
ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 1(113)               ISSN 2663-2012 (online) 
126 

UDC 621.3  doi: 10.32620/reks.2025.1.09 
 

Vitalii NAUMENKO, Sergiy ABRAMOV, Volodymyr LUKIN 
 

National Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine 
 

COMPARATIVE ANALYSIS OF IMAGE HASHING ALGORITHMS  

FOR VISUAL OBJECT TRACKING 
 

Subject of the research – visual object tracking using various image hashing algorithms for real -time tracking 

tasks. The goal of this study is to evaluate the tracking success and processing speed of existing and new hashing 

algorithms for object tracking and to identify the most suitable algorithms to be used under limited computational 

resources. The objectives of the research include: developing and implementing object trackin g based on the 

aHash, dHash, pHash, mHash, LHash, and LDHash algorithms; comparing the processing speed and accuracy 

of these methods on the video sequences "OccludedFace2," "David," and "Sylvester"; determining the tracking 

success rate (TSR) and frames per second (FPS) metrics for each algorithm; analyzing the impact of the search 

window size, search strategy, and type of hashing on tracking quality, and providing recommendations for their 

use. The study also explores the trade-off between accuracy and processing speed for each algorithm considering 

the constraints of limited computational resources. The methods of this study involve testing and evaluating the 

accuracy and speed of image hashing algorithms on different test video sequences, as well as the use of metrics 

to determine object similarity using the Hamming distance. The results demonstrate that the aHash and mHash 

algorithms demonstrate the best accuracy indicators for all hash window sizes, aHash has a higher processing 

speed, and mHash offers better robustness to changes in lighting and object position. The dHash and pHash 

algorithms were less effective than the aHash and mHash algorithms due to their sensitivity to changes in scale 

and rotation. However, perceptual hashing-based methods, such as pHash, are more robust to contrast and 

blurring. Conclusions. The best hashing algorithms for real-time object-tracking tasks are aHash and mHash. 

This study underscores the significance of selecting suitable hashing algorithms and search strategies tai lored 

to specific application scenarios and offers possibilities for further optimization . 
 

Keywords: visual object tracking; single object tracking; image hashing; perceptual hashing. 

 

Introduction 

 
Visual object tracking is a key research area in 

computer vision. The proposed method estimates the 

state of an arbitrary object in a video sequence by 

knowing only its location in the first frame. This task has 

several applications, such as autonomous driving, 

surveillance, augmented reality, and robotics. However, 

building a universal system for object tracking under 

real-world conditions using only initial information  

about their location is an extremely challenging task due 

to numerous distortions of the observed object, such as 

edge cases where only part of the object is visible 

(occlusions), deformations, blurring, illumination  

changes, and the presence of a highly textured 

background. 

In cases where visual object tracking must operate 

on an unmanned aerial vehicle, limited computational 

capability becomes one of the main challenges, along 

with other specific issues. The inability to accurately 

identify the object to be tracked from the control panel of 

an unmanned aerial vehicle is another challenge. FPV 

(First-Person View) refers to a method of controlling 

unmanned aerial vehicles (drones) in which the operator 

receives real-time video feedback from a camera 

mounted on the drone, viewed through goggles or a 

screen. This mode requires fast data processing to ensure 

smooth and accurate video transmission during rapid 

maneuvers. 

This paper proposes an improvement to existing  

visual object tracking methods based on image hashing. 

The main advantages of image hashing-based trackers 

are their simplicity, lack of need for training machine 

learning models, and high operational speed.  

The objective of this research was to perform a 

comparative analysis of various image hashing 

algorithms to determine the best methods for visual 

object tracking based on tracking success rate (TSR) and 

processing speed (FPS). This study investigates how 

different hashing techniques, parameter choices, and 

search strategies influence tracking accuracy and 

computational efficiency in real-time visual object 

tracking tasks. 

 

 
 Creative Commons Attribution  

NonCommercial 4.0 International 

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk


Methods and means of image processing 
 

127 

Paper structure 
 

Section 1, "Current state of research in visual object 

tracking methods," provides an overview of visual object 

tracking approaches, categorizing them into generative 

and discriminative types. This section discusses various 

tracking models and analyzes their advantages and 

challenges for real-time applications. 

