
Methods and means of image processing

137

UDC 004.6:004.932’328 doi: 10.32620/reks.2025.1.10

Stanislav DANYLENKO, Serhii SMELYAKOV

Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

DEVELOPMENT OF A MULTIDIMENSIONAL DATA MODEL FOR EFFICIENT

CONTENT-BASED IMAGE RETRIEVAL IN BIG DATA STORAGE

The object of the study is content-based image retrieval. The subject of the study is the models and methods of

content-based image retrieval in Big Data storage under high-intensity search queries. The purpose of this study

is to develop a multidimensional data model and related search methods that can use and adapt to exi sting image
descriptors and perform searches based on them. The task is to: analyze modern approaches and solutions for

effective content-based image retrieval, formulate the problem and requirements for the search system; develop

a model that will effectively process descriptors and place them inside in such a way as to minimize the number

of descriptors with which comparisons need to be made during the search; develop a search algorithm; develop
metrics, perform experiments and compare the results obtained with analogs. The methodology includes ana-

lyzing the search process and highlighting the stages of descriptor formation, its placement in the model, deter-

mining the level of similarity and comparing and forming the results; building a data model and plac ing it in

memory; conducting experiments with data sets available on the Internet; evaluating the effectiveness of the

search and forming the resulting tables for comparison with analogs. The following results were obtained: Multi-

Dimensional Cube (MDC) model with optimizations and search algorithms was developed. It was compared

with the brute-force search and the search that uses Inverted Multi-Index (IMI). The experimental results showed

that MDC provides the best search speed among competitors. Demonstrates search quality at the level of com-

petitors. The search labor intensity shown by the MDC is the best for searching for original images in the storage

(checking whether they are present in storage). The labor intensity of searching for modifications of the images
is better than in brute-force search by more than 100 times, but worse by 30% than when using IMI. Conclusions:

The developed MDC model with its search algorithm solves the task of efficient content -based image retrieval,

using existing image descriptors. The obtained results are satisfactory, but a promising direction is to improve

the cell boundaries optimization algorithm and apply parallel computing .

Keywords: multidimensional data model; search model; content-based image retrieval; big data; image pro-

cessing; image storage; feature database.

1. Introduction

1.1. Motivation

Searching on the Internet is an everyday operation

and is performed very often. According to statistics from

Google, one of the leaders in web search, approximately

8.5 billion queries were performed daily in 2024, with

84% of users performing at least 3 searches per day. The

image search function is used approximately 12 billion

times a month. That is, image search accounts for approx-

imately 5% of all user searches [1, 2]. Furthermore, this

is information from just one search engine.

For the average user, the image-based search (when

the search query is an uploaded image) may not always

be in demand. Because in many cases, their query can be

expressed in words. However, sometimes a user may not

know what exactly they should find, having only a graph-

ical representation of a scene or object. In this cas e,

searching by image content is the only possible option.

Popular search engines are set up to detect objects in im-

ages and search by them. As we can see from the usage

statistics, they do well.

In some areas, this function can be used in profes-

sional activities, for example: in medicine to help special-

ists identify health problems, in face recognition to iden-

tify a person's identity, in e-commerce to search for prod-

ucts, or in smart home systems to compare patterns with

the current state and perform appropriate programmed

actions [3, 4].

In some areas, this functionality does not play a key

role, and inaccurate results do not cause problems, for ex-

ample, if we are talking about searching for a product or

clothing on a marketplace. In such cases, the user is prob-

ably happy to get the result quickly and check its rele-

vance on their own. They may be interested in similar

products if no exact match is found. If necessary, they

will make a second request, for example, using a photo

of the product from a different angle or capturing product

features such as a brand logo, tag, labeling, etc.

However, for example, in the medical field, the re-

sults must be of a high level of quality to reduce the num-

ber of irrelevant comparisons . As can be seen in recent

research in this area, indeed, more specific tasks require

specific solutions and the use of general search engines

is not possible for them [4].

 Creative Commons Attribution

NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
138

Another important nuance is that public search en-

gines, such as the aforementioned Google, scan websites

available on the Internet and index all information al-

lowed by the owners of these sites. However, regarding

the professional use of search engines, an important pos-

sibility is to perform searches among corporate, often

confidential, data that is closed to public acces s. Further-

more, since most image descriptors and search models

are aimed at wide use, their use may not be effective in

these specific scenarios.

There are 2 main characteristics of content-based

image search: search speed and quality. When imple-

menting such a search, we should balance between these

characteristics and try to satisfy them both. The quality

of the search depends directly on how the images were

described. Currently, there are a large number of image

descriptors for this purpose, and the main task of search

models is to use them effectively [5].

Problem statement. There is a problem with effi-

cient content-based image search using existing image

descriptors for specific highly specialized areas, where

search systems must adapt to ensure not only high search

speed but also quality. The search should be performed

in Big Data storage and be able to process high-intensity

search queries. By solving this problem, we can obtain a

search engine that can quickly and efficiently search for

similar images in real-time among the currently available

storage. Many of which can be classified as Big Data. At

the same time, it should use already developed image de-

scriptors and be able to work and tune to work efficiently

with a specific data set and have a simple process of soft-

ware deployment and use.

1.2. State of the art

The fields of content-based image search (CBIS)

and content-based image retrieval (CBIR) have been

studied since the last century. Long F. et al. described the

development of this field from the 1990s to 2003 [6].

Zheng L. et al. and Li. X et al. in the period from 2003 to

this day [7, 3].

The basic principles and stages of the search were

defined in 2003 and have not changed much since then.

The fundamental scheme of the search process is shown

in Fig. 1.

At first, actions are performed offline an additional

storage is formed to the image storage feature database

(FDB). It is filled with image descriptors from the main

storage. They are placed in the FDB certainly so that they

can be effectively retrieved [6].

The image search is an online part of the process.

During the search, the user uploads an image for which a

descriptor is calculated and, using a certain similarity

measure, is compared with the descriptors available in

the FDB according to a certain algorithm. The found de-

scriptors form the resulting list, sorted in order of simi-

larity [6].

The main differences present in the existing solu-

tions are as follows: 1) the use of different image de-

scriptors; 2) different structure of the FDB and the algo-

rithm for finding nearest neighbors in it; 3) different ap-

proaches to calculating the measure of similarity of de-

scriptors.

The image search system (engine) is a software sys-

tem that has a user interface for uploading an image for

search and displaying the found results. It is connected to

the main and auxiliary image storage. It has a layer for

extracting descriptors from the image and a model for re-

trieving similar images from the storage by the calculated

descriptor.

The search model is an abstract component of the

search system that defines how it: interprets a search

query; manages data: contains methods and algorithms

for processing data, organizing and searching it in the

data structures of FDB; and ranks results.

CBIS is the process of finding similar images based

on their visual content from the perspective of a user in-

teracting with a search engine.

CBIR is the process of retrieving similar images

from a storage based on their features described by a de-

scriptor. CBIR is usually a part of CBIS.

Fig. 1. Main stages of CBIR [6]

Methods and means of image processing

139

An image descriptor is a simplified description of

certain features of an image presented in a certain format,

such as a one-dimensional or multidimensional vector. It

can be either homogeneous, when all values describe the

same feature, or heterogeneous. One of the main proper-

ties of the descriptor is invariance – the descriptor does

not change (or changes slightly) when the image is mod-

ified.

In the 1990s, descriptors were a verbal description

of the image that was inserted into the simple DB and the

search was a simple text search based on the description

of the input image [6].

As the number of images grew, it became impossi-

ble to manually process all of them, so it became neces-

sary to automatically determine the visual descriptors of

the images. Since 1997, many different descriptors have

appeared. They can be divided into global descriptors,

i.e., those that apply to the entire image, and local de-

scriptors, i.e., those that describe a specific point or re-

gion of the image [6]. Such descriptors are still used now-

adays.

