
ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
126

UDC 621.3 doi: 10.32620/reks.2025.1.09

Vitalii NAUMENKO, Sergiy ABRAMOV, Volodymyr LUKIN

National Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine

COMPARATIVE ANALYSIS OF IMAGE HASHING ALGORITHMS

FOR VISUAL OBJECT TRACKING

Subject of the research – visual object tracking using various image hashing algorithms for real -time tracking

tasks. The goal of this study is to evaluate the tracking success and processing speed of existing and new hashing

algorithms for object tracking and to identify the most suitable algorithms to be used under limited computational

resources. The objectives of the research include: developing and implementing object trackin g based on the

aHash, dHash, pHash, mHash, LHash, and LDHash algorithms; comparing the processing speed and accuracy

of these methods on the video sequences "OccludedFace2," "David," and "Sylvester"; determining the tracking

success rate (TSR) and frames per second (FPS) metrics for each algorithm; analyzing the impact of the search

window size, search strategy, and type of hashing on tracking quality, and providing recommendations for their

use. The study also explores the trade-off between accuracy and processing speed for each algorithm considering

the constraints of limited computational resources. The methods of this study involve testing and evaluating the

accuracy and speed of image hashing algorithms on different test video sequences, as well as the use of metrics

to determine object similarity using the Hamming distance. The results demonstrate that the aHash and mHash

algorithms demonstrate the best accuracy indicators for all hash window sizes, aHash has a higher processing

speed, and mHash offers better robustness to changes in lighting and object position. The dHash and pHash

algorithms were less effective than the aHash and mHash algorithms due to their sensitivity to changes in scale

and rotation. However, perceptual hashing-based methods, such as pHash, are more robust to contrast and

blurring. Conclusions. The best hashing algorithms for real-time object-tracking tasks are aHash and mHash.

This study underscores the significance of selecting suitable hashing algorithms and search strategies tai lored

to specific application scenarios and offers possibilities for further optimization .

Keywords: visual object tracking; single object tracking; image hashing; perceptual hashing.

Introduction

Visual object tracking is a key research area in

computer vision. The proposed method estimates the

state of an arbitrary object in a video sequence by

knowing only its location in the first frame. This task has

several applications, such as autonomous driving,

surveillance, augmented reality, and robotics. However,

building a universal system for object tracking under

real-world conditions using only initial information

about their location is an extremely challenging task due

to numerous distortions of the observed object, such as

edge cases where only part of the object is visible

(occlusions), deformations, blurring, illumination

changes, and the presence of a highly textured

background.

In cases where visual object tracking must operate

on an unmanned aerial vehicle, limited computational

capability becomes one of the main challenges, along

with other specific issues. The inability to accurately

identify the object to be tracked from the control panel of

an unmanned aerial vehicle is another challenge. FPV

(First-Person View) refers to a method of controlling

unmanned aerial vehicles (drones) in which the operator

receives real-time video feedback from a camera

mounted on the drone, viewed through goggles or a

screen. This mode requires fast data processing to ensure

smooth and accurate video transmission during rapid

maneuvers.

This paper proposes an improvement to existing

visual object tracking methods based on image hashing.

The main advantages of image hashing-based trackers

are their simplicity, lack of need for training machine

learning models, and high operational speed.

The objective of this research was to perform a

comparative analysis of various image hashing

algorithms to determine the best methods for visual

object tracking based on tracking success rate (TSR) and

processing speed (FPS). This study investigates how

different hashing techniques, parameter choices, and

search strategies influence tracking accuracy and

computational efficiency in real-time visual object

tracking tasks.

 Creative Commons Attribution

NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

Methods and means of image processing

127

Paper structure

Section 1, "Current state of research in visual object

tracking methods," provides an overview of visual object

tracking approaches, categorizing them into generative

and discriminative types. This section discusses various

tracking models and analyzes their advantages and

challenges for real-time applications.

Section 2, "Current state of research in perceptual

hashing methods," reviews the characteristics, benefits,

and limitations of different perceptual hashing

techniques, focusing on their accuracy, robustness, and

computational efficiency.

Section 3, "Objective and approach," outlines the

purpose of the research and details the tasks undertaken

to evaluate image hashing algorithms for real-time

tracking on computationally limited devices. The main

goals of this study include developing tracking methods

and analyzing their processing speed and tracking

accuracy.

Section 4, "Materials and methods of research,"

describes the experimental setup, including the video

data used and the methods applied to implement the

tracking algorithms. The methodology includes an

evaluation of each algorithm's tracking accuracy

(tracking success rate, TSR) and processing speed

(frames per second, FPS) using relevant performance

metrics. Specifically, TSR quantitatively measures the

overlap between the predicted tracking region and the

ground truth, which indicates the tracking accuracy of the

algorithms.

Section 5, "Results and discussion," presents the

experimental findings, focusing on the tracking success

and processing speed of the hashing algorithms. This

provides comparative insights, highlighting which

algorithms effectively balance speed and accuracy and

discussing each method's limitations.

The paper ends with the Conclusions section,

summarizing the study’s findings and emphasizing the

suitability of specific hashing approaches for real-time

visual object tracking. The results also suggest future

research directions.

1. Current state of research research

in visual object tracking methods

A typical tracking system comprises three main

components: an appearance model that assesses the

probability of the target`s presence at a specific location,

a motion model that connects the object`s positions

across different time frames, and a search strategy that

identifies the most probable location in the current frame.

The materials of this paper relate to all three components

but mostly focus on the first.