Section 2, "Current state of research in perceptual 

hashing methods," reviews the characteristics, benefits, 

and limitations of different perceptual hashing 

techniques, focusing on their accuracy, robustness, and 

computational efficiency. 

Section 3, "Objective and approach," outlines the 

purpose of the research and details the tasks undertaken 

to evaluate image hashing algorithms for real-time 

tracking on computationally limited devices. The main  

goals of this study include developing tracking methods 

and analyzing their processing  speed and tracking 

accuracy. 

Section 4, "Materials and methods of research," 

describes the experimental setup, including the video 

data used and the methods applied to implement the 

tracking algorithms. The methodology includes an 

evaluation of each algorithm's tracking accuracy 

(tracking success rate, TSR) and processing speed 

(frames per second, FPS) using relevant performance 

metrics. Specifically, TSR quantitatively measures the 

overlap between the predicted tracking region and the 

ground truth, which indicates the tracking accuracy of the 

algorithms. 

Section 5, "Results and discussion," presents the 

experimental findings, focusing on the tracking success 

and processing speed of the hashing algorithms. This 

provides comparative insights, highlighting which 

algorithms effectively balance speed and accuracy and 

discussing each method's limitations. 

The paper ends with the Conclusions section, 

summarizing the study’s findings and emphasizing the 

suitability of specific hashing approaches for real-time 

visual object tracking. The results also suggest future 

research directions. 

 

1. Current state of research research  

in visual object tracking methods 
 

A typical tracking system comprises three main  

components: an appearance model that assesses the 

probability of the target`s presence at a specific location, 

a motion model that connects the object`s positions 

across different time frames, and a search strategy that 

identifies the most probable location in the current frame. 

The materials of this paper relate to all three components 

but mostly focus on the first.  

Visual object tracking methods can be broadly 

divided into two main classes: generative methods and 

discriminative methods(see Fig.1). Each of these 

approaches has its own characteristics and is used 

depending on the tracking accuracy, speed, and 

performance requirements . 

 

 
Fig. 1. Tracking methods classification 

 

Generative object-tracking methods are based on 

creating a model of the object that generates possible 

variations. A popular approach in this category is sparse 

representation methods. These methods use a limited  

number of features to represent an object, focusing on its 

key elements. For example, the L1 Tracker[1] and IVT 

(Incremental Visual Tracker)[2] trackers employ this 

approach to accurately track objects, even when they are 

partially occluded or temporarily disappear from view. 

Another generative method approach deals with 

subspace methods. These methods use dimensionality 

reduction techniques, such as Principal Component 

Analysis (PCA) or Linear Discriminant Analysis (LDA), 

to model changes in the object's appearance. Trackers 

like TLD (Tracking-Learning-Detection)[3] and MIL 

(Multiple Instance Learning) Tracker[4] utilize an 

approach based on separating the object from the 

background to ensure stable tracking under challenging 

conditions, such as changes in illumination or object 

deformation. 

Generative methods also include other approaches 

that use statistical models for object tracking. For 

example, particle filter-based trackers, such as the PF 

(Particle Filter) Tracker[5], work effectively under high 

data noise or complex object dynamics . 

In contrast to generative methods, discriminative 

methods use an approach based on distinguishing the 

object from the background or other objects. One of the 

most successful approaches in this category is 

correlation-filter-based trackers (CFTrackers)[6], [7]. 

They employ correlation filters to create a discriminative 
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model of the object, thereby allowing for fast and 

accurate tracking. Examples of such trackers include 

KCF (Kernelized Correlation Filter)[8] and MOSSE 

(Minimum Output Sum of Squared Error filter)[9], which 

deliver excellent performance on real-world videos. 

Discriminative methods also include Siamese 

trackers (SiamTrackers)[10], [11]which use a Siamese 

neural network architecture to simultaneously learn two 

different features of an object. This enables high tracking 

accuracy even under challenging conditions. Examples  

of such trackers include SiamFC (Siamese Fully  

Convolutional)[12], SiamRPN (Region Proposal 

Network)[13], and SiamRPN++[14], which are known 

for their ability to effectively track objects with minimal 

latency. LightTrack[15] made a significant step in 

developing a lightweight network for tracking on mobile 

devices, while NanoTrack further improved this result 

and is currently the optimal Siamese neural network-

based tracker for CPU, managing to process 20-30 Full 

HD frames per second on low-power devices like the 

Raspberry Pi 4. 

