN techniques [18,
19]. Typically implemented on the ImageNet data set,
VGG-19's 3x3 size in each layer allows for deep
convolution layers. This feature allows the proposed
network to discern even the most subtle details in images
[20, 21].

The training process using the VGG-19
architecture begins with inputting the dataset, followed
by labeling: "autism" is labeled as "1" and "non-autisnt’
as "0". Next, the data undergoes the convolutional stage,
which generates a feature layer with values in the formof
matrices that differ from the input data. In this feature
layer, the rectified linear unit (ReLU) activation function
is applied, which converts negative values to 0Oand passes
through positive values, resulting in a new matrix. The
matrix generated in the previous step is down-sampled
through a pooling layer using the max pooling function.
Then, the pooling-layer results are flattened, producing a
one-dimensional matrix that is connected to the fully
connected layer to form several hidden layers with a
specified number. After the hidden layers are formed, the
process moves to the activation function stage, where
softmax activation is used in this study.

2.5. ResNet50V2

ResNet50V2 has several phases. This is because
this model has 50 convolutional layers (including
convolution layers in the residual block) and several
fully-connected layers at the end [22, 23]. ResNet's main
contribution lies in its residual blocks. This block
facilitates the training of deeper networks by addressing
the performance degradation problem, which often
occurs in deep networks. As shown in Fig. 3,
ResNet50V2 also employs an identity block, which is
used to keep input dimensions constant when a
convolution layer is applied in the residual block [24].
ResNet50V2 no longer exploits post-activation but rather
pre-activation, which allows layers to return to the
previous layer. This modification reduces the complexity
of the network, thereby increasing its efficiency [25, 26].

The classification process using ResNet50V2
begins with batch normalization to allow gradients to
flow more easily. Next, features are extracted in the
convolutional layers. The process then moves to the max
pooling stage, which reduces the spatial dimensions of
the feature maps generated by the convolutional layers,
thereby increasing translation invariance within the
image. Then, the dimensions of the features are further
reduced, and the output is streamlined using global
average pooling. The final step in classification is to use
the fully connected layer, which is a type of dense layer
that ensures that each neuron is connected to all neurons
in the previous layer.
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Fig. 4. lllustration architecture of EfficientNet

2.6. EfficientNet

EfficientNet is a CNN architectural model that
increases accuracy and model precision by reducing
parameters and FLOPS (Floating Point Operations Per
Second) [27, 28]. This model also uses Squeeze-and-
Excitation (SE) optimization to improve model
performance. EfficientNet-BO uses a "compound
scaling" approach to balance three critical dimensions of
a neural network, namely width, depth, and resolution.
This approach allows the model to achieve previously
unattainable levels of efficiency without sacrificing
accuracy [29, 30]. An illustration of the proposed
EfficientNet architecture is shownin Fig. 4.

The classification process using EfficientNet begins
by determining the filter size, which is a two-dimensional
matrix used to extract information from each pixel of the
image. A 333 convolution follows this. To optimize com-
putational efficiency, EfficientNet employs depth-wise
separable convolution, which consists of two stages:
depth-wise and pointwise convolution. Next, global av-
erage pooling is applied to the extracted features to re-
duce feature dimensions and streamline the output. The
process then moves to the fully connected layer, which
links the extracted features to the class labels. The soft-
max activation function typically follows this to obtain
the probability distribution across classes.

2.7. Evaluation

This stage compares the classification performance
results ofthe VGG-19, ResNet50V2, and EfficientNet ar-
chitectures. Egs. (1) — (4) can be usedto calculate the ac-
curacy, recall, precision, and F1-Score values to deter-
mine systemperformance. The performance results ofthe
model were then compared with those of other studies.
Each model requires test parameters as comparison val-
ues. The parameters used in this study are described be-
low [31].

(TP +TN) ()]
Accuration = ,
(TP + FP + TN + FN)
~ (TP) @
Precision = ——,
(TP + FP)
Recall = (TP) ©)
el =P + FNY
(Recall X precision) 4

F1 — Score = 2 x .
(Recall + precision)

The characters in the confusion matrix are ex-
plained as follows:

- TP (True Positive): Represents data that are ac-
tually positive and correctly predicted as belonging to the
positive class;

- TN (True Negative): Represents data that are ac-
tually negative and correctly predicted as belonging to
the negative class;
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- FP (False Positive): This class refers to datathat
are actually negative but incorrectly predicted as belong-
ing to the positive class;

- FN (False Negative): Refers to data that are
actually positive but incorrectly predicted as be-
longing to the negative class.