Visual object tracking methods can be broadly

divided into two main classes: generative methods and

discriminative methods(see Fig.1). Each of these

approaches has its own characteristics and is used

depending on the tracking accuracy, speed, and

performance requirements .

Fig. 1. Tracking methods classification

Generative object-tracking methods are based on

creating a model of the object that generates possible

variations. A popular approach in this category is sparse

representation methods. These methods use a limited

number of features to represent an object, focusing on its

key elements. For example, the L1 Tracker[1] and IVT

(Incremental Visual Tracker)[2] trackers employ this

approach to accurately track objects, even when they are

partially occluded or temporarily disappear from view.

Another generative method approach deals with

subspace methods. These methods use dimensionality

reduction techniques, such as Principal Component

Analysis (PCA) or Linear Discriminant Analysis (LDA),

to model changes in the object's appearance. Trackers

like TLD (Tracking-Learning-Detection)[3] and MIL

(Multiple Instance Learning) Tracker[4] utilize an

approach based on separating the object from the

background to ensure stable tracking under challenging

conditions, such as changes in illumination or object

deformation.

Generative methods also include other approaches

that use statistical models for object tracking. For

example, particle filter-based trackers, such as the PF

(Particle Filter) Tracker[5], work effectively under high

data noise or complex object dynamics .

In contrast to generative methods, discriminative

methods use an approach based on distinguishing the

object from the background or other objects. One of the

most successful approaches in this category is

correlation-filter-based trackers (CFTrackers)[6], [7].

They employ correlation filters to create a discriminative

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
128

model of the object, thereby allowing for fast and

accurate tracking. Examples of such trackers include

KCF (Kernelized Correlation Filter)[8] and MOSSE

(Minimum Output Sum of Squared Error filter)[9], which

deliver excellent performance on real-world videos.

Discriminative methods also include Siamese

trackers (SiamTrackers)[10], [11]which use a Siamese

neural network architecture to simultaneously learn two

different features of an object. This enables high tracking

accuracy even under challenging conditions. Examples

of such trackers include SiamFC (Siamese Fully

Convolutional)[12], SiamRPN (Region Proposal

Network)[13], and SiamRPN++[14], which are known

for their ability to effectively track objects with minimal

latency. LightTrack[15] made a significant step in

developing a lightweight network for tracking on mobile

devices, while NanoTrack further improved this result

and is currently the optimal Siamese neural network-

based tracker for CPU, managing to process 20-30 Full

HD frames per second on low-power devices like the

Raspberry Pi 4.

A recent discriminative method has been connected

with transformer-based trackers (Transformers

Trackers), which apply transformer architectures to

detect long-term dependencies between objects and the

background. Among the trackers of this type, TrTr[16]

and STARK (Space-Time Attention for Rapid

Tracking)[17] are noteworthy. The latter introduces a

transformer-based encoder-decoder architecture in a

Siamese style: flattened and concatenated search and

template feature maps serve as input to the transformer

network. STARK also presents a dynamic template

update module for efficiently encoding both spatial and

temporal information.

In addition, discriminative methods include other

approaches, such as support vector machines (SVM)[18]

and Adaboost-based learning methods[19]. For example,

the STRUCK (Structured SVM Tracker)[20]

demonstrates the effective application of these methods

under real-world conditions.

Overall, each of these methods has its advantages

and disadvantages, and the choice of the appropriate

approach depends on the specific task requirements:

processing speed, object detection accuracy, or the ability

to handle various disturbances and environmental

changes.

However, the need to "wrap" an object in a

bounding box during tracking initialization remains a

challenging task. This task is addressed on relatively

powerful computers using segmentation models like

SAM[21], [22], where the input can be a single click on

the object to provide coordinates, and the output can be a

segmentation mask and bounding box, which are well-

suited for initializing any tracker. However, the

processing time of such object-segmentation models on

low-end devices without a GPU does not allow real-time

operation on these weaker devices.

In this case, it is more rational to use perceptual

hashing-based object trackers[23, 24], which are related

to other discriminative trackers and only require the

region to be tracked for the start.

2. Current state of research

in Perceptual hashing methods

Perceptual hashing has become well-known for its

ability to match the content of an image with a template,

regardless of data formats (audio and video) and any

manipulations it has undergone.

Hashing is applied in many areas , for example, it is

a traditional solution for multimedia content

authentication[25], [26], detecting unauthorized

access[27], accelerating the reconstruction of 3D

surfaces from multi-view images[28], and is a popular

solution for measuring the similarity between images

during image searches[29]. Here, we discuss several

hashing methods.

aHash method

The aHash (Average Hash) method converts an

image to grayscale, reduces its size to 8x8 pixels, and

creates a 64-bit hash matrix based on comparing each

pixel to the average brightness value of all pixels in the

image. If a pixel's brightness exceeds the average value,

the corresponding bit of the hash matrix is set to "1";

otherwise, it is set to "0."

Although aHash is a simple and fast image

comparison method, it is overly sensitive to changes in

brightness or contrast. For example, operations such as

gamma correction or color histogram equalization can

alter the average brightness of an image, leading to

significant changes in the hash matrix and reducing

aHash's robustness to such modifications.

mHash method

The mHash(Median Hash) differs from aHash only

in that the median value is used instead of the average

value.