A recent discriminative method has been connected 

with transformer-based trackers (Transformers  

Trackers), which apply transformer architectures to 

detect long-term dependencies between objects and the 

background. Among the trackers of this type, TrTr[16] 

and STARK (Space-Time Attention for Rapid 

Tracking)[17] are noteworthy. The latter introduces a 

transformer-based encoder-decoder architecture in a 

Siamese style: flattened and concatenated search and 

template feature maps serve as input to the transformer 

network. STARK also presents a dynamic template 

update module for efficiently encoding both spatial and 

temporal information. 

In addition, discriminative methods include other 

approaches, such as support vector machines (SVM)[18] 

and Adaboost-based learning methods[19]. For example, 

the STRUCK (Structured SVM Tracker)[20] 

demonstrates the effective application of these methods 

under real-world conditions. 

Overall, each of these methods has its advantages 

and disadvantages, and the choice of the appropriate 

approach depends on the specific task requirements: 

processing speed, object detection accuracy, or the ability 

to handle various disturbances and environmental 

changes. 

However, the need to "wrap" an object in a 

bounding box during tracking initialization remains a 

challenging task. This task is addressed on relatively  

powerful computers using segmentation models like 

SAM[21], [22], where the input can be a single click on 

the object to provide coordinates, and the output can be a 

segmentation mask and bounding box, which are well-

suited for initializing any tracker. However, the 

processing time of such object-segmentation models on 

low-end devices without a GPU does not allow real-time 

operation on these weaker devices. 

In this case, it is more rational to use perceptual 

hashing-based object trackers[23, 24], which are related 

to other discriminative trackers and only require the 

region to be tracked for the start. 

 

2. Current state of research  

in Perceptual hashing methods  

 

Perceptual hashing has become well-known for its 

ability to match the content of an image with a template, 

regardless of data formats (audio and video) and any 

manipulations it has undergone. 

Hashing is applied in many areas , for example, it is 

a traditional solution for multimedia content 

authentication[25], [26], detecting unauthorized 

access[27], accelerating the reconstruction of 3D 

surfaces from multi-view images[28], and is a popular 

solution for measuring the similarity between images 

during image searches[29].  Here, we discuss several 

hashing methods. 

 

aHash method 

The aHash (Average Hash) method converts an 

image to grayscale, reduces its size to 8x8 pixels, and 

creates a 64-bit hash matrix based on comparing each 

pixel to the average brightness value of all pixels in the 

image. If a pixel's brightness exceeds the average value, 

the corresponding bit of the hash matrix is set to "1"; 

otherwise, it is set to "0." 

Although aHash is a simple and fast image 

comparison method, it is overly sensitive to changes in 

brightness or contrast. For example, operations such as 

gamma correction or color histogram equalization can 

alter the average brightness of an image, leading to 

significant changes in the hash matrix and reducing 

aHash's robustness to such modifications. 

 

mHash method 

The mHash(Median Hash) differs from aHash only 

in that the median value is used instead of the average 

value.  

Compared to aHash, mHash is slower because it 

requires sorting; however, it is more robust to changes in 

scene illumination. 

 

dHash method 

The dHash (Difference Hash) method creates an 

image hash matrix by measuring the brightness 

differences between adjacent pixels. First, the image was 

reduced to a size of 9x8 pixels and converted to 

grayscale. Then, the relative differences between 

horizontally adjacent pixels are computed: if the pixel to 

the right is brighter than the current one, the 
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corresponding bit in the hash matrix is set to "1"; 

otherwise, it is set to "0." This generates a 64-bit hash 

matrix that encodes the brightness differences between 

the pixels. A hash matrix can also be created based on 

vertically adjacent pixels by resizing the image to 8x9. 

The advantage of dHash lies in its robustness to 

minor brightness and contrast changes because the hash 

is based on relative differences in brightness rather than 

absolute values. However, this method is sensitive to 

image scaling or rotation, which may result in significant 

changes to the hash matrix. 

