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DEVELOPMENT OF A MULTIDIMENSIONAL DATA MODEL FOR EFFICIENT 

CONTENT-BASED IMAGE RETRIEVAL IN BIG DATA STORAGE  
 

The object of the study is content-based image retrieval. The subject of the study is the models and methods of 

content-based image retrieval in Big Data storage under high-intensity search queries. The purpose of this study 

is to develop a multidimensional data model and related search methods that can use and adapt to exi sting image 
descriptors and perform searches based on them. The task is to: analyze modern approaches and solutions for 

effective content-based image retrieval, formulate the problem and requirements for the search system; develop 

a model that will effectively process descriptors and place them inside in such a way as to minimize the number 

of descriptors with which comparisons need to be made during the search; develop a search algorithm; develop 
metrics, perform experiments and compare the results obtained with analogs. The methodology includes ana-

lyzing the search process and highlighting the stages of descriptor formation, its placement in the model, deter-

mining the level of similarity and comparing and forming the results; building a data model and plac ing it in 

memory; conducting experiments with data sets available on the Internet; evaluating the effectiveness of the 

search and forming the resulting tables for comparison with analogs. The following results were obtained: Multi-

Dimensional Cube (MDC) model with optimizations and search algorithms was developed. It was compared 

with the brute-force search and the search that uses Inverted Multi-Index (IMI). The experimental results showed 

that MDC provides the best search speed among competitors. Demonstrates search quality at the level of com-

petitors. The search labor intensity shown by the MDC is the best for searching for original images in the storage 

(checking whether they are present in storage). The labor intensity of searching for modifications of the images 
is better than in brute-force search by more than 100 times, but worse by 30% than when using IMI. Conclusions: 

The developed MDC model with its search algorithm solves the task of efficient content -based image retrieval, 

using existing image descriptors. The obtained results are satisfactory, but a promising direction is to improve 

the cell boundaries optimization algorithm and apply parallel computing . 

 
Keywords: multidimensional data model; search model; content-based image retrieval; big data; image pro-

cessing; image storage; feature database. 

 

1. Introduction 
 

1.1. Motivation 
 

Searching on the Internet is an everyday operation 

and is performed very often. According to statistics from 

Google, one of the leaders in web search, approximately  

8.5 billion queries were performed daily in 2024, with 

84% of users performing at least 3 searches per day. The 

image search function is used approximately 12 billion  

times a month. That is, image search accounts for approx-

imately 5% of all user searches [1, 2]. Furthermore, this 

is information from just one search engine.  

For the average user, the image-based search (when 

the search query is an uploaded image) may not always 

be in demand. Because in many cases, their query can be 

expressed in words. However, sometimes a user may not 

know what exactly they should find, having only a graph-

ical representation of a scene or object. In this cas e, 

searching by image content is the only possible option. 

Popular search engines are set up to detect objects in im-

ages and search by them. As we can see from the usage 

statistics, they do well. 

In some areas, this function can be used in profes-

sional activities, for example: in medicine to help special-

ists identify health problems, in face recognition to iden-

tify a person's identity, in e-commerce to search for prod-

ucts, or in smart home systems to compare patterns with 

the current state and perform appropriate programmed 

actions [3, 4]. 

In some areas, this functionality does not play a key 

role, and inaccurate results do not cause problems, for ex-

ample, if we are talking about searching for a product or 

clothing on a marketplace. In such cases, the user is prob-

ably happy to get the result quickly and check its rele-

vance on their own. They may be interested in similar 

products if no exact match is found. If necessary, they 

will make a second request, for example, using a photo 

of the product from a different angle or capturing product 

features such as a brand logo, tag, labeling, etc.  

However, for example, in the medical field, the re-

sults must be of a high level of quality to reduce the num-

ber of irrelevant comparisons . As can be seen in recent 

research in this area, indeed, more specific tasks require 

specific solutions and the use of general search engines 

is not possible for them [4]. 
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Another important nuance is that public search en-

gines, such as the aforementioned Google, scan websites 

available on the Internet and index all information al-

lowed by the owners of these sites. However, regarding 

the professional use of search engines, an important pos-

sibility is to perform searches among corporate, often 

confidential, data that is closed to public acces s. Further-

more, since most image descriptors and search models 

are aimed at wide use, their use may not be effective in 

these specific scenarios. 

There are 2 main characteristics of content-based 

image search: search speed and quality. When imple-

menting such a search, we should balance between these 

characteristics and try to satisfy them both. The quality 

of the search depends directly on how the images were 

described. Currently, there are a large number of image 

descriptors for this purpose, and the main task of search 

models is to use them effectively [5]. 

Problem statement. There is a problem with effi-

cient content-based image search using existing image 

descriptors for specific highly specialized areas, where 

search systems must adapt to ensure not only high search 

speed but also quality. The search should be performed 

in Big Data storage and be able to process high-intensity 

search queries. By solving this problem, we can obtain a 

search engine that can quickly and efficiently search for 

similar images in real-time among the currently available 

storage. Many of which can be classified as Big Data. At 

the same time, it should use already developed image de-

scriptors and be able to work and tune to work efficiently 

with a specific data set and have a simple process of soft-

ware deployment and use. 
 

1.2. State of the art 
 

The fields of content-based image search (CBIS) 

and content-based image retrieval (CBIR) have been 

studied since the last century. Long F. et al. described the 

development of this field from the 1990s to 2003 [6]. 

Zheng L. et al. and Li. X et al. in the period from 2003 to 

this day [7, 3]. 

The basic principles and stages of the search were 

defined in 2003 and have not changed much since then. 

The fundamental scheme of the search process is shown 

in Fig. 1. 

At first, actions are performed offline an additional 

storage is formed to the image storage feature database 

(FDB). It is filled with image descriptors from the main  

storage. They are placed in the FDB certainly so that they 

can be effectively retrieved [6].  

The image search is an online part of the process. 

During the search, the user uploads an image for which a 

descriptor is calculated and, using a certain similarity  

measure, is compared with the descriptors available in 

the FDB according to a certain algorithm. The found de-

scriptors form the resulting list, sorted in order of simi-

larity [6]. 

The main differences present in the existing solu-

tions are as follows: 1) the use of different image de-

scriptors; 2) different structure of the FDB and the algo-

rithm for finding nearest neighbors in it; 3) different ap-

proaches to calculating the measure of similarity of de-

scriptors. 

The image search system (engine) is a software sys-

tem that has a user interface for uploading an image for 

search and displaying the found results. It is connected to 

the main and auxiliary image storage. It has a layer for 

extracting descriptors from the image and a model for re-

trieving similar images from the storage by the calculated 

descriptor. 

The search model is an abstract component of the 

search system that defines how it: interprets a search 

query; manages data: contains methods and algorithms 

for processing data, organizing and searching it in the 

data structures of FDB; and ranks results. 