Global descriptors include the following de-

scriptors: color (Color Space, Color Moments, Color His-

togram, Color Coherence Vector, Color Correlogram, In-

variant Color Features), shape (Moment Invariant, Turn-

ing Angels, Fourier Descriptor), texture (Tamura Fea-

tures, Wold Features, SAR Model, Gabot Filter Features,

Wavelet Transform Features) and spatial layout [6].

A descriptor can also combine information about

various image features. Such descriptors, after formation,

have a multidimensional form. Then, a reduction is per-

formed to reduce the number of dimensions or to bring it

to a one-dimensional vector [8].

Local descriptors are more complex to create and

have been actively used since the Bag of Words approach

and its analogs, such as Fisher Vector and VLAD, were

applied to generate image feature vectors [9]. The exist-

ing visual words – key points or patterns – are extracted

from the image, and histograms of their frequency of oc-

currence in the image are generated. As a result, a one-

dimensional vector is obtained. The length of the vector

is the number of visual words, and the value is the nor-

malized frequency of the word in the image. Usually, it

is based on the SIFT descriptor or its analogs/modifica-

tions such as SURF and ORB. This allows us to use more

information from the image and make the descriptors

more invariant but increases the search complexity due to

the increase in the length of the vector [7, 8].

Neural networks are also often used to extract fea-

tures from an image. They are also used to obtain both

global and local descriptors. For example, on the basis of

previously created and trained networks for object clas-

sification or detection [10, 11]. Some networks are also

being created specifically for CBIR, in which the main

task is to obtain similar vectors for similar images, not

classification [12].

The process of retrieval of similar images by de-

scriptors takes place depending on the form of the search

model's FDB.

The following multidimensional data structures can

be used to place and further search among multidimen-

sional descriptors: R-tree, linear quad-trees, K-d-B tree,

grid files and Self-Organization Map (SOM). They use

descriptors in their original form, without any modifica-

tions. However, their effectiveness decreases with the in-

crease in the number of dimensions and data volumes,

which is difficult to adapt to use in modern condi-

tions [6].

Another approach is to use the hashing of de-

scriptors. Hashing can be performed without training, for

example, using Local-Sensitive Hashing, in which vec-

tors are converted by a hash function into values and

these values must be compared during retrieval [13]. Al-

gorithms with learning are also used to select an effective

hash function based on pre-marked data [14]. However,

such a search can give inaccurate results due to the prop-

erties of the hash functions used to distribute the values.

Another widely used approach is clustering. Each

descriptor is assigned to a cluster or clusters according to

certain rules. Now, for each cluster, there is a list of de-

scriptors that belong to it. For an input descriptor vector,

the cluster to which it belongs and among which it is to

be searched is also determined. This significantly reduces

the number of descriptors that need to be compared [15].

This approach, called the inverse index IFI (IVF) or in-

verse file, is widely used and has many variations [16].

The most modern evolution of the last described ap-

proach is the use of Product Quantization (PQ) [17] and

its numerous modifications, for example IVFADC-R

[18] IMI [19] or OPQ [20]. This approach allows us to

form clusters for parts of the descriptor vector and repre-

sent them in a compact form. Thereby simplifying the

search for descriptors in clusters and further reducing the

number of descriptors to be compared. Machine learning

techniques are also used for this approach.

Multidimensional descriptors can be compared us-

ing the following measures: Minkowski-Form Distance,

Quadratic Form Distance, Mahalanobis Distance, Kull-

back-Leibler Divergence and Jeffrey-Divergence [6]. To

compare one-dimensional vectors of large size, we can

use the Hamming metric for binary values and the Eu-

clidean, Manhattan distance or cosine similarity for nor-

malized values [8, 9]. Specific comparison approaches

can be used to calculate a similarity measure for particu-

lar descriptors. For example, bin matching can be used

for Color Histogram based descriptors [21].

The choice of architecture and specific parameters

for a CBIR system may depend on many factors, such as

the specifics of the images to be processed or the availa-

ble resources for the search system [22]. The descriptor

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
140

implementation can be chosen based on the analysis of

the features of a particular set of images in a storage per-

formed by a feature selection system. It determines the

properties that allow to better determine the similarity

and dissimilarity of images among themselves [23].

For search models that can be trained or adapted,

Relevance Feedback is used. This technique allows users

to choose which results are more relevant and thereby,

for example, change the weights within the model or

modify the search query to get more relevant results

[5, 24].

The main metrics of CBIR systems are: precision –

the ratio of the number of validly found images to all

found images, and recall, the ratio of the number of val-

idly found images to the number of all valid images in the

storage [5, 24].

Currently, there are software solutions that imple-

ment some of the approaches described earlier, such as

software libraries: FLANN, which can work with differ-

ent search models [25], Faiss based on IMI approaches

[26], and LIRE, which works based on Lucene indexing

technology [27].

1.3. Objective and Approach

The objective of this work is to develop a search

model with a special structure of the FDB and related

software for efficient content-based image retrieval in

Big Data storage with a high intensity of search queries.

This structure has the form of a multidimensional cube.

It operates on image descriptors. The model can be used

with various search engines as an add-on. It should solve

the problem of inefficient content-based image search.

The main idea of the presented model is to create a

special FDB in the form of a multidimensional cube. Pro-

cessing image descriptors and placing them inside it in

such a way that similar descriptors fall into the same cell

of the cube or into neighboring cells. Thus, it signifi-

cantly reduces the number of descriptors with which to

compare during the retrieval and simplifies the nearest

neighbor search algorithm.

Such a search model should meet the following cri-

teria/requirements:

­ be universal in terms of using various de-

scriptors, both existing and created specifically for it;

­ be adaptive to the properties of a particular type

of descriptor;

­ be able to be customized depending on the avail-

ability of resources at the workstation;

­ ensure a balance between the search speed and

search quality;

­ be straightforward to set up and deploy, and can

be used as an add-on to existing search systems.

To accomplish this objective, the following tasks

need to be performed:

­ develop a general approach to performing an ef-

fective search using image descriptors;

­ develop a multidimensional data model for re-

trieval that uses image descriptors and an algorithm for

processing the descriptors;

­ develop methods for optimizing and adapting

the model to descriptors;

­ develop methods of placing the model in the

computer memory;

­ develop an algorithm for retrieving and compar-

ing descriptors in the relevant FDB.

With the presented model implemented, we can use

existing image descriptors, quickly deploy the software

system for various target users, and perform searches

quickly and efficiently.

2. MDC model

2.1. Summary

The model that we propose is called the Multidi-

mensional Cube (MDC). The search model follows the

classical principles and stages of the search process, as

shown in Fig. 1. However, it has its own peculiarities.

Fig. 2 shows a general scheme of the MDC operation at

the formation and search stages .

Fig. 2. General scheme of the MDC operations

Methods and means of image processing

141

There are several differences from the classical pro-

cess shown in Fig. 1. For the offline part, a stage of split-

ting the space into subspaces and the ability to rebalance

the model under certain conditions are added. For the

online part, a wave-search stage is added, which will be

described below. For both parts, a descriptor processing

stage is added.

The Relevance Feedback stage is not supported. All

other stages are present and can be named or grouped dif-

ferently in the diagram compared to Fig.1.

The MDC model does not include the stage of ana-

lyzing a user's request and, accordingly, creating an im-

age descriptor. Instead, it uses ready-made descriptors or

libraries to generate them. This is done to make the model

adaptive and able to be widely used with different search

engines and descriptors. The required descriptor handler

can be added as a filter in the search engine. As a result,

any descriptor that has the format of a one-dimensional

vector can be used for MDC.