3. Results and Analysis

3.1. Image Thermal Classification

The datawere preprocessed in the image classifica-
tion stage. The training and test data. In the training pro-
cess, the training data consists of two data sets: training
dataand validation data. At this stage, 3.610 training data
were used, including 3.100 training data and 510 valida-
tion data.

3.2. Training Resultand Dataset Validation

In this stage, image classification is performed
separately using VGG-19, ResNet50V2, and
EfficientNet. Figures 5-7 compare the accuracy and loss
of each architecture on the training and validation data.

The green curve represents the training accuracy
based on Fig. 5(a), which shows the curve of the relation-
ship between epochs and accuracy using the VGG-19 ar-
chitecture. In contrast, the red curve represents the vali-
dation accuracy. Overall, epochs for testing and valida-
tion datain each architecture were performed in as many
as 100 epochs; based on the explanation in Fig. 5, it is
stated that in the 100th epoch for the testing curve, the
maximum accuracy level reached 84.23%. Meanwhile, in
the validation curve (red), achieving an accuracy of
84.58% only took 20 epochs. This explains why the
model works well during the data validation process with
the comparison results, as mentioned earlier.

Figure 5(b) shows the variation between training
loss (green curve) and validation loss (red curve). At
epoch 81, the training loss rate was 40%, and the valida-
tion loss was 18%. This indicates that the loss rate ob-
tained in the validation phase is lower compared to the
training phase, which affected the resulting accuracy
level. On the training loss curve, it can be seen that at
epoch 81, the loss level was 40%. In addition, on the val-
idation loss curve with the same number of epochs, the
loss level was 18%. Based on this, it can be concluded
that the validation phase has a lower loss than the training
phase, which in turn influences the resulting accuracy
level.

Figure 6(a) shows the variation between training
accuracy (green curve) and validation accuracy (red
curve). Initially, the training accuracy was 91.14%, and
the validation accuracy was 98.12%. However, by epoch

67, the situation changed: training accuracy increased to
99.10%, surpassing validation accuracy, which slightly
decreased to 97.71%. This indicates that the model is
well-trained  (well-fitted), with training performance
slightly exceeding validation performance in later
epochs.

Figure 6(b) shows a graph illustrating the
relationship between epochs and loss using ResNet50V2,
where the green curve represents training loss and the red
curve represents validation loss. It can be observed that
at epoch 15, training loss was relatively high (34.18%,
and the validation loss is 13.46%). However, atepoch 92,
the training loss was reduced to 1.33%, and the validation
loss was reduced to 4.23%. From these data, we conclude
thatthe more epochs were used, the lower the loss level.

Figure 7(@) shows the curve illustrating the
relationship between epochs and accuracy, where the
green curve represents training accuracy, and the red
curve represents validation accuracy. It can be seen that
at epoch 11, there is a difference where the training
accuracy is higher than the validation accuracy, with the
training accuracy being 68.35% and the validation
accuracy being 49.38%. This suggests the occurrence of
overfitting, where thereis a low measurement error but a
high testing error; thus, the accuracy is high in
measurement, butthe performance is low in the testset.

Figure 7(b) shows the curve illustrating the
relationship between epochs and loss using the
EfficientNet architecture. The green curve represents the
loss during the training phase. In contrast, the red curve
represents the loss during the validation phase. At epoch
52, the training loss was 17.99%, and the validation loss
was 14.22%. Atepoch 92, the training loss decreased to
9.68%, and the validation loss decreased to 7.75%. From
this, it can be observed that the loss in both the training
and validation phases decreased as the number of epoch
increased.

Overall, the more epochs a model was trained, the
better was the model fit to the training data. However, if
a model is drilled for too long, it may start to overfit the
training data, which can negatively impact its perfor-
mance on unseen data. Therefore, it is important to find
a balance between the number of epochs and model per-
formance [33].

3.3. Testing Result
and Dataset Validation

In the testing phase, the dataset comprised 510 test
images (255 of children with autism and 255 normal im-
ages).

Figure 8 shows a confusion matrix showing the test

results obtained using the VGG-19 model architecture. It
can be observed that the model correctly predicted 246
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images and made 9 incorrect predictions in the "normal*
class. In the "autistic" class, the model also correctly
predicted 246 images and made 9 incorrect predictions.

Figure 9 is a confusion matrix showing the test re-
sults obtained using the ResNet50V2 model architecture.
The model correctly predicted 249 images and made 6
incorrect predictions in the "normal” class. In the "autis-
tic" class, the model correctly predicted 255 images with
0 incorrect predictions. At this stage, the collection of fa-
cial thermal image datasets was performed, which were
divided into two groups, namely children with autismand
normal children, as obtained from the research of
Melinda etal. [11] via Google Drive. The dataset was di-
vided into three folders: data validation, training, and
testing. The total number of datasets was 4,120 images.
In the validation data, there are 510 images; in the train-
ing data, as many as 3,100 images; and in the testing data,
as many as 510 images.

