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AXISYMMETRIC PROBLEM OF SMOOTHING THE SURFACE  

OF A VISCOUS LIQUID BY SURFACE TENSION FORCES 
 

This study investigates an analytical solution to the problem of the surface levelling of viscous liquids under 

the influence of surface tension forces, focusing on the smoothing of plastic surfaces subjected to thermal 

energy treatment. This study aims to extend Orchard’s formula to axisymmetric surface irregularities and 

develop an analytical model for predicting levelling time, thereby ensuring efficient process control in thermal 

treatment applications. The tasks included deriving an analytical solution for axisymmetric levelling, validating 

it against numerical simulations in LS-DYNA, and incorporating the viscosity variation across the liquid layer. 
The methods involved analytical formulation and numerical simulation of surface evolution considering different 

initial surface geometries and viscosity distributions. Validation against numerical results demonstrated high 

accuracy for moderate and thick liquid layers (ℎ > 0.2𝑅) and initial surface amplitudes up to 40% of the 

characteristic radius. Following validation, the model was applied to estimate levelling times for various surface 
configurations while maintaining simplicity while improving the predictive capabilities. Results showed that the 

extended formula effectively describes surface smoothing dynamics, including the cases with thickness -

dependent viscosity, providing explicit expressions for levelling time. These findings enable precise control of 
heat input during thermal energy treatment, thereby optimizing the surface quality. In conclusion, the proposed 

analytical solutions offer a practical tool for surface levelling analysis, expa nding the applicability of Orchard’s 

approach to more complex geometries and viscosity variations. In future work, we will focus on experimental 

validation and refinements to enhance the accuracy in industrial applications. 
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1. Introduction 
 

1.1. Motivation 
 

The finishing of thermoplastic parts is critical for 

meeting the high demands for accuracy and quality in 

industries such as automotive, aerospace, and healthcare. 

Engineering and high-performance plastics are valued for 

their low weight, high strength, and corrosion resistance, 

making them ideal for applications in which precision 

and durability are paramount [1]. However, 

manufacturing processes like injection molding and 

additive manufacturing often result in surface defects 

such as burrs, flashes, and roughness, which can 

compromise reliability, lifetime, and functional 

characteristics [2]. 

Additive manufacturing, particularly Fused 

Deposition Modeling (FDM), has seen widespread 

adoption [3]. FDM parts, however, frequently exhibit  

poor surface finish due to visible layer lines and 

micropores, as illustrated in studies showing nylon 

samples with line-by-line filament separation and 

polylactic acid parts with surface micropores [4]. These 

defects not only affect aesthetics but also mechanical 

properties, necessitating advanced finishing techniques. 

Traditional surface finishing methods include 

mechanical abrasion, chemical treatment, ultrasonic 

vibration processing, and blasting. However, these 

methods have significant limitations, especially for 

complex geometries and when high surface smoothness 

is required. For instance, abrasive methods may alter part 

dimensions, whereas chemical treatments may not be 

suitable for all materials and situations [5]. Thermal 

methods, such as hot air jet polishing and laser-based 

thermal polishing, have been explored; however, they 

can be time-consuming or inefficient for deep holes and 

complex shapes [6, 7]. 

The Impulse Thermal Energy Method (ITEM), a 

variation of the Thermal Energy Method (TEM), offers a 

promising solution by leveraging controlled heat 

exposure to melt the surface layer, allowing surface 

tension to smooth out irregularities. ITEM operates in a 

closed chamber, using combustion products to provide 

precise heat input, which is crucial for thermoplastics to 

avoid carbonization and soot deposition [8]. Unlike 

standard TEM, which uses oxygen-excess mixtures  

suitable for metal parts, ITEM employs stoichiometric or 

fuel-rich mixtures, ensuring the safety and integrity of 

thermoplastic surfaces. 
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The motivation for this study lies in the 

development of an analytical model to predict the 

levelling time during ITEM processing, focusing on 

axisymmetric surface irregularities. This is particularly  

relevant for post-additive manufacturing parts, where the 

surface quality directly affects the overall performance. 

An analytical solution would facilitate process control, 

optimize heat input, and enhance efficiency, addressing 

the gap in current methods that often rely on empirical 

adjustments or numerical simulations, which can be time -

consuming and less intuitive for industrial applications . 

 

1.2. State of the Art 
 

Orchard’s formula, which was  first introduced in 

1963, provides a foundational analytical solution for the 

surface levelling of viscous liquids, which was initially  

applied to paint films with periodic stripe-like 

irregularities [9]. The formula relates the levelling time 

to the surface tension, viscosity, and initial amplitude of 

the surface perturbations, offering a balance between 

simplicity and practical utility. The validity of the 

proposed method has been experimentally confirmed by 

researchers such as Wapler [10] and Overdiep [11], with 

extensions to include surface tension gradients for 

viscosity changes during solvent evaporation. Extensions 

of Orchard’s formula have been proposed to address 

more complex scenarios. For instance, Weidner [12] 

considered two-component fluids with yield stress, 

leading to distinct flow regimes that required numerical 

solutions using finite difference methods. Seeler et al. 

