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AXISYMMETRIC PROBLEM OF SMOOTHING THE SURFACE
OF A VISCOUS LIQUID BY SURFACE TENSION FORCES

This study investigates an analytical solution to the problem of the surface levelling of viscous liquids under
the influence of surface tension forces, focusing on the smoothing of plastic surfaces subjected to thermal
energy treatment. This study aims to extend Orchard’s formula to axisymmetric surface irregularities and
develop an analytical model for predicting levelling time, thereby ensuring efficient process control in thermal
treatmentapplications. The tasksincluded deriving an analytical solution for axisymmetric levelling, validating
it against numerical simulationsin LS-DYNA, and incorporating the viscosity variation acrossthe liquid layer.
The methods involved analytical formulation and numerical simulation of surface evolutionconsidering different
initial surface geometries and viscosity distributions. Validation against numerical results demonstrated high
accuracy for moderate and thick liquid layers (h > 0.2R) and initial surface amplitudes up to 40% of the
characteristic radius. Following validation, the model was applied to estimate levelling times for various surface
configurationswhile maintainingsimplicity while improving the predictive capabilities. Results showed that the
extended formula effectively describes surface smoothing dynamics, including the cases with thickness-

dependent viscosity, providing explicit expressions for levelling time. These findings enable precise control of
heatinput during thermal energy treatment, thereby optimizing the surface quality. In conclusion, the proposed

analytical solutions offer a practical tool for surface levelling analysis, expandingthe applicability of Orchard’s
approach to more complex geometries and viscosity variations. In future work, we will focus on experimental
validation and refinementsto enhance the accuracy in industrial applications.
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1. Introduction

1.1. Motivation

The finishing of thermoplastic parts is critical for
meeting the high demands for accuracy and quality in
industries such as automotive, aerospace, and healthcare.
Engineering and high-performance plastics are valued for
their low weight, high strength, and corrosion resistance,
making them ideal for applications in which precision
and durability are paramount [1]. However,
manufacturing processes like injection molding and
additive manufacturing often result in surface defects
such as burrs, flashes, and roughness, which can

compromise  reliability, lifetime, and functional
characteristics [2].
Additive  manufacturing, particularly  Fused

Deposition Modeling (FDM), has seen widespread
adoption [3]. FDM parts, however, frequently exhibit
poor surface finish due to visible layer lines and
micropores, as illustrated in studies showing nylon
samples with line-by-line filament separation and
polylactic acid parts with surface micropores [4]. These
defects not only affect aesthetics but also mechanical

properties, necessitating advanced finishing techniques.

Traditional surface finishing methods include
mechanical abrasion, chemical treatment, ultrasonic
vibration processing, and blasting. However, these
methods have significant limitations, especially for
complex geometries and when high surface smoothness
is required. For instance, abrasive methods may alter part
dimensions, whereas chemical treatments may not be
suitable for all materials and situations [5]. Thermal
methods, such as hot air jet polishing and laser-based
thermal polishing, have been explored; however, they
can be time-consuming or inefficient for deep holes and
complex shapes [6, 7].

The Impulse Thermal Energy Method (ITEM), a
variation of the Thermal Energy Method (TEM), offers a
promising solution by leveraging controlled heat
exposure to melt the surface layer, allowing surface
tension to smooth out irregularities. ITEM operates in a
closed chamber, using combustion products to provide
precise heat input, which is crucial for thermoplastics to
avoid carbonization and soot deposition [8]. Unlike
standard TEM, which uses oxygen-excess mixtures
suitable for metal parts, ITEM employs stoichiometric or
fuel-rich mixtures, ensuring the safety and integrity of
thermoplastic surfaces.
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The motivation for this study lies in the
development of an analytical model to predict the
levelling time during ITEM processing, focusing on
axisymmetric surface irregularities. This is particularly
relevant for post-additive manufacturing parts, where the
surface quality directly affects the overall performance.
An analytical solution would facilitate process control,
optimize heat input, and enhance efficiency, addressing
the gap in current methods that often rely on empirical
adjustments or numerical simulations, which can be time -
consuming and less intuitive for industrial applications.