Confusion Matrix

True Labels
autis

normal

'
autis normal
Predicted Labels

Fig. 9. Testing results using ResNet50V2

Figure 10 presents a confusion matrix showing the

test results obtained using the VGG-19 model

architecture. The model correctly predicted 235 images
and made 20 incorrect predictions in the "normal” class.
In the "autistic" class, the model correctly predicted 255
images with O incorrect predictions.
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Fig. 10. The testing result using EfficientNet

Based on the test results shown in Figs. 8 — 10, the
performance of the VGG-19, ResNet50V2, and
EfficientNet architectures was evaluated. Confusion
matrices are used to measure the performance of the
classification system, and the accuracy, recall, precision,
and F1-score are calculated using Egs. (1) — (4).

Misclassification analysis for Figure 10 reveals that
the EfficientNet architecture recorded the highest number
of incorrect predictions among the three tested
architectures. Specifically, the model made 20 incorrect
predictions in the "normal" class, the largest number of
errors compared to VGG-19 and ResNet50V2, both of
which had fewer errors. The EfficientNet architecture
achieves competitive accuracy overall; however, its
tendency to misclassify images in the "normal" class
underscores potential limitations relative to capturing
subtle variations in thermal features specific to this
category. This highlights the challenges inherent in
feature extraction constraints in EfficientNet, particularly
for thermal imaging.

Table 1
The comparison of the accuracy achievements
of the three architectures

Ar((:jr?iltljc?[ure Accuracy | Precision | Recall Sg;e
VGG-19 96.47% 96.47% | 96.47% |96.47%
ResNet50V2 | 98.82% 100% 97.7% | 99.4%
EfficientNet | 96.07% 100% 92.72% | 97.9%
Table I compares the accuracy of the tnree

architectures. The best results were obtained using
ResNet50V2, with an accuracy of 98.82%. This accuracy
rate is better than that of VGG-19 and EfficientNet,
which have accuracy rates of 96.47% and 96.07%,
respectively. Thus, we conclude that the ResNet50Vv2
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architecture outperforms VGG-19 and EfficientNet in the
facial image classification task of children with autism.
This indicates that choosing the appropriate architecture,
such as ResNet50V2, can provide better performance in
terms of accuracy, precision, recall, and F1-Score
compared to the VGG-19 and EfficientNet architectures.

The results of this study are consistent with
previous findings that highlighted ResNet's superiority in
classification tasks. In this study, ResNet50V2 achieved
the highest accuracy for thermal facial image
classification of children with autism, outperforming
VGG-19 and EfficientNet. Similarly, a study onchestCT
images for tuberculosis, pneumonia, and COVID-19
diagnosis found that ResNet was the top performer,
achieving 96.6% accuracy and outperforming AlexNet,
GoogleNet, and DCNN [32]. These results confirm
ResNet’s  exceptional  feature  extraction  and
generalization capabilities, making it a reliable choice for
complex datasets in medical diagnostics and autism
detection.

Table 2
Performance comparison of facial recognition
methods in autistic children

Ref. Data Type Method Accuracy
Thermal CNN 98%
[11] Image
VGG-19 86.5%
[12] 2D RGB [ ResNet50Vv2 94%
Image —
EfficientNet 85.8%
[13] 2D RGB ResNet50V2 93.97%
Image
2D RGB VGG-19 98%
[20] Image ShuffleNet 8%
VGG-19 96.47 %
Pl\rfl’ept‘r’]f)%d Tlrr‘rgg;a' ResNets0V2_ | 98.82%
EfficientNet 96.07%

Table 2 compares the performances of several facial
recognition methods that use visual and thermal images
in autistic children. Our results demonstrate that the
proposed method has a better accuracy value than the
previous method, namely 98.4% on the ResNet50V2
architecture.

Conclusions

This study successfully evaluated the effectiveness
of CNN models for facial recognition in children with
autism, specifically, the VGG-19, ResNet50V2, and
EfficientNet architectures. The results demonstrate that
facial features in children with autism and non-autism
exhibit subtle differences at specific points, which are
challenging to discern through visual inspection.

However, using CNN-based facial recognition systens,
these differences can be effectively identified and
classified. Among the models tested, ResNet50V2
achieved the highest accuracy (98.82%, surpassing other
architectures). The VGG-19 and EfficientNet models
also demonstrated commendable performance, with
accuracy levels of 96.47% and 96.07%, respectively,
highlighting their reliability for this application.