[13] developed numerical approaches for thixotropic 

paints, using Orchard’s solution as a benchmark for 

idealized sinusoidal films. These refinements, while 

enhancing accuracy, often sacrifice the analytical 

simplicity that makes Orchard’s formula valuable for 

industrial applications, such as viscosity determination  

from sinusoidal film amplitude measurements [14] and 

modelling levelling times in roll-coating processes [15]. 

In paper [16], a theoretical tool was proposed as an 

alternative perspective on surfactant forces at interface 

boundaries, allowing the known equations to be rewritten 

by calculating the balance of forces in the steady state. 

Furthermore, Takahashi et al. [17] used this formula to 

study the time-dependent variation of viscosity. In a 

broader context, heat transfer studies involving multilayer 

shells with non-stationary temperature fields have 

demonstrated the importance of accurately modelling the 

thermal effects in coated and layered materials [18]. 

Similarly, transient thermoelastic analysis of cylindrical 

structures with varying coefficients of thermal expansion 

has been explored to determine the effects of heat flux on 

the stress distribution [19].  

In the context of thermoplastic parts, various 

finishing methods have been employed, as detailed by 

Plankovskyy et al. [8]. Mechanical methods like CNC 

machining and barrel treatment are common; however, 

they may not be sufficient for complex geometries [20]. 

Chemical methods show promise for reducing roughness, 

but they are material-specific [21]. Thermal methods, 

such as hot air jet polishing, use surface tension in the 

melted layer, but are time-consuming for intricate shapes 

[6]. Laser-based thermal polishing, as explored by Chai 

et al. [7], considers surface over-melt (SOM) and surface 

shallow-melt (SSM) mechanisms, with SOM potentially 

removing micropores but varying in efficacy across 

materials. 

The ITEM stands out for its controlled heat 

exposure, which uses combustion products in a closed 

chamber to prevent damage to thermoplastics. Unlike 

TEM, which is optimized for metal parts with oxygen-

excess mixtures, ITEM uses stoichiometric or fuel-rich  

mixtures to avoid carbonization, a critical consideration 

given the potential for toxic gas formation in 

thermoplastics like polyvinyl chloride [8]. The selection 

of ITEM processing regimes involves the design of the 

experimental method, which can be time-consuming , 

especially for complex shapes, highlighting the need for 

automated approaches based on numerical 

simulation [22]. 

Despite these advancements, there is a notable gap 

in analytical models for predicting levelling time in 

axisymmetric geometries, particularly for thermoplastic 

parts post-additive manufacturing. Current research lacks 

a simple, generalizable solution that can be readily  

applied in industrial settings, where process control and 

efficiency are paramount. This study aims to bridge this 

gap by extending Orchard’s formula and leveraging the 

principles of surface tension and viscosity to model 

surface evolution in three-dimensional, radially  

symmetric configurations . 

 

1.3. Objective and Approach 
 

This study extends Orchard’s formula to 

axisymmetric surface irregularities and addresses its 

applicability to surface smoothing during ITEM 

processing of thermoplastic parts. The primary objective 

is to develop a simple yet effective analytical model for 

predicting surface levelling time, thereby ensuring 

precise control of heat input in industrial applications. 

The proposed approach involves the following steps : 

 deriving an analytical solution for surface 

levelling with axisymmetric irregularities; 

 validating the solution against numerical 

simulations performed using LS-DYNA; 

 extending the model to account for viscosity 

variations across the liquid layer thickness. 

The proposed analytical solutions maintain the 

simplicity of Orchard’s original formulation while 
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expanding its applicability to complex levelling  

scenarios. By explicitly determining the surface 

smoothing time, the developed model provides a 

practical tool for optimizing ITEM processing, thereby 

enabling efficient material treatment and improved  

surface quality. 

This paper is organized as follows. Section 2 

defines the problem statement, focusing on surface 

levelling in thermal energy treatment. Section 3 develops 

the mathematical model and extends Orchard’s formula. 

The analytical solution is presented in Section 4. In 

Section 5, the model is validated against LS-DYNA 

simulations. Section 6 examines the effects of variable 

viscosity. Section 7 generalizes the proposed approach to 

arbitrary surface shapes. Section 8 discusses the 

implications of the study findings. Section 9 concludes 

with a summary of the key findings . 