The principle of MDC operation is described in Sec-

tion 2.2. Methods of MDC optimization are described in

Section 2.3. Methods for placing MDCs in memory are

given in Section 2.4. The algorithms for comparing de-

scriptors and searching inside the MDC are given in Sec-

tion 2.5. Comparisons with existing search models are

given in Section 2.6. The software implementation is de-

scribed in Section 2.7. The methodology for comparing

the models using experiments is given in Section 3.

2.2. MDC Structure

An image descriptor is a one-dimensional vector of

a certain length. From a geometric point of view, the val-

ues of this vector define a point in a multidimensional

Euclidean space. That is, each value corresponds to a co-

ordinate in a certain dimension. If several descriptors

have the same vectors, they are located at the same point

and form a cluster of identical images. The values of the

vectors are usually normalized, i.e., they are within a cer-

tain range, for example, [0-1], and are fractional num-

bers, i.e., they are not discrete. Thus, in the initial form,

we have a large (tending to infinity) number of unrelated

clusters, where each cluster contains a small number of

descriptors.

MDC solves this problem and allows us to form

clusters of descriptors efficiently and in such a way that

there is a relationship between them. This is achieved

through the previously mentioned stages of space parti-

tioning into subspaces and descriptor processing. This is

necessary for the functioning of the multi-dimensional

FDB, which is the basis of MDC.

The process of dividing a space into subspaces con-

sists of two stages. The first stage is to reduce the number

of dimensions in which the MDC is located. Their num-

ber corresponds to the length of the descriptors.

Descriptor vectors usually have a large length, but for ef-

ficient placement and retrieval, this length should not be

large. In MDC, the length of the vector, and hence the

number of dimensions, is denoted as N and is determined

at the configuration stage. This completes the first stage

of partitioning.

The second stage is to divide the scale of the possi-

ble descriptor values in each dimension into intervals.

We use these intervals to form an additional descriptor

vector a vector of indices of the interval by dimension.

The set of possible coordinate values becomes finite

and clearly defined. The number of intervals is also de-

termined at the configuration stage and is denoted as k .

We obtain N dimensions, each of which is divided into k

intervals, thereby dividing the initial space into clearly

defined subspaces.

Initially, the intervals are formed uniformly within

the possible normalized values. If the range of the possi-

ble values is [0-1], then the intervals will be as follows:

[0-0.25), [0.25-0.5), [0.5-0.75), [0.75-1]. Then, an opti-

mization is performed that forms the boundaries individ-

ually for each dimension. So that each interval contains

the same number of descriptor values that are currently

in the MDC. The parameters N and k determine the inter-

nal structure of the MDC. The principle of their selection

and the algorithm for optimizing the boundaries of the

intervals are discussed in the next subsection.

From a geometric point of view, the MDC bound

the space by dividing it into cells. The cells represent hy-

percubes, and after optimization, hyperparallelepipeds.

Each of these is a cluster of descriptors. From a practical

point of view, it determines the multidimensional data

structure of the FDB, in which descriptors are placed in

an easy-to-search form

The total number of MDC cells is determined by the

following formula:

Ncc k , (1)

where cc – number of cells;

N – number of dimensions;

k – number of intervals .

The structure of the MDC is defined. To use de-

scriptors, they must first be processed based on the de-

fined parameters N and k . Vectors usually have a length

equal to the power of two, so the desired length N can be

achieved by the pairwise aggregation of adjacent values.

At this stage, some data loss occurs, but it will be notice-

able only at the stage of placing the descriptor in the

MDC. Since their original vectors are stored and used to

compare the descriptors. After aggregation, the upper

limit of the possible normalized values changes depend-

ing on the number of aggregation steps performed. For

example, if initially, the maximum normalized value was

1.0, then after one aggregation operation it will be 2.0.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
142

Next, for each vector value, the index of the corre-

sponding dimension interval is determined. An additional

image vector, the vector of indices, is formed from the

determined index values. The coordinates of the point in

space (the cluster of descriptors) are determined by natu-

ral numbers. This cluster is the MDC cell. Neighboring

cell indices by dimensions mean that these cells include

descriptors with similar values, which allows us to effi-

ciently search for the nearest neighbors. This will be de-

scribed more in subsection 2.5.

Let's look at a specific example. Suppose the origi-

nal vector had a length of 32. After aggregation, the

length was reduced to 4 (N = 4) and it had the form [0.23,

0.45, 0.71, 0.01]. The dimensions in the range of possible

values after aggregation [0-1] were evenly divided into 4

intervals (k = 4). Then the vector of indices looks like in

Fig. 3 – [1, 2, 3, 1].

Fig. 3. How descriptors are processed

Therefore, the descriptor of this image is placed in

the MDC cell with the indices [1, 2, 3, 1], where similar

images will also be placed. Such a vector cannot be rep-

resented in the Cartesian coordinate system. However, if

we are talking about a conditional vector of length 3 and

three equal dimension intervals, such as [3, 1, 2] on the

[x, y, z] axes, it can be depicted as in Fig. 4 or the MDC

itself in as a geometric cube divided by cells as in Fig. 5.

Fig. 4. MDC cell in three dimensions

Fig. 5. MDC in the form of a geometric cube

2.3. MDC optimizations

In the process of building an MDC, 2 main optimi-

zations are performed: 1) optimization of the number of

cells; 2) optimization of the cell sizes (interval bounda-

ries).

The first is necessary to efficiently use the available

space on the workstation. If we create too few cells, each

cell will contain a large number of descriptors. Therefore,

increasing the number of comparisons during the search.

If we create too many cells, they will be poorly filled or

empty, which will require a large number of cells to be

viewed during the retrieval.

This optimization is achieved by setting the param-

eters of the number of dimensions N and the number of

intervals in the dimensions k . After all, they determine

the division of space into subspace MDC cells. These pa-

rameters are determined based on the number of images

in the storage. They also depend on whether the system

is configured to search for the original images or the orig-

inal images and their modifications. If we want to always

return a certain number of images (a search page) as a

search result, it is advisable to set the number of de-

scriptors in a cell equal to the size of this page. This con-

figuration option is the most recommended.

 The general algorithm for determining the parame-

ters is as follows: 1) obtain information about the number

of images in the storage; 2) determine the number of de-

scriptors in one cell based on the search criteria; 3) select

the parameters N and k such that:

dc
rc , rc ec,

cc
  (2)

where rc – number of descriptors in one cell with the cur-

rent parameters;

dc – total number of image descriptors;

cc – the number of MDC cells from Eq. (1);

ec – the expected number of descriptors in one cell.

Methods and means of image processing

143

As already mentioned, N is a power of two, and k

can be any. All possible combinations of N and k are

tried, and the one that makes rc the closest to ec is chosen.

The second optimization is the optimization of the

cell size. As discussed in subsection 2.2, initially, the di-

mension scales are divided into intervals evenly. The de-

scriptor values are not necessarily evenly distributed be-

tween the upper and lower bounds . We perform aggrega-

tion, which can break an even distribution. Therefore, a

situation arises when one part of the MDC can be filled

better than another one. To solve this, we need to redis-

tribute the boundaries of the intervals so that each inter-

val has approximately the same number of descriptors.

This is done on the basis of the descriptors added to the

MDC: using all of them or a certain part of them. This

operation is performed separately for each dimension.

The optimization algorithm is as follows: 1) com-

pare the current number of descriptors within the interval

with the ec value; 2) if the value is less/bigger, move the

upper boundary of the interval up/down with a certain

step; 3) stop when the value approaches near ec. An ex-

ample of the four redistributed intervals for the four di-

mensions is shown in Fig. 6.

Fig. 6. Intervals after optimization

As a result, we obtain a more even distribution of

descriptors across the MDC, which will ensure a predict-

able, almost constant search speed.

After adding a large number of descriptors, the dis-

tribution of descriptors may change and we will need to

perform the optimization steps again. To do this, we do

not need to modify the descriptors themselves, but to up-

date the cell parameters and indices of the cell to which

the descriptor belongs.