CBIS is the process of finding similar images based 

on their visual content from the perspective of a user in-

teracting with a search engine. 

CBIR is the process of retrieving similar images  

from a storage based on their features described by a de-

scriptor. CBIR is usually a part of CBIS.

 

 
 

Fig. 1. Main stages of CBIR [6] 
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An image descriptor is a simplified description of 

certain features of an image presented in a certain format, 

such as a one-dimensional or multidimensional vector. It 

can be either homogeneous, when all values describe the 

same feature, or heterogeneous. One of the main proper-

ties of the descriptor is invariance – the descriptor does 

not change (or changes slightly) when the image is mod-

ified. 

In the 1990s, descriptors were a verbal description 

of the image that was inserted into the simple DB and the 

search was a simple text search based on the description 

of the input image [6]. 

As the number of images grew, it became impossi-

ble to manually process all of them, so it became neces-

sary to automatically determine the visual descriptors of 

the images. Since 1997, many different descriptors have 

appeared. They can be divided into global descriptors, 

i.e., those that apply to the entire image, and local de-

scriptors, i.e., those that describe a specific point or re-

gion of the image [6]. Such descriptors are still used now-

adays. 

Global descriptors include the following de-

scriptors: color (Color Space, Color Moments, Color His-

togram, Color Coherence Vector, Color Correlogram, In-

variant Color Features), shape (Moment Invariant, Turn-

ing Angels, Fourier Descriptor), texture (Tamura Fea-

tures, Wold Features, SAR Model, Gabot Filter Features, 

Wavelet Transform Features) and spatial layout [6].  

A descriptor can also combine information about 

various image features. Such descriptors, after formation, 

have a multidimensional form. Then, a reduction is per-

formed to reduce the number of dimensions or to bring it 

to a one-dimensional vector [8].  

Local descriptors are more complex to create and 

have been actively used since the Bag of Words approach 

and its analogs, such as Fisher Vector and VLAD, were 

applied to generate image feature vectors [9]. The exist-

ing visual words – key points or patterns – are extracted 

from the image, and histograms of their frequency of oc-

currence in the image are generated. As a result, a one-

dimensional vector is obtained. The length of the vector 

is the number of visual words, and the value is the nor-

malized frequency of the word in the image. Usually, it 

is based on the SIFT descriptor or its analogs/modifica-

tions such as SURF and ORB. This allows us to use more 

information from the image and make the descriptors 

more invariant but increases the search complexity due to 

the increase in the length of the vector [7, 8]. 

Neural networks are also often used to extract fea-

tures from an image. They are also used to obtain both 

global and local descriptors. For example, on the basis of 

previously created and trained networks for object clas-

sification or detection [10, 11]. Some networks are also 

being created specifically for CBIR, in which the main  

task is to obtain similar vectors for similar images, not 

classification [12]. 

The process of retrieval of similar images by de-

scriptors takes place depending on the form of the search 

model's FDB. 

The following multidimensional data structures can 

be used to place and further search among multidimen-

sional descriptors: R-tree, linear quad-trees, K-d-B tree, 

grid files and Self-Organization Map (SOM). They use 

descriptors in their original form, without any modifica-

tions. However, their effectiveness decreases with the in-

crease in the number of dimensions and data volumes, 

which is difficult to adapt to use in modern condi-

tions [6]. 

Another approach is to use the hashing of de-

scriptors. Hashing can be performed without training, for 

example, using Local-Sensitive Hashing, in which vec-

tors are converted by a hash function into values and 

these values must be compared during retrieval [13]. Al-

gorithms with learning are also used to select an effective 

hash function based on pre-marked data [14]. However, 

such a search can give inaccurate results due to the prop-

erties of the hash functions used to distribute the values. 

Another widely used approach is clustering. Each 

descriptor is assigned to a cluster or clusters according to 

certain rules. Now, for each cluster, there is a list of de-

scriptors that belong to it. For an input descriptor vector, 

the cluster to which it belongs and among which it is to 

be searched is also determined. This significantly reduces 

the number of descriptors that need to be compared [15]. 

This approach, called the inverse index IFI (IVF) or in-

verse file, is widely used and has many variations [16]. 

The most modern evolution of the last described ap-

proach is the use of Product Quantization (PQ) [17] and 

its numerous modifications, for example IVFADC-R 

[18] IMI [19] or OPQ [20]. This approach allows us to 

form clusters for parts of the descriptor vector and repre-

sent them in a compact form. Thereby simplifying the 

search for descriptors in clusters and further reducing the 

number of descriptors to be compared. Machine learning 

techniques are also used for this approach. 

Multidimensional descriptors can be compared us-

ing the following measures: Minkowski-Form Distance, 

Quadratic Form Distance, Mahalanobis Distance, Kull-

back-Leibler Divergence and Jeffrey-Divergence [6]. To 

compare one-dimensional vectors of large size, we can 

use the Hamming metric for binary values and the Eu-

clidean, Manhattan distance or cosine similarity for nor-

malized values [8, 9]. Specific comparison approaches 

can be used to calculate a similarity measure for particu-

lar descriptors. For example, bin matching can be used 

for Color Histogram based descriptors [21]. 

The choice of architecture and specific parameters 

for a CBIR system may depend on many factors, such as 

the specifics of the images to be processed or the availa-

ble resources for the search system [22]. The descriptor 
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implementation can be chosen based on the analysis of 

the features of a particular set of images in a storage per-

formed by a feature selection system. It determines the 

properties that allow to better determine the similarity  

and dissimilarity of images among themselves [23]. 

For search models that can be trained or adapted, 

Relevance Feedback is used. This technique allows users 

to choose which results are more relevant and thereby, 

for example, change the weights within the model or 

modify the search query to get more relevant results  

[5, 24]. 

The main metrics of CBIR systems are: precision – 

the ratio of the number of validly found images to all 

found images, and recall, the ratio of the number of val-

idly found images to the number of all valid images in the 

storage [5, 24]. 

Currently, there are software solutions that imple-

ment some of the approaches described earlier, such as 

software libraries: FLANN, which can work with differ-

ent search models [25], Faiss based on IMI approaches 

[26], and LIRE, which works based on Lucene indexing  

technology [27]. 

 

1.3. Objective and Approach 

 

The objective of this work is to develop a search 

model with a special structure of the FDB and related 

software for efficient content-based image retrieval in 

Big Data storage with a high intensity of search queries. 

This structure has the form of a multidimensional cube. 

It operates on image descriptors. The model can be used 

with various search engines as an add-on. It should solve 

the problem of inefficient content-based image search. 

The main idea of the presented model is to create a 

special FDB in the form of a multidimensional cube. Pro-

cessing image descriptors and placing them inside it in 

such a way that similar descriptors fall into the same cell 

of the cube or into neighboring cells. Thus, it signifi-

cantly reduces the number of descriptors with which to 

compare during the retrieval and simplifies the nearest 

neighbor search algorithm. 