1.2. State ofthe Art

Orchard’s formula, which was first introduced in
1963, provides a foundational analytical solution for the
surface levelling of viscous liquids, which was initially
applied to paint films with periodic stripe-like
irreqularities [9]. The formula relates the levelling time
to the surface tension, viscosity, and initial amplitude of
the surface perturbations, offering a balance between
simplicity and practical utility. The validity of the
proposed method has been experimentally confirmed by
researchers such as Wapler [10] and Overdiep [11], with
extensions to include surface tension gradients for
viscosity changes during solvent evaporation. Extensions
of Orchard’s formula have been proposed to address
more complex scenarios. For instance, Weidner [12]
considered two-component fluids with yield stress,
leading to distinct flow regimes that required numerical
solutions using finite difference methods. Seeler et al.
[13] developed numerical approaches for thixotropic
paints, using Orchard’s solution as a benchmark for
idealized sinusoidal films. These refinements, while
enhancing accuracy, often sacrifice the analytical
simplicity that makes Orchard’s formula valuable for
industrial applications, such as viscosity determination
from sinusoidal film amplitude measurements [14] and
modelling levelling times in roll-coating processes [15].
In paper [16], a theoretical tool was proposed as an
alternative perspective on surfactant forces at interface
boundaries, allowing the known equations to be rewritten
by calculating the balance of forces in the steady state.
Furthermore, Takahashi et al. [17] used this formula to
study the time-dependent variation of viscosity. In a
broadercontext, heat transferstudies involving multilayer
shells with non-stationary temperature fields have
demonstrated the importance of accurately modelling the
thermal effects in coated and layered materials [18].
Similarly, transient thermoelastic analysis of cylindrical
structures with varying coefficients of thermal expansion
has been explored to determine the effects of heat flux on
the stress distribution [19].

In the context of thermoplastic parts, various
finishing methods have been employed, as detailed by

Plankovskyy et al. [8]. Mechanical methods like CNC
machining and barrel treatment are common; however,
they may not be sufficient for complex geometries [20].
Chemical methods show promise for reducing roughness,
but they are material-specific [21]. Thermal methods,
such as hot air jet polishing, use surface tension in the
melted layer, butare time-consuming for intricate shapes
[6]. Laser-based thermal polishing, as explored by Chai
et al.[7], considers surface over-melt (SOM) and surface
shallow-melt (SSM) mechanisms, with SOM potentially
removing micropores but varying in efficacy across
materials.

The ITEM stands out for its controlled heat
exposure, which uses combustion products in a closed
chamber to prevent damage to thermoplastics. Unlike
TEM, which is optimized for metal parts with oxygen-
excess mixtures, ITEM uses stoichiometric or fuel-rich
mixtures to avoid carbonization, a critical consideration
given the potential for toxic gas formation in
thermoplastics like polyvinyl chloride [8]. The selection
of ITEM processing regimes involves the design of the
experimental method, which can be time-consuming,
especially for complex shapes, highlighting the need for
automated  approaches based on numerical
simulation [22].

Despite these advancements, there is a notable gap
in analytical models for predicting levelling time in
axisymmetric geometries, particularly for thermoplastic
parts post-additive manufacturing. Current research lacks
a simple, generalizable solution that can be readily
applied in industrial settings, where process control and
efficiency are paramount. This study aims to bridge this
gap by extending Orchard’s formula and leveraging the
principles of surface tension and viscosity to model
surface evolution in three-dimensional, radially
symmetric configurations.

1.3. Objective and Approach

This study extends Orchard’s formula to
axisymmetric  surface irregularities and addresses its
applicability to surface smoothing during ITEM
processing of thermoplastic parts. The primary objective
is to develop a simple yet effective analytical model for
predicting surface levelling time, thereby ensuring
precise control of heat input in industrial applications.
The proposed approach involves the following steps:

— deriving an analytical solution for surface
levelling with axisymmetric irregularities;

— validating the solution against
simulations performed using LS-DYNA,;

— extending the model to account for viscosity
variations across the liquid layer thickness.

The proposed analytical solutions maintain the
simplicity of Orchard’s original formulation while

numerical
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expanding its applicability to complex levelling Absolute dimensions are considered to be
scenarios. By explicitly determining the surface approximately 1 mm or less, allowing us to neglect the
smoothing time, the developed model provides a forces of gravity. Thus, if the maximum hydrostatic

practical tool for optimizing ITEM processing, thereby
enabling efficient material treatment and improved
surface quality.

