126 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
UDC 621.3 doi: 10.32620/reks.2025.1.09

Vitalii NAUMENKO, Sergiy ABRAMOV, Volodymyr LUKIN
National Aerospace University "*Kharkiv Aviation Institute™, Kharkiv, Ukraine

COMPARATIVE ANALYSIS OF IMAGE HASHING ALGORITHMS
FOR VISUAL OBJECT TRACKING

Subject of the research — visual object tracking using various image hashing algorithms for real-time tracking
tasks. The goal of thisstudy is to evaluate the tracking successand processing speed ofexisting and new hashing
algorithmsfor object tracking and to identify the most suitable algorithms to be used under limited computational
resources. The objectives of the research include: developing and implementing object tracking based on the
aHash, dHash, pHash, mHash, LHash, and LDHash algorithms; comparing the processing speed and accuracy
of these methods on the video sequences "OccludedFace2,” "David," and "Sylvester™; determining the tracking
success rate (TSR) and frames per second (FPS) metrics for each algorithm; analyzing the impact of the search
window size, search strategy, and type of hashing on tracking quality,and providing recommendations for their
use. The study also explores the trade-off between accuracy and processing speed for each algorithmconsidering
the constraints of limited computational resources. The methods of this study involve testing and evaluating the
accuracy and speed of image hashing algorithmson different test video sequences, as well as the use of metrics
to determine object similarity using the Hamming distance. The results demonstrate that the aHash and mHash
algorithms demonstrate the best accuracy indicatorsfor all hash window sizes, aHash has a higher processing
speed, and mHash offers better robustness to changes in lighting and object position. The dHash and pHash
algorithmswere less effective than the aHash and mHash algorithms due to their sensitivity to changesin scale
and rotation. However, perceptual hashing-based methods, such as pHash, are more robust to contrast and
blurring. Conclusions. The best hashing algorithms for real-time object-tracking tasks are aHash and mHash.
This study underscores the significance of selecting suitable hashing algorithms and search strategiestailored
to specific application scenarios and offers possibilities for further optimization.

Keywords: visual object tracking; single object tracking; image hashing; perceptual hashing.

(First-Person View) refers to a method of controlling
unmanned aerial vehicles (drones) in which the operator
receives real-time video feedback from a camera

Introduction

Visual object tracking is a key research area in

computer vision. The proposed method estimates the
state of an arbitrary object in a video sequence by
knowing only its location in the first frame. This task has
several applications, such as autonomous driving,
surveillance, augmented reality, and robotics. However,
building a universal system for object tracking under
real-world conditions using only initial information
abouttheir location is an extremely challenging task due
to numerous distortions of the observed object, such as
edge cases where only part of the object is visible
(occlusions), deformations, blurring, illumination
changes, and the presence of a highly textured
background.

In cases where visual object tracking must operate
on an unmanned aerial vehicle, limited computational
capability becomes one of the main challenges, along
with other specific issues. The inability to accurately
identify the object to be tracked from the controlpanel of
an unmanned aerial vehicle is another challenge. FPV

mounted on the drone, viewed through goggles or a
screen. This mode requires fast data processing to ensure
smooth and accurate video transmission during rapid
maneuvers.

This paper proposes an improvement to existing
visual object tracking methods based on image hashing.
The main advantages of image hashing-based trackers
are their simplicity, lack of need for training machine
learning models, and high operational speed.

The objective of this research was to perform a
comparative analysis of various image hashing
algorithms to determine the best methods for visual
object tracking based ontracking success rate (TSR) and
processing speed (FPS). This study investigates how
different hashing techniques, parameter choices, and
search strategies influence tracking accuracy and
computational efficiency in real-time visual object
tracking tasks.

Creative Commons Attribution
NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

Methods and means of image processing

127

Paper structure

Section 1, "Current state of research in visual object
tracking methods,"” provides an overview of visual object
tracking approaches, categorizing them into generative
and discriminative types. This section discusses various
tracking models and analyzes their advantages and
challenges for real-time applications.

Section 2, "Current state of research in perceptual
hashing methods," reviews the characteristics, benefits,
and limitations of different perceptual hashing
techniques, focusing on their accuracy, robustness, and
computational efficiency.

Section 3, "Objective and approach," outlines the
purpose of the research and details the tasks undertaken
to evaluate image hashing algorithms for real-time
tracking on computationally limited devices. The main
goals of this study include developing tracking methods
and analyzing their processing speed and tracking
accuracy.

Section 4, "Materials and methods of research,"
describes the experimental setup, including the video
data used and the methods applied to implement the
tracking algorithms. The methodology includes an
evaluation of each algorithm's tracking accuracy
(tracking success rate, TSR) and processing speed
(frames per second, FPS) using relevant performance
metrics. Specifically, TSR quantitatively measures the
overlap between the predicted tracking region and the
ground truth, which indicates the tracking accuracy of the
algorithms.

Section 5, "Results and discussion," presents the
experimental findings, focusing on the tracking success
and processing speed of the hashing algorithms. This
provides comparative insights, highlighting which
algorithms effectively balance speed and accuracy and
discussing each method's limitations.

The paper ends with the Conclusions section,
summarizing the study’s findings and emphasizing the
suitability of specific hashing approaches for real-time
visual object tracking. The results also suggest future
research directions.

1. Current state of research research
in visual object tracking methods

A typical tracking system comprises three main
components: an appearance model that assesses the
probability of the target’s presence at a specific location,
a motion model that connects the object’s positions
across different time frames, and a search strategy that
identifies the most probable location in the current frame.
The materials of this paperrelate to all three components
but mostly focus on the first.