Such a search model should meet the following cri-

teria/requirements:  

­ be universal in terms of using various de-

scriptors, both existing and created specifically for it;  

­ be adaptive to the properties of a particular type 

of descriptor;  

­ be able to be customized depending on the avail-

ability of resources at the workstation;  

­ ensure a balance between the search speed and 

search quality;  

­ be straightforward to set up and deploy, and can 

be used as an add-on to existing search systems. 

To accomplish this objective, the following tasks 

need to be performed: 

­ develop a general approach to performing an ef-

fective search using image descriptors; 

­ develop a multidimensional data model for re-

trieval that uses image descriptors and an algorithm for 

processing the descriptors; 

­ develop methods for optimizing and adapting 

the model to descriptors;  

­ develop methods of placing the model in the 

computer memory; 

­ develop an algorithm for retrieving and compar-

ing descriptors in the relevant FDB. 

With the presented model implemented, we can use 

existing image descriptors, quickly deploy the software 

system for various target users, and perform searches 

quickly and efficiently. 

 

2. MDC model 

 

2.1. Summary 

 

The model that we propose is called the Multidi-

mensional Cube (MDC). The search model follows the 

classical principles and stages of the search process, as 

shown in Fig. 1. However, it has its own peculiarities. 

Fig. 2 shows a general scheme of the MDC operation at 

the formation and search stages . 

 

 

 
Fig. 2. General scheme of the MDC operations  



Methods and means of image processing 
 

141 

There are several differences from the classical pro-

cess shown in Fig. 1. For the offline part, a stage of split-

ting the space into subspaces and the ability to rebalance 

the model under certain conditions are added. For the 

online part, a wave-search stage is added, which will be 

described below. For both parts, a descriptor processing 

stage is added.  

The Relevance Feedback stage is not supported. All 

other stages are present and can be named or grouped dif-

ferently in the diagram compared to Fig.1. 

The MDC model does not include the stage of ana-

lyzing a user's request and, accordingly, creating an im-

age descriptor. Instead, it uses ready-made descriptors or 

libraries to generate them. This is done to make the model 

adaptive and able to be widely used with different search 

engines and descriptors. The required descriptor handler 

can be added as a filter in the search engine. As a result, 

any descriptor that has the format of a one-dimensional 

vector can be used for MDC. 

The principle of MDC operation is described in Sec-

tion 2.2. Methods of MDC optimization are described in 

Section 2.3. Methods for placing MDCs in memory are 

given in Section 2.4. The algorithms for comparing de-

scriptors and searching inside the MDC are given in Sec-

tion 2.5. Comparisons with existing search models are 

given in Section 2.6. The software implementation is de-

scribed in Section 2.7. The methodology for comparing  

the models using experiments is given in Section 3. 

 

2.2. MDC Structure  

 

An image descriptor is a one-dimensional vector of 

a certain length. From a geometric point of view, the val-

ues of this vector define a point in a multidimensional 

Euclidean space. That is, each value corresponds to a co-

ordinate in a certain dimension. If several descriptors 

have the same vectors, they are located at the same point 

and form a cluster of identical images. The values of the 

vectors are usually normalized, i.e., they are within a cer-

tain range, for example, [0-1], and are fractional num-

bers, i.e., they are not discrete. Thus, in the initial form, 

we have a large (tending to infinity) number of unrelated 

clusters, where each cluster contains a small number of 

descriptors. 

MDC solves this problem and allows us to form 

clusters of descriptors efficiently and in such a way that 

there is a relationship between them. This is achieved 

through the previously mentioned stages of space parti-

tioning into subspaces and descriptor processing. This is 

necessary for the functioning of the multi-dimensional 

FDB, which is the basis of MDC. 

The process of dividing a space into subspaces con-

sists of two stages. The first stage is to reduce the number 

of dimensions in which the MDC is located. Their num-

ber corresponds to the length of the descriptors.  

Descriptor vectors usually have a large length, but for ef-

ficient placement and retrieval, this length should not be 

large. In MDC, the length of the vector, and hence the 

number of dimensions, is denoted as N and is determined 

at the configuration stage. This completes  the first stage 

of partitioning. 

The second stage is to divide the scale of the possi-

ble descriptor values in each dimension into intervals. 

We use these intervals to form an additional descriptor 

vector a vector of indices of the interval by dimension.  

The set of possible coordinate values becomes finite 

and clearly defined. The number of intervals is also de-

termined at the configuration stage and is denoted as k . 

We obtain N dimensions, each of which is divided into k  

intervals, thereby dividing the initial space into clearly  

defined subspaces. 

Initially, the intervals are formed uniformly within  

the possible normalized values. If the range of the possi-

ble values is [0-1], then the intervals will be as follows: 

[0-0.25), [0.25-0.5), [0.5-0.75), [0.75-1]. Then, an opti-

mization is performed that forms the boundaries individ-

ually for each dimension. So that each interval contains 

the same number of descriptor values that are currently 

in the MDC. The parameters N and k  determine the inter-

nal structure of the MDC. The principle of their selection 

and the algorithm for optimizing the boundaries of the 

intervals are discussed in the next subsection. 

From a geometric point of view, the MDC bound 

the space by dividing it into cells. The cells represent hy-

percubes, and after optimization, hyperparallelepipeds. 

Each of these is a cluster of descriptors. From a practical 

point of view, it determines the multidimensional data 

structure of the FDB, in which descriptors are placed in 

an easy-to-search form 

The total number of MDC cells is determined by the 

following formula: 

 

Ncc k ,                                (1) 

 

where cc – number of cells; 

N – number of dimensions; 

k – number of intervals . 

The structure of the MDC is defined. To use de-

scriptors, they must first be processed based on the de-

fined parameters N and k . Vectors usually have a length 

equal to the power of two, so the desired length N can be 

achieved by the pairwise aggregation of adjacent values. 

At this stage, some data loss occurs, but it will be notice-

able only at the stage of placing the descriptor in the 

MDC. Since their original vectors are stored and used to 

compare the descriptors. After aggregation, the upper 

limit of the possible normalized values changes depend-

ing on the number of aggregation steps performed. For 

example, if initially, the maximum normalized value was 

1.0, then after one aggregation operation it will be 2.0. 
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Next, for each vector value, the index of the corre-

sponding dimension interval is determined. An additional 

image vector, the vector of indices, is formed from the 

determined index values. The coordinates of the point in 

space (the cluster of descriptors) are determined by natu-

ral numbers. This cluster is the MDC cell. Neighboring 

cell indices by dimensions mean that these cells include 

descriptors with similar values, which allows us to effi-

ciently search for the nearest neighbors. This will be de-

scribed more in subsection 2.5. 