 

pHash method 

The pHash (Perceptual Hash) method creates an 

image hash matrix based on its visual features, which 

allows it to consider the human perception of similarity  

between images. First, the image was reduced to 32x32 

pixels and converted to grayscale. Then, a Discrete 

Cosine Transform (DCT)[30] is applied to obtain the 

image in the frequency domain. Only the low-frequency 

components (the most significant 8x8) are selected, as 

they best describe the overall structure and visual 

characteristics of the image. Next, the average value of 

these low-frequency components is calculated, and each 

component is compared to the average value: if the 

component is greater than the average, the corresponding 

bit in the hash matrix is set to "1"; otherwise, it is set to 

"0." This generates a 64-bit hash matrix, which is a 

unique representation of an image's visual properties. 

The advantage of pHash is its robustness against 

many types of image alterations, including scaling, 

rotation, and brightness and contrast changes, because it 

is based on frequency analysis, which is less sensitive to 

these changes. However, this method is more complex 

and slower to implement than simpler methods such as 

aHash or dHash. 

 

LHash method 

Proposed in [31], LHash (Laplace-based Hash) 

method creates an image hash by enhancing its edge 

features using the Laplacian operator. First, the image 

was reduced to a size of 8x8 pixels and converted to 

grayscale. The Laplacian transformation is then applied 

to the image to highlight edges and enhance brightness 

changes between adjacent pixels. Then, the average value 

of the resulting image is computed and used as a 

threshold for building the hash: if a pixel's value is greater 

than the average, the corresponding bit in the hash matrix 

is set to "1"; otherwise, it is set to "0." This generates a 

64-bit hash that encodes information about the image's 

edge features. 

The advantage of the LHash method lies in its 

robustness against blurring and minor changes in an 

object because it enhances the edge details of the image. 

However, the method is sensitive to changes in scale or 

image rotation, which may significantly alter the hash. 

 

LdHash method 

In addition, as proposed in [31], the LdHash differs  

from LHash only in that, before applying the Laplacian  

transformation, the gradient information (the difference 

between adjacent pixels) is computed.  

Compared to LHash, LdHash is somewhat slower 

because of the additional computations; however, it is 

more robust to changes in lighting. 

 

3. Objective and Approach 

 
The objective of this study was to evaluate the 

success rate (tracking accuracy) and processing speed of 

various image-hashing algorithms for real-time visual 

object tracking on devices with limited computational 

resources. This study identifies the most suitable hashing 

algorithms for use in constrained computational 

environments, such as devices without a dedicated GPU.  

The main research tasks are as follows: 

1. Developing and implementing an object-tracking  

approach based on multiple hashing algorithms. 

2. The processing speed and accuracy of these 

methods were compared across different video 

sequences. 

3. We investigated the impact of search window 

size and hashing type on tracking quality. 

4. Recommendations for selecting and using 

hashing algorithms in the context of limited  

computational resources. 

The proposed approach compares the calculated 

object hashes between frames and assesses similarity, 

thereby evaluating the balance between accuracy and 

processing speed. This study is particularly relevant for 

applications in which algorithm robustness against 

common challenges, such as partial occlusion and 

dynamic backgrounds, is essential. 

 

4. Materials and methods of the research 

 

Tracking algorithm implementation 

 

This study considers using aHash, mHash, 

dHash_horizontal, and dHash_vertical (dHash where 

cells of adjacent columns and adjacent rows are 

compared, respectively), pHash, and LHash and LdHash. 

The tracking algorithm appearance model is 

implemented by comparing the hash matrices of objects 

between consecutive frames using the Hamming distance 

to determine similarity. 

After selecting the tracked target, the entire input 

frame is scanned, and perceptual hashing is computed for 
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each scanning window to measure its similarity to the 

target using the Hamming distance. The scanning 

window with the smallest Hamming distance is the most 

similar to the target and determines the object's location 

in the frame. The implementation process is described as 

follows: 

1. In the first frame, a rectangle of size A x B is 

selected, defining the target region r0, and the size of the 

scanning window rw is fixed. 

2. In the subsequent frame i of the video sequence, 

the scanning region rs is selected, which is an area of the 

image around r0 from the previous frame. 

3. A search is conducted in region rs using the 

window rw, with n steps, and at each step j, the hash Hw 

is computed individually. After calculating the Hamming  

distance d=H0-Hw between H0 (the hash from r0 in the 

previous frame) and each Hw, all the obtained Hamming  

distances within this scanning region are compared, and 

the position (x, y) of the scanning window rw with the 

smallest Hamming distance is selected. 