Visual object tracking methods can be broadly
divided into two main classes: generative methods and
discriminative methods(see Fig.1). Each of these
approaches has its own characteristics and is used

depending on the tracking accuracy, speed, and
performance requirements.
representation
G?“":::::z Subspace

Object tracking

Discriminant o .H
methad
Transfermers
Trackers

Fig. 1. Tracking methods classification

Generative object-tracking methods are based on
creating a model of the object that generates possible
variations. A popular approach in this category is sparse
representation methods. These methods use a limited
number of features to representan object, focusing on its
key elements. For example, the L1 Tracker[1] and IVT
(Incremental Visual Tracker)[2] trackers employ this
approach to accurately track objects, even when they are
partially occluded or temporarily disappear from view.

Another generative method approach deals with
subspace methods. These methods use dimensionality
reduction techniques, such as Principal Component
Analysis (PCA) or Linear Discriminant Analysis (LDA),
to model changes in the object's appearance. Trackers
like TLD (Tracking-Learning-Detection)[3] and MIL
(Multiple Instance Learning) Tracker[4] utilize an
approach based on separating the object from the
background to ensure stable tracking under challenging
conditions, such as changes in illumination or object
deformation.

Generative methods also include other approaches
that use statistical models for object tracking. For
example, particle filter-based trackers, such as the PF
(Particle Filter) Tracker[5], work effectively under high
data noise or complex object dynamics.

In contrast to generative methods, discriminative
methods use an approach based on distinguishing the
object from the background or other objects. One of the
most successful approaches in this category is
correlation-filter-based trackers (CFTrackers)[6], [7].
They employ correlation filters to create a discriminative

128

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

model of the object, thereby allowing for fast and
accurate tracking. Examples of such trackers include
KCF (Kernelized Correlation Filter)[8] and MOSSE
(Minimum Output Sum of Squared Error filter)[9], which
deliver excellent performance on real-world videos.

Discriminative methods also include Siamese
trackers (SiamTrackers)[10], [11]which use a Siamese
neural network architecture to simultaneously learn two
different features of an object. This enables high tracking
accuracy even under challenging conditions. Examples
of such trackers include SiamFC (Siamese Fully
Convolutional)[12], = SiamRPN (Region Proposal
Network)[13], and SiamRPN++[14], which are known
for their ability to effectively track objects with minimal
latency. LightTrack[15] made a significant step in
developing a lightweight network for tracking on mobile
devices, while NanoTrack further improved this result
and is currently the optimal Siamese neural network-
based tracker for CPU, managing to process 20-30 Full
HD frames per second on low-power devices like the
Raspberry Pi 4.

A recent discriminative method has been connected
with transformer-based trackers (Transformers
Trackers), which apply transformer architectures to
detect long-term dependencies between objects and the
background. Among the trackers of this type, TrTr[16]
and STARK (Space-Time Attention for Rapid
Tracking)[17] are noteworthy. The latter introduces a
transformer-based encoder-decoder architecture in a
Siamese style: flattened and concatenated search and
template feature maps serve as input to the transformer
network. STARK also presents a dynamic template
update module for efficiently encoding both spatial and
temporal information.

In addition, discriminative methods include other
approaches, such as support vector machines (SVM)[18]
and Adaboost-based learning methods[19]. For example,
the STRUCK (Structured SVM Tracker)[20]
demonstrates the effective application of these methods
under real-world conditions.

Overall, each of these methods has its advantages
and disadvantages, and the choice of the appropriate
approach depends on the specific task requirements:
processing speed, object detection accuracy, or the ability
to handle various disturbances and environmental
changes.

However, the need to "wrap" an object in a
bounding box during tracking initialization remains a
challenging task. This task is addressed on relatively
powerful computers using segmentation models like
SAM[21], [22], where the input can be a single click on
the object to provide coordinates, and the output can be a
segmentation mask and bounding box, which are well-
suited for initializing any tracker. However, the
processing time of such object-segmentation models on

low-end devices without a GPU does notallow real-time
operation on these weaker devices.

In this case, it is more rational to use perceptual
hashing-based object trackers[23, 24], which are related
to other discriminative trackers and only require the
region to be tracked for the start.

2. Current state of research
in Perceptual hashing methods

Perceptual hashing has become well-known for its
ability to match the content of an image with a template,
regardless of data formats (audio and video) and any
manipulations it has undergone.

Hashing is applied in many areas, for example, it is

a traditional solution for multimedia content
authentication[25], [26], detecting unauthorized
access[27], accelerating the reconstruction of 3D

surfaces from multi-view images[28], and is a popular
solution for measuring the similarity between images
during image searches[29]. Here, we discuss several
hashing methods.

aHash method

The aHash (Average Hash) method converts an
image to grayscale, reduces its size to 88 pixels, and
creates a 64-bit hash matrix based on comparing each
pixel to the average brightness value of all pixels in the
image. If a pixel's brightness exceeds the average value,
the corresponding bit of the hash matrix is set to "1";
otherwise, it is setto"0."

Although aHash is a simple and fast image
comparison method, it is overly sensitive to changes in
brightness or contrast. For example, operations such as
gamma correction or color histogram equalization can
alter the average brightness of an image, leading to
significant changes in the hash matrix and reducing
aHash's robustness to such modifications.

mHash method
The mHash(Median Hash) differs from aHash only
in that the median value is used instead of the average
value.
Compared to aHash, mHash is slower because it
requires sorting; however, it is more robustto changes in
scene illumination.

dHash method

The dHash (Difference Hash) method creates an
image hash matrix by measuring the brightness
differences between adjacent pixels. First, the image was
reduced to a size of 9x8 pixels and converted to
grayscale. Then, the relative differences between
horizontally adjacent pixels are computed: if the pixel to
the right is brighter than the current one, the

Methods and means of image processing

129

corresponding bit in the hash matrix is set to "1";
otherwise, it is set to "0." This generates a 64-bit hash
matrix that encodes the brightness differences between
the pixels. A hash matrix can also be created based on
vertically adjacent pixels by resizing the image to 8x9.