Let's look at a specific example. Suppose the origi-

nal vector had a length of 32. After aggregation, the 

length was reduced to 4 (N = 4) and it had the form [0.23, 

0.45, 0.71, 0.01]. The dimensions in the range of possible 

values after aggregation [0-1] were evenly divided into 4 

intervals (k  = 4). Then the vector of indices looks like in 

Fig. 3 – [1, 2, 3, 1]. 

 

 

 
Fig. 3. How descriptors are processed 

 

Therefore, the descriptor of this image is placed in 

the MDC cell with the indices [1, 2, 3, 1], where similar 

images will also be placed. Such a vector cannot be rep-

resented in the Cartesian coordinate system. However, if 

we are talking about a conditional vector of length 3 and 

three equal dimension intervals, such as [3, 1, 2] on the 

[x, y, z] axes, it can be depicted as in Fig. 4 or the MDC 

itself in as a geometric cube divided by cells as in Fig. 5. 

 

 
 

Fig. 4. MDC cell in three dimensions  

 
 

Fig. 5. MDC in the form of a geometric cube 

 

2.3. MDC optimizations 

 
In the process of building an MDC, 2 main optimi-

zations are performed: 1) optimization of the number of 

cells; 2) optimization of the cell sizes (interval bounda-

ries). 

The first is necessary to efficiently use the available 

space on the workstation. If we create too few cells, each 

cell will contain a large number of descriptors. Therefore, 

increasing the number of comparisons during the search. 

If we create too many cells, they will be poorly filled or 

empty, which will require a large number of cells to be 

viewed during the retrieval. 

This optimization is achieved by setting the param-

eters of the number of dimensions N and the number of 

intervals in the dimensions k . After all, they determine 

the division of space into subspace MDC cells. These pa-

rameters are determined based on the number of images 

in the storage. They also depend on whether the system 

is configured to search for the original images or the orig-

inal images and their modifications. If we want to always 

return a certain number of images (a search page) as a 

search result, it is advisable to set the number of de-

scriptors in a cell equal to the size of this page. This con-

figuration option is the most recommended. 

 The general algorithm for determining the parame-

ters is as follows: 1) obtain information about the number 

of images in the storage; 2) determine the number of de-

scriptors in one cell based on the search criteria; 3) select 

the parameters N and k  such that: 

 

dc
rc , rc ec,

cc
                            (2) 

 

where rc – number of descriptors in one cell with the cur-

rent parameters;  

dc – total number of image descriptors;  

cc – the number of MDC cells from Eq. (1);  

ec – the expected number of descriptors in one cell.  
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As already mentioned, N is a power of two, and k  

can be any. All possible combinations of N and k  are 

tried, and the one that makes rc the closest to ec is chosen. 

The second optimization is the optimization of the 

cell size. As discussed in subsection 2.2, initially, the di-

mension scales are divided into intervals evenly. The de-

scriptor values are not necessarily evenly distributed be-

tween the upper and lower bounds . We perform aggrega-

tion, which can break an even distribution. Therefore, a 

situation arises when one part of the MDC can be filled 

better than another one. To solve this, we need to redis-

tribute the boundaries of the intervals so that each inter-

val has approximately the same number of descriptors. 

This is done on the basis of the descriptors added to the 

MDC: using all of them or a certain part of them. This 

operation is performed separately for each dimension.  

The optimization algorithm is as follows: 1) com-

pare the current number of descriptors within the interval 

with the ec value; 2) if the value is less/bigger, move the 

upper boundary of the interval up/down with a certain 

step; 3) stop when the value approaches near ec. An ex-

ample of the four redistributed intervals for the four di-

mensions is shown in Fig. 6. 

 

 

 
Fig. 6. Intervals after optimization 

 

As a result, we obtain a more even distribution of 

descriptors across the MDC, which will ensure a predict-

able, almost constant search speed.  

After adding a large number of descriptors, the dis-

tribution of descriptors may change and we will need to 

perform the optimization steps again. To do this, we do 

not need to modify the descriptors themselves, but to up-

date the cell parameters and indices of the cell to which 

the descriptor belongs.  

The cell boundary optimization algorithm and its 

modifications will be discussed in more detail in a sepa-

rate paper. 

 

2.4 Placing MDC in memory 
 

MDC is a multidimensional model because it con-

tains a multidimensional FDB. There are different ways 

to fit it into a computer's memory, which is one-dimen-

sional. Let's consider 2 possible options. 

The first option is based on the already known 

OLAP cubes and the "star" layout scheme [28]. This  

approach is used to place MDC in a relational database. 

For each dimension, a separate table “feature_N” is allo-

cated, in which the available intervals are stored. De-

scriptors are written to a separate table “descriptors” in 

an aggregated form along with the initial form. An addi-

tional linking table “links” is created, in which the de-

scriptor ID and interval indices to which the descriptor 

values on each dimension belong are stored. The struc-

ture looks like the one shown in Fig. 7, for N = 3, k  = 3. 

 

 
 

Fig. 7. Placing MDC in DB 

 

Records with the same feature values in the “links” 

table indicate that the descriptors are in the same cell. Ac-

cordingly, the descriptors are retrieved by these indices 

and by the foreign key with the “descriptors” table. 

Another approach is to place the MDC in the RAM. 

When placed in RAM, the MDC cells are defined as the 

Cartesian product of all possible MDC dimension inter-

val indices. The cell is defined by the corresponding 

value of the vector of indices, written in string form. For 

example, the calculated vector of indices [1, 2, 4, 1] will 

be represented as “1-2-4-1”. Therefore, in this case, 

MDC is represented in one-dimensional form. This im-

plementation is based on a hash table, in which the key is 

the above string representation of the vector, and the 

value is the list of descriptors that fall into this cell. The 

dimension intervals are stored as a configuration sepa-

rately from the MDC itself. The visualization is shown in 

Fig. 8. 
 

 

 
Fig. 8. Placing MDC in RAM 
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This implementation has a significant advantage in 

terms of model creation and optimization time, and 

search time. This will be discussed in more detail in Sec-

tion 4. However, it requires additional storage where the 

model will store its state and dimensions configuration 

between runs. It can be a regular file or files in a shared 

file system, key-value storage, or cloud solutions. 

The DB approach is useful if we can allocate a lot 

of resources to the DB, but have limited RAM. Other-

wise, it is better to use a RAM-based implementation. 

 

2.5. Search in MDC 

 

MDC uses a hybrid wave-search method. The idea 

is to use a special order for checking MDC cells and ap-

plying a brute-force search as part of the cell inspection. 

The algorithm is as follows: 1) identify the MDC cell by 

the vector of indices of the searched image; 2) perform a 

brute-force search in this cell; 3) if the search was not 

successful in this cell, perform one search wave; 4) if the 

desired result was not found in the previous wave, con-

tinue the search until the maximum available number of 

waves is reached or until all cells are inspected. 