Compared to aHash, mHash is slower because it

requires sorting; however, it is more robust to changes in

scene illumination.

dHash method

The dHash (Difference Hash) method creates an

image hash matrix by measuring the brightness

differences between adjacent pixels. First, the image was

reduced to a size of 9x8 pixels and converted to

grayscale. Then, the relative differences between

horizontally adjacent pixels are computed: if the pixel to

the right is brighter than the current one, the

Methods and means of image processing

129

corresponding bit in the hash matrix is set to "1";

otherwise, it is set to "0." This generates a 64-bit hash

matrix that encodes the brightness differences between

the pixels. A hash matrix can also be created based on

vertically adjacent pixels by resizing the image to 8x9.

The advantage of dHash lies in its robustness to

minor brightness and contrast changes because the hash

is based on relative differences in brightness rather than

absolute values. However, this method is sensitive to

image scaling or rotation, which may result in significant

changes to the hash matrix.

pHash method

The pHash (Perceptual Hash) method creates an

image hash matrix based on its visual features, which

allows it to consider the human perception of similarity

between images. First, the image was reduced to 32x32

pixels and converted to grayscale. Then, a Discrete

Cosine Transform (DCT)[30] is applied to obtain the

image in the frequency domain. Only the low-frequency

components (the most significant 8x8) are selected, as

they best describe the overall structure and visual

characteristics of the image. Next, the average value of

these low-frequency components is calculated, and each

component is compared to the average value: if the

component is greater than the average, the corresponding

bit in the hash matrix is set to "1"; otherwise, it is set to

"0." This generates a 64-bit hash matrix, which is a

unique representation of an image's visual properties.

The advantage of pHash is its robustness against

many types of image alterations, including scaling,

rotation, and brightness and contrast changes, because it

is based on frequency analysis, which is less sensitive to

these changes. However, this method is more complex

and slower to implement than simpler methods such as

aHash or dHash.

LHash method

Proposed in [31], LHash (Laplace-based Hash)

method creates an image hash by enhancing its edge

features using the Laplacian operator. First, the image

was reduced to a size of 8x8 pixels and converted to

grayscale. The Laplacian transformation is then applied

to the image to highlight edges and enhance brightness

changes between adjacent pixels. Then, the average value

of the resulting image is computed and used as a

threshold for building the hash: if a pixel's value is greater

than the average, the corresponding bit in the hash matrix

is set to "1"; otherwise, it is set to "0." This generates a

64-bit hash that encodes information about the image's

edge features.

The advantage of the LHash method lies in its

robustness against blurring and minor changes in an

object because it enhances the edge details of the image.

However, the method is sensitive to changes in scale or

image rotation, which may significantly alter the hash.

LdHash method

In addition, as proposed in [31], the LdHash differs

from LHash only in that, before applying the Laplacian

transformation, the gradient information (the difference

between adjacent pixels) is computed.

Compared to LHash, LdHash is somewhat slower

because of the additional computations; however, it is

more robust to changes in lighting.

3. Objective and Approach

The objective of this study was to evaluate the

success rate (tracking accuracy) and processing speed of

various image-hashing algorithms for real-time visual

object tracking on devices with limited computational

resources. This study identifies the most suitable hashing

algorithms for use in constrained computational

environments, such as devices without a dedicated GPU.

The main research tasks are as follows:

1. Developing and implementing an object-tracking

approach based on multiple hashing algorithms.

2. The processing speed and accuracy of these

methods were compared across different video

sequences.

3. We investigated the impact of search window

size and hashing type on tracking quality.

4. Recommendations for selecting and using

hashing algorithms in the context of limited

computational resources.

The proposed approach compares the calculated

object hashes between frames and assesses similarity,

thereby evaluating the balance between accuracy and

processing speed. This study is particularly relevant for

applications in which algorithm robustness against

common challenges, such as partial occlusion and

dynamic backgrounds, is essential.

4. Materials and methods of the research

Tracking algorithm implementation

This study considers using aHash, mHash,

dHash_horizontal, and dHash_vertical (dHash where

cells of adjacent columns and adjacent rows are

compared, respectively), pHash, and LHash and LdHash.

The tracking algorithm appearance model is

implemented by comparing the hash matrices of objects

between consecutive frames using the Hamming distance

to determine similarity.

After selecting the tracked target, the entire input

frame is scanned, and perceptual hashing is computed for

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
130

each scanning window to measure its similarity to the

target using the Hamming distance. The scanning

window with the smallest Hamming distance is the most

similar to the target and determines the object's location

in the frame. The implementation process is described as

follows:

1. In the first frame, a rectangle of size A x B is

selected, defining the target region r0, and the size of the

scanning window rw is fixed.

2. In the subsequent frame i of the video sequence,

the scanning region rs is selected, which is an area of the

image around r0 from the previous frame.

3. A search is conducted in region rs using the

window rw, with n steps, and at each step j, the hash Hw

is computed individually. After calculating the Hamming

distance d=H0-Hw between H0 (the hash from r0 in the

previous frame) and each Hw, all the obtained Hamming

distances within this scanning region are compared, and

the position (x, y) of the scanning window rw with the

smallest Hamming distance is selected.

4. The window with the smallest Hamming distance

rw(x, y) becomes the new r0.

5. The cycle ends when the video sequence of length

L frames is completed; otherwise, the process is repeated

starting from step 2.