 

2. Problem Statement 
 

The problem statement and essentially the solution 

coincide with those given in [9] except for the domain in 

which the problem is solved. While in the paper of 

Orchard an infinite strip with a periodic waveform (a 

plane problem) was considered (Fig. 1,a), in this study an 

axisymmetric problem was considered (Fig. 1,b). 
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Fig. 1. Schematic representation of the film:  

(a) is the periodic Orchard problem; (b) is the 

axisymmetric problem this study 

Absolute dimensions are considered to be 

approximately 1 mm or less, allowing us to neglect the 

forces of gravity. Thus, if the maximum hydrostatic 

pressure at the wave height (Fig. 1,a) is equal to  

pg = 2ρgA0, and the maximum pressure from surface 

tension forces according to the Laplace equation is  

pγ = γk = γ
π2A0

l2
, then the ratio of these pressures is 

pg

pγ
=

2ρg

π2γ
l2, i.e. for liquids with a significant surface 

tension force (γ > 20 mN/m), a density less than, or of the 

same order as water (≈ 1000 kg/m3) and a half-

wavelength of 1 mm, the hydrostatic pressure will be less 

than 10% of the surface tension pressure, with a half-

wavelength of 0.5 mm, it will be less than 3%.  

Velocities and accelerations are also considered 

small, which allows us to neglect inertial forces and, 

accordingly, oscillatory processes. The fluid has 

Newtonian properties. 

 

3. Mathematical model 
 

The Navier-Stokes equation and the continuity 

equation in the polar coordinate system (Fig. 1,b), 

considering the assumptions made, take the form of 

 

 
μ [

∂u

∂r
(
1

r

∂

∂r
(ru)) +

∂2u

∂z2
] =

∂p

∂r
,

μ [
1

r

∂w

∂r
(r

∂w

∂r
) +

∂2w

∂z2
] =

∂p

∂z
,

 (1) 

 
1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (2) 

 

where u, w are the velocities in the radial and vertical 

directions, respectively; p is the pressure; μ is the 

dynamic viscosity. 

Boundary conditions. At the bottom edge z =– h, 

no slip conditions are imposed: 

 

 u = w = 0. (3) 

 

We assume that the upper edge z = F(r), where 

F(r)  is the equation of the free surface, deviates little  

from the level z = 0, therefore, we require the fulfillment  

of the conditions on this edge at z = 0. On this edge, 

assuming the small of the deviation of the free surface, 

we have: 

 condition of absence of tangential stresses 

 

 τrz = μ(
∂u

∂z
+

∂w

∂r
) =  0; (4) 

 

 equilibrium between normal stresses and 

external pressure (pressure from surface tension forces) 

 

 σz = −p + 2μ
∂w

∂z
= pst . (5) 
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The pressure due to surface tension forces is 

determined by Laplace's equation 

 

 pst = γ (
1

R1
+

1

R2
), (6) 

 

where γ is the surface tension; 
1

R1
  and 

1

R2
 are the principal 

curvatures of the free surface, which, considering axial 

symmetry, are determined through the function that 

defines the free surface F(r)  

 

 
1

R1
=

d2F

dr2
[1 + (

dF

dr
)
2
]
– 
3

2
, (7) 

 
1

R2
=

1

r

dF

dr
[1 + (

dF

dr
)
2
]
– 
1

2
. (8) 

 
Symmetry conditions are imposed on the edge  

r = R: 

 

 u =
∂w

∂r
=

∂p

∂r
= 0. (9) 

 

Thus, the mathematical model of the problem is 

formulated using three differential equations (1), (2) in 

the region occupied by the liquid and a set of boundary 

conditions (3)–(5), (9). 

 

4. Problem Solution 
 

In such a formulation, the problem allows for the 

separation of variables in the domain, and boundary 

conditions (9) can be automatically satisfied if a solution 

is sought in the form 

 

 

u(r, z) = ∑ U(z)J1(λnr)n=1,2,...

w(r, z) = ∑ W(z)J0(λnr)n=1,2,... ,

p(r, z) = ∑ P(z)J0(λnr)n=1,2,...

 (10) 

 

where J0, J1 are the Bessel functions of the first kind of 

zero and first order; λn =
bn

R
, bn  is the zeros of the 

function, ,J1; b1 = 3.8317060, b2 = 7.0155867,  

b3 = 10.173468, …; U(z),V(z), P(z)  are the functions 

that are still unknown. 