4. The window with the smallest Hamming distance 

rw(x, y) becomes the new r0. 

5. The cycle ends when the video sequence of length 

L frames is completed; otherwise, the process is repeated 

starting from step 2. 

Perceptual Hashing based Tracking Algorithm: 

Initialize: L, r0, rs, rw, n, i=1, j=1 

while: i<L do 

while j<n do 

 d (H0, Hw) = Hamming (H0, Hw); 

 j= j+ 1; 

end 

rw(x,y) = arg min d(H0, Hw); 

r0(x,y) = rw(x,y); 

H0 = Hw; 

end while 

 

Thus, it is possible to implement an object tracking  

system with the option to select a hash algorithm as 

desired. Scanning not a full image but a portion of the 

image rs around the probable position of the object from 

the previous frame r0 significantly reduces the number of 

computations and improves the average frame per second 

(FPS) processing speed. In addition, this eliminates the 

need to account for the probable position of the object 

from the previous frame r0(x,y) when searching for the 

most suitable object position in the current frame rw(x,y), 

which positively impacts the accuracy of the search. 

 

Used datasets 

 

Our study used three video sequences: 

"OccludedFace2", "David", and "Sylvester", taken from 

[32]. The main reasons for selecting these video 

sequences are: 1) the absence of significant size changes 

between the initial and subsequent frames, and 2) the 

smooth movement of the objects due to the sufficient 

number of FPS.  

Table 1 lists the characteristics of each dataset.  

 

Table 1 

Characteristics of test videos  

Parameter 

Dataset name 

David 
Occluded 

Face2 
Sylvester 

Total frame 

number 

770 815 1344 

Init height 96 86 46 

Init width 82 82 54 

Init area 7872 7052 2484 

Min bbox_height 54 77 36 

Min bbox width 44 73 37 

Min bbox area 2376 5767 1332 

Max bbox height 122 88 50 

Max bbox width 93 82 55 

Max bbox area 11346 7216 2750 

Average bbox 

height 

95.576 82.787 44.728 

Average bbox 

width 

75.583 77.647 47.982 

Average bbox 

area 

7371.729 6441.867 2152.64 

In the first frame, the search window size is 

determined (Fig. 2, with the object's location pre-

determined by a human, marked in green), and will 

remain constant. 

 

   

   

   

   
a b c 

 

Fig. 2. Example frames of David(a), 

OccludedFace2(b) and Sylvester(c) datasets  
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Used hash sizes 

 

To compute the hashes H0 and Hw for windows r0 

and rw, regardless of their pixel size, it is proposed to 

adjust the output size of the hash matrix to a power of 

two, ranging from 23 to 26(e.g., 8x8, 16x16, 32x32, 

64x64). This proposal is motivated by computational 

efficiency and memory alignment considerations. These 

sizes optimize memory usage and processing speed on 

most hardware platforms because modern processors 

handle binary powers more efficiently  due to native 

architecture alignment. 

It is expected, that smaller hash sizes, such as 8x8 

and 16x16, should generally yield higher processing 

speed, but with some trade-off in accuracy. On the other 

hand, larger hash sizes like 32x32 and 64x64 may tend to 

increase accuracy but at the cost of lower processing 

speed. 

Tables 2 to 4 present examples of hash matrices, 

calculated using different hashing methods and with 

varying hash matrix sizes for the Sylvester, David, and 

Occluded Face 2 datasets. 

 

Table 2 

Init hashed template visualization using different 

perceptual hashing algorithms and different hash sizes 

for David dataset 

Method 
Hash size 

8 16 32 64 

aHash 

    
dHash 

horizontal 
    

dHash 

vertical 
    

LdHash 

    

LHash 

    

mHash 

    
pHash 

    

 

Used quality metrics 

 

For quantitative performance comparison, it is 

customary to use the tracking success rate (TSR) and 

frames per second (FPS) to evaluate the compared 

tracking algorithms. 

TSR is defined as 

   

TSR =
area (ROIt Ι  ROIgt)

area (ROIgt)
∈ [0,1],               (1) 

 

where ROIt and ROIgt denote the tracking region of 

interest and ground truth region of interest respectively. 

The frame rate per second (FPS) is a measure of 

how many still frames are processed in a single second. 