Perceptual Hashing based Tracking Algorithm:

Initialize: L, r0, rs, rw, n, i=1, j=1

while: i<L do

while j<n do

 d (H0, Hw) = Hamming (H0, Hw);

 j= j+ 1;

end

rw(x,y) = arg min d(H0, Hw);

r0(x,y) = rw(x,y);

H0 = Hw;

end while

Thus, it is possible to implement an object tracking

system with the option to select a hash algorithm as

desired. Scanning not a full image but a portion of the

image rs around the probable position of the object from

the previous frame r0 significantly reduces the number of

computations and improves the average frame per second

(FPS) processing speed. In addition, this eliminates the

need to account for the probable position of the object

from the previous frame r0(x,y) when searching for the

most suitable object position in the current frame rw(x,y),

which positively impacts the accuracy of the search.

Used datasets

Our study used three video sequences:

"OccludedFace2", "David", and "Sylvester", taken from

[32]. The main reasons for selecting these video

sequences are: 1) the absence of significant size changes

between the initial and subsequent frames, and 2) the

smooth movement of the objects due to the sufficient

number of FPS.

Table 1 lists the characteristics of each dataset.

Table 1

Characteristics of test videos

Parameter

Dataset name

David
Occluded

Face2
Sylvester

Total frame

number

770 815 1344

Init height 96 86 46

Init width 82 82 54

Init area 7872 7052 2484

Min bbox_height 54 77 36

Min bbox width 44 73 37

Min bbox area 2376 5767 1332

Max bbox height 122 88 50

Max bbox width 93 82 55

Max bbox area 11346 7216 2750

Average bbox

height

95.576 82.787 44.728

Average bbox

width

75.583 77.647 47.982

Average bbox

area

7371.729 6441.867 2152.64

In the first frame, the search window size is

determined (Fig. 2, with the object's location pre-

determined by a human, marked in green), and will

remain constant.

a b c

Fig. 2. Example frames of David(a),

OccludedFace2(b) and Sylvester(c) datasets

Methods and means of image processing

131

Used hash sizes

To compute the hashes H0 and Hw for windows r0

and rw, regardless of their pixel size, it is proposed to

adjust the output size of the hash matrix to a power of

two, ranging from 23 to 26(e.g., 8x8, 16x16, 32x32,

64x64). This proposal is motivated by computational

efficiency and memory alignment considerations. These

sizes optimize memory usage and processing speed on

most hardware platforms because modern processors

handle binary powers more efficiently due to native

architecture alignment.

It is expected, that smaller hash sizes, such as 8x8

and 16x16, should generally yield higher processing

speed, but with some trade-off in accuracy. On the other

hand, larger hash sizes like 32x32 and 64x64 may tend to

increase accuracy but at the cost of lower processing

speed.

Tables 2 to 4 present examples of hash matrices,

calculated using different hashing methods and with

varying hash matrix sizes for the Sylvester, David, and

Occluded Face 2 datasets.

Table 2

Init hashed template visualization using different

perceptual hashing algorithms and different hash sizes

for David dataset

Method
Hash size

8 16 32 64

aHash

dHash

horizontal

dHash

vertical

LdHash

LHash

mHash

pHash

Used quality metrics

For quantitative performance comparison, it is

customary to use the tracking success rate (TSR) and

frames per second (FPS) to evaluate the compared

tracking algorithms.

TSR is defined as

TSR =
area (ROIt Ι ROIgt)

area (ROIgt)
∈ [0,1], (1)

where ROIt and ROIgt denote the tracking region of

interest and ground truth region of interest respectively.

The frame rate per second (FPS) is a measure of

how many still frames are processed in a single second.

Table 3

Init hashed template visualization with different

perceptual hashing algorithms and different size

of hash for OccludedFace2 dataset

Method
Hash size

8 16 32 64

aHash

dHash

horizontal

dHash

vertical

LdHash

LHash

mHash

pHash

Table 4

Init hashed template visualization with different

perceptual hashing algorithms and different size of hash

for Sylvester dataset

Method
Hash size

8 16 32 64

aHash

dHash

horizontal

dHash

vertical

LdHash

LHash

mHash

pHash

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
132

5. Results and discussion

In visual object tracking, multiple search strategies

are employed to locate the target in successive frames.

These strategies vary in updating the target's position and

their trade-offs between computational complexity and

tracking accuracy.

The prev_frame search strategy updates the

template at each step of the process. Initially, a

predefined region is used to locate the object, and at the

next step, the best result from the previous step is adopted

as the new template H0, continuing in this manner. This

approach results in the accumulation of errors and

exhibits the worst performance, as demonstrated by the

data in Table 5 and the accompanying graph.

In contrast, the init_template search strategy

consistently uses the initial template from the first frame

and updates only the scanning region rs based on the

previous best result. This strategy produces better

tracking results, as shown in the graph, and aligns with

the method in which each Hw is compared only with H0

from the first frame, while rw(x,y) is used to update

r0(x,y) without modifying H0.

The weighted strategy combines elements of both

the prev_frame and init_template approaches, with 80%

of the result based on the comparison with H0 from the

first frame and 20% based on the comparison with H0

from the previous frame. This approach performs slightly

better, with the optimal percentage ratio determined

experimentally.

Figure 3 shows a graphical representation of the

comparison between these search strategies, plotting the

average Tracking Success Rate (TSR) for each method.

Each line on the graph corresponds to a particular search

strategy, and TSR determined its color on the

experimental datasets.

Ultimately, the best results are obtained using the

init_template strategy; thus, only this search strategy is

used for further analysis throughout this paper.