The cell boundary optimization algorithm and its

modifications will be discussed in more detail in a sepa-

rate paper.

2.4 Placing MDC in memory

MDC is a multidimensional model because it con-

tains a multidimensional FDB. There are different ways

to fit it into a computer's memory, which is one-dimen-

sional. Let's consider 2 possible options.

The first option is based on the already known

OLAP cubes and the "star" layout scheme [28]. This

approach is used to place MDC in a relational database.

For each dimension, a separate table “feature_N” is allo-

cated, in which the available intervals are stored. De-

scriptors are written to a separate table “descriptors” in

an aggregated form along with the initial form. An addi-

tional linking table “links” is created, in which the de-

scriptor ID and interval indices to which the descriptor

values on each dimension belong are stored. The struc-

ture looks like the one shown in Fig. 7, for N = 3, k = 3.

Fig. 7. Placing MDC in DB

Records with the same feature values in the “links”

table indicate that the descriptors are in the same cell. Ac-

cordingly, the descriptors are retrieved by these indices

and by the foreign key with the “descriptors” table.

Another approach is to place the MDC in the RAM.

When placed in RAM, the MDC cells are defined as the

Cartesian product of all possible MDC dimension inter-

val indices. The cell is defined by the corresponding

value of the vector of indices, written in string form. For

example, the calculated vector of indices [1, 2, 4, 1] will

be represented as “1-2-4-1”. Therefore, in this case,

MDC is represented in one-dimensional form. This im-

plementation is based on a hash table, in which the key is

the above string representation of the vector, and the

value is the list of descriptors that fall into this cell. The

dimension intervals are stored as a configuration sepa-

rately from the MDC itself. The visualization is shown in

Fig. 8.

Fig. 8. Placing MDC in RAM

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
144

This implementation has a significant advantage in

terms of model creation and optimization time, and

search time. This will be discussed in more detail in Sec-

tion 4. However, it requires additional storage where the

model will store its state and dimensions configuration

between runs. It can be a regular file or files in a shared

file system, key-value storage, or cloud solutions.

The DB approach is useful if we can allocate a lot

of resources to the DB, but have limited RAM. Other-

wise, it is better to use a RAM-based implementation.

2.5. Search in MDC

MDC uses a hybrid wave-search method. The idea

is to use a special order for checking MDC cells and ap-

plying a brute-force search as part of the cell inspection.

The algorithm is as follows: 1) identify the MDC cell by

the vector of indices of the searched image; 2) perform a

brute-force search in this cell; 3) if the search was not

successful in this cell, perform one search wave; 4) if the

desired result was not found in the previous wave, con-

tinue the search until the maximum available number of

waves is reached or until all cells are inspected.

The search wave is performed as follows. The vec-

tor of indices consists of integers. Cells that have values

in their vector of indices that are closest to those specified

in the vector of indices of the initially found cell are clos-

est to it. During the search, the values of the vector of

indices should be decreased and increased by 1, if possi-

ble. Furthermore, the cells with the calculated vector of

indices should be checked. In this way, the MDC will

check the nearest neighbors of the initially defined cell

and obtain image descriptors that are as similar as possi-

ble to the one being searched for. If the search needs to

be continued, another wave of search is performed, and

the index value will differ from the initial one by 2 and

so on.

The method is well illustrated graphically and is

shown in Fig. 9 for a search in MDC with N = 2, k = 10.

Fig. 9. Wave-search

The dimension intervals are divided evenly within

[0-1] with a step of 0.1. Let the descriptor vector be

[0.65, 0.73]. Then the initially found cell is [7, 8]. In the

first search wave, the cell indices for dimension 1 will be

(6, 7, 8), and for dimension 2 – (7, 8, 9). In the second

wave, they increase/decrease by 1 more relative to the in-

dex of the initially found cell.

The cell contains a certain number of descriptors rc

from formula (2). Then, the number of descriptors in the

search wave is determined by the following formula:

N N
i i i 1wc (j) rc (j) rc,    (3)

where wc – number of descriptors in the search wave;

i – wave number starting from 1;

j – an increasing sequence of positive odd numbers:

[3, 5, ...];

N – number of dimensions;

rc – from the Eq. (2).

The similarity of the descriptors is checked using

the Manhattan distance because it satisfies the require-

ments for universality, set for MDC:

N (1) (2)
i ii 1

v v ,


   (4)

where μ – the difference between descriptors ;

i – ordinal number of the vector elements;

N – number of elements of the vector;

v(1) , v(2) – vectors of the first and second descriptor;

The smaller the value of μ the more similar the im-

ages are to each other.

The search result is a list of identifiers of the found

descriptors sorted by value μ. The search algorithm and

its modifications will be discussed in more detail in a sep-

arate paper.

2.6. Search models comparison

The simplest classical approach is the brute-force

search (abbreviated as BF), where the search requires

checking all available descriptors or stopping after find-

ing specific ones if a stopping condition is specified.

Compared to it, using MDC allows us to significantly re-

duce the number of descriptors with which to perform a

comparison. It has a positive effect on the search speed.

For example, if there are 100 000 descriptors in the stor-

age and 10 000 cells have been created in MDC, then in

the best case scenario, only 1 cell needs to be inspected

during the search, that is, only 10 descriptors instead of

100 000. However, because not all descriptors are re-

viewed, the search quality may be somewhat lower.

The closest in nature to the solution we have pre-

sented is the approach using Product Quantization (PQ)

and specifically the Inverted Multi-Index (IMI) model

Methods and means of image processing

145

presented in [19]. It also divides the space into subspaces.

The vector is divided into subvectors. In each subspace,

the k-means clustering is performed and the value of the

subvector for each subspace is replaced by the index of

the nearest centroid, thus also forming a vector of indices.

For simplicity, we assume that this vector of indices also

forms a “cell”.

However, there are several important differences

between the approaches: 1) clustering methods are used

to determine clusters of descriptors, which is more com-

plex than the approach we propose with the division of

dimensions into intervals and optimization, 2) during the

search for the input vector, the distance to all IMI cells

must be calculated and then inspected in order of dis-

tance. In MDC, the order of inspection of other cells is

determined by its structure and no additional steps are re-

quired. That is, in terms of time spent, the MDC approach

should be more efficient.

The MDC is experimentally compared with the

search models that implement these mentioned ap-

proaches.

2.7. Software implementation

This is just an example of what a search system that

uses MDC can look like. We used this software for the

experiments.

For the alternative approaches mentioned above

IMI and BF search models with placement in RAM were

implemented. Therefore, for the MDC, we also imple-

mented the RAM placement to ensure the correctness of

the results. For all models, the Manhattan distance given

in Eq. (4) is used to determine the similarity of the de-

scriptors.

The implementation is a software system consisting

of a backend and frontend. The image descriptors are pro-

vided in a ready-made form in a csv file and loaded into

the system at the configuration stage.

The backend is implemented using the Java 17 pro-

gramming language, Spring Framework 3, Post-

greSQL 15.2 is used as a DBMS, and a file in the kryo

format is used as a storage for the MDC implementation

in RAM [29]. The backend contains model implementa-

tions for all of the mentioned search approaches.

The frontend is implemented using HTML5, CSS3,

Bootstrap 5, and jQuery technologies. The frontend con-

tains a user interface for both classic image search, where

a user can select an image (Fig. 10) to search for and get

results (Fig. 11), and a special interface that is used for

experiments. It allows us to obtain the results in an Excel

file. The frontend can be used with any existing search

model on the backend, but it must be specified on the in-

itial screen.

The software implementation, without filling in the

search models with descriptors, requires only 21.1 MB of

RAM, i.e., the cells do not require memory until they

have no descriptors. It is very easy to deploy and config-

ure on the target workstation and requires no program-

ming skills.