This paper is organized as follows. Section 2
defines the problem statement, focusing on surface
levelling in thermal energy treatment. Section 3 develops
the mathematical model and extends Orchard’s formula.
The analytical solution is presented in Section 4. In
Section 5, the model is validated against LS-DYNA
simulations. Section 6 examines the effects of variable
viscosity. Section 7 generalizes the proposed approach to
arbitrary surface shapes. Section 8 discusses the
implications of the study findings. Section 9 concludes
with a summary of the key findings.

2. Problem Statement

The problem statement and essentially the solution
coincide with those given in [9] except for the domain in
which the problem is solved. While in the paper of
Orchard an infinite strip with a periodic waveform (a
plane problem) was considered (Fig. 1,a), in this study an
axisymmetric problem was considered (Fig. 1,b).

(b)
Fig. 1. Schematic representation of the film:
(a) is the periodic Orchard problem; (b) is the
axisymmetric problem this study

pressure at the wave height (Fig. 1,a) is equal to
Pg = 2pgA,, and the maximum pressure from surface
tension forces according to the Laplace equation is
py = Yk= y“??‘), then the ratio of these pressures is
Pg — Zﬁlz
py my '
tension force (y >20 mN/m), a density less than, orofthe
same order as water (= 1000 kg/m®) and a half-
wavelength of 1 mm, the hydrostatic pressure will be less
than 10% of the surface tension pressure, with a half-
wavelength of 0.5 mm, it will beless than 3%.
Velocities and accelerations are also considered
small, which allows us to neglect inertial forces and,
accordingly, oscillatory processes. The fluid has
Newtonian properties.

i.e. for liquids with a significant surface

3. Mathematical model
The Navier-Stokes equation and the continuity

equation in the polar coordinate system (Fig. 1,b),
considering the assumptions made, take the form of

u[a—u(li(ru))+2272] = 0_p’

dr \r dr ar
1
[10_W( 0_W) Fw] _op @
r ar or 0z21 a9z’
10 ow
r or (ru) + 0z 0’ (2)

where u, w are the velocities in the radial and vertical
directions, respectively; p is the pressure; p is the
dynamic viscosity.

Boundary conditions. At the bottom edge z =-h,
no slip conditions are imposed:

u=w=0. 3

We assume that the upper edge z = F(r), where
F(r) is the equation of the free surface, deviates little
from the level z = 0, therefore, we require the fulfillment
of the conditions on this edge at z= 0. On this edge,
assuming the small of the deviation of the free surface,
we have:

¢ condition of absence of tangential stresses

= u(2+2) = o @

e equilibrium between normal stresses and
external pressure (pressure from surface tension forces)

ow
0, = —p + 21—~ = Pg. Q)
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The pressure due to surface tension forces is
determined by Laplace's equation

P =v( o) ©

Ri R

where vy is the surface tension; Ri and Ri are the principal
1 2

curvatures of the free surface, which, considering axial
symmetry, are determined through the function that
defines the free surface F(r)

1 d%F dr\2] 2z

a-mbﬂﬁ]* )
1

1 1dF ar\ 2] 2

=l ()] ®

Symmetry conditions are imposed on the edge
r=R:

u=2=22_, ©

Thus, the mathematical model of the problem is
formulated using three differential equations (1), (2) in
the region occupied by the liquid and a set of boundary
conditions (3)-(5), (9).

4. Problem Solution

In such a formulation, the problem allows for the
separation of variables in the domain, and boundary
conditions (9) can be automatically satisfied if a solution
is soughtin the form

ur,z) = Zn =12..U (2) J1 o\n r)
(10)

yoee

yeee

where ], J, are the Bessel functions of the first kind of
zero and first order; A, = b—;, b, is the zeros of the

function, ,J;;b; =3.8317060, b, =7.0155867,
b, = 10.173468, ...; U(z),V(z),P(z) are the functions
that are still unknown.