Table 5

Hash algorithms with FPS and TSR depending on the size of the hash window and the dataset

Hash name
Hash

size

Dataset name
Average value

David OccludedFace2 Sylvester

FPS TSR FPS TSR FPS TSR FPS TSR

aHash

8x8 37.465 0.633 39.91 0.752 95.594 0.605 57.656 0.663

16x16 41.043 0.608 40.001 0.767 97.86 0.496 59.634 0.624

32x32 38.385 0.485 38.559 0.767 97.035 0.464 57.993 0.572

64x64 33.939 0.628 35.097 0.767 89.029 0.456 52.688 0.617

dHash

horizontal

8x8 46.164 0.547 47.333 0.325 133.623 0.151 75.707 0.341

16x16 45.103 0.498 44.233 0.491 103.474 0.299 64.270 0.429

32x32 43.98 0.587 42.612 0.362 115.588 0.169 67.393 0.297

64x64 55.261 0.372 39.409 0.653 105.261 0.160 66.644 0.395

dHash vertical

8x8 46.138 0.230 42.869 0.684 108.665 0.503 65.891 0.472

16x16 43.838 0.359 42.081 0.698 107.757 0.196 64.559 0.418

32x32 50.029 0.312 41.639 0.725 104.467 0.215 65.378 0.417

64x64 50.444 0.333 38.821 0.722 97.978 0.180 62.414 0.412

LdHash

8x8 35.884 0.321 36.597 0.424 100.121 0.192 57.534 0.312

16x16 33.28 0.617 40.746 0.402 98.552 0.248 57.526 0.422

32x32 31.732 0.391 30.637 0.567 76.352 0.295 46.240 0.418

64x64 24.574 0.377 23.878 0.506 61.282 0.281 36.578 0.388

LHash

8x8 38.001 0.386 46.625 0.269 95.987 0.104 60.204 0.253

16x16 40.398 0.653 39.807 0.452 92.829 0.350 57.678 0.485

32x32 37.108 0.237 35.869 0.414 88.046 0.308 53.674 0.320

64x64 29.057 0.352 31.073 0.387 83.298 0.338 47.809 0.359

mHash

8x8 32.222 0.640 34.112 0.753 85.356 0.468 50.563 0.620

16x16 30.872 0.669 33.262 0.746 82.322 0.282 48.819 0.566

32x32 28.899 0.719 30.364 0.753 86.012 0.339 48.425 0.604

64x64 24.046 0.756 25.848 0.767 67.41 0.285 39.101 0.603

pHash

8x8 28.823 0.515 30.88 0.769 75.484 0.438 45.062 0.574

16x16 23.723 0.324 30.79 0.524 77.228 0.279 43.914 0.376

32x32 17.921 0.353 24.334 0.236 65.576 0.182 35.944 0.257

64x64 8.571 0.495 8.852 0.574 28.654 0.394 15.359 0.488

Methods and means of image processing

133

Fig. 3. Search strategy analysis

Table 5 presents the analysis results of the hash

algorithms depending on the size of the hash window and

the dataset, focusing on tracking accuracy (TSR) and

processing speed (FPS) as the primary indicators. This

analysis directly confirms the achievement of the

research objective and demonstrates how each hashing

method balances tracking success rate with

computational efficiency.

As shown in Table 5, the best accuracy (average

tracking success rate) was achieved with aHash and

mHash across all search window sizes, with aHash

consistently being faster than mHash. This is due to the

higher complexity of finding the median value compared

to calculating the average value, although mHash

demonstrated higher accuracy on the David dataset,

where lighting and object pos itioning gradually change.

dHash_vertical, commonly referred to simply as dHash,

generally performs less accurately than aHash and

mHash, but is better than dHash_horizontal, except on

the David dataset.

The LHash algorithm is faster and more accurate

than LdHash and shows comparable speed to aHash and

mHash; however, in most cases, it falls short of accuracy.

pHash can only work in real-time with a hash window

size of 8x8, achieving approximately 30 FPS. However,

with each subsequent increase in search window size, the

proposed method loses speed significantly while

gradually improving accuracy.

Overall, the Table data demonstrate that using a

hash window size larger than 64x64 is ineffective.

Suppose the image fragment input to the hash algorithm

is smaller than the hash window size. In that case, it

provides no additional information for comparison while

significantly increasing the computation time per step.

This is especially true for pHash algorithm, which uses

DCT result 4 times larger than the required output hash

size.

It is also worth noting that due to the uniformity of

the background and the high contrast between the search

object and the background, processing the Sylvester

video sequence is much faster for all algorithms

compared to the David and OccludedFace2 sequences,

which are processed at approximately the same speed.

When comparing the accuracy and speed results,

aHash exhibited the highest frame processing speed (26–

97 FPS) and an accuracy (TSR) range of 0.456–0.767 for

a hash matrix size of 64x64, and 0.605–0.752 for a hash

matrix size of 8x8. mHash, with a speed range of 17–65

FPS, is somewhat slower than aHash but demonstrates

more consistent accuracy (TSR) across different datasets.

When comparing dHash_vertical and

dHash_horizontal, the dHash_vertical hashing algorithm

demonstrates better performance on the Occluded Face2

and Sylvester datasets in terms of tracking accuracy (TSR

= 0.684–0.725 and TSR = 0.180–0.503, respectively)

compared to dHash_horizontal (TSR = 0.325–0.653 and

TSR = 0.151–0.299, respectively). However, on the

David dataset, dHash_horizontal performs better, with a

TSR = 0.372–0.587 versus TSR = 0.230–0.359 for

dHash_vertical. This suggests that dHash_vertical is

generally more suitable for typical tracking tasks, while

dHash_horizontal is more effective in scenarios with

significant lighting changes .