 

Table 3 

Init hashed template visualization with different 

perceptual hashing algorithms and different size  

of hash for OccludedFace2 dataset 

Method 
Hash size 

8 16 32 64 

aHash 

    

dHash 

horizontal 
    

dHash 

vertical 
    

LdHash 

    

LHash 

    
mHash 

    

pHash 

    
      

Table 4 

Init hashed template visualization with different 

perceptual hashing algorithms and different size of hash 

for Sylvester dataset 

Method 
Hash size 

8 16 32 64 

aHash 

    

dHash 

horizontal 
    

dHash 

vertical 
    

LdHash 

    

LHash 

    
mHash 

    

pHash 
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5. Results and discussion 
 

In visual object tracking, multiple search strategies 

are employed to locate the target in successive frames. 

These strategies vary in updating the target's position and 

their trade-offs between computational complexity and 

tracking accuracy. 

The prev_frame search strategy updates the 

template at each step of the process. Initially, a 

predefined region is used to locate the object, and at the 

next step, the best result from the previous step is adopted 

as the new template H0, continuing in this manner. This 

approach results in the accumulation of errors and 

exhibits the worst performance, as demonstrated by the 

data in Table 5 and the accompanying graph.  

In contrast, the init_template search strategy 

consistently uses the initial template from the first frame 

and updates only the scanning region rs based on the 

previous best result. This strategy produces better 

tracking results, as shown in the graph, and aligns with 

the method in which each  Hw is compared only with H0 

from the first frame, while rw(x,y) is used to update 

r0(x,y) without modifying H0. 

The weighted strategy combines elements of both 

the prev_frame and init_template approaches, with 80% 

of the result based on the comparison with H0 from the 

first frame and 20% based on the comparison with H0 

from the previous frame. This approach performs slightly 

better, with the optimal percentage ratio determined  

experimentally. 

Figure 3 shows a graphical representation of the 

comparison between these search strategies, plotting the 

average Tracking Success Rate (TSR) for each method. 

Each line on the graph corresponds to a particular search 

strategy, and TSR determined its color on the 

experimental datasets. 

Ultimately, the best results are obtained using the 

init_template strategy; thus, only this search strategy is 

used for further analysis throughout this paper. 
 

Table 5 

Hash algorithms with FPS and TSR depending on the size of the hash window and the dataset  