If we substitute the solutions (10) into the
differential equations (1), (2), then, given the linear
independence of the functions J,, J,, we obtain a systens
of ordinary differential equations with respect to the
functions U(z), W(z), P(z):

2
Fﬁ?—ﬁdﬂ+%ﬂﬂ=a
d?w(z) 2 ldP(Z) _
e MW@ o= =0, (1)
| U@ +2 -,

dz

where n = 1,2,3, ...
Integrating the nt" system of equations (11) leads to
the following solutions

U@z = (c4z +c, — %) cosh(\z) —
- (c3z +cq— (;\—4) sinh(Az),
W(z) = (c;3z + c;)cosh(Az) —

—(c4z + ¢;)sinh(Az)
P(z) = 2u(cscosh(Az) — c,sinh(Az) ),

12)

here and below, to reduce the notation for
A, U(z),V(z), P(z) and the constants of integration c;, the
index ‘n’ is omitted.

The four integration constants c;are found from the
boundary conditions (3)—(5). To implement condition (5)
when determining the pressure from surface tension
forces (6) the function of the free surface is given in the
form of a Fourier series on the segment —R < r < Riin
terms of the functions J:

F(r) = X215 Anlo QD). (13)

Note that this function has a property f_RR rF(r)dr =

0 that physically means the equality of the volumes of the
liquid above the coordinate plane r¢ and the cavity
below it (Fig. 1,b).

If we consider the function F(r) to be flat (surface

gradient is small), %« lie., when determining the

curvatures (7) we neglect the expressions in square
brackets, then, again omitting the index ‘n’, we obtain the
expression of the nth pressure component, from the
surface tension forces (6) in the form of

Pst =- YAN?],(Ar). (14)

Thus, equations (3)-(5) for determining the
integration constants c; considering the expressions for
the desired functions (10) and (12) take the form of

(cz—c4h— ;—3) cosh(h) +
C4) s —
+ (cl—c3h— l) sinh(Ah) =0,
(c;—c3h)cosh(h) + (c,—c,h)sinh(dh) =0,

c,—C;A=0,
2uc, = YAA

The solution of these equations leads to the same
expressions for the coefficients c; as in [9] with the
exception that here A, = b?“ instead of the analogous

nm

quantity in Orchard's solution k,, = 1
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AN A
¢, = —2of0), ¢ =%, AW = Agexp (Jz—ff(e)). (18)
¢; =1-g(0), ¢ = ~2-£(0), (15)

here, also following [1], the notation is shortened for

brevity:
°2 Agl’)
f(6) = 22 (16)
g(®) = 1;;15—;:29).

Finally, the solutions (10) can be determined by the
geometric parameters, viscosity, and surface tension
coefficient.

The rate of amplitude A changeis determined from
the condition of equality between the found velocity

w(r, 0) and the velocity of the upper limit %

Tnerz, )], O ) =

9An
= Zn:l,z,... . Jo O\n r),

which leads to systems of differential equations as
follows:

9A YA _
-+ AZuf(G) =0, 17

the integral of which, considering the initial condition
At = 0) = A,, has the following form

100000

10000

1000

100

10

Formula (18) is the main practical result, as it
clearly shows that the amplitude of the convexity
(unevenness) and the speed decrease exponentially in
time. The dependence on the convexity geometry is
hidden in the function £(6). Recall that the dimensionless

parameter approximations 6 = Ah = b, % is essentially a
relative average thickness. The function f(8) has
asymptotic approximation [9]: at © — 0, f(8) — §e3
and 8 - oo, f(8) - 1. Fig. 2. shows the graphs of the
function in the logarithmic coordinate system and the

usual coordinate system. The vertical lines mark the
limits at which the approximation errors exceeded. That

is, the form of the function f(8) = 563 can be taken at

0 < 0.167 (h < 0.217R), and f) =1at@ >
3.62 (h > 4.72R), at the same time the error caused by
such a replacement will notexceed 5%.