The advantage of dHash lies in its robustness to
minor brightness and contrast changes because the hash
is based on relative differences in brightness rather than
absolute values. However, this method is sensitive to
image scaling or rotation, which may result in significant
changes to the hash matrix.

pHash method

The pHash (Perceptual Hash) method creates an
image hash matrix based on its visual features, which
allows it to consider the human perception of similarity
between images. First, the image was reduced to 32x32
pixels and converted to grayscale. Then, a Discrete
Cosine Transform (DCT)[30] is applied to obtain the
image in the frequency domain. Only the low-frequency
components (the most significant 8x8) are selected, as
they best describe the overall structure and visual
characteristics of the image. Next, the average value of
these low-frequency components is calculated, and each
component is compared to the average value: if the
component is greater than the average, the corresponding
bit in the hash matrix is set to "1"; otherwise, it is set to
"0." This generates a 64-bit hash matrix, which is a
unique representation of an image's visual properties.

The advantage of pHash is its robustness against
many types of image alterations, including scaling,
rotation, and brightness and contrast changes, because it
is based on frequency analysis, which is less sensitive to
these changes. However, this method is more complex
and slower to implement than simpler methods such as
aHash or dHash.

LHash method

Proposed in [31], LHash (Laplace-based Hash)
method creates an image hash by enhancing its edge
features using the Laplacian operator. First, the image
was reduced to a size of 8x8 pixels and converted to
grayscale. The Laplacian transformation is then applied
to the image to highlight edges and enhance brightness
changes between adjacent pixels. Then, the average value
of the resulting image is computed and used as a
threshold forbuilding the hash:if a pixel's value is greater
than the average, the corresponding bit in the hash matrix
is setto "1"; otherwise, it is set to "0." This generates a
64-bit hash that encodes information about the image's
edge features.

The advantage of the LHash method lies in its
robustness against blurring and minor changes in an
object because it enhances the edge details of the image.

However, the method is sensitive to changes in scale or
image rotation, which may significantly alter the hash.

LdHash method

In addition, as proposed in [31], the LdHash differs
from LHash only in that, before applying the Laplacian
transformation, the gradient information (the difference
between adjacent pixels) is computed.

Compared to LHash, LdHash is somewhat slower
because of the additional computations; however, it is
more robustto changes in lighting.

3. Objective and Approach

The objective of this study was to evaluate the
success rate (tracking accuracy) and processing speed of
various image-hashing algorithms for real-time visual
object tracking on devices with limited computational
resources. This study identifies the most suitable hashing
algorithms for use in constrained computational
environments, such as devices without a dedicated GPU.

The main research tasks are as follows:

1. Developing and implementing an object-tracking
approach based on multiple hashing algorithms.

2. The processing speed and accuracy of these
methods were compared across different video
sequences.

3. We investigated the impact of search window
size and hashing type ontracking quality.

4. Recommendations for selecting and using
hashing algorithms in the contex of limited
computational resources.

The proposed approach compares the calculated
object hashes between frames and assesses similarity,
thereby evaluating the balance between accuracy and
processing speed. This study is particularly relevant for
applications in which algorithm robustness against
common challenges, such as partial occlusion and
dynamic backgrounds, is essential.

4. Materials and methods of the research
Tracking algorithm implementation

This study considers using aHash, mHash,
dHash_horizontal, and dHash_vertical (dHash where
cells of adjacent columns and adjacent rows are
compared, respectively), pHash, and LHash and LdHash.

The tracking algorithm appearance model is
implemented by comparing the hash matrices of objects
between consecutive frames using the Hamming distance
to determine similarity.

After selecting the tracked target, the entire input
frame is scanned, and perceptual hashing is computed for

130

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

each scanning window to measure its similarity to the
target using the Hamming distance. The scanning
window with the smallest Hamming distance is the most
similar to the target and determines the object's location
in the frame. The implementation process is described as
follows:

1. In the first frame, a rectangle of size A x B is
selected, defining the target region ro, and the size of the
scanning window ny is fixed.

2. In the subsequent frame i of the video sequence,
the scanning region rs is selected, which is an area of the
image around ro from the previous frame.

3. A search is conducted in region rs using the
window rw, with n steps, and at each step j, the hash Hw
is computed individually. After calculating the Hamming
distance d=Ho-Hw between Ho (the hash from ro in the
previous frame) and each Hw, all the obtained Hamming
distances within this scanning region are compared, and
the position (x, y) of the scanning window ry with the
smallest Hamming distance is selected.

4. The window with the smallest Hamming distance
rw(x, y) becomes the new ro.

5. The cycle ends when the video sequence of length
L frames is completed; otherwise, the process is repeated
starting from step 2.

Perceptual Hashing based Tracking Algorithm:

Initialize: L, ro, rs, fw, n, i=1, j=1

while: i<L do

while j<n do

d (Ho, Hw) = Hamming (Ho, Hw);
=it

end

rw(xy) =arg min d(Ho, Hw);

ro(xy) = rw(xy);

Ho = Hw;

end while

Thus, it is possible to implement an object tracking
system with the option to select a hash algorithm as
desired. Scanning not a full image but a portion of the
image rs around the probable position of the object from
the previous frame ro significantly reduces the number of
computations and improves the average frame persecond
(FPS) processing speed. In addition, this eliminates the
need to account for the probable position of the object
from the previous frame ro(xy) when searching for the
most suitable object position in the current frame rw(xy),
which positively impacts the accuracy of the search.

Used datasets

Our study wused three video sequences:
"OccludedFace2", "David", and "Sylvester", taken from
[32]. The main reasons for selecting these video
sequences are: 1) the absence of significant size changes

between the initial and subsequent frames, and 2) the
smooth movement of the objects due to the sufficient
number of FPS.

Table 1 lists the characteristics of each dataset.