If we substitute the solutions (10) into the 

differential equations (1), (2), then, given the linear 

independence of the functions J0, J1, we obtain a systems 

of ordinary differential equations with respect to the 

functions U(z),W(z), P(z): 
 

 

{
 
 

 
 
d2U(z)

dz2
− λn

2U(z) +
λn

μ
P(z) = 0,

d2W(z)

dz2
− λn

2W(z) −
1

μ

dP(z)

dz
= 0,

λnU(z) +
dW(z)

dz
= 0,

 (11) 

where n = 1,2,3, … 

Integrating the nth system of equations (11) leads to 

the following solutions 

 

 U(z) = (c4z + c2 −
c3

λ
) cosh(λz) −  

 −(c3z + c1−
c4

λ
) sinh(λz), 

 W(z) = (c3z + c1)cosh(λz) −  

 −(c4z + c2)sinh(λz) , (12) 

 P(z) = 2μ(c3cosh(λz) − c4sinh(λz)), 

 

here and below, to reduce the notation for 

λ,U(z), V(z), P(z) and the constants of integration ci, the 

index ‘n’ is omitted. 

The four integration constants ciare found from the 

boundary conditions (3)–(5). To implement condition (5) 

when determining the pressure from surface tension 

forces (6) the function of the free surface is given in the 

form of a Fourier series on the segment −R ≤ r ≤ R in 

terms of the functions J0: 

 

 F(r) = ∑ An J0(λnr)n=1,2,... . (13) 

 

Note that this function has a property ∫ rF(r)dr
R

−R =

0 that physically means the equality of the volumes of the 

liquid above the coordinate plane rφ and the cavity 

below it (Fig. 1,b). 

If we consider the function F(r) to be flat (surface 

gradient is small), 
dF

dr
≪ 1 i.e., when determining the 

curvatures (7) we neglect the expressions in square 

brackets, then, again omitting the index ‘n’, we obtain the 

expression of the n th pressure component, from the 

surface tension forces (6) in the form of 

 

 pst =– γAλ
2J0(λr). (14) 

 

Thus, equations (3)–(5) for determining the 

integration constants ci considering the expressions for 

the desired functions (10) and (12) take the form of 

 

 (c2−c4h−
c3

λ
) cosh(λh) +  

 +(c1−c3h−
c4

λ
) sinh(λh) = 0, 

 (c1−c3h)cosh(λh) + (c2−c4h)sinh(λh) = 0, 

 c4−c1λ = 0, 

 2μc2 = γAλ. 

 

The solution of these equations leads to the same 

expressions for the coefficients ci as in [9] with the 

exception that here λn =
bn

R
 instead of the analogous 

quantity in Orchard's solution kn =
nπ

l
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 c1 = −
γAλ

2μ
f(θ),  c2 =

γAλ

2μ
,  

 c3 =
γAλ2

2μ
g(θ), c4 = −

γAλ2

2μ
f(θ) ,  (15) 

 

here, also following [1], the notation is shortened for 

brevity:  
 

 θ = λh, 

 f(θ) =
sinh(2θ)−2θ

1+2θ2+cosh (2θ)
,  (16) 

 g(θ) =
1+cosh (2θ)

1+2θ2+cosh(2θ)
.  

 

Finally, the solutions (10) can be determined by the 

geometric parameters, viscosity, and surface tension 

coefficient. 

The rate of amplitude A change is determined from 

the condition of equality between the found velocity 

w(r, 0) and the velocity of the upper limit 
∂F

∂t
 

 

 ∑ −
γAn λn

2μ
f(θ) J0(λnr)n=1,2,... =  

 = ∑ ∂An

∂t
J0(λnr)n=1,2,... , 

 

which leads to systems of differential equations  as 

follows: 

 

 
∂A

∂t
+ A

γλ

2μ
f(θ) = 0, (17) 

 

the integral of which, considering the initial condition 

A(t = 0) = A0 , has the following form 

 A(t) = A0exp (−
γλt

2μ
f(θ)). (18) 

 

Formula (18) is the main practical result, as it 

clearly shows that the amplitude of the convexity 

(unevenness) and the speed decrease exponentially in 

time. The dependence on the convexity geometry is 

hidden in the function f(θ). Recall that the dimensionless 

parameter approximations θ = λh = bn
h

R
 is essentially a 

relative average thickness. The function f(θ) has 

asymptotic approximation [9]: at θ → 0, f(θ) →
2

3
θ3  

and θ → ∞, f(θ) → 1. Fig. 2. shows the graphs of the 

function in the logarithmic coordinate system and the 

usual coordinate system. The vertical lines mark the 

limits at which the approximation errors exceeded. That 

is, the form of the function f(θ) =
2

3
θ3 can be taken at 

θ < 0.167 (h < 0.217R), and f(θ) = 1 at θ >

3.62 (h > 4.72R), at the same time the error caused by 

such a replacement will not exceed 5%. 

As noted above, the difference between solution 

(18) and solution [9] consists in calculating the parameter 

λ, if in the solution (18) the calculation uses the first root 

of the Bessel function of the first kind (b1 = 3.8317060) 

is used in the calculation, then the solution [9] is π =

3.1415927 . The quantitative differences in the solutions 

with respect to the relative average thickness are shown 

in Fig. 3. When calculating the values of the functions, a 

dimensionless time T =
γt

μR
=

γt

μl
 was introduced.  