As noted above, the difference between solution
(18) and solution [9] consists in calculating the parameter
A, if in the solution (18) the calculation uses the first root
of the Bessel function of the first kind (b, = 3.8317060)
is used in the calculation, then the solution [9] is T =
3.1415927 . The quantitative differences in the solutions
with respect to the relative average thickness are shown
in Fig. 3. When calculating the values of the functions, a

_r

. . . t .
dimensionless time T = Y—R = = was introduced.
M M

1.20

0.03 0.3

Fig. 2. Asymptotic approximation of the function £(6)
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h/R=h/I

----0Orchard's solution

Fig. 3. Comparison of periodic and asymptotic solutions

As can be seen, the rate of decrease in the amplitude
in both cases has the same character, but in the
axisymmetric case the rate is higher, which is explained
by the presence of additional curvature in the
circumferential direction (6), which leads to an increase
in the pressure from the surface tension.

5. Comparison with Numerical
Simulation Results

The numerical solution of the problem was obtained
using the Incompressible Smoothed Particle Galerkin
(ISPG) method, which was implemented in the LS-
DYNA software. The proposed method is a modified
SPG method in which the formulation is based on a
smoothed displacement field in a meshless Galerkin
variational structure. The method is modified for
modelling Newtonian and non-Newtonian fluids with
free surfaces, considering surface tension and adhesion
forces. The discretization of the Navier-Stokes equations
in the ISPG method is implemented based on the
Lagrangian approach, which provides an accurate
integration of the interactions of fluids with rigid
structures. The ISPG method and its theory are described
in detail in [23]. Anotherapproach is presented in [24],
where the particle-scale surface tension force (STF)
model is incorporated into the smoothed particle
hydrodynamics (SPH) method.

The computational model of the test problem is
shown in Fig. 4. One quarter of the volumetric region is
considered. Size R =5 mm. Characteristics of a liquid

(such as cooking oil) p=0.2Pa-s,y = 0.02 % The

conditions of interaction between a liquid and a solid on
a cylindrical vertical surface are given as free sleep with
a free surface contact angle of 90°. No slip conditions
were seton the lower horizontal surface.

A Fluid  sglig

Ao

h %
Plane of Symmetry R

« ———

Fig. 4. Calculation model

To completely exclude inertial forces from the
calculation, an almost zero density of the material was set

1 %. The average thickness h = 0.3; 0.6; 1.0; 2.0; 3.0;

6.0 mm and the initial amplitude A, =0.5; 1.0; 2.0; 3.0;
4.0 mm were varied in the calculations.

A qualitative comparison of the velocities and
pressures distribution were obtained analytically and
numerically are shown in Fig. 5, using the example of
Ay =05mm, h=2mm at the initial time. The
horizontal (radial) velocity has a peak at the centerand a
slight shift toward the free surface. The maximum
vertical velocities are realized at the edge and in the
centre of the free surface, where the velocity in the centre
is approximately three times higher than the velocity at
the edge.

There is a similar noticeable difference in the
pressure values; however, unlike the vertical velocity, the
pressure decay into depth is almost absent. In general, it
can be noted that the analytical and numerical solutions
agreed well. The changes in amplitude over time
(position of point A, Fig. 4) were quantitatively
compared and thoroughly investigated.
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Analytical solutions Numerical solutions
X-velocity
D 4233003
> ] ;s.m..oa:l
= 3.343¢-03 |
o 2.899¢-03 _
% f'N\ 2.454e-03
S o
g 1.120e-03
E 6.747e-04
xx \ 2.300e-04
B -2.148e-04 |
Z-velocity
3.533¢-03
> 2.128e-03
E 7.231e-04 _
o 5.8180-04 _
TN -2.0876-03
> s -3.492¢-03
] 7 -4.897-03
.2 3 -6.302e-03
E -7.707¢-03
9.1120-03
Pressure
4.630e+00
—_ 4.011e+00
l\l 3.392e+00 _
= 2.773e+00 _
=9 21546400
1.535e+00
g 9.166e-01
[72] 2977e-01
> 3212601
E -8.401e-01

-1.559¢+00 |

Fig. 5. Velocity and pressure fields at the initial moment
(color scales for analytical and numerical solutions are different)

The study aimed to identify the error in the
analytical solution, which is introduced when satisfying
the boundary conditions on the upperboundary:

— fulfilling the boundary conditions (4), (5) onthe
edge z =0, andnotz = F;

— using the stresses T, and o, in the conditions (4),
(5), and not to the returned tangent and normal stresses

Trz(l—(F’)2)+(°r—ﬁz)F’ O'Z+(F’)20'r+2F’TrZ_
T = 241 o« T Tz

— neglecting the denominators when calculating
the curvatures (7).