Table 1
Characteristics of testvideos
Dataset name
Parameter David Occluded Sylvester
Face2
Total frame 770 815 1344
number
Init height 96 86 46
Init width 82 82 54
Init area 7872 7052 24384
Min bbox_height 54 7 36
Min bbox width 44 73 37
Min bbox area 2376 5767 1332
Max bbox height 122 88 50
Max bbox width 93 82 55
Max bbox area 11346 7216 2750
Average bbox 95.576 82.787 44.728
height
Average bbox 75.583 77.647 47.982
width
Average bbox 7371.729 | 6441.867 | 2152.64
area

In the first frame, the search window size is
determined (Fig. 2, with the object's location pre-
determined by a human, marked in green), and will
remain constant.

Fig. 2. Example frames of David(a),
OccludedFace2(b) and Sylvester(c) datasets

Methods and means of image processing

131

Used hash sizes

To compute the hashes Ho and Hw for windows ro
and rw, regardless of their pixel size, it is proposed to
adjust the output size of the hash matrix to a power of
two, ranging from 23 to 25(e.g., 8x8, 16x16, 32x32,
64x64). This proposal is motivated by computational
efficiency and memory alignment considerations. These
sizes optimize memory usage and processing speed on
most hardware platforms because modern processors
handle binary powers more efficiently due to native
architecture alignment.

It is expected, that smaller hash sizes, such as 8x8
and 16x16, should generally yield higher processing
speed, but with some trade-off in accuracy. On the other
hand, larger hash sizes like 32x32 and 64x64 may tendto
increase accuracy but at the cost of lower processing
speed.

Tables 2 to 4 present examples of hash matrices,
calculated using different hashing methods and with
varying hash matrix sizes for the Sylvester, David, and
Occluded Face 2 datasets.

Table 2
Init hashed template visualization using different
perceptual hashing algorithms and different hash sizes
for David dataset
Hash size
16 32 64

Method

aHash

dHash
horizontal

dHash
vertical

LdHash

LHash

mHash

pHash

S
]
o
e}
i)
o)
=

Used quality metrics

For quantitative performance comparison, it is
customary to use the tracking success rate (TSR) and
frames per second (FPS) to evaluate the compared
tracking algorithms.

TSR is defined as

area (ROI¢ I ROIgt)

TSR = e [0,1], 1)

area (ROlIgt)

where ROIl: and ROlgt denote the tracking region of

interest and ground truth region of interest respectively.
The frame rate per second (FPS) is a measure of

how many still frames are processed in a single second.

Table 3
Init hashed template visualization with different
perceptual hashing algorithms and different size
of hash for OccludedFace2 dataset

Method Hash size

aHash

dHash
horizontal

dHash
vertical

LdHash

LHash

mHash

pHash

=5 PR (=R

Table 4
Init hashed template visualization with different
perceptual hashing algorithms and different size of hash
for Sylvester dataset

Hash size
32 64

Method

aHash

dHash
horizontal

dHash
vertical

LdHash

LHash

mHash

e Rt f i -

s}
A
iy
[
|4
s+

pHash

o

132

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

5. Results and discussion

In visual object tracking, multiple search strategies
are employed to locate the target in successive frames.
These strategies vary in updating the target's position and
their trade-offs between computational complexity and
tracking accuracy.

The prev_frame search strategy updates the
template at each step of the process. Initially, a
predefined region is used to locate the object, and at the
next step, the best result fromthe previous step is adopted
as the new template Ho, continuing in this manner. This
approach results in the accumulation of errors and
exhibits the worst performance, as demonstrated by the
data in Table 5 and the accompanying graph.

In contrast, the init_template search strategy
consistently uses the initial template from the first frame
and updates only the scanning region rs based on the
previous best result. This strategy produces better

tracking results, as shown in the graph, and aligns with
the method in which each Hw is compared only with Ho
from the first frame, while rw(xy) is used to update
ro(xy) without modifying Ho.

The weighted strategy combines elements of both
the prev_frame and init_template approaches, with 80%
of the result based on the comparison with Ho from the
first frame and 20% based on the comparison with Ho
from the previous frame. This approach performs slightly
better, with the optimal percentage ratio determined
experimentally.

Figure 3 shows a graphical representation of the
comparison between these search strategies, plotting the
average Tracking Success Rate (TSR) for each method.
Each line on the graph corresponds to a particular search
strategy, and TSR determined its color on the
experimental datasets.

Ultimately, the best results are obtained using the
init_template strategy; thus, only this search strategy is
used for further analysis throughout this paper.

Table 5
Hash algorithms with FPS and TSR depending on the size of the hash window and the dataset
Dataset name
Hash name l:?zseh David OccludedFace2 Sylvester Average value
FPS TSR FPS TSR FPS TSR FPS TSR
8x8 37.465 0.633 39.91 0.752 95.594 0.605 57.656 0.663
aHash 16x16 | 41.043 0.608 40.001 0.767 97.86 0.496 59.634 0.624
32x32 | 38.385 0.485 38.559 0.767 97.035 0.464 57.993 0.572
64x64 | 33.939 0.628 35.097 0.767 89.029 0.456 52.688 0.617
8x8 46.164 0.547 47.333 0.325 133.623 0.151 75.707 0.341
dHash 16x16 | 45.103 0.498 44.233 0.491 103.474 0.299 64.270 0.429
horizontal 32x32 43.98 0.587 42.612 0.362 115.588 0.169 67.393 0.297
64x64 | 55.261 0.372 39.409 0.653 105.261 0.160 66.644 0.395
8x8 46.138 0.230 42.869 0.684 108.665 0.503 65.891 0.472
dHash vertical 16x16 | 43.838 0.359 42.081 0.698 107.757 0.196 64.559 0.418
32x32 | 50.029 0.312 41.639 0.725 104.467 0.215 65.378 0.417
64x64 | 50.444 0.333 38.821 0.722 97.978 0.180 62.414 0.412
8x8 35.884 0.321 36.597 0.424 100.121 0.192 57.534 0.312
LdHash 16x16 33.28 0.617 40.746 0.402 98.552 0.248 57.526 0.422
3232 | 31732 0.391 30.637 0.567 76.352 0.295 46.240 0.418
64x64 | 24574 0.377 23.878 0.506 61.282 0.281 36.578 0.388
8x8 38.001 0.386 46.625 0.269 95.987 0.104 60.204 0.253
L Hash 16x16 | 40.398 0.653 39.807 0.452 92.829 0.350 57.678 0.485
32x32 | 37.108 0.237 35.869 0414 88.046 0.308 53.674 0.320
64x64 | 29.057 0.352 31.073 0.387 83.298 0.338 47.809 0.359
8x8 32.222 0.640 34.112 0.753 85.356 0.468 50.563 0.620
miash 16x16 | 30.872 0.669 33.262 0.746 82.322 0.282 48.819 0.566
3232 | 28.899 0.719 30.364 0.753 86.012 0.339 48.425 0.604
64x64 | 24.046 0.756 25.848 0.767 67.41 0.285 39.101 0.603
8x8 28.823 0.515 30.88 0.769 75.484 0.438 45.062 0.574
pHash 16x16 | 23.723 0.324 30.79 0.524 77.228 0.279 43914 0.376
3232 | 17921 0.353 24.334 0.236 65.576 0.182 35.944 0.257
64x64 8.571 0.495 8.852 0.574 28.654 0.3%4 15.359 0.488