 

 
Fig. 2. Asymptotic approximation of the function f(θ) 
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Fig. 3. Comparison of periodic and asymptotic solutions  

 

As can be seen, the rate of decrease in the amplitude 

in both cases has the same character, but in the 

axisymmetric case the rate is higher, which is explained  

by the presence of additional curvature in the 

circumferential direction (6), which leads to an increase 

in the pressure from the surface tension. 
 

5. Comparison with Numerical  

Simulation Results 
 

The numerical solution of the problem was obtained 

using the Incompressible Smoothed Particle Galerkin  

(ISPG) method, which was implemented in the LS-

DYNA software. The proposed method is a modified  

SPG method in which the formulation is based on a 

smoothed displacement field in a meshless Galerkin  

variational structure. The method is modified for 

modelling Newtonian and non-Newtonian fluids with 

free surfaces, considering surface tension and adhesion 

forces. The discretization of the Navier-Stokes equations 

in the ISPG method is implemented based on the 

Lagrangian approach, which provides an accurate 

integration of the interactions of fluids with rigid  

structures. The ISPG method and its theory are described 

in detail in [23]. Another approach is presented in [24], 

where the particle-scale surface tension force (STF) 

model is incorporated into the smoothed particle 

hydrodynamics (SPH) method.  

The computational model of the test problem is 

shown in Fig. 4. Оne quarter of the volumetric region is 

considered. Size R = 5 mm. Characteristics of a liquid  

(such as cooking oil) μ = 0.2 Pa ∙ s, γ = 0.02 
N

m
. The 

conditions of interaction between a liquid and a solid on 

a cylindrical vertical surface are given as free sleep with 

a free surface contact angle of 90°. No slip conditions 

were set on the lower horizontal surface.  

Plane of Symmetry

A

A0

h

R

Fluid Solid

 
Fig. 4. Calculation model 

 

To completely exclude inertial forces from the 

calculation, an almost zero density of the material was set 

1 
kg

m3
. The average thickness h =  0.3; 0.6; 1.0; 2.0; 3.0;  

6.0 mm and the initial amplitude A0 = 0.5; 1.0; 2.0; 3.0;  

4.0 mm were varied in the calculations.  
A qualitative comparison of the velocities and 

pressures distribution were obtained analytically and 

numerically are shown in Fig. 5, using the example of 

A0 = 0.5 mm, h = 2 mm at the initial time. The 

horizontal (radial) velocity has a peak at the center and a 

slight shift toward the free surface. The maximu m 

vertical velocities are realized at the edge and in the 

centre of the free surface, where the velocity in the centre 

is approximately three times higher than the velocity at 

the edge.  

There is a similar noticeable difference in the 

pressure values; however, unlike the vertical velocity, the 

pressure decay into depth is almost absent. In general, it 

can be noted that the analytical and numerical solutions 

agreed well. The changes in amplitude over time 

(position of point A, Fig. 4) were quantitatively 

compared and thoroughly investigated. 



Applied mathematics and optimization 
 

119 

 Analytical solutions Numerical solutions 
R

a
d

ia
l 
v

e
lo

c
it

y
 

u
( r
,z
)  

 

 

V
e
rt

ic
a
l 

v
e
lo

c
it

y
 

w
( r
,z
)  

 

 

P
re

ss
u

re
 p
( r
,z
)  

 

 
Fig. 5. Velocity and pressure fields at the initial moment  

(color scales for analytical and numerical solutions are different) 

 

The study aimed to identify the error in the 

analytical solution, which is introduced when satisfying 

the boundary conditions on the upper boundary:  

 fulfilling the boundary conditions (4), (5) on the 

edge  z = 0, and not z = F;  

 using the stresses τrz  and σz  in the conditions (4), 

(5), and not to the returned tangent and normal stresses 

τα =
τrz(1−(F

′ )
2
)+(σr−σz)F

′

(F′ )2+1
 and σα =

σz+(F
′)
2
σr+2F

′τrz

(F′)2+1
;  

 neglecting the denominators when calculating 

the curvatures (7).  

In the numerical solution, these assumptions are, of 

course, not accepted, while the remaining assumptions 

used in building the model are the same in both cases. 

The relative changes in amplitudes (A A0⁄ ) in 

dimensionless time (t̅ =
γλt

2μ
), obtained numerically for 

various combinations of relative average thickness (h R⁄ ) 

and relative initial amplitude (A0 𝑅⁄ ), are shown in Fig. 

6. It can be seen that slight deviations from linear 

behavior are observed for configurations with a large 

initial amplitude. The influence of the relative initial 

amplitude on the smoothing rate (in the analytical 

solution such influence is absent) increases with 

increasing average thickness.  