In the numerical solution, these assumptions are, of
course, not accepted, while the remaining assumptions
used in building the model are the same in both cases.

The relative changes in amplitudes (A/A,) in

. . . Al - .
dimensionless time (t =‘;—t), obtained numerically for
i

various combinations of relative average thickness (h/R)
and relative initial amplitude (A,/R), are shown in Fig.
6. It can be seen that slight deviations from linear
behavior are observed for configurations with a large
initial amplitude. The influence of the relative initial
amplitude on the smoothing rate (in the analytical
solution such influence is absent) increases with
increasing average thickness.

To quantitatively compare analytical solutions with
numerical solutions, the curves shown in Fig. 6 were
linearized by the least squares method, i.e., they were

reduced to the form A = A,exp (—CD), where t = %t is

dimensionless time. The values of the coefficients C
determined in this way are shown in Table 1 and Fig. 7.

As can be seen, the assumption of the smoothness
of the free surface of the liquid is valid in a fairly wide
range, so for moderate and thick films the analytical
solution can be considered reliable at a relative initial
amplitude of up to 40% (the error does notexceed 10%).
However, for thin films, there is a significant discrepancy
between the analytical and numerical solutions. The
numerical solution shows a considerably higher surface
smoothing rate, and this is not related to the smoothness
of the free surface.

6. Variable Viscosity

If we considerthe heat treatment of plastic surfaces,
that is, the heating and melting of the surface layer to a
certain depth, then the temperature will spread unevenly
into the depth, to be more precise, this dependence when
heated by a heat flow has the following form

22
ot —— Z
T—Q[Z ’:e 4at — z erfc (z_xlﬁ)]'

where Q is the heat flux, o is the thermal diffusivity; erfc
is the complementary error function.
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Fig. 6. Relative changes in amplitudes over dimensionless time
Table 1
Coefficient C values when determining amplitude A = Ajexp (—CP = exp (—C%t)
Amplitude, mm
o5 | 1 | 2 | 3 | 4 :
h, mm h/R kh A/R Analytical
0.1 0.2 0.4 0.6 0.8
‘._
0.3 0.06 0.2299 0.0440 0.0074
0.6 0.12 04sop | M | 0.0470
0.0940 0.1258
0.1943 0.2282 0.2415
2 0.4 1.5327 - . ‘ 0.4642
0.4913 0.5120 0.5180 0.4974 0.4601
3 0.6 2.2990 0.7357
0.7413 0.7489 0.7316 0.6925 0.6527
6 1.2 4.5980 . 0.9894
0.9529 0.9460 0.9093 0.8464 0.7857
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1.1

B AR=0.1 AR=0.2

A AR=04 & AR=06

® A/R=0.8 =——Analytical

Fig. 7. Coefficient C value when determining amplitude A = A,exp(—CP) = exp (—C %t)

A g T,H>
=
melt
-h u

solid

Fig. 8. Temperature distribution in depth
and viscosity changes

Approximately in the surface molten layer (Fig. 8)
the temperature distribution can be assumedto be linear
and, if we assume that the fluidity is directly proportional
to the temperature, then in the first approximation we can
assume its linear change — from the maximum value on
the surface to zero at the melting point. The viscosity in
this case changes from a finite value p on the surface to
infinity when approaching the solid phase (Fig. 8). In this
case, unlike in Section 3, the differential equations (1)
takes the following form

h [ou(19 9°u] _ dp
e —('—(ru))+§]—

h+zlor \r or or’

h 10w( Bw) %w i

D [1ow oWy 2w _ b 19
p'h+z r or or 9z2 0z ( )

The remaining ratios are unchanged. The solution is
constructed similarly to that done in section 4. Functions
(12) after the separation of variables andthe solution of the
system of ordinary differential equations take the

following form
U(z) = —d, sinh(Az) — d,cosh(Az) —
—(h + 2)?[d;1, (A(h + 2)) — d,K,(A(h + 2))],
W(z) = d;cosh(Az) + d,sinh(Az) +
+(h + 2)?[ds1, (Ah + 2) + d, K, (A + 2))] -

~Z(h + D[dsl; (A + 2)) — 4K, (A +2)],
P(z) = 3uh[d;I,(A(h + 2)) + d,K,(Ah + 2))], (20)

where I,,1;, K (K, are modified Bessel functions of the
first and second kinds, zero and first order.