Methods and means of image processing 133
search strategy dataset hash function Average TSR
0.76895
weighted Sylvester pHash i
0.7
mHash
S\ X 0.6
LdHashT\0 .
s
prev_frame OccludedFace LHash 0.4
N 0.3
dHash_vertic N
.200 B 0.2
dHash honozont ONRRE 0.1
init_template David aHash/
0.00165

Fig. 3. Search strategy analysis

Table 5 presents the analysis results of the hash
algorithms depending on the size of the hash window and
the dataset, focusing on tracking accuracy (TSR) and
processing speed (FPS) as the primary indicators. This
analysis directly confirms the achievement of the
research objective and demonstrates how each hashing
method balances tracking success rate with
computational efficiency.

As shown in Table 5, the best accuracy (average
tracking success rate) was achieved with aHash and
mHash across all search window sizes, with aHash
consistently being faster than mHash. This is due to the
higher complexity of finding the median value compared
to calculating the average value, although mHash
demonstrated higher accuracy on the David dataset,
where lighting and object positioning gradually change.
dHash_vertical, commonly referred to simply as dHash,
generally performs less accurately than aHash and
mHash, but is better than dHash_horizontal, except on
the David dataset.

The LHash algorithm is faster and more accurate
than LdHash and shows comparable speed to aHash and
mHash; however, in most cases, it falls short of accuracy.
pHash can only work in real-time with a hash window
size of 8x8, achieving approximately 30 FPS. However,
with each subsequentincrease in search window size, the
proposed method loses speed significantly while
gradually improving accuracy.

Overall, the Table data demonstrate that using a
hash window size larger than 64x64 is ineffective.
Supposethe image fragment input to the hash algorithm
is smaller than the hash window size. In that case, it
provides no additional information for comparison while
significantly increasing the computation time per step.

This is especially true for pHash algorithm, which uses
DCT result 4 times larger than the required output hash
size.

It is also worth noting that due to the uniformity of
the background and the high contrast between the search
object and the background, processing the Sylvester
video sequence is much faster for all algorithms
compared to the David and OccludedFace2 sequences,
which are processed at approximately the same speed.

When comparing the accuracy and speed results,
aHash exhibited the highest frame processing speed (26—
97 FPS) and an accuracy (TSR) range of 0.456-0.767 for
a hash matrix size of 64x64, and 0.605-0.752 for a hash
matrix size of 8x8. mHash, with a speed range of 17-65
FPS, is somewhat slower than aHash but demonstrates
more consistentaccuracy (TSR) across different datasets.

When comparing dHash_vertical and
dHash_horizontal, the dHash_vertical hashing algorithm
demonstrates better performance on the Occluded Face2
and Sylvesterdatasets in terms of tracking accuracy (TSR
= 0.684-0.725 and TSR = 0.180-0.503, respectively)
compared to dHash_horizontal (TSR = 0.325-0.653 and
TSR = 0.151-0.299, respectively). However, on the
David dataset, dHash_horizontal performs better, with a
TSR = 0.372-0.587 versus TSR = 0.230-0.359 for
dHash_vertical. This suggests that dHash_vertical is
generally more suitable for typical tracking tasks, while
dHash_horizontal is more effective in scenarios with
significant lighting changes.

Conclusions

The comparative analysis of image hashing
algorithms for visual object tracking has allowed us to

134

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

identify the hashing methods that deliver the best
tracking success rates (TSR) and efficient processing
speed (FPS). BExperimental evaluation on the
"OccludedFace2,” "David,” and "Sylvester" datasets
demonstrated that the aHash and mHash algorithms
consistently provided the highest tracking success rates
across various conditions and parameter settings.
Specifically, the aHash algorithm achieves excellent
processing speed (up to 97 FPS) with robust tracking
performance (TSR up to 0.767), whereas the mHash
algorithm exhibits slightly lower speed but improved
stability under changing lighting and positional
variations (TSR up to 0.767).

The results also demonstrate the significant
influence of the selected search strategy on the tracking
results. The init_template strategy, which uses a fixed
initial template for similarity comparisons, outperformed
the weighted and prev_frame strategies, achieving the
highest TSR values by avoiding cumulative errors. The
weighted approach, combining comparisons with both
initial and previous frames, demonstrated intermediate
effectiveness, whereas the prev_frame strategy
demonstrated the lowest accuracy due to error
accumulation.

In addition, this study provides insights into the
impact of the hash window size on algorithm
performance. Smaller hash sizes (8x8, 16x16) yielded
faster processing, while larger hash sizes (32x32, 64x64)
could improve accuracy under certain conditions, at the
expense of reduced speed.