Fig. 10. Select an image to search for

Fig. 11. Displaying the search results

3. Experiments Methodology

The experiments compare the approaches using the

MDC, IMI, and BF models with the corresponding search

algorithms. The comparison is made using the data de-

scribed in Section 3.1 and the metrics described in Sec-

tion 3.2. The experiments test the speed and efficiency of

the model formation and search.

All experiments were conducted on a MacBook Pro

2021: M1 Pro processor on ARM architecture, 10-cores

up to 3.2 GHz, 16 GB of LPDDR5 SDRAM up to

200 Gb/s, 512 GB SSD, integrated GPU with 16 cores .

3.1. Experiment Data

The COCO2017 dataset was used in the experiment

[30]. It contains 123 403 completely different images.

We randomly selected 100 000 images from the dataset.

For each image, 2 modifications were created: a 180-de-

gree rotation and a 2-fold reduction in scale. These im-

ages and their corresponding descriptors were also added

to the experimental data.

To effectively describe such modifications, a spe-

cial homogeneous grayscale image descriptor is used. It

is a normalized one-dimensional vector of fractional

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
146

numbers. The descriptor contains a histogram of the

brightness time-total of the image pixels. It is described

by the following formula:

  n
i

i i ii 0,...,2 1

m
H h ,h , h 1,

m 
   (5)

where H – a histogram;

hi – brightness frequency of image pixels ;

m – number of pixels in the image;

mi – the number of pixels of the image with brightness

in the range of values with the number i;

n – integer.

The process of creating the descriptor is complex

and is described in detail in a separate paper. It involves

many transformations, which result in the brightness his-

togram taking on an invariant form, which makes the im-

age resistant to transformations and represents the ab-

stract image properties. For example, here is an image

(Fig. 12), its brightness histogram (Fig. 13), and the de-

scriptor histogram (Fig. 14), which is written as a vector

with a length of 32.

Fig. 12. An image from the COCO dataset

Fig. 13. Image brightness histogram

The descriptor was obtained as a one-dimensional

vector of length 32, where each value is normalized in the

range [0-1] and represents a 4-byte fractional number.

Compared to the original dataset, which requires 19 GB

for storage, the set of descriptors requires 15 MB, i.e.,

almost 1300 times less.

Fig. 14. Image descriptor histogram

3.2. Metrics

The retrieval performed in the experiments is some-

what atypical for CBIR systems. We have 100 selected

images from the dataset and 2 modifications for each.

The retrieval is performed until the originals and modifi-

cations are found. The first option is to retrieve only the

originals, and the second option is to retrieve both the

originals and the modifications. This approach to con-

ducting experiments is designed to identify all the

strengths and weaknesses of MDC, not just to analyze the

results. Therefore, the use of classical metrics such as re-

call and precision is inappropriate, since the retrieval will

not be applied in certain portions, such as 10, 100 or 1000

first-found descriptors. Other metrics are proposed.

Labor intensity (c) is the number of comparisons of

descriptors with the searched one that was performed as

part of the retrieval until all the searched images were

found. This is a key metric under the following experi-

mental conditions.

Search time (t) is the time for which the search was

performed.

Search quality (q) is the percentage of correctly

found images in the sorted list of all found images L,

which also includes images that do not belong to the

group of searched images and are located between the

searched images. It is calculated by the formula:

p2

q 1 ,
p1 p2

 


 (6)

where q – search quality;

p1 – number of correctly found images ;

p2 – the number of images that are between the im-

ages in the searched group and do not belong to it .

Methods and means of image processing

147

When p2 = 0 the value is 1, that is, in the resulting

list, the correctly found descriptors go from the first num-

ber sequentially.

3.3. Experiments plan

For the selected 100 000 images, descriptors of the

format specified in subsection 3.1 are created in advance.

Descriptors were also created for 200 modified images.

The total number of images in the storage is 100 200. The

descriptors are saved in csv format and provided for the

experiments.

As noted, the system has implementations of three

search models that are used in the experiments: MDC,

IMI, and BF.

The data analysis stage was performed to determine

the MDC parameters and the number of IMI subspaces

and clusters.

All descriptors are added to the system. The MDC

and IMI implementations perform the stage of creating

the internal structure of the FDB based on the results ob-

tained in the previous step. For MDC, this means creating

cells and optimizing their boundaries. For IMI, clusters

of descriptors are created. The speed and the efficiency

of the model creation are evaluated.

A search is performed in all selected models in two

modes:

1) search for originals (check if the image is in the

storage);

2) search for originals and image modifications. Re-

sults are presented based on the described metrics. The

results are compared.

Conclusions are drawn based on the objectives and

purpose of the work. The next steps for future research

on the topic are set.

4. Results and Discussion

4.1. Choosing Parameters

There are 100 200 descriptors in the storage, and we

need to search for the original image, or the original and

two of its modifications – a group of three images. The

size of the search page for the user is set to 10 images

(Fig. 11). Let's set the parameter rc from Eq. (2) to 10.

That is, there should be 10 descriptors in one cell. This

should provide a balance between the number of de-

scriptors in the cell and the number of cells that need to

be inspected during the search.

Were found 2 combinations of parameters N and k

that make the parameters rc and ec from Eq. (2) the most

approximate. They are shown in Table 1.

However, with the parameters N = 8, k = 3 it is pos-

sible to perform only 1 wave of search, and we need to

go through all the descriptors in the MDC. Which is un-

acceptable. Then the only valid configuration is

N = 4, k = 10, which makes Eq. (2) as close as possible.

Table 1

Comparison of the valid MDC parameters

 N = 4, k = 10 N = 8, k = 3

Number of cells 10 000 6 561

Number of de-

scriptors in one cell
10.2 15.272

Number of cells in

1 wave + initially

found cell

81 6 561

Number of de-

scriptors on 1 wave

+ in initially found

cell

826.2 100 200

The same parameters are chosen for the IMI imple-

mentation. The vector is divided into 4 parts, forming 4

subspaces. In each subspace, 10 centroids are created.

This creates a similar partitioning of the space as in

MDC, but differently. In IMI, we will conventionally call

the combinations of subspace indices as cell indices.

4.2. Optimizations

At the stage of building MDC, cell boundaries are

optimized, and for IMI, clustering within subspaces is

performed using the k-means method.

Table 2 demonstrates the evaluation of the distribu-

tion of descriptors across cells – the number of cells with

a certain number of descriptors.

Table 2

Distribution of descriptors by cells

Number of de-

scriptors in a cell

The number of

such cells in

the MDC

The number

of such cells

in IMI

0 7 232 7 417

1-10 987 1 506

11-20 444 315

21-30 277 154

31-40 212 116

41-50 170 91

51-100 446 188

101-200 202 94

201-300 25 50

301-400 3 25

401-500 1 14

501-1000 1 21

1001-2000 0 9

Table 3 shows a comparison of the optimization re-

sults: optimization speed, the number of filled cells out

of 10 000 created, and the maximum number of de-

scriptors in one cell.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
148

Table 3

Comparison of the optimization results

Time,

sec

Filled cell

count

Max descriptor

count in cell

MDC 1.72 2 768 723

IMI 43.56 2 583 1 788

4.3. Search

After the optimizations, the search is performed in

MDC, IMI, and BF. It consisted of 2 stages for 100 pre-

viously described images:

1) searching for the original images;

2) searching for the original and two modified im-

ages of the original. Each experiment was conducted in

10 rounds.

Between the rounds, the descriptors in the cells

were shuffled, thereby emulating a real-world scenario

where the searched descriptors can be located in any po-

sition within the cell. The results in the tables are pre-

sented in order: minimum, maximal, and average data of

the metrics described in Section 3.2, and using hardware

described in Section 3. Each result represents the average

value of the search metrics for 100 images in 10 rounds.

The results are shown in Table 4 for the searching of orig-

inals and in Table 5 – for the modifications.