To quantitatively compare analytical solutions with 

numerical solutions, the curves shown in Fig. 6 were 

linearized by the least squares method, i.e., they were 

reduced to the form A = A0exp(−Ct̅), where t̅ =
γλ

2μ
t  is 

dimensionless time. The values of the coefficients C 

determined in this way are shown in Table 1 and Fig. 7.  

As can be seen, the assumption of the smoothness 

of the free surface of the liquid is valid in a fairly wide 

range, so for moderate and thick films the analytical 

solution can be considered reliable at a relative initial 

amplitude of up to 40% (the error does not exceed 10%). 

However, for thin films, there is a significant discrepancy 

between the analytical and numerical solutions . The 

numerical solution shows a considerably higher surface 

smoothing rate, and this is not related to the smoothness 

of the free surface. 

 

6. Variable Viscosity 
 

If we consider the heat treatment of plastic surfaces, 

that is, the heating and melting of the surface layer to a 

certain depth, then the temperature will spread unevenly 

into the depth, to be more precise, this dependence when 

heated by a heat flow has the following form 

 

 T = Q [2√
αt

π
 e
−
z2

4αt− z erfc (
z

2√αt
)], 

 

where Q is the heat flux; α is the thermal diffusivity; erfc  

is the complementary error function. 
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Fig. 6. Relative changes in amplitudes over dimensionless time 

Table 1 

Coefficient C values when determining amplitude A = A0exp(−Ct̅) = exp (−C
γλ

2μ
t) 

h, mm h/R kh 

Amplitude, mm 

Analytical 
0.5 1 2 3 4 

A/R 

0.1 0.2 0.4 0.6 0.8 

0.3 0.06 0.2299  
0.0440     

0.0074 

0.6 0.12 0.4598  
0.0940 

 
0.1258    

0.0470 

1 0.2 0.7663 
 

0.1943 
 

0.2282 
 

0.2415   

0.1467 

2 0.4 1.5327 

 
0.4913 

 
0.5120 

 
0.5180 

 
0.4974 

 
0.4601 

0.4642 

3 0.6 2.2990 

 
0.7413 

 
0.7489 

 
0.7316 

 
0.6925 

 
0.6527 

0.7357 

6 1.2 4.5980 

 
0.9529 

 
0.9460 

 
0.9093 

 
0.8464 
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Fig. 7. Coefficient 𝐶  value when determining amplitude A = A0exp(−Ct̅) = exp (−C

γλ

2μ
t) 

 

melt    

T

solid

μ 

T,μ 
z

-h

 
Fig. 8. Temperature distribution in depth  

and viscosity changes 
 

Approximately in the surface molten layer (Fig. 8) 

the temperature distribution can be assumed to be linear 

and, if we assume that the fluidity is directly proportional 

to the temperature, then in the first approximation we can 

assume its linear change – from the maximum value on 

the surface to zero at the melting point. The viscosity in 

this case changes from a finite value μ on the surface to 

infinity when approaching the solid phase (Fig. 8). In this 

case, unlike in Section 3, the differential equations (1) 

takes the following form 

 

 μ
h

h+z
[
∂u

∂r
(
1

r

∂

∂r
(ru)) +

∂2u

∂z2
] =

∂p

∂r
, 

 μ
h

h+z
[
1

r

∂w

∂r
(r

∂w

∂r
) +

∂2w

∂z2
] =

∂p

∂z
. (19) 

 

The remaining ratios are unchanged. The solution is 

constructed similarly to that done in section 4. Functions 

(12) after the separation of variables and the solution of the 

system of ordinary differential equations take the 

following form 

 U(z) = −d1 sinh(λz) − d2cosh(λz) − 

 −(h + z)2[d3I1(λ(h + z)) − d4K1(λ(h + z))], 

 W(z) = d1cosh(λz) + d2 sinh(λz) + 

 +(h + z)2[d3I0 (λ(h + z))+ d4K0(λ(h + z))] − 

 −
2

k
(h + z)[d3I1(λ(h + z)) − d4K1(λ(h + z))],  

 P(z) = 3μh[d3I0(λ(h + z)) + d4K0(λ(h + z))], (20) 

 

where I0, I1, K ,0K1 are modified Bessel functions of the 

first and second kinds, zero and first order. 

The integration constants di  are determined from 

the boundary conditions (3)–(5) 

 

 d1
2⁄
=

2

∆
(e2θ ± 1)(2θI0(θ) − I1(θ)), 

 d3 =
2

∆
[θe

θ(2θK0(θ) + K1(θ)) − 2 (e
2θ + 1)], 

 d4 =
2

∆
λeθ(I1(θ) − 2θI0(θ)),  (21) 

 ∆= ((2θ + 1)(e2θ + 1) − 2) I1(θ) − 

 −((2θ + 3)(e2θ − 1) +6) I0(θ) − (2θ
2 −

3

2
)eθ . 