Thus, the primary goal of identifying the best
hashing methods and search strategies for visual object
tracking was successfully confirmed by the experimental
results.

Future research directions. In future work, it may
be useful to optimize the search strategy for the best
window position by incorporating rotation and scaling. In
addition, the automatic selection of the optimal hashing
algorithm based on the input video parameters appears to
be a promising direction for further improvements.

Contributions of authors: conceptualization,
methodology — Volodymyr Lukin; formulation of tasks,
analysis — Volodymyr Lukin; development of model,
software, verification, visualization - Vitalii
Naumenko; analysis of results — Sergiy Abramov;
writing — original draft preparation, writing — review and
editing — Vitalii Naumenko.

Conflict of Interest
The authors declare that they have no conflict of
interest in relation to this research, whether financial,
personal, authorship or otherwise, that could affect the
research and its results presented in this paper.

Financing
This study was conducted without financial support.

Data Availability
The work has no associated data.

Use of Artificial Intelligence
The authors confirm that they did not use artificial
intelligence methods while creating the presented work.

All the authors have read and agreed to the
published version of this manuscript.

References

1. Bao, C., Wu, Y., Ling, H., & Ji, H. Real time
robust L1 tracker using accelerated proximal gradient
approach. 2012 IEEE Conference on Computer Vision
and Pattern Recognition, 2012, pp. 1830-1837. DOI:
10.1109/CVPR.2012.6247881.

2. Bai, S, Liu R, Su, Z.,, Zhang, C., & Jin, W.
Incremental robust local dictionary learning for visual
tracking. Proc (IEEE Int Conf Multimed Expo), 2014,
vol. 2014, pp. 1-6. DOI: 10.1109/ICME.2014.6890262.

3. Jia, C., & et al. A Tracking-Learning-Detection
(TLD) method with local binary pattern improved. 2015
IEEE International Conference on Robotics and
Biomimetics (ROBIO), 2015, pp. 1625-1630. DOI:
10.1109/ROBI10.2015.7419004.

4. Babenko, B., Yang, M.-H., & Belongie, S. Visual
tracking with online Multiple Instance Learning. 2009
IEEE Conference on Computer Vision and Pattern
Recognition, 2009, pp. 983-990. DOI:
10.1109/CVPR.2009.5206737.

5. Cho, J,, Jin, S., Pham, X,, Jeon, J., Byun, J., &
Kang, H. A Real-Time Object Tracking System Using a
Particle Filter. 1EEE International Conference on
Intelligent Robots and Systems, 2006, pp. 2822-2827.
DOI: 10.1109/IROS.2006.282066.

6. Li, Y., & Zhu, J. A Scale Adaptive Kernel
Correlation Filter Tracker with Feature Integration. Com-
puter Vision - ECCV 2014 Workshops. ECCV 2014. Lec-
ture Notes in Computer Science, Springer, Cham, 2015,
vol. 8926, pp.254-265. DOI: 10.1007/978-3-319-16181-
5 18.

7. Danelljan, M., Héger, G,, Khan, F., & Felsberg,
M. Learning Spatially Regularized Correlation Filters for
Visual Tracking. 2015 IEEE International Conference on
Computer Vision (ICCV), Santiago, Chile, 2015, pp.
4310-4318. DOI: 10.1109/1CCV.2015.490.

8. Henriques, J., Caseiro, R., Martins, P., & Batista,
J. High-Speed Tracking with Kernelized Correlation
Filters. IEEE Trans Pattern Anal Mach Intell, 2014, vol.
37. DOI: 10.1109/TPAMI.2014.2345390.

9. Bolme, D., Beveridge, J., Draper, B., & Lui, Y.
Visual object tracking using adaptive correlation filters.
Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2010, pp.

Methods and means of image processing

135

2544-2550. DOI: 10.1109/CVPR.2010.5539960.

10. Zhang, Z., & Peng, H. Deeper and Wider
Siamese Networks for Real-Time Visual Tracking. 2019
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 2019, pp.
4586-4595. DOI: 10.1109/CVPR.2019.00472.

11. Xu, Y., Wang, Z., Li, Z,, Yuan, Y., & Yu, G.
SiamFC++: Towards Robust and Accurate Visual
Tracking with Target Estimation Guidelines.
Proceedings of the AAAI Conference on Atrtificial
Intelligence, 2020, vol. 34, pp. 12549-12556. DOI:
10.1609/aaai.v34i07.6944.

12. Bertinetto, L, Valmadre, J., Henriques, J.,
Vedaldi, A., & Torr, P. Fully-Convolutional Siamese
Networks for Object Tracking. Computer Vision— ECCV
2016 Workshops. ECCV 2016. Lecture Notes in Com-
puter Science, Springer, Cham, 2016, vol. 9914, pp. 850-
865. DOI: 10.1007/978-3-319-48881-3 56.

13. Li, B., Yan, J., Wu, W., Zheng, Z., & Hu, X
High Performance Visual Tracking with Siamese Region
Proposal Network. 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, Salt Lake City, UT,
USA, 2018, pp. 8971-8980. DOI:
10.1109/CVPR.2018.00935.

14. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J.,
& Yan, J. SiamRPN++: Evolution of Siamese Visual
Tracking with Very Deep Networks. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 2019. DOI:
10.1109/CVPR.2019.00441.

15. Yan, B, Peng, H.,, Wu, K., Wang, D., Fu, J., &
Lu, H. LightTrack: Finding Lightweight Neural
Networks for Object Tracking via One-Shot Architecture
Search. arXiv:2104.14545, 2021. DOI:
10.48550/ar Xiv.2104.14545.

16. Zhao, M., Okada, K., & Inaba, M. TrTr: Visual
Tracking with Transformer. arXiv:2105.03817, 2021,
DOI: 10.48550/arXiv.2105.03817.