The integration constants d; are determined from
the boundary conditions (3)—(5)

di, = 2(e® +1)(201,(0) —1,0)),
d; = =[0e° (20K, (®) + K, (0)) — 2 (¢* +1)],
d, = 22¢°(1,(8) —201,(9)),
a= (28 + D(e®® +1) - 2)1,(0) -
— (@0 +3)(e® 1) +6) 1,(0) — (202 2.

(1)

From the equation w(r, 0)=% we obtain the

dependence ofthe amplitude on time in the same form as

before (18). In this case the function f has the following
form

f(e) =
3<§_cosh(e)11(e))

(201,(8)-314(8)) cosh (8)+(1,(8)—2614(6)) sinh(e)—92+%'
(22)
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----- Constant Viscosity

Variable Viscosity

Fig. 9. Functions at constantand
variable viscosities f(8)

The difference between this function and a similar
one obtained at constant viscosity (16) is shown in Fig. 9.
This function has the same qualitative character, but
leads to lower smoothing rates, which is explained by the
higher average viscosity. It is clear that if we are talking
about smoothing a periodic elongated inequality
(Fig. 1,a) with variable viscosity, then we will have the
same solution (20)-(22) with the difference that 6, =

Ah= mrlh, andnot6, = A, h=b, %, as in this case.

7. Arbitrary Free Surface Shape

The presented analytical solutions are suitable for
modelling arbitrary free surface shapes. To do this, the
surface shape must be expanded into a Fourier series in
terms of the functions J,(A,r) on the segment-R <r <
R (13). Let us showthis by the example of astep function

F=H (r + 5) —H (r - 5) - 1, where His the Heaviside
3 3 9

function, which defines a cylindrical projection. The first

five terms in the Fourier series have the following form

F = 0.55446],(\; 1) + 0.56202],(2,r) +
+0.19223], (A1) — 0.22537],(A,1) —
—0.35860],(As0) +. ..

Fig. 10. Approximation of a step function by
a Fourier series using Bessel functions

1.4 1.0
]
12 ) 0.5 B
W P 8
" Mo
1.0 ‘J 0.0 F—&l—-—.—q—’c——-
4 0.?0 0.02 0.04 0.06
0.8 P‘ 0 -y
{ ' \ ;’T-}l
0.6

1st addend ® e e ee 2ndaddend
=== =3rd addend = =

—

5th addend

04
0.2
0.0
0.00 0.02 0.04 0.06
T/
—— Al seees A2 ===-A3 = = A3

Fig. 11. Refinement of the solution by increasing the
series terms from one (A1) to five (A5) and changing
the in time of individual terms

The presence of corner points in the function being
approximated  (poor smoothness) leads to slow
convergence of the Fourier series (Fig. 10). In addition,
there is a significant gradient of the free surface;
therefore, in this example, regardless of the accuracy of
the analytical solution, we show only that to determine
the surface smoothing time, it is sufficient to keep only
the first term in the Fourier series.

The change in amplitude at the center (r = 0) as a
function of time, for example, when h =R =1 mm is
written as

Cse22lt "
A® =0.55446 ¢ **** W +0.56202 ¢ %W +
- ¥t B ¥t
+0.19223 ¢ 7w — 0.22537 ¢ 1w -
yt
—0.35860 ¢ " Tu ...

The disadvantage of such a solution is that it
complicates the determination of the time required for
smoothing the surface, but if we consider the arguments
of the exponential functions, we see that they grow
rapidly, that is, the contribution of the second and
subsequentfunctionsis significant at the initial time point
(at small t), over time these terms quickly decay and
become undesirably small compared to the first term.

Therefore, if we are interested in the time during
which the amplitude decreases almost to zero, then it is
enough to consider only one first term; the other terms
refine the solution only atthe initial stages. This situation
is illustrated in Fig. 11.

8. Discussion

The scientific novelty of this study lies in the fact
that it further develops Orchard’s formula by extending
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it to axisymmetric problems (18). The obtained analytical
solution correlates well with