Conclusions

The comparative analysis of image hashing

algorithms for visual object tracking has allowed us to

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
134

identify the hashing methods that deliver the best

tracking success rates (TSR) and efficient processing

speed (FPS). Experimental evaluation on the

"OccludedFace2," "David," and "Sylvester" datasets

demonstrated that the aHash and mHash algorithms

consistently provided the highest tracking success rates

across various conditions and parameter settings.

Specifically, the aHash algorithm achieves excellen t

processing speed (up to 97 FPS) with robust tracking

performance (TSR up to 0.767), whereas the mHash

algorithm exhibits slightly lower speed but improved

stability under changing lighting and positional

variations (TSR up to 0.767).

The results also demonstrate the significant

influence of the selected search strategy on the tracking

results. The init_template strategy, which uses a fixed

initial template for similarity comparisons, outperformed

the weighted and prev_frame strategies, achieving the

highest TSR values by avoiding cumulative errors. The

weighted approach, combining comparisons with both

initial and previous frames, demonstrated intermediate

effectiveness, whereas the prev_frame strategy

demonstrated the lowest accuracy due to error

accumulation.

In addition, this study provides insights into the

impact of the hash window size on algorithm

performance. Smaller hash sizes (8x8, 16x16) yielded

faster processing, while larger hash sizes (32x32, 64x64)

could improve accuracy under certain conditions, at the

expense of reduced speed.

Thus, the primary goal of identifying the best

hashing methods and search strategies for visual object

tracking was successfully confirmed by the experimental

results.

Future research directions. In future work, it may

be useful to optimize the search strategy for the best

window position by incorporating rotation and scaling. In

addition, the automatic selection of the optimal hashing

algorithm based on the input video parameters appears to

be a promising direction for further improvements .

Contributions of authors: conceptualization,

methodology – Volodymyr Lukin; formulation of tasks,

analysis – Volodymyr Lukin; development of model,

software, verification, visualization – Vitalii

Naumenko; analysis of results – Sergiy Abramov;

writing – original draft preparation, writing – review and

editing – Vitalii Naumenko.

Conflict of Interest
The authors declare that they have no conflict of

interest in relation to this research, whether financial,

personal, authorship or otherwise, that could affect the

research and its results presented in this paper.

Financing
This study was conducted without financial support.

Data Availability
The work has no associated data.

Use of Artificial Intelligence

The authors confirm that they did not use artificial

intelligence methods while creating the presented work.

All the authors have read and agreed to the

published version of this manuscript.

References

1. Bao, C., Wu, Y., Ling, H., & Ji, H. Real time

robust L1 tracker using accelerated proximal gradient

approach. 2012 IEEE Conference on Computer Vision

and Pattern Recognition , 2012, pp. 1830-1837. DOI:

10.1109/CVPR.2012.6247881.
2. Bai, S., Liu R.,, Su, Z., Zhang, C., & Jin, W.

Incremental robust local dictionary learning for visual

tracking. Proc (IEEE Int Conf Multimed Expo) , 2014,

vol. 2014, pp. 1-6. DOI: 10.1109/ICME.2014.6890262.

3. Jia, C., & et al. A Tracking-Learning-Detection

(TLD) method with local binary pattern improved. 2015

IEEE International Conference on Robotics and

Biomimetics (ROBIO) , 2015, pp. 1625-1630. DOI:

10.1109/ROBIO.2015.7419004.

4. Babenko, B., Yang, M.-H., & Belongie, S. Visual

tracking with online Multiple Instance Learning. 2009

IEEE Conference on Computer Vision and Pattern

Recognition, 2009, pp. 983-990. DOI:

10.1109/CVPR.2009.5206737.

5. Cho, J., Jin, S., Pham, X., Jeon, J., Byun, J., &

Kang, H. A Real-Time Object Tracking System Using a

Particle Filter. IEEE International Conference on

Intelligent Robots and Systems, 2006, pp. 2822-2827.

DOI: 10.1109/IROS.2006.282066.

6. Li, Y., & Zhu, J. A Scale Adaptive Kernel

Correlation Filter Tracker with Feature Integration. Com-

puter Vision - ECCV 2014 Workshops. ECCV 2014. Lec-

ture Notes in Computer Science, Springer, Cham, 2015,

vol. 8926, pp. 254-265. DOI: 10.1007/978-3-319-16181-

5_18.

7. Danelljan, M., Häger, G., Khan, F., & Felsberg,

M. Learning Spatially Regularized Correlation Filters for

Visual Tracking. 2015 IEEE International Conference on

Computer Vision (ICCV) , Santiago, Chile, 2015, pp.

4310-4318. DOI: 10.1109/ICCV.2015.490.

8. Henriques, J., Caseiro, R., Martins, P., & Batista,

J. High-Speed Tracking with Kernelized Correlation

Filters. IEEE Trans Pattern Anal Mach Intell , 2014, vol.

37. DOI: 10.1109/TPAMI.2014.2345390.

9. Bolme, D., Beveridge, J., Draper, B., & Lui, Y.

Visual object tracking using adaptive correlation filters .

Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition , 2010, pp.

Methods and means of image processing

135

2544-2550. DOI: 10.1109/CVPR.2010.5539960.

10. Zhang, Z., & Peng, H. Deeper and Wider

Siamese Networks for Real-Time Visual Tracking. 2019

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR) , Long Beach, CA, USA, 2019, pp.