17. Yan, B., Peng, H., Fu, J.,, Wang, D., & Lu, H.
Learning Spatio-Temporal Transformer for Visual
Tracking. arXiv:2103.17154, 2021. DOI:
10.48550/ar Xiv.2103.17154.

18. Evgeniou, T., & Pontil, M. Support Vector
Machines: Theory and Applications. Machine Learning
and Its Applications. ACAI 1999. Lecture Notes in Com-
puter Science, Springer, Berlin, Heidelberg, 2001, vol.
2049, pp. 249-257. DOI: 10.1007/3-540-44673-7_12.

19. Yi, C. Target Tracking Feature Selection
Algorithm Based on Adaboost. TELKOMNIKA
Indonesian Journal of Electrical Engineering, 2014, vol.
12. Available at: https://ijeecs.iaescore.conVindexphp/
IJEECS/article/view/3056. (accessed Aug.8 2024).

20. Hare, S., Saffari, A., & Torr, P. H. S. Struck:
Structured output tracking with kernels. 2011 Interna-
tional Conference on Computer Vision, Barcelona, Spain,
2011, pp. 263-270. DOI: 10.1109/ICCV.2011.6126251.

21. Kirillov, A., & et al. Segment Anything. 2023
IEEE/CVF International Conference on Computer
Vision (ICCV), Paris, France, 2023, pp. 3992-4003. DOI:
10.1109/ICCV51070.2023.00371.

22. Ravi, N., & et al. SAM 2: Segment Anything in
Images and Videos. arXiv.2408.00714, 2024. DOI:
10.48550/ar Xiv.2408.00714.

23. Fei, M., Li, J., & Liu, H. Visual tracking based
on improved foreground detection and perceptual
hashing. Neurocomputing, 2015, vol. 152, pp. 413-428.
DOI: 10.1016/j.neucom.2014.09.060.

24. Fei, M., Ju, Z., Zhen, X,, & Li, J. Real-time
visual tracking based on improved perceptual hashing.
Multimed Tools Appl, 2017, vol. 76, pp.4617-4634. DOI:
10.1007/s11042-016-3723-5.

25. Chen, N., Xiao, H.-D., & Wan, W. Audio hash
function based on non-negative matrix factorisation of
mel-frequency cepstral coefficients. IET Information
Security, 2011, vol. 5, iss. 1, pp.19-25. DOI: 10.1049/iet-
ifs.2010.0097.

26. Chen, N., & Xiao, H. Perceptual audio hashing
algorithm based on Zernike moment and maximum-
likelihood watermark detection. Digit Signal Process,
2013, wvol. 23, iss. 4, pp. 1216-1227. DOI:
10.1016/j.dsp.2013.01.012.

27. Yang, B., Gu, F., & Niu, X. Block Mean Value
Based Image Perceptual Hashing. 2006 International
Conference on Intelligent Information Hiding and Multi-
media, Pasadena, CA, USA, 2006, pp. 167-172. DOI:
10.1109/11H-MSP.2006.265125.

28. Deng, Z., Xiao, H., Lang, Y., Feng, H., &
Zhang, J. Multi-scale hash encoding based neural
geometry representation. Comput Vis Media (Beijing),
2024, vol. 10, iss. 3, pp. 453-470. DOI: 10.1007/s41095-
023-0340-x.

29. Xuan, Z., Wu, D., Zhang, W., Su, Q,, Li, B., &
Wang, W. Central similarity consistency hashing for
asymmetric image retrieval. Comput Vis Media (Beijing),
2024, vol. 10, no. 4, pp. 725-740. DOI: 10.1007/s41095-
024-0428-y.

30. Watson, A. Image Compression Using the
Discrete Cosine Transform. Mathematica Journal, 1994,
vol. 4, iss. 1, pp. 81-88. Available at:
http://sites.apam.columbia.edu/courses/ap1601y/Watson
_MathJour_94.pdf. (accessed Aug. 8 2024).

3L Fei, M., Li, J., Shao, L., Ju, Z., & Ouyang, G.
Robust Visual Tracking Based on Improved Perceptual
Hashing for Robot Vision. Intelligent Robotics and Ap-
plications. Lecture Notes in Computer Science, Springer,
Cham, 2015, vol. 9246, pp. 331-340. DOI: 10.1007/97 8-
3-319-22873-0_29.

32. Babenko, B. Yang, M.-H., & Belongie, S.
Robust Object Tracking with Online Multiple Instance
Learning. EEE Transactions on Pattern Analysis and
Machine Intelligence, 2011, vol. 33, no. 8, pp. 1619-
1632. DOI: 10.1109/TPAMI.2010.226.

Received 25.09.2024, Accepted 17.02.2025

https://arxiv.org/abs/2104.14545
https://arxiv.org/abs/2104.14545
https://arxiv.org/abs/2103.17154

136 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)