Hash name 
Hash 

size 

Dataset name 
Average value 

David OccludedFace2 Sylvester 

FPS TSR FPS TSR FPS TSR FPS TSR 

aHash 

8x8 37.465 0.633 39.91 0.752 95.594 0.605 57.656 0.663 

16x16 41.043 0.608 40.001 0.767 97.86 0.496 59.634 0.624 

32x32 38.385 0.485 38.559 0.767 97.035 0.464 57.993 0.572 

64x64 33.939 0.628 35.097 0.767 89.029 0.456 52.688 0.617 

dHash 

horizontal 

8x8 46.164 0.547 47.333 0.325 133.623 0.151 75.707 0.341 

16x16 45.103 0.498 44.233 0.491 103.474 0.299 64.270 0.429 

32x32 43.98 0.587 42.612 0.362 115.588 0.169 67.393 0.297 

64x64 55.261 0.372 39.409 0.653 105.261 0.160 66.644 0.395 

dHash vertical 

8x8 46.138 0.230 42.869 0.684 108.665 0.503 65.891 0.472 

16x16 43.838 0.359 42.081 0.698 107.757 0.196 64.559 0.418 

32x32 50.029 0.312 41.639 0.725 104.467 0.215 65.378 0.417 

64x64 50.444 0.333 38.821 0.722 97.978 0.180 62.414 0.412 

LdHash 

8x8 35.884 0.321 36.597 0.424 100.121 0.192 57.534 0.312 

16x16 33.28 0.617 40.746 0.402 98.552 0.248 57.526 0.422 

32x32 31.732 0.391 30.637 0.567 76.352 0.295 46.240 0.418 

64x64 24.574 0.377 23.878 0.506 61.282 0.281 36.578 0.388 

LHash 

8x8 38.001 0.386 46.625 0.269 95.987 0.104 60.204 0.253 

16x16 40.398 0.653 39.807 0.452 92.829 0.350 57.678 0.485 

32x32 37.108 0.237 35.869 0.414 88.046 0.308 53.674 0.320 

64x64 29.057 0.352 31.073 0.387 83.298 0.338 47.809 0.359 

mHash 

8x8 32.222 0.640 34.112 0.753 85.356 0.468 50.563 0.620 

16x16 30.872 0.669 33.262 0.746 82.322 0.282 48.819 0.566 

32x32 28.899 0.719 30.364 0.753 86.012 0.339 48.425 0.604 

64x64 24.046 0.756 25.848 0.767 67.41 0.285 39.101 0.603 

pHash 

8x8 28.823 0.515 30.88 0.769 75.484 0.438 45.062 0.574 

16x16 23.723 0.324 30.79 0.524 77.228 0.279 43.914 0.376 

32x32 17.921 0.353 24.334 0.236 65.576 0.182 35.944 0.257 

64x64 8.571 0.495 8.852 0.574 28.654 0.394 15.359 0.488 
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Fig. 3. Search strategy analysis  

 

Table 5 presents the analysis results of the hash 

algorithms depending on the size of the hash window and 

the dataset, focusing on tracking accuracy (TSR) and 

processing speed (FPS) as the primary indicators. This 

analysis directly confirms the achievement of the 

research objective and demonstrates how each hashing 

method balances tracking success rate with 

computational efficiency. 

As shown in Table 5, the best accuracy (average 

tracking success rate) was achieved with aHash and 

mHash across all search window sizes, with aHash 

consistently being faster than mHash. This is due to the 

higher complexity of finding the median value compared 

to calculating the average value, although mHash 

demonstrated higher accuracy on the David dataset, 

where lighting and object pos itioning gradually change. 

dHash_vertical, commonly referred to simply as dHash, 

generally performs less accurately than aHash and 

mHash, but is better than dHash_horizontal, except on 

the David dataset. 

The LHash algorithm is faster and more accurate 

than LdHash and shows comparable speed to aHash and 

mHash; however, in most cases, it falls short of accuracy. 

pHash can only work in real-time with a hash window 

size of 8x8, achieving approximately 30 FPS. However, 

with each subsequent increase in search window size, the 

proposed method loses speed significantly while 

gradually improving accuracy. 

Overall, the Table data demonstrate that using a 

hash window size larger than 64x64 is ineffective. 

Suppose the image fragment input to the hash algorithm 

is smaller than the hash window size. In that case, it 

provides no additional information for comparison while 

significantly increasing the computation time per step. 

This is especially true for pHash algorithm, which uses 

DCT result 4 times larger than the required output hash 

size. 

It is also worth noting that due to the uniformity of 

the background and the high contrast between the search 

object and the background, processing the Sylvester 

video sequence is much faster for all algorithms  

compared to the David and OccludedFace2 sequences, 

which are processed at approximately the same speed. 

When comparing the accuracy and speed results, 

aHash exhibited the highest frame processing speed (26–

97 FPS) and an accuracy (TSR) range of 0.456–0.767 for 

a hash matrix size of 64x64, and 0.605–0.752 for a hash 

matrix size of 8x8. mHash, with a speed range of 17–65 

FPS, is somewhat slower than aHash but demonstrates 

more consistent accuracy (TSR) across different datasets. 

When comparing dHash_vertical and 

dHash_horizontal, the dHash_vertical hashing algorithm 

demonstrates better performance on the Occluded Face2 

and Sylvester datasets in terms of tracking accuracy (TSR 

= 0.684–0.725 and TSR = 0.180–0.503, respectively) 

compared to dHash_horizontal (TSR = 0.325–0.653 and 

TSR = 0.151–0.299, respectively). However, on the 

David dataset, dHash_horizontal performs better, with a 

TSR = 0.372–0.587 versus TSR = 0.230–0.359 for 

dHash_vertical. This suggests that dHash_vertical is 

generally more suitable for typical tracking tasks, while 

dHash_horizontal is more effective in scenarios with 

significant lighting changes . 

 

Conclusions 

 

The comparative analysis of image hashing 

algorithms for visual object tracking has allowed us to 
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identify the hashing methods that deliver the best 

tracking success rates (TSR) and efficient processing 

speed (FPS). Experimental evaluation on the 

"OccludedFace2," "David," and "Sylvester" datasets 

demonstrated that the aHash and mHash algorithms  

consistently provided the highest tracking success rates 

across various conditions and parameter settings. 