In future, we plan to expand the datasetto include
more diverse samples and improve model robustness. In
addition, exploring the integration of advanced deep
learning techniques and hybrid approaches may further
enhance classification accuracy and real-world applica-
bility.
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HABYAHHSI B AHCAMBJII VGG-19, RESNET50V2 TA EFFICIENTNET JJI5I KTACU®IKAIIII
AYTUCTUYHOT'O OBJNYYS HA OCHOBI TEIUVIOIIOBPA3Y
Jocynioap /lacynioap, Meninoa Meninoa, /linoa /liea /liannyapi,
Honama JI. Axyna, 3ynvehan 3aiinan

[IpeaMeToM cTaTTi € BUABJICHHS O3HAaK po3nany aytuctuyHoro crnektpy (PAC) 3a momomMororo po3mizHaBaHH S

00JIMYYS Ha OCHOBI TETIOBHUX 300paxkeHb. MeTa MoJisira€ B TOMY, 11100 OLIHUTH Ta MOPIBHATH MPOIyKTHBHICT PI3HUX
apXiTeKTyp 3ropTkoBoi HelfiponHoi Mepexi(CNN) y kmacudikamil TermoBux 300pakeHb o0mmyus aireit 3 PAC, cipu-
SIFOYM PaHHIN 1 TOUHIN imeHTHdIKail ayTHYHUX pUC. 3aBIaHHS, AKI BUPIIIYIOTHCS, BKIIOYAIOTh MOMEPEAHI0 00pOOKY
Ha0OpY JaHUX TEIUIOBHX 300pa)XeHb 00JIMYYs, MO0 MArOTYBaTH 1X JUISI HABYAHHS MOJICJ; POBEICHHS Kiacudikaii
3 BUKOpPUCTAaHHAM TpboX apxitektyp CNN VGG-19, ResNetS50V2 ta EfficientNet; i omiHka iX NpoayKTUBHOCTI Ha
OCHOBI MMOKa3HUKIB TOYHOCTI, TOYHOCTI, 3aIaM ’ITOByBaHHs Ta MOKa3HHWKIB F1. 3acTocoByBaHi METOM BKIIOYAIOTH
HaBYaHHA 1UX Mozenelt CNN Ha 30amaHcoBaHOMY Habopi maHux i3 4120 TeTIOBHX 300paskeHb 0OIMY S, TTOUT iX Ha
HAOOPH I HABYAHHS, MIEPEBIPKM Ta TecTyBaHHs. KojkHa MOJeNb MPOMIUIa IHTCHCUBHE HABYAHHS, 1100 BU3HAYUTH
ii 37aTHICTH € eKTUBHO KIAacU(iKyBaTH ayTH3M iHe ayTu3M. Pesynbrati mokasamu, mo ResNet50V2 mocsr HaiiBumoi
TouHOCTI 98,82%, 3a HUM ¥nyTh VGG-19 1 EfficientNet 3 Tounictio 96,47% 1 96,07% BimmoBimHo. ResNet50V2 Ta-
KOk TIPOJICMOHCTPYBaB UyJ0BE y3araJbHEHHS 3aBIIKA MEHIIIH BTpaTi MEepPEeBIipKH Ta BUIIH TOYHOCTI Kmacudikarii
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MOPIBHAHO 3 IHIIMMU apxiTekTypaMu. BucHoBok. HaykoBa HOBHM3HA mospirae B: 1) 3ampoBapKeHHI TEILUIOBi3Opa SK
edexTuBHOTO 3aco0y BUsIBICHHS 03Hak PAC; 2) nemoHcTpallis 9ya0Boi mpoaykTuBHOCTI ResNet50V2 y xnacudika-
il TeTJIOBUX 300pakeHb 00MYYsl 3 BUCOKOIO TOUHICTIO Ta y3arajdbHeHHsM; 1 3) nocmimkenns EfficientNet Bmepiie B
i rany3i, MiIKPeCTIoYd HOro MOTEHI[ad Ul BIOCKOHAJCHHS CHCTEM JIarHOCTHKH ayTu3Mmy. lle mociimkeHHs
CIpHsSE BIOCKOHAICHHIO HEIHBa3WBHUX MeETOiB BusiBicHHS PAC i mpokiazae Mumx WIS MOJANIBIIOTO 3aCTOCYBaAHHS
NMOOKOT0 HAaBYAHHS B KINHIYHIA IIarHOCTHILI.

KmiouoBi cyioBa: posnan aymuctuanoro cnektpy (PAC); teruosi 300paxenns; EfficientNet; ResNet50V2;
BI'T-19.
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