Table 4

Results for searching the originals

Labor in-

tensity (c),

count

Quality

(q), [0-1]

Search

time (t),

sec

MDC (min,

max, av)

1

373.4

47.82

1

1

1

0.000007

0.000396

0.000039

IMI (min,

max, av)

1.1

1 275.5

166.816

1

1

1

0.004148

0.006177

0.004360

BF (min,

max, av)

940.1

99148.3

49 717.161

1

1

1

0.000505

0.081146

0.037139

Table 5

Results for searching the originals and modifications

Labor in-

tensity (c),

count

Quality

(q), [0-1]

Search time

(t), sec

MDC

3.3

3 125.4

644.158

0.089

1

0.973

0.000006

0.002993

0.000470

IMI

3

6 693.2

453.603

0.084

1

0.965

0.004153

0.016679

0.004601

BF

20 476.8

99 823.2

75 554.386

0.132

1

0.966

0.014517

0.085602

0.057339

When searching for originals in MDC, only the cell

determined by the descriptor vector of indices was al-

ways checked. That is, the number of descriptors to be

compared is determined by Eq. (2). For the search for

originals and modifications based on the results obtained

in MDC, no more than 1 search wave was always made.

That is, the number of descriptors determined by Eq. (3)

for i = 1.

Thus, theoretically, the expected labor intensity in

MDC for searching for originals is 10.2, and for search-

ing for modifications – 816. These results demonstrate

the maximum possible labor intensity.

In addition, an MDC with an ideal distribution of

descriptors was constructed and artificially inflated. In

this model, by analogy with Table 3, the number of cells

with the number of descriptors 1-10 is 7 322, and with

the number of descriptors 11-20 is 2 678. The maximu m

number of descriptors in one cell is 18. No optimization

is performed because the descriptors, except for the se-

lected 100 and their 200 modifications, are specially cre-

ated with values to fit into a specific cell. All 10 000 cells

are filled. This is the ideal filling for MDC, when its per-

formance is the highest and its labor intensity is the low-

est, as opposed to the theoretical estimates. The search

results under these conditions are shown in Table 6.

Table 6

Experimental results in an artificially filled MDC

Labor in-

tensity

(c), count

Quality

(q), [0-1]

Search

time (t),

sec

Search for

original im-

ages

1.2

14

6.93

1

1

1

0.000007

0.000217

0.000016

Search for

original and

modified im-

ages

6

775.8

156.167

1

1

1

0.000006

0.001498

0.000165

These results are purely theoretical and almost im-

possible to achieve in reality since it is very difficult to

create a descriptor that will have good invariant proper-

ties for retrieving image modifications and at the same

time ensure a uniform distribution of values .

4.4. Discussions

In this study, we developed an approach to content-

based image retrieval using image descriptors. The pro-

posed approach differs from classical implementations

by specially dividing the descriptor feature space into

subspaces, thereby creating a multidimensional data

model for retrieving; special processing of descriptors for

use in this model and a special wave-search algorithm

and the ability to rebuild the model as needed.

Methods and means of image processing

149

The main feature of MDC is its ability to work with

a large number of different types of descriptors, process

them, and adapt to the specifics of a particular descriptor

and the number of descriptors in the storage.

The number of MDC cells is determined by a simple

algorithm, depending on the preferences of the search

system administrator and the intended use of the search

system. The boundaries of MDC cells were optimized

based on the descriptors available in the storage.

MDC differs from similar approaches in the speed

of creating or updating the feature database: 1.72 s vs.

43.56 s compared to IMI, a difference of 25 times, which

is a significant indicator for large amounts of data.

The efficiency of filling cells was also slightly bet-

ter: 2 768 (MDC) filled cells vs. 2 583 (IMI). This

demonstrates that on average, fewer descriptors are

placed in one cell, 36.1 (MDC) vs. 38.7 (IMI). The max-

imum number of descriptors in a cell is also positively

different: 723 (MDC) vs. 1 788 (IMI). Only about 30%

of MDC or IMI cells are filled in. Since the value is sim-

ilar for both approaches, it can be argued that the de-

scriptors are distributed in this way precisely because of

their specificity. In IMI, there are more cells containing

1-10 descriptors, but unlike MDC, there are significantly

more cells with more than 300 descriptors and cells with

more than 1 000 descriptors.

MDC requires few resources to deploy and has sev-

eral options for memory placement. With this approach,

MDC takes up 1 300 times less memory than placing the

original images and searching them directly. The soft-

ware implementation itself takes up another 21.1 MB of

RAM, which slightly degrades the above advantage num-

ber.

A special wave-search method has been developed

based on the use of processed descriptors that are placed

in the MDC cell by dimension interval indexes. Experi-

ments have shown its high efficiency. The search quality

in all the considered approaches is at the same level: for

the search for originals, it is always equal to 1. For the

search for originals and modifications, the differences be-

tween the approaches are at the level of error.

A comparison of the gain in speed for the search for

originals is shown in Table 7, and for the search for orig-

inals and modifications is shown in Table 8. The tables

include the results of the search using an artificially filled

MDC (called MDC Synthetic).

Table 7

Comparison of the gain (MDC, IMI vs. IMI, BF) in the

time of searching for originals, in times

 IMI BF

MDC 111.795 952.282

MDC Synthetic 272.500 2321.188

IMI - 8.518

Table 8

Comparison of the gain (MDC, IMI vs. IMI, BF) in the

time of searching for modifications, in times

 IMI BF

MDC 9.789 121.998

MDC Synthetic 27.885 347.509

IMI - 12.462

MDC is significantly faster than IMI and BF when

searching for originals – by 111.795 and 952.282 times,

respectively, and faster for searching for modifications

by 9.789 and 121.998 times, respectively. The experi-

ment with an artificially filled MDC showed that in the

case of an absolutely uniform distribution of descriptors

within the MDC, it is possible to achieve a gain of 3 times

the results obtained with both IMI and BF.

The results of the gain in terms of labor intensity are

shown in Table 9 for the search for originals and in Table

10 for the search for modifications. The tables also in-

clude the results of performing a search using an artifi-

cially populated MDC (MDC Synthetic) and a theoretical

evaluation based on the results, which suggest that 1

search wave is sufficient to find all available image mod-

ifications (MDC Theoretical).

Table 9

Comparison of the gain (MDC, IMI vs. IMI, BF) in the

labor intensity of searching for originals, in times

 IMI BF

MDC 3.488 1039.673

MDC Theoretical 16.355 4874.231

MDC Synthetic 24.072 7174.194

IMI - 298.036

Table 10

Comparison of the gain (MDC, IMI vs. IMI, BF) in the

labor intensity of searching for modifications, in times

 IMI BF

MDC 0.704 117.292

MDC Theoretical 0.560 92.591

MDC Synthetic 2.905 483.805

IMI - 166.565

For the search for originals, MDC performs signifi-

cantly better than BF (more than 1 000 times) and 3 times

better than IMI. The theoretical and artificially generated

results are even better, with scores of about 5 000 and

7 000, respectively. However, as for the search for mod-

ifications, it is better in MDC compared to BF by about

100 times, the theoretical result is also around this value,

and the artificially filled MDC result is 500 times better.

However, MDC's performance is inferior to IMI's and is

0.704 of its performance. The theoretical values are even

lower, but the artificially filled MDC is 2.905 times bet-

ter. This is due to the mechanism of descriptor selection.

MDC performs a wave search, while IMI checks the cells

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
150

sequentially, so MDC is faster, while IMI is more effi-

cient in terms of the number of comparisons.

As noted above, the results of using MDC place-

ment in the database are slightly worse than those in the

RAM version. The descriptor distribution after optimiza-

tion is the same as in the RAM version. The speed of op-

timization is 85 s, which is about 2 times faster than IMI.