4586-4595. DOI: 10.1109/CVPR.2019.00472.

11. Xu, Y., Wang, Z., Li, Z., Yuan, Y., & Yu, G.

SiamFC++: Towards Robust and Accurate Visual

Tracking with Target Estimation Guidelines .

Proceedings of the AAAI Conference on Artificial

Intelligence, 2020, vol. 34, pp. 12549-12556. DOI:

10.1609/aaai.v34i07.6944.

12. Bertinetto, L., Valmadre, J., Henriques, J.,

Vedaldi, A., & Torr, P. Fully-Convolutional Siamese

Networks for Object Tracking. Computer Vision – ECCV

2016 Workshops. ECCV 2016. Lecture Notes in Com-

puter Science, Springer, Cham, 2016, vol. 9914, pp. 850-

865. DOI: 10.1007/978-3-319-48881-3_56.

13. Li, B., Yan, J., Wu, W., Zheng, Z., & Hu, X.

High Performance Visual Tracking with Siamese Region

Proposal Network. 2018 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, Salt Lake City, UT,

USA, 2018, pp. 8971-8980. DOI:

10.1109/CVPR.2018.00935.

14. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J.,

& Yan, J. SiamRPN++: Evolution of Siamese Visual

Tracking with Very Deep Networks . 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), Long Beach, CA, USA, 2019. DOI:

10.1109/CVPR.2019.00441.

15. Yan, B., Peng, H., Wu, K., Wang, D., Fu, J., &

Lu, H. LightTrack: Finding Lightweight Neural

Networks for Object Tracking via One-Shot Architecture

Search. arXiv:2104.14545, 2021. DOI:

10.48550/arXiv.2104.14545.

16. Zhao, M., Okada, K., & Inaba, M. TrTr: Visual

Tracking with Transformer. arXiv:2105.03817, 2021,

DOI: 10.48550/arXiv.2105.03817.

17. Yan, B., Peng, H., Fu, J., Wang, D., & Lu, H.

Learning Spatio-Temporal Transformer for Visual

Tracking. arXiv:2103.17154, 2021. DOI:

10.48550/arXiv.2103.17154.

18. Evgeniou, T., & Pontil, M. Support Vector

Machines: Theory and Applications . Machine Learning

and Its Applications. ACAI 1999. Lecture Notes in Com-

puter Science, Springer, Berlin, Heidelberg, 2001, vol.

2049, pp. 249-257. DOI: 10.1007/3-540-44673-7_12.

19. Yi, C. Target Tracking Feature Selection

Algorithm Based on Adaboost. TELKOMNIKA

Indonesian Journal of Electrical Engineering , 2014, vol.

12. Available at: https://ijeecs.iaescore.com/index.php/

IJEECS/article/view/3056. (accessed Aug. 8 2024).

20. Hare, S., Saffari, A., & Torr, P. H. S. Struck:

Structured output tracking with kernels . 2011 Interna-

tional Conference on Computer Vision, Barcelona, Spain,

2011, pp. 263-270. DOI: 10.1109/ICCV.2011.6126251.

21. Kirillov, A., & et al. Segment Anything. 2023

IEEE/CVF International Conference on Computer

Vision (ICCV), Paris, France, 2023, pp. 3992-4003. DOI:

10.1109/ICCV51070.2023.00371.

22. Ravi, N., & et al. SAM 2: Segment Anything in

Images and Videos. arXiv.2408.00714, 2024. DOI:

10.48550/arXiv.2408.00714.

23. Fei, M., Li, J., & Liu, H. Visual tracking based

on improved foreground detection and perceptual

hashing. Neurocomputing, 2015, vol. 152, pp. 413-428.

DOI: 10.1016/j.neucom.2014.09.060.

24. Fei, M., Ju, Z., Zhen, X., & Li, J. Real-t ime

visual tracking based on improved perceptual hashing.

Multimed Tools Appl, 2017, vol. 76, pp. 4617-4634. DOI:

10.1007/s11042-016-3723-5.

25. Chen, N., Xiao, H.-D., & Wan, W. Audio hash

function based on non-negative matrix factorisation of

mel-frequency cepstral coefficients . IET Information

Security, 2011, vol. 5, iss. 1, pp. 19-25. DOI: 10.1049/iet -

ifs.2010.0097.

26. Chen, N., & Xiao, H. Perceptual audio hashing

algorithm based on Zernike moment and maximu m-

likelihood watermark detection. Digit Signal Process,

2013, vol. 23, iss. 4, pp. 1216-1227. DOI:

10.1016/j.dsp.2013.01.012.

27. Yang, B., Gu, F., & Niu, X. Block Mean Value

Based Image Perceptual Hashing. 2006 International

Conference on Intelligent Information Hiding and Multi-

media, Pasadena, CA, USA, 2006, pp. 167-172. DOI:

10.1109/IIH-MSP.2006.265125.

28. Deng, Z., Xiao, H., Lang, Y., Feng, H., &

Zhang, J. Multi-scale hash encoding based neural

geometry representation. Comput Vis Media (Beijing),

2024, vol. 10, iss. 3, pp. 453-470. DOI: 10.1007/s41095-

023-0340-x.

29. Xuan, Z., Wu, D., Zhang, W., Su, Q., Li, B., &

Wang, W. Central similarity consistency hashing for

asymmetric image retrieval. Comput Vis Media (Beijing),

2024, vol. 10, no. 4, pp. 725-740. DOI: 10.1007/s41095-

024-0428-y.