 

From the equation w(r, 0) =
∂F

∂t
 we obtain the 

dependence of the amplitude on time in the same form as 

before (18). In this case the function f has the following 

form 

 

 f(θ) =

3(
θ

2
−cosh(θ)I1(θ))

(2θI1(θ)−3I0(θ))cosh (θ)+(I1(θ)−2θI0(θ))sinh(θ)−θ
2+

3

4

. 

  (22) 
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Fig. 9. Functions at constant and  

variable viscosities f(θ) 

 

The difference between this function and a similar 

one obtained at constant viscosity (16) is shown in Fig. 9. 

This function has the same qualitative character, but 

leads to lower smoothing rates, which is explained by the 

higher average viscosity. It is clear that if we are talking  

about smoothing a periodic elongated inequality 

(Fig. 1,a) with variable viscosity, then we will have the 

same solution (20)–(22) with the difference that θn =

λnh = nπ
h

l
, and not θn = λnh = bn

h

R
, as in this case. 

 

7. Arbitrary Free Surface Shape 
 

The presented analytical solutions are suitable for 

modelling arbitrary free surface shapes. To do this, the 

surface shape must be expanded into a Fourier series in 

terms of the functions J0(λnr) on the segment – R ≤ r ≤

R (13). Let us show this by the example of a step function 

F = H(r +
R

3
) − H(r −

R

3
) −

1

9
, where H is the Heaviside 

function, which defines a cylindrical projection. The first 

five terms in the Fourier series have the following form 

 

 F = 0.55446 J0(λ1r) + 0.56202J0(λ2r) + 

 +0.19223J0(λ3r) − 0.22537J0(λ4r) − 

 −0.35860J0(λ5r)+. ..  
 

F20

F5

 
Fig. 10. Approximation of a step function by  

a Fourier series using Bessel functions  

 
Fig. 11. Refinement of the solution by increasing the 

series terms from one (A1) to five (A5) and changing 

the in time of individual terms 

 

The presence of corner points in the function being 

approximated (poor smoothness) leads to slow 

convergence of the Fourier series (Fig. 10). In addition, 

there is a significant gradient of the free surface; 

therefore, in this example, regardless of the accuracy of 

the analytical solution, we show only that to determine 

the surface smoothing time, it is sufficient to keep only 

the first term in the Fourier series .  

The change in amplitude at the center (r = 0) as a 

function of time, for example, when h = R = 1 mm is 

written as 

 

 A(t) = 0.55446 e
−56.222

γt

μ + 0.56202 e
−288.08

γt

μ + 

 +0.19223 e
−664.59

γt

μ − 0.22537  e
−1101.2

γt

μ − 

 −0.35860 e
−1522 .0

γt

μ+. ..  

 

The disadvantage of such a solution is that it 

complicates the determination of the time required for 

smoothing the surface, but if we consider the arguments 

of the exponential functions, we see that they grow 

rapidly, that is, the contribution of the second and 

subsequent functions is significant at the initial time point 

(at small t), over time these terms quickly decay and 

become undesirably small compared to the first term. 

Therefore, if we are interested in the time during 

which the amplitude decreases almost to zero, then it is 

enough to consider only one first term; the other terms 

refine the solution only at the initial stages. This situation 

is illustrated in Fig. 11. 

 

8. Discussion 
 

The scientific novelty of this study lies in the fact 

that it further develops Orchard’s formula by extending 
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it to axisymmetric problems (18). The obtained analytical 

solution correlates well with the numerical solution for 

moderate and thick layers (h > 0.2R). The use of the 

obtained analytical solutions is limited to the initial 

height of the surface amplitude (up to 40% of the radius). 

It remains valid under the assumptions described in 

Section 2. An analytical solution to the problem of 

variable viscosity over the thickness of the liquid layer 

(formulas (18)+(22)) is obtained. The solution covers 

both periodic and axisymmetric problems . 

The obtained simple analytical solutions allow us to 

solve the main task – determining the surface smoothing 

time. The time required to reduce the height of the bulge 

(unevenness, roughness) by a factor of k =
A0

A(t)
> 1 

calculated using the following formula 

 

 t = ln(k)
2μ

γλf(θ)
. 