The search quality and labor intensity indicators are sim-

ilar to the results of the RAM implementation. The search

speed is about 1.5 times lower for searching for originals

and 3 times lower for searching for modifications com-

pared to IMI. However, as noted, their comparison is not

very correct.

The full version of the experimental results is avail-

able on Google Drive [31].

Babenko et al. did not provide a comparison with

BF search model in their paper [19], so we cannot com-

pare the results obtained in this paper with theirs.

5. Conclusions

In this paper, we investigate the current problem of

the low efficiency of content-based image retrieval in Big

Data storage.

To solve this problem, we propose a multidimen-

sional data model, MDC, which uses image descriptors

to retrieve images and divides the descriptor feature

space into subspaces, thereby performing effective image

clustering. To implement MDC, several tasks were

solved, such as: developing an algorithm for processing

descriptors, an algorithm for optimizing the number of

cells and their boundaries, methods for placing the model

in computer memory, and searching and comparing de-

scriptors.

The results of experiments comparing MDC with

Inverted Multi-Index (IMI) and brute-force (BF) search

approaches show that MDC has the highest speed of

model construction and optimization. It is a leader in

terms of search speed for both originals and image mod-

ifications. The search quality is on par with that of com-

petitors. It is a leader in terms of labor intensity of search-

ing for originals, but loses to IMI in this indicator for

searching for originals and modifications. In this regard,

the following steps to improve the implementation were

identified:

– improving the algorithm for optimizing cell

boundaries so that descriptors are placed more evenly,

thereby reducing the search time during the execution of

the search wave;

– use of a gradual search wave to reduce the labor

intensity of the search;

– implementation of the parallel search algorithm.

The search algorithm and MDC structure have a

good potential for parallel computing, which will im-

prove the already good search speed.

Contributions of authors: conceptualization,

methodology – Serhii Smelyakov; formulation of tasks,

analysis – Serhii Smelyakov, Stanislav Danylenko;

review and analysis of references, development of model,

software, verification – Stanislav Danylenko; analysis

of results – Serhii Smelyakov, Stanislav Danylenko,

visualization, writing – original draft preparation – Stan-

islav Danylenko, writing – review and editing – Serhii

Smelyakov.

Conflict of Interest
The authors declare that they have no conflict of in-

terest in relation to this research, whether financial, per-

sonal, authorship or otherwise, that could affect the re-

search and its results presented in this paper.

Financing
This study was conducted without financial support.

Data Availability

The work has associated data in the data repository.

The source code of the software will be made available

upon reasonable request.

Use of Artificial Intelligence

The authors confirm that they did not use artificial

intelligence technologies when creating the current work.

All the authors have read and agreed to the pub-

lished version of this manuscript.

References

1. Joshi, S. 35+ Google Search Statistics to Adapt

to The Latest Trends. Available at:

https://learn.g2.com/google-search-statistics (accessed

30.11.2024).

2. Kumar, N. How Many Google Searches Per

Day (2024 Statistics) . Available at: https://www.de-

mandsage.com/google-search-statistics/ (accessed

30.11.2024).

3. Li, X., Yang J., & Ma J. Recent developments

of content-based image retrieval (CBIR). Neurocompu-

ting, 2021, vol. 452, pp. 675-689. DOI: 10.1016/j.neu-

com.2020.07.139.

4. Padma, Y. Advancements in Non-Linear Con-

tent-Based Image Retrieval (CBIR) Systems for Image

Analysis. Communications on Applied Nonlinear Analy-

sis, 2024, vol. 31, no. 2s, pp. 253-265. DOI:

10.52783/cana.v31.639.

5. Hirwane, R. Fundamental of Content Based Im-

age Retrieval. International Journal of Computer Science

and Information Technologies, 2012, no. 3, pp. 3260-

3263.

Methods and means of image processing

151

6. Long, F., Zhang, H., & Feng, D. D. Fundamen-

tals of Content-Based Image Retrieval. Signals and Com-

munication Technology, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2003, pp. 1-26. DOI: 10.1007/978- 3-

662-05300-3_1.

7. Zheng, L., Yang Y., Tian, Q. SIFT Meets CNN:

A Decade Survey of Instance Retrieval. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence,

2018, vol. 40, no. 5, pp. 1224-1244. DOI:

10.1109/tpami.2017.2709749.

8. Li, Y., Shapiro, L. O., & Bilmes, J. A. A gener-

ative/discriminative learning algorithm for image classi-

fication. Tenth IEEE International Conference on Com-

puter Vision (ICCV’05) Volume 1, IEEE, Beijing, China,

2005, vol. 2, pp. 1605-1612, DOI: 10.1109/iccv.2005.7.

9. Sivic, J., & Zisserman, A. Video Google: Effi-

cient Visual Search of Videos. Lecture Notes in Com-

puter Science, Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2006, vol. 4170, pp. 127-144. DOI:

10.1007/11957959_7.

10. Babenko, A. Slesarev, A. Chigorin, A., & Lem-

pitsky, V. Neural Codes for Image Retrieval. Computer

Vision – ECCV 2014. ECCV 2014. Lecture Notes in

Computer Science, Springer, Cham., 2014, vol, 8689, pp.

584-599. DOI: 10.1007/978-3-319-10590-1_38.

11. Razavian, A. S., Azizpour, H., Sullivan, J., &

Carlsson, S. CNN Features off-the-shelf: an Astounding

Baseline for Recognition. 2014 IEEE Conference on

Computer Vision and Pattern Recognition Workshops

(CVPRW), Columbus, OH, USA, 2014, pp. 512-519.

DOI: 10.1109/CVPRW.2014.131.

12. Gordo, A., Almazan, J., Revaud, J., & Larlus, D.

End-to-end Learning of Deep Visual Representations for

Image Retrieval. Int J Comput Vis, 2017, vol. 124, pp.

237-254. DOI: 10.1007/s11263-017-1016-8.

13. Datar, M., Immorlica, N., Indyk, P., & Mirrokni,

V. S. Locality-sensitive hashing scheme based on p-sta-

ble distributions. Proceedings of the Twentieth Annual

Symposium on Computational Geometry, ACM, New

York, NY, USA, 2004, pp. 253-262. DOI:

10.1145/997817.997857.

14. Lin, G., Shen, C., Shi, Q., van den Hengel A.,

& Suter, D. Fast Supervised Hashing with Decision Trees

for High-Dimensional Data. 2014 IEEE Conference on

Computer Vision and Pattern Recognition , Columbus,

OH, USA, IEEE, 2014, pp. 1971-1978. DOI:

10.1109/cvpr.2014.253.

15. Zhang, D., Islam, M. M., Lu, G., & Hou, J. Se-

mantic Image Retrieval Using Region Based Inverted

File. 2009 Digital Image Computing: Techniques and

Applications, Melbourne, VIC, Australia, IEEE, 2009,

pp. 242-249. DOI: 10.1109/dicta.2009.48.

16. Berman, A. P., & Shapiro, L. G. A flexible im-

age database system for content-based retrieval. Pro-

ceedings. Fourteenth International Conference on Pat-

tern Recognition (Cat. No.98EX170) , IEEE Comput.

Soc., Brisbane, QLD, Australia, 1998, pp. 894-898. DOI:

10.1109/icpr.1998.711295.

17. Jégou, H., Douze, M., & Schmid, C. Product

Quantization for Nearest Neighbor Search, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

IEEE, 2011, vol. 33, no. 1, pp. 117-128. DOI:

10.1109/tpami.2010.57.

18. Jegou, H., Tavenard, R., Douze, M., &

Amsaleg, L. Searching in one billion vectors: Re-rank

with source coding. 2011 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP) ,

Prague, Czech Republic, IEEE, 2011, pp. 861-864. DOI:

10.1109/ICASSP.2011.5946540.

19. Babenko, A., & Lempitsky, V. The inverted

multi-index. 2012 IEEE Conference on Computer Vision

and Pattern Recognition, Providence, RI, USA, IEEE,

2012, pp. 3069-3076. DOI: 10.1109/CVPR.2012.