30. Watson, A. Image Compression Using the

Discrete Cosine Transform. Mathematica Journal, 1994,

vol. 4, iss. 1, pp. 81-88. Available at:

http://sites.apam.columbia.edu/courses/ap1601y/Watson

_MathJour_94.pdf. (accessed Aug. 8 2024).

31. Fei, M., Li, J., Shao, L., Ju, Z., & Ouyang, G.

Robust Visual Tracking Based on Improved Perceptual

Hashing for Robot Vision. Intelligent Robotics and Ap-

plications. Lecture Notes in Computer Science, Springer,

Cham, 2015, vol. 9246, pp. 331-340. DOI: 10.1007/978-

3-319-22873-0_29.

32. Babenko, B., Yang, M.-H., & Belongie, S.

Robust Object Tracking with Online Multiple Instance

Learning. EEE Transactions on Pattern Analysis and

Machine Intelligence, 2011, vol. 33, no. 8, pp. 1619-

1632. DOI: 10.1109/TPAMI.2010.226.

Received 25.09.2024, Accepted 17.02.2025

https://arxiv.org/abs/2104.14545
https://arxiv.org/abs/2104.14545
https://arxiv.org/abs/2103.17154

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
136

ПОРІВНЯЛЬНИЙ АНАЛІЗ АЛГОРИТМІВ ХЕШУВАННЯ ЗОБРАЖЕНЬ

ДЛЯ ВІЗУАЛЬНОГО ВІДСТЕЖЕННЯ ОБ'ЄКТІВ

В. М. Науменко, С. К. Абрамов, В. В. Лукін

Предмет дослідження – візуальне відстеження об'єктів з використанням різних алгоритмів хешування

зображень для задачі трекінгу в реальному часі. Мета полягає в успішності відстеження та швидкості обробки

існуючих та нових хеш-алгоритмів для трекінгу об'єктів та виявленні найбільш підходящих алгоритмів для

використання в умовах обмежених обчислювальних ресурсів. Завдання дослідження включають: розробку та

реалізацію трекінгу об'єктів на основі алгоритмів aHash, dHash, pHash, mHash, LHash та LdHash; порівняння

швидкості роботи та точності цих методів на відеопослідовностях " OccludedFace2", "David", і "Sylvester";

визначення показників точності відстеження (TSR) та швидкості обробки кадрів (FPS) для кожного з

алгоритмів; аналіз впливу розміру вікна пошуку, стратегії пошуку та типу хешування на якість трекінгу та

надання рекомендацій щодо їх використання. Дослідження також вивчає компроміси між точністю і

швидкістю обробки для кожного алгоритму, беручи до уваги обмеження обмежених обчислювальних

ресурсів. Методи дослідження включають тестування та оцінку точності та швидкості роботи алгоритмів

хешування зображень на різних тестових відеопослідовностях, а також використання метрик для визначення

подібності об'єктів за допомогою відстані Хеммінга. Отримані результати показують, що алгоритми aHash та

mHash демонструють найкращі показники точності для всіх розмірів хеш вікна, в той час як aHash має вищу

швидкість роботи, а mHash - кращу стійкість до змін освітлення та положення об'єкта. Алгоритми dHash та

pHash виявилися менш ефективними у порівнянні з aHash та mHash через їхню чутливість до змін масштабу

та поворотів. Проте, методи на основі перцептивного хешування, такі як pHash, продемонстрували кращу

стійкість до змін контрасту та розмиття. Висновки. Найкращими алгоритмами хешування для задач

відстеження об'єктів у реальному часі є aHash та mHash. Дослідження підкреслює важливість вибору

відповідних алгоритмів хешування і стратегій пошуку, адаптованих до конкретних сценаріїв застосування, і

пропонує можливості для подальшої оптимізації.

Ключові слова: візуальне відстеження об'єктів; відстеження одного об’єкту; хешування зображень;

перцептивне хешування.

Науменко Віталій Миколайович – асп. каф. інформаційно-комунікаційних технологій

ім. О. О. Зеленського, Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський

авіаційний інститут», Харків, Україна.

Абрамов Сергій Клавдійович – канд. техн. наук, доц. каф. інформаційно-комунікаційних технологій

ім. О. О. Зеленського, Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський

авіаційний інститут», Харків, Україна.

Лукін Володимир Васильович – д-р техн. наук, проф., зав. каф. інформаційно-комунікаційних

технологій ім. О. О. Зеленського, Національний аерокосмічний університет ім. М. Є. Жуковського

«Харківський авіаційний інститут», Харків, Україна.

Vitalii Naumenko – PhD Student of the Department of Information-Communication Technologies

named after O. O. Zelensky, National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine,

e-mail: v.m.naumenko@khai.edu, ORCID: 0009-0005-8426-6635.

Sergiy Abramov – Candidate of Technical Sciences, Associate Professor at the Department of Information -

Communication Technologies named after O. O. Zelensky, National Aerospace University "Kharkiv Aviation

Institute", Kharkiv, Ukraine,

e-mail: s.abramov@khai.edu, ORCID: 0000-0002-8295-9439.

Vladimir Lukin – Doctor of Technical Science, Professor, Head of the Department of Information -

Communication Technologies named after O. O. Zelensky, National Aerospace University “Kharkiv Aviation

Institute”, Kharkiv, Ukraine,

e-mail: v.lukin@khai.edu, ORCID: 0000-0002-1443-9685.