 

In this formula μ is the dynamic viscosity; γ is the 

surface tension; the function f(θ) is determined by 

formula (16) for the same viscosity of the entire liquid  

and by formula (22) if the viscosity changes from a finite 

value on the free surface (μ) to infinity on the solid 

surface; θ = λh ; h is the average height; λ =
π

l
 if we are 

talking about a periodic problem (Fig. 1,a) and  

λ =
b1

R
=

3.8317060

R
 in the axisymmetric case (Fig. 1,b). To 

estimate the levelling time of a surface whose shape is 

different from the shape of the Bessel functionJ0in an 

axisymmetric problem (Fig. 1,b) or cos in a periodic 

problem (Fig. 1,a), it is sufficient to use the first function 

in the expansion of the free surface shape function into a 

Fourier series (point 6). 

 

9. Conclusions 
 

The main contribution of this research is that the 

obtained analytical solutions provide a comprehensive 

framework for predicting the surface levelling dynamics 

of viscous liquids under surface tension forces, with a 

particular focus on the thermal energy treatment of 

plastic surfaces. Solving the research tasks, in particular 

the extension of Orchard's formula to axisymmetric 

surface irregularities and taking into account viscosity 

variations in the liquid layer, improved the understanding 

of surface smoothing mechanisms in complex 

geometries, thereby achieving the research goal, namely, 

filling the gap in existing analytical leveling models. The 

derived analytical model, validated against numerical 

simulations, demonstrated high accuracy for moderate-

to-thick liquid layers (h > 0.2R) and initial surface 

amplitudes up to 40% of the characteristic radius, making  

it a reliable tool for process optimization. 

The results demonstrate the model’s ability to predict 

levelling times efficiently while maintaining simplicity. 

The addition of thickness-dependent viscosity further 

improves its applicability to real-world scenarios in which 

material properties vary with temperature. These findings 

offer practical benefits for industrial applications, 

particularly for optimizing heat input and process 

parameters to improve surface quality. By providing 

explicit expressions for levelling time, the model enables 

precise control over surface evolution, thereby reducing 

trial-and-error in thermal treatment processes.  

While this study primarily focused on theoretical 

and numerical validation, future work will explore 

experimental validation to further assess the model’s 

accuracy under practical conditions. Further refinements 

will enhance the predictive capabilities by incorporating 

more complex material behaviors, such as non-

Newtonian effects or transient thermal gradients. The 

integration of this analytical approach with advanced 

manufacturing techniques could lead to improved surface 

engineering strategies, contributing to the development 

of more efficient and controlled thermal treatment 

processes in industrial applications . 
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ОСЕСИМЕТРИЧНА ЗАДАЧА ЗГЛАДЖУВАННЯ ПОВЕРХНІ В'ЯЗКОЇ РІДИНИ  

ПІД ДІЄЮ СИЛ ПОВЕРХНЕВОГО НАТЯГУ  

В. Б. Минтюк, О. В. Шипуль, О. В. Трифонов, Є. В. Цегельник  

У цьому дослідженні розглядається аналітичне розв’язання задачі вирівнювання поверхні в’язких рідин 

під впливом сил поверхневого натягу, зосереджуючись на згладжуванні пластикових поверхонь під час 

їхнього термоенергетичного оброблення. Метою роботи є розширення формули Орчарда на осесиметричні 

нерівності поверхні та розроблення аналітичної моделі для прогнозування часу вирівнювання, що забезпечить 

ефективний контроль процесу термоенергетичного оброблення. Завдання дослідження включали виведення 

аналітичного розв’язку для осесиметричного вирівнювання, його верифікацію за допомогою числових 

моделювань у LS-DYNA та врахування зміни в’язкості в межах рідинного шару. Методи дослідження 

передбачали аналітичну формалізацію та числове моделювання еволюції поверхні, з урахуванням різних 

початкових геометрій нерівностей та розподілу в’язкості. Верифікація аналітичного рішення на основі 

числових розрахунків показала високу точність для середніх і товстих рідинних шарів (ℎ > 0.2𝑅) та 

початкових амплітуд нерівностей до 40% від характеристичного радіуса. Після верифікації модель була 

застосована для оцінки часу вирівнювання різних конфігурацій поверхні, зберігаючи простоту при 

підвищенні прогностичної точності. Результати показали, що розширена формула ефективно описує 

динаміку згладжування поверхні, включаючи випадки з в’язкістю, що змінюється залежно від товщини шару, 

та забезпечує явні вирази для розрахунку часу вирівнювання. Отримані результати дозволяють точно 

контролювати теплове навантаження під час термічного оброблення, оптимізуючи якість поверхні. 

Висновки. Запропоновані аналітичні рішення є практичним інструментом для аналізу вирівнювання 

поверхонь, розширюючи застосування підходу Орчарда на більш складні геометрії та варіації в’язкості. 

Подальші дослідження будуть зосереджені на експериментальній перевірці та подальшому вдосконаленні 

моделей для підвищення точності у промислових застосуваннях. 

Ключові слова: згладжування поверхні; формула Орчарда; осесиметричні нерівності; постановка 

періодичної задачі. 
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