6248038.

20. Ge, T., He, K., Ke, Q., & Sun, J. Optimized

Product Quantization for Approximate Nearest Neighbor

Search. 2013 IEEE Conference on Computer Vision and

Pattern Recognition, Portland, OR, USA, IEEE, 2013,

pp. 2946-2953, DOI: 10.1109/cvpr.2013.379.

21. Mensah, M. E., Li, X., Lei, H., Obed, A., &

Bombie, N. C. Improving Performance of Colour-Histo-

gram-Based CBIR Using Bin Matching for Similarity

Measure. Artificial Intelligence and Security, Springer

International Publishing, Cham, 2020, vol. 12239, pp.

586-596. DOI: 10.1007/978-3-030-57884-8_52.

22. Guldogan, E., & Gabbouj, M. Feature selection

for content-based image retrieval. Signal, Image and

Video Processing, 2008, vol. 2, iss. 3, pp. 241-250. DOI:

10.1007/s11760-007-0049-9.

23. Guldogan, E., & Gabbouj, M. System profiles in

content-based image indexing and retrieval. Signal, Im-

age and Video Processing, 2009, vol. 4, iss. 4, 463-480.

DOI: 10.1007/s11760-009-0137-0.

24. Qazanfari, H., AlyanNezhadi, M. M., &

Khoshdaregi, Z. N. Advancements in Content-Based Im-

age Retrieval: A Comprehensive Survey of Relevance

Feedback Techniques, arXiv.Org, 2023. Available at:

https://arxiv.org/abs/2312.10089 (accessed: 01.12.2024).

25. Muja, M., & Lowe, D. G. Fast approximate

nearest neighbors with automatic algorithm configura-

tion. Proceedings of the Fourth International Conference

on Computer Vision Theory and Applications

(VISIGRAPP 2009) , 2009, vol. 1, pp. 331-340. DOI:

10.5220/0001787803310340.

26. Qi, J. Faiss. GitHub. Available at:

https://github.com/facebookresearch/faiss/wiki (ac-

cessed 22.12.2024).

https://doi.org/10.1109/tpami.2017.2709749
http://dx.doi.org/10.1109/iccv.2005.7
https://doi.org/10.1109/CVPRW.2014.131
https://doi.org/10.1007/978-3-030-57884-8_52
https://doi.org/10.1007/s11760-007-0049-9
https://arxiv.org/abs/2312.10089

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
152

27. Lux, M., & Chatzichristofis, S. A. Lire: lucene

image retrieval. Proceedings of the 16th ACM Interna-

tional Conference on Multimedia, ACM, New York, NY,

USA, 2008, pp. 1085-1088. DOI:

10.1145/1459359.1459577.

28. Jensen, C. S., Pedersen, T. B., & Thomsen, C.

Multidimensional Databases and Data Warehousing ,

Springer Cham, 2010. 111 p. DOI:

10.2200/s00299ed1v01y201009dtm009.

29. EsotericSoftware. GitHub - EsotericSoft-

ware/kryo: Java binary serialization and cloning: fast,

efficient, automatic. Available at: https://github.com/Es-

otericSoftware/kryo (accessed 23.12.2024).

30. COCO, Common Objects in Context. Available

at: https://cocodataset.org/ (accessed 5.12.2024)

31. Danylenko, S. MDC-2025-ukr-art-1, Google

Drive. Available at: https://drive.google.com/drive/fold-

ers/1iTBbD1dKPxGnAAKOhXFRBDdO31jcRQf9?usp

=sharing (accessed 22.12.2024).

Received 03.01.2025, Accepted 17.02.2025

РОЗРОБКА БАГАТОВИМІРНОЇ МОДЕЛІ ДАНИХ ДЛЯ ЕФЕКТИВНОГО

ПОШУКУ ЗОБРАЖЕНЬ НА ОСНОВІ ВМІСТУ В СХОВИЩАХ ВЕЛИКИХ ДАНИХ

С. Д. Даниленко, С. В. Смеляков

Об’єктом дослідження є пошук зображень на основі контенту. Предметом дослідження є моделі і ме-

тоди пошуку зображень на основі контенту у сховищах великих даних в умовах високої інтенсивності надхо-

дження пошукових запитів. Метою дослідження є розробка багатовимірної моделі даних і пов’язаних з нею

методів пошуку, яка може використовувати і адаптуватися під уже існуючі дескриптори зображень і викону-

вати пошук на основі них. Завдання полягає у: аналізі сучасних підходів і рішень для ефективного пошуку

зображень на основі контенту, формулювання проблеми і вимог до системи пошуку; розроб ці моделі, яка буде

ефективно обробляти дескриптори і розміщувати всередині таким чином, щоб мінімізувати кількість дескри-

пторів, з якими треба виконати порівняння під час пошуку; розробці алгоритмів пошуку; розробці метрик,

виконанні експериментів і порівнянні отриманих результатів з аналогами. Методологія включає в себе аналіз

процесу пошуку та виділення етапів формування дескриптору, його розміщення в моделі, визначення міри

схожості та порівняння і формування результатів; побудова моделі і її розміщення в пам’яті; проведення екс-

периментів з наявними в мережі Інтернет наборів даних; оцінка ефективності пошуку і формування результу-

ючих таблиць для порівняння з аналогами. Були отримані такі результати: розроблена модель багатовимір-

ного кубу (MDC) з алгоритмами оптимізації і пошуку, яка була порівняна з пошуком повним перебором та

пошуком з використанням Inverted Multi-Index (IMI). Отримані результати експерименту показали, що MDC

забезпечує найкращу швидкість пошуку серед конкурентів. Демонструє якість пошуку на рівні конкурентів.

Трудомісткість пошуку є найкращою для пошуку оригінальних зображень у сховищі (перевірки, чи наявні

вони).Трудомісткість пошукe модифікацій зображень є кращою, ніж у пошуку повним перебором більш ніж

у 100 разів, однак гіршою на 30 відсотків, ніж при використанні IMI. Висновки: розроблена модель MDC та

її алгоритм пошуку вирішує поставлену задачу ефективного пошуку зображень на основі контенту, викорис-

товуючи наявні дескриптори зображень. Отримані результати є задовільними, однак перспективним напрям-

ком є покращення алгоритму оптимізації меж комірок та застосування паралельних обчислень.

Ключові слова: багатовимірна модель даних; модель пошуку; пошук зображень на основі вмісту; великі

дані; обробка зображень; сховище зображень; база даних властивостей.

Даниленко Станіслав Дмитрович – асп. каф. програмної інженерії, Харківський національний універ-

ситет радіоелектроніки, Харків, Україна.
Смеляков Сергій Вячеславович – д-р фіз.-мат. наук, проф., проф. каф. Програмної інженерії, Харків-

ський національний університет радіоелектроніки, Харків, Україна.

Stanislav Danylenko – PhD Student, Software Engineering Department, Kharkiv National University of Radio

Electronics, Kharkiv, Ukraine,

e-mail: stanislav.danylenko@nure.ua, ORCID: 0000-0002-8142-3018, Scopus Author ID: 57816229800.

Serhii Smelyakov – Doctor of Mathematics , Professor at the Software Engineering Department, Kharkiv Na-

tional University of Radio Electronics, Kharkiv, Ukraine,

e-mail: serhii.smeliakov@nure.ua, ORCID: 0000-0002-5791-2479, Scopus Author ID: 24527617600.

https://doi.org/10.2200/s00299ed1v01y201009dtm009
https://drive.google.com/drive/folders/1iTBbD1dKPxGnAAKOhXFRBDdO31jcRQf9?usp
https://drive.google.com/drive/folders/1iTBbD1dKPxGnAAKOhXFRBDdO31jcRQf9?usp