The search wave is performed as follows. The vec-

tor of indices consists of integers. Cells that have values 

in their vector of indices that are closest to those specified 

in the vector of indices of the initially found cell are clos-

est to it. During the search, the values  of the vector of 

indices should be decreased and increased by 1, if possi-

ble. Furthermore, the cells with the calculated vector of 

indices should be checked. In this way, the MDC will 

check the nearest neighbors of the initially defined cell 

and obtain image descriptors that are as similar as possi-

ble to the one being searched for. If the search needs to 

be continued, another wave of search is performed, and 

the index value will differ from the initial one by 2 and 

so on.  

The method is well illustrated graphically and is 

shown in Fig. 9 for a search in MDC with N = 2, k  = 10.  
  

 
 

Fig. 9. Wave-search 

The dimension intervals are divided evenly within  

[0-1] with a step of 0.1. Let the descriptor vector be 

[0.65, 0.73]. Then the initially found cell is [7, 8]. In the 

first search wave, the cell indices for dimension 1 will be 

(6, 7, 8), and for dimension 2 – (7, 8, 9). In the second 

wave, they increase/decrease by 1 more relative to the in-

dex of the initially found cell. 

The cell contains a certain number of descriptors rc 

from formula (2). Then, the number of descriptors in the 

search wave is determined by the following formula: 

 

N N
i i i 1wc (j ) rc ( j ) rc,                 (3) 

 

where wc – number of descriptors in the search wave;  

i – wave number starting from 1;  

j – an increasing sequence of positive odd numbers: 

[3, 5, ...]; 

N – number of dimensions; 

rc – from the Eq. (2). 

The similarity of the descriptors is checked using 

the Manhattan distance because it satisfies  the require-

ments for universality, set for MDC: 

  

N (1) (2)
i ii 1

v v ,


                          (4) 

 

where μ – the difference between descriptors ;  

i – ordinal number of the vector elements; 

N – number of elements of the vector; 

v(1) , v(2) – vectors of the first and second descriptor; 

The smaller the value of μ the more similar the im-

ages are to each other. 

The search result is a list of identifiers of the found 

descriptors sorted by value μ. The search algorithm and 

its modifications will be discussed in more detail in a sep-

arate paper. 

 

2.6. Search models comparison 

 

The simplest classical approach is the brute-force 

search (abbreviated as BF), where the search requires 

checking all available descriptors or stopping after find-

ing specific ones if a stopping condition is specified. 

Compared to it, using MDC allows us to significantly re-

duce the number of descriptors with which to perform a 

comparison. It has a positive effect on the search speed. 

For example, if there are 100 000 descriptors in the stor-

age and 10 000 cells have been created in MDC, then in 

the best case scenario, only 1 cell needs to be inspected 

during the search, that is, only 10 descriptors instead of 

100 000. However, because not all descriptors are re-

viewed, the search quality may be somewhat lower.  

The closest in nature to the solution we have pre-

sented is the approach using Product Quantization (PQ) 

and specifically the Inverted Multi-Index (IMI) model 
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presented in [19]. It also divides the space into subspaces. 

The vector is divided into subvectors. In each subspace, 

the k-means clustering is performed and the value of the 

subvector for each subspace is replaced by the index of 

the nearest centroid, thus also forming a vector of indices. 

For simplicity, we assume that this vector of indices also 

forms a “cell”.  

However, there are several important differences 

between the approaches: 1) clustering methods are used 

to determine clusters of descriptors, which is more com-

plex than the approach we propose with the division of 

dimensions into intervals and optimization, 2) during the 

search for the input vector, the distance to all IMI cells 

must be calculated and then inspected in order of dis-

tance. In MDC, the order of inspection of other cells is 

determined by its structure and no additional steps are re-

quired. That is, in terms of time spent, the MDC approach 

should be more efficient. 

The MDC is experimentally compared with the 

search models that implement these mentioned ap-

proaches. 

 

2.7. Software implementation 

 

This is just an example of what a search system that 

uses MDC can look like. We used this  software for the 

experiments. 

For the alternative approaches mentioned above 

IMI and BF search models with placement in RAM were 

implemented. Therefore, for the MDC, we also imple-

mented the RAM placement to ensure the correctness of 

the results. For all models, the Manhattan distance given 

in Eq. (4) is used to determine the similarity of the de-

scriptors. 

The implementation is a software system consisting 

of a backend and frontend. The image descriptors are pro-

vided in a ready-made form in a csv file and loaded into 

the system at the configuration stage. 

The backend is implemented using the Java 17 pro-

gramming language, Spring Framework 3, Post-

greSQL 15.2 is used as a DBMS, and a file in the kryo 

format is used as a storage for the MDC implementation  

in RAM [29]. The backend contains model implementa-

tions for all of the mentioned search approaches. 

The frontend is implemented using HTML5, CSS3, 

Bootstrap 5, and jQuery technologies. The frontend con-

tains a user interface for both classic image search, where 

a user can select an image (Fig. 10) to search for and get 

results (Fig. 11), and a special interface that is used for 

experiments. It allows us to obtain the results in an Excel 

file. The frontend can be used with any existing search 

model on the backend, but it must be specified on the in-

itial screen. 

The software implementation, without filling in the 

search models with descriptors, requires only 21.1 MB of 

RAM, i.e., the cells do not require memory until they 

have no descriptors. It is very easy to deploy and config-

ure on the target workstation and requires no program-

ming skills. 

 

 
 

Fig. 10. Select an image to search for 

 

 

 
Fig. 11. Displaying the search results 

 

3. Experiments Methodology 
 

The experiments compare the approaches using the 

MDC, IMI, and BF models with the corresponding search 

algorithms. The comparison is made using the data de-

scribed in Section 3.1 and the metrics described in Sec-

tion 3.2. The experiments test the speed and efficiency of 

the model formation and search.  

All experiments were conducted on a MacBook Pro 

2021: M1 Pro processor on ARM architecture, 10-cores 

up to 3.2 GHz, 16 GB of LPDDR5 SDRAM up to 

200 Gb/s, 512 GB SSD, integrated GPU with 16 cores . 

 

3.1. Experiment Data 

 

The COCO2017 dataset was used in the experiment  

[30]. It contains 123 403 completely different images. 

We randomly selected 100 000 images from the dataset. 

For each image, 2 modifications were created: a 180-de-

gree rotation and a 2-fold reduction in scale. These im-

ages and their corresponding descriptors were also added 

to the experimental data.  

To effectively describe such modifications, a spe-

cial homogeneous grayscale image descriptor is used. It 

is a normalized one-dimensional vector of fractional 
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numbers. The descriptor contains a histogram of the 

brightness time-total of the image pixels. It is described 

by the following formula: 

 

  n
i

i i ii 0,...,2 1

m
H h ,h , h 1,

m 
           (5) 

 

where H – a histogram; 

hi – brightness frequency of image pixels ;  

m – number of pixels in the image;  

mi – the number of pixels of the image with brightness 

in the range of values with the number i;  

n – integer. 