TMOPIBHSUIb HUM AHAJII3 AJITOPUTMIB XEIIYBAHHS 30BPAKEHB
JJIS BBYAJIBHOI'O BIICTEXKEHHS OB'E€EKTIB

B. M. Haymenxko, C. K. Aépamos, B. B. JIykin

IMpenMeT AOCHIDKEHHsST — Bi3yaibHEe BIICTE)KEHHS OO0'€KTIB 3 BUKOPUCTAHHSIM PI3HUX aJrOPUTMIB XCITyBaHH s
300pakeHb I 33724l TPEKIHTY B peabHOMY 4aci. MeTa moJisirae B YCIHIIIHOCTI BiICTE)KSHHS Ta IIBUAKOCTI 0OpoOKH
ICHYIOUHX Ta HOBHX XCII-AJTOPUTMIB U TPEKIHTY OO0'€KTIB Ta BHABICHHI HAMOUIBII MXOIAMIMX aJTOPUTMIB JUIS
BHUKOPHCTaHHS B YMOBaX 00MEXCHNX 00YHCIIOBAIIEHUX PeCypCiB. 3aBAaHHs JOCIIDKCHHS BKIIOUAIOTh: PO3POOKY Ta
peaizariifo Tpekinry o0'exTiB Ha ocHOBI anropurMis aHash, dHash, pHash, mHash, LHash ta LdHash; nopisasiaus
MIBAAKOCTI poOOTH Ta TOYHOCTI IMX MeToAiB Ha BimeomocmimoBHoctix "OccludedFace2", "David", i "Sylvester”;
BU3HAYCHHS TOKA3HHWKIB TOYHOCTI BincteskeHHs (TSR) Ta mBuakocti 00poOku kampiB (FPS) mis koxxHoTo 3
AITOPUTMIB; aHAJN3 BIUIMBY PO3MIpy BiKHA MOIIYKy, CTpaTeTii MONIYKY Ta THIy XCIIyBaHHS Ha SKICTh TPEKIHTY Ta
HaJaHHS PEKOMEHJAIi IMoJ0 iX BHKOpHUCTaHHs. JIOCHIDKEHHS TakKOX BHBYA€ KOMIIPOMICH MDK TOYHICTIO i
MIBUAKICTIO 0OpOOKM I KOXKHOTO aNropuTMy, Oepydd IO yBarm OOMeEXeHHS OOMEXEHHX OOYHCIFOBAIBHHUX
pecypciB. MeTo/m AOCTLKEHHS BKIFOYAIOTh TECTYBAaHHS Ta OLIHKY TOYHOCTI Ta IIBHIKOCTI POOOTH alrOpHTMiB
XelIyBaHHS 300pakeHb Ha PI3HUX TECTOBHUX BiICOMOCIINOBHOCTAX, a TaKOXX BUKOPUCTAHHS METPHK JUII BU3HAYCHHST
noi6HOCTI 00'eKTIB 3a JonOMOTOM0 BincTaHi XemMinra. OTpumani pe3ysbTaTd MOKa3yloTh, 0 anroput™Mu aHash ta
mHash nemoHcTpyOTh HalKpalli MOKa3HUKKA TOYHOCTI [yl BCIX PO3MIpiB Xell BikHA, B Toi 4ac sik aHash mae Buiry
MBHAKICTE po60TH, a MHash - kpairy cTiliKicTh [0 3MiH OCBITICHHs Ta mOJOXKeHHs 00'ekra. Amroputmu dHash Ta
pHash eusiBumncs menin eextmBHIMH y mopiBHsHHI 3 aHash ta mHash gepes ixaro0 uymmBicTs 10 3MiH MacTaly
Ta mOBOPOTIB. [IpoTe, MeTOM Ha OCHOBI MEPLENTHBHOTO XellyBaHHs, Taki sk PHash, mpomemoucTpyBamn kparry
CTIKICT [0 3MiH KOHTpacTy Ta poO3MUTTA. BucHoBku. Halikpamumu anropuTMaMu XeUIyBaHHS U1 3ajad
BiICTeXXEeHHSI 00'ekTiB y peanmpHoMy uyaci € aHash ta mHash. JlocnimkeHHS minKpecaoe Ba)IHMBICTh BHOOPY
BIAMOBIIHMX aJTOPUTMIB XELIyBaHHS 1 CTpaTerii MOIIyKy, aJalTOBaHUX J0 KOHKPETHHX CLIEHapiiB 3acToCyBaHHS, 1
MPOTIOHY € MOYKJIMBOCTI IS MO JANBIINOT OTTHM i3aIlii.

KirodoBi ciioBa: Bi3yalbHE BIACTC)KCHHs OO'€KTIB; BIICTCIKECHHS OJHOTO O0’€KTY; XCUIyBaHHS 300pakeHb;
MEPLENTUBHE XCITyBaHHS.

Haymenxo Biramiii MuxonaiioBuu — acm. kad. iHQOpMAIHHO-KOMYHIKAIIHHAX TEXHOJO Tii
iM. O. O. 3eneHcekoro, HamionaneHuii aepokocmiuHmMi yHiBepcuteT iM. M. €. JXykoBcpkoro «XapKiBCHKHH
aBlalifHUH HCTUTYT», XapkiB, YKpaiHa.

AdpamoB Cepriii KnaBaifioBua — kaHzx. TexdH. HayK, I0I. Kad. iH(POpPMAIHHO-KOMYHIKAIIHHIX TEXHOJO it
iMm. O. O. 3enencekoro, HamionamsHnii aepokocMmiuHmii yHiBepcureT iM. M. €. JKykoBcbkoro «XapKiBCBKHI
aBlalifHUH HCTUTYT», XapkKiB, YKpaina.

Jlykin Bomonmmup BacuisoBuu — 1-p Texd. Hayk, npod., 3aB. kad. iHpopmamiifHO-KOMYHIKAIIHHAX
texaosorii iMm. O. O. 3eneHcekoro, HamionameHmii aepoxocMmiunmi yHiBepcurer M. M. €. JXKykoBcbkoro
«XapKiBChKHI aBiamiifHuii iHCTUTYT», XapkiB, YkpaiHa.

Vitalii Naumenko - PhD Student of the Department of Information-Communication Technologies
named after O. O. Zelensky, National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine,
e-mail: v.m.naumenko@khai.edu, ORCID: 0009-0005-8426-6635.

Sergiy Abramov — Candidate of Technical Sciences, Associate Professor at the Department of Information -
Communication Technologies named after O. O. Zelensky, National Aerospace University "Kharkiv Aviation
Institute", Kharkiv, Ukraine,
e-mail: s.abramov@khai.edu, ORCID: 0000-0002-8295-9439.

Vladimir Lukin — Doctor of Technical Science, Professor, Head of the Department of Information -
Communication Technologies named after O. O. Zelensky, National Aerospace University ‘“Kharkiv Aviation
Institute”, Kharkiv, Ukraine,
e-mail: v.lukin@khai.edu, ORCID: 0000-0002-1443-9685.