Specifically, the aHash algorithm achieves excellen t  

processing speed (up to 97 FPS) with robust tracking 

performance (TSR up to 0.767), whereas the mHash 

algorithm exhibits slightly lower speed but improved  

stability under changing lighting and positional 

variations (TSR up to 0.767). 

The results also demonstrate the significant 

influence of the selected search strategy on the tracking 

results. The init_template strategy, which uses a fixed  

initial template for similarity comparisons, outperformed 

the weighted and prev_frame strategies, achieving the 

highest TSR values by avoiding cumulative errors. The 

weighted approach, combining comparisons with both 

initial and previous frames, demonstrated intermediate 

effectiveness, whereas the prev_frame strategy 

demonstrated the lowest accuracy due to error 

accumulation. 

In addition, this study provides insights into the 

impact of the hash window size on algorithm 

performance. Smaller hash sizes (8x8, 16x16) yielded 

faster processing, while larger hash sizes (32x32, 64x64) 

could improve accuracy under certain conditions, at the 

expense of reduced speed. 

Thus, the primary goal of identifying the best 

hashing methods and search strategies for visual object 

tracking was successfully confirmed by the experimental 

results.  

Future research directions. In future work, it may  

be useful to optimize the search strategy for the best 

window position by incorporating rotation and scaling. In 

addition, the automatic selection of the optimal hashing 

algorithm based on the input video parameters appears to 

be a promising direction for further improvements . 
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ПОРІВНЯЛЬНИЙ АНАЛІЗ АЛГОРИТМІВ ХЕШУВАННЯ ЗОБРАЖЕНЬ  

ДЛЯ ВІЗУАЛЬНОГО ВІДСТЕЖЕННЯ ОБ'ЄКТІВ 

В. М. Науменко, С. К. Абрамов, В. В. Лукін 

Предмет дослідження – візуальне відстеження об'єктів з використанням різних алгоритмів хешування 

зображень для задачі трекінгу в реальному часі. Мета полягає в успішності відстеження та швидкості обробки 

існуючих та нових хеш-алгоритмів для трекінгу об'єктів та виявленні найбільш підходящих алгоритмів для 

використання в умовах обмежених обчислювальних ресурсів. Завдання дослідження включають: розробку та 

реалізацію трекінгу об'єктів на основі алгоритмів aHash, dHash, pHash, mHash, LHash та LdHash; порівняння 

швидкості роботи та точності цих методів на відеопослідовностях " OccludedFace2", "David", і "Sylvester"; 

визначення показників точності відстеження (TSR) та швидкості обробки кадрів (FPS) для кожного з 

алгоритмів; аналіз впливу розміру вікна пошуку, стратегії пошуку та типу хешування на якість трекінгу та 

надання рекомендацій щодо їх використання. Дослідження також вивчає компроміси між точністю і 

швидкістю обробки для кожного алгоритму, беручи до уваги обмеження обмежених обчислювальних 

ресурсів. Методи дослідження включають тестування та оцінку точності та швидкості роботи алгоритмів 

хешування зображень на різних тестових відеопослідовностях, а також використання метрик для визначення 

подібності об'єктів за допомогою відстані Хеммінга. Отримані результати показують, що алгоритми aHash та 

mHash демонструють найкращі показники точності для всіх розмірів хеш вікна, в той час як aHash має вищу 

швидкість роботи, а mHash - кращу стійкість до змін освітлення та положення об'єкта. Алгоритми dHash та 

pHash виявилися менш ефективними у порівнянні з aHash та mHash через їхню чутливість до змін масштабу 

та поворотів. Проте, методи на основі перцептивного хешування, такі як pHash, продемонстрували кращу 

стійкість до змін контрасту та розмиття. Висновки. Найкращими алгоритмами хешування для задач  

відстеження об'єктів у реальному часі є aHash та mHash. Дослідження підкреслює важливість вибору 

відповідних алгоритмів хешування і стратегій пошуку, адаптованих до конкретних сценаріїв застосування, і 

пропонує можливості для подальшої оптимізації. 

Ключові слова: візуальне відстеження об'єктів; відстеження одного об’єкту; хешування зображень; 

перцептивне хешування. 
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