The process of creating the descriptor is complex 

and is described in detail in a separate paper. It involves 

many transformations, which result in the brightness his-

togram taking on an invariant form, which makes the im-

age resistant to transformations and represents  the ab-

stract image properties. For example, here is an image 

(Fig. 12), its brightness histogram (Fig. 13), and the de-

scriptor histogram (Fig. 14), which is written as a vector 

with a length of 32. 

 

 
 

Fig. 12. An image from the COCO dataset 

 

 
 

Fig. 13. Image brightness histogram 

 

The descriptor was obtained as a one-dimensional 

vector of length 32, where each value is normalized in the 

range [0-1] and represents a 4-byte fractional number. 

Compared to the original dataset, which requires 19 GB 

for storage, the set of descriptors requires 15 MB, i.e., 

almost 1300 times less. 

 

 
 

Fig. 14. Image descriptor histogram 

 

3.2. Metrics 

 

The retrieval performed in the experiments is some-

what atypical for CBIR systems. We have 100 selected 

images from the dataset and 2 modifications for each. 

The retrieval is performed until the originals and modifi-

cations are found. The first option is to retrieve only the 

originals, and the second option is to retrieve both the 

originals and the modifications. This approach to con-

ducting experiments is designed to identify all the 

strengths and weaknesses of MDC, not just to analyze the 

results. Therefore, the use of classical metrics such as re-

call and precision is inappropriate, since the retrieval will 

not be applied in certain portions, such as 10, 100 or 1000 

first-found descriptors. Other metrics are proposed. 

Labor intensity (c) is the number of comparisons of 

descriptors with the searched one that was performed as 

part of the retrieval until all the searched images were 

found. This is a key metric under the following experi-

mental conditions. 

Search time (t) is the time for which the search was 

performed. 

Search quality (q) is the percentage of correctly 

found images in the sorted list of all found images L, 

which also includes images that do not belong to the 

group of searched images and are located between the 

searched images. It is calculated by the formula: 

 

            
p2

q 1 ,
p1 p2

 


   (6) 

 

where q – search quality; 

p1 – number of correctly found images ; 

p2 – the number of images that are between the im-

ages in the searched group and do not belong to it . 
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When p2 = 0 the value is 1, that is, in the resulting 

list, the correctly found descriptors go from the first num-

ber sequentially. 
 

3.3. Experiments plan 
 

For the selected 100 000 images, descriptors of the 

format specified in subsection 3.1 are created in advance. 

Descriptors were also created for 200 modified images. 

The total number of images in the storage is 100 200. The 

descriptors are saved in csv format and provided for the 

experiments.  

As noted, the system has implementations of three 

search models that are used in the experiments: MDC, 

IMI, and BF. 

The data analysis stage was performed to determine 

the MDC parameters and the number of IMI subspaces 

and clusters. 

All descriptors are added to the system. The MDC 

and IMI implementations perform the stage of creating 

the internal structure of the FDB based on the results ob-

tained in the previous step. For MDC, this means creating 

cells and optimizing their boundaries. For IMI, clusters 

of descriptors are created. The speed and the efficiency 

of the model creation are evaluated. 

A search is performed in all selected models in two 

modes:  

1) search for originals (check if the image is in the 

storage);  

2) search for originals and image modifications. Re-

sults are presented based on the described metrics. The 

results are compared.  

Conclusions are drawn based on the objectives and 

purpose of the work. The next steps for future research 

on the topic are set. 
 

4. Results and Discussion 
 

4.1. Choosing Parameters  
 

There are 100 200 descriptors in the storage, and we 

need to search for the original image, or the original and 

two of its modifications – a group of three images. The 

size of the search page for the user is set to 10 images 

(Fig. 11). Let's set the parameter rc from Eq. (2) to 10. 

That is, there should be 10 descriptors in one cell. This 

should provide a balance between the number of de-

scriptors in the cell and the number of cells that need to 

be inspected during the search. 

Were found 2 combinations of parameters N and k 

that make the parameters rc and ec from Eq. (2) the most 

approximate. They are shown in Table 1. 

However, with the parameters N = 8, k = 3 it is pos-

sible to perform only 1 wave of search, and we need to 

go through all the descriptors in the MDC. Which is un-

acceptable. Then the only valid configuration is 

N = 4, k = 10, which makes Eq. (2) as close as possible. 

Table 1 

Comparison of the valid MDC parameters 

 N = 4, k = 10 N = 8, k = 3 

Number of cells 10 000 6 561 

Number of de-

scriptors in one cell 
10.2 15.272 

Number of cells in 

1 wave + initially 

found cell 

81 6 561 

Number of de-

scriptors on 1 wave 

+ in initially found 

cell 

826.2 100 200 

 

The same parameters are chosen for the IMI imple-

mentation. The vector is divided into 4 parts, forming 4 

subspaces. In each subspace, 10 centroids are created. 

This creates a similar partitioning of the space as in 

MDC, but differently. In IMI, we will conventionally call 

the combinations of subspace indices as cell indices.  

 

4.2. Optimizations  

 

At the stage of building MDC, cell boundaries are 

optimized, and for IMI, clustering within subspaces is 

performed using the k-means method.  

Table 2 demonstrates the evaluation of the distribu-

tion of descriptors across cells – the number of cells with 

a certain number of descriptors. 

 

Table 2 

Distribution of descriptors by cells  

Number of de-

scriptors in a cell 

The number of 

such cells in 

the MDC 

The number 

of such cells 

in IMI 

0 7 232 7 417 

1-10 987 1 506 

11-20 444 315 

21-30 277 154 

31-40 212 116 

41-50 170 91 

51-100 446 188 

101-200 202 94 

201-300 25 50 

301-400 3 25 

401-500 1 14 

501-1000 1 21 

1001-2000 0 9 

 

Table 3 shows a comparison of the optimization re-

sults: optimization speed, the number of filled cells out 

of 10 000 created, and the maximum number of de-

scriptors in one cell. 
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Table 3 

Comparison of the optimization results  

 
Time, 

sec 

Filled cell 

count 

Max descriptor 

count in cell 

MDC 1.72 2 768 723 

IMI 43.56 2 583 1 788 

 

4.3. Search 

 

After the optimizations, the search is performed in 

MDC, IMI, and BF. It consisted of 2 stages for 100 pre-

viously described images:  

1) searching for the original images;  

2) searching for the original and two modified im-

ages of the original. Each experiment was conducted in 

10 rounds.  

Between the rounds, the descriptors in the cells 

were shuffled, thereby emulating a real-world scenario 

where the searched descriptors can be located in any po-

sition within the cell. The results in the tables are pre-

sented in order: minimum, maximal, and average data of 

the metrics described in Section 3.2, and using hardware 

described in Section 3. Each result represents the average 

value of the search metrics for 100 images in 10 rounds. 

The results are shown in Table 4 for the searching of orig-

inals and in Table 5 – for the modifications. 

 

Table 4 

Results for searching the originals 

 

Labor in-

tensity (c), 

count 

Quality 

(q), [0-1] 

Search 

time (t), 

sec 

MDC (min, 

max, av) 

1 

373.4 

47.82 

1 

1 

1 

0.000007 

0.000396 

0.000039 

IMI (min, 

max, av) 

1.1 

1 275.5 

166.816 

1 

1 

1 

0.004148 

0.006177 

0.004360 

BF (min, 

max, av) 

940.1 

99148.3 

49 717.161 

1 

1 

1 

0.000505 

0.081146 

0.037139 

 

Table 5 

Results for searching the originals and modifications 

 

Labor in-

tensity (c), 

count 

Quality 

(q), [0-1] 

Search time 

(t), sec 

MDC 

3.3 

3 125.4 

644.158 

0.089 

1 

0.973 

0.000006 

0.002993 

0.000470 

IMI 

3 

6 693.2 

453.603 

0.084 

1 

0.965 

0.004153 

0.016679 

0.004601 

BF 

20 476.8 

99 823.2 

75 554.386 

0.132 

1 

0.966 

0.014517 

0.085602 

0.057339 

When searching for originals in MDC, only the cell 

determined by the descriptor vector of indices was al-

ways checked. That is, the number of descriptors to be 

compared is determined by Eq. (2). For the search for 

originals and modifications based on the results obtained 

in MDC, no more than 1 search wave was always made. 

That is, the number of descriptors determined by Eq. (3) 

for i = 1. 

Thus, theoretically, the expected labor intensity in 

MDC for searching for originals is 10.2, and for search-

ing for modifications – 816. These results demonstrate 

the maximum possible labor intensity. 

In addition, an MDC with an ideal distribution of 

descriptors was constructed and artificially inflated. In 

this model, by analogy with Table 3, the number of cells 

with the number of descriptors 1-10 is 7 322, and with 

the number of descriptors 11-20 is 2 678. The maximu m 

number of descriptors in one cell is 18. No optimization  

is performed because the descriptors, except for the se-

lected 100 and their 200 modifications, are specially cre-

ated with values to fit into a specific cell. All 10 000 cells 

are filled. This is the ideal filling for MDC, when its per-

formance is the highest and its labor intensity is the low-

est, as opposed to the theoretical estimates. The search 

results under these conditions are shown in Table 6. 

 

Table 6 

Experimental results in an artificially filled MDC 

 

Labor in-

tensity 

(c), count 

Quality 

(q), [0-1] 

Search 

time (t), 

sec 

Search for 

original im-

ages 

1.2 

14 

6.93 

1 

1 

1 

0.000007 

0.000217 

0.000016 

Search for 

original and 

modified im-

ages 

6 

775.8 

156.167 

1 

1 

1 

0.000006 

0.001498 

0.000165 

 

These results are purely theoretical and almost im-

possible to achieve in reality since it is very difficult to 

create a descriptor that will have good invariant proper-

ties for retrieving image modifications and at the same 

time ensure a uniform distribution of values .  

 

4.4. Discussions 

 

In this study, we developed an approach to content-

based image retrieval using image descriptors. The pro-

posed approach differs from classical implementations  

by specially dividing the descriptor feature space into 

subspaces, thereby creating a multidimensional data 

model for retrieving; special processing of descriptors for 

use in this model and a special wave-search algorithm 

and the ability to rebuild the model as needed. 
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The main feature of MDC is its ability to work with  

a large number of different types of descriptors, process 

them, and adapt to the specifics of a particular descriptor 

and the number of descriptors in the storage. 

The number of MDC cells is determined by a simple 

algorithm, depending on the preferences of the search 

system administrator and the intended use of the search 

system. The boundaries of MDC cells were optimized  

based on the descriptors available in the storage.  

MDC differs from similar approaches in the speed 

of creating or updating the feature database: 1.72 s vs. 

43.56 s compared to IMI, a difference of 25 times, which 

is a significant indicator for large amounts of data.  

The efficiency of filling cells was also slightly bet-

ter: 2 768 (MDC) filled cells vs. 2 583 (IMI). This 

demonstrates that on average, fewer descriptors are 

placed in one cell, 36.1 (MDC) vs. 38.7 (IMI). The max-

imum number of descriptors in a cell is also positively 

different: 723 (MDC) vs. 1 788 (IMI). Only about 30% 

of MDC or IMI cells are filled in. Since the value is sim-

ilar for both approaches, it can be argued that the de-

scriptors are distributed in this way precisely because of 

their specificity. In IMI, there are more cells containing 

1-10 descriptors, but unlike MDC, there are significantly 

more cells with more than 300 descriptors and cells with 

more than 1 000 descriptors. 

MDC requires few resources to deploy and has sev-

eral options for memory placement. With this approach, 

MDC takes up 1 300 times less memory than placing the 

original images and searching them directly. The soft-

ware implementation itself takes up another 21.1 MB of 

RAM, which slightly degrades the above advantage num-

ber. 

A special wave-search method has been developed 

based on the use of processed descriptors that are placed 

in the MDC cell by dimension interval indexes. Experi-

ments have shown its high efficiency. The search quality 

in all the considered approaches is at the same level: for 

the search for originals, it is always equal to 1. For the 

search for originals and modifications, the differences be-

tween the approaches are at the level of error.  

A comparison of the gain in speed for the search for 

originals is shown in Table 7, and for the search for orig-

inals and modifications is shown in Table 8. The tables 

include the results of the search using an artificially filled  

MDC (called MDC Synthetic). 

 

Table 7 

Comparison of the gain (MDC, IMI vs. IMI, BF) in the 

time of searching for originals, in times 

 IMI BF 

MDC 111.795 952.282 

MDC Synthetic 272.500 2321.188 

IMI - 8.518 

 

Table 8 

Comparison of the gain (MDC, IMI vs. IMI, BF) in the 

time of searching for modifications, in times 

 IMI BF 

MDC 9.789 121.998 

MDC Synthetic 27.885 347.509 

IMI - 12.462 

 

MDC is significantly faster than IMI and BF when 

searching for originals – by 111.795 and 952.282 times, 

respectively, and faster for searching for modifications  

by 9.789 and 121.998 times, respectively. The experi-

ment with an artificially filled MDC showed that in the 

case of an absolutely uniform distribution of descriptors 

within the MDC, it is possible to achieve a gain of 3 times 

the results obtained with both IMI and BF. 

The results of the gain in terms of labor intensity are 

shown in Table 9 for the search for originals and in Table 

10 for the search for modifications. The tables also in-

clude the results of performing a search using an artifi-

cially populated MDC (MDC Synthetic) and a theoretical 

evaluation based on the results, which suggest that 1 

search wave is sufficient to find all available image mod-

ifications (MDC Theoretical). 

 

Table 9 

Comparison of the gain (MDC, IMI vs. IMI, BF) in the 

labor intensity of searching for originals, in times 

 IMI BF 

MDC 3.488 1039.673 

MDC Theoretical 16.355 4874.231 

MDC Synthetic 24.072 7174.194 

IMI - 298.036 

 

Table 10 

Comparison of the gain (MDC, IMI vs. IMI, BF) in the 

labor intensity of searching for modifications, in times 

 IMI BF 

MDC 0.704 117.292 

MDC Theoretical 0.560 92.591 

MDC Synthetic 2.905 483.805 

IMI - 166.565 

 

For the search for originals, MDC performs signifi-

cantly better than BF (more than 1 000 times) and 3 times 

better than IMI. The theoretical and artificially generated 

results are even better, with scores of about 5 000 and 

7 000, respectively. However, as  for the search for mod-

ifications, it is better in MDC compared to BF by about 

100 times, the theoretical result is also around this value, 

and the artificially filled MDC result is 500 times better. 

However, MDC's performance is inferior to IMI's and is 

0.704 of its performance. The theoretical values are even 

lower, but the artificially filled MDC is 2.905 times bet-

ter. This is due to the mechanism of descriptor selection. 

MDC performs a wave search, while IMI checks the cells 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 1(113)               ISSN 2663-2012 (online) 
150 

sequentially, so MDC is faster, while IMI is more effi-

cient in terms of the number of comparisons.  

As noted above, the results of using MDC place-

ment in the database are slightly worse than those in the 

RAM version. The descriptor distribution after optimiza-

tion is the same as in the RAM version. The speed of op-

timization is 85 s, which is about 2 times faster than IMI. 

The search quality and labor intensity indicators are sim-

ilar to the results of the RAM implementation. The search 

speed is about 1.5 times lower for searching for originals 

and 3 times lower for searching for modifications com-

pared to IMI. However, as noted, their comparison is not 

very correct. 

The full version of the experimental results is avail-

able on Google Drive [31]. 

Babenko et al. did not provide a comparison with  

BF search model in their paper [19], so we cannot com-

pare the results obtained in this paper with theirs. 
 

5. Conclusions 
 

In this paper, we investigate the current problem of 

the low efficiency of content-based image retrieval in Big  

Data storage.  

To solve this problem, we propose a multidimen-

sional data model, MDC, which uses image descriptors 

to retrieve images and divides the descriptor feature 

space into subspaces, thereby performing effective image 

clustering. To implement MDC, several tasks were 

solved, such as: developing an algorithm for processing 

descriptors, an algorithm for optimizing the number of 

cells and their boundaries, methods for placing the model 

in computer memory, and searching and comparing de-

scriptors. 

The results of experiments comparing MDC with  

Inverted Multi-Index (IMI) and brute-force (BF) search 

approaches show that MDC has the highest speed of 

model construction and optimization. It is a leader in 

terms of search speed for both originals and image mod-

ifications. The search quality is on par with that of com-

petitors. It is a leader in terms of labor intensity of search-

ing for originals, but loses to IMI in this indicator for 

searching for originals and modifications. In this regard, 

the following steps to improve the implementation were 

identified: 

– improving the algorithm for optimizing cell 

boundaries so that descriptors are placed more evenly, 

thereby reducing the search time during the execution of 

the search wave; 

– use of a gradual search wave to reduce the labor 

intensity of the search; 

– implementation of the parallel search algorithm. 

The search algorithm and MDC structure have a 

good potential for parallel computing, which will im-

prove the already good search speed. 
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РОЗРОБКА БАГАТОВИМІРНОЇ МОДЕЛІ ДАНИХ ДЛЯ ЕФЕКТИВНОГО  

ПОШУКУ ЗОБРАЖЕНЬ НА ОСНОВІ ВМІСТУ В СХОВИЩАХ ВЕЛИКИХ ДАНИХ 

С. Д. Даниленко, С. В. Смеляков 

Об’єктом дослідження є пошук зображень на основі контенту. Предметом дослідження є моделі і ме-

тоди пошуку зображень на основі контенту у сховищах великих даних в умовах високої інтенсивності надхо-

дження пошукових запитів. Метою дослідження є розробка багатовимірної моделі даних і пов’язаних з нею 

методів пошуку, яка може використовувати і адаптуватися під уже існуючі дескриптори зображень і викону-

вати пошук на основі них. Завдання полягає у: аналізі сучасних підходів і рішень для ефективного пошуку 

зображень на основі контенту, формулювання проблеми і вимог до системи пошуку; розроб ці моделі, яка буде 

ефективно обробляти дескриптори і розміщувати всередині таким чином, щоб мінімізувати кількість дескри-

пторів, з якими треба виконати порівняння під час пошуку; розробці алгоритмів пошуку; розробці метрик, 

виконанні експериментів і порівнянні отриманих результатів з аналогами. Методологія включає в себе аналіз 

процесу пошуку та виділення етапів формування дескриптору, його розміщення в моделі, визначення міри 

схожості та порівняння і формування результатів; побудова моделі і її розміщення в пам’яті; проведення екс-

периментів з наявними в мережі Інтернет наборів даних; оцінка ефективності пошуку і формування результу-

ючих таблиць для порівняння з аналогами. Були отримані такі результати: розроблена модель багатовимір-

ного кубу (MDC) з алгоритмами оптимізації і пошуку, яка була порівняна з пошуком повним перебором та 

пошуком з використанням Inverted Multi-Index (IMI). Отримані результати експерименту показали, що MDC 

забезпечує найкращу швидкість пошуку серед конкурентів. Демонструє якість пошуку на рівні конкурентів. 

Трудомісткість пошуку є найкращою для пошуку оригінальних зображень у сховищі (перевірки, чи наявні 

вони).Трудомісткість пошукe модифікацій зображень є кращою, ніж у пошуку повним перебором більш ніж 

у 100 разів, однак гіршою на 30 відсотків, ніж при використанні IMI. Висновки: розроблена модель MDC та 

її алгоритм пошуку вирішує поставлену задачу ефективного пошуку зображень на основі контенту, викорис-

товуючи наявні дескриптори зображень. Отримані результати є задовільними, однак перспективним напрям-

ком є покращення алгоритму оптимізації меж комірок та застосування паралельних обчислень. 

Ключові слова: багатовимірна модель даних; модель пошуку; пошук зображень на основі вмісту; великі 

дані; обробка зображень; сховище зображень; база даних властивостей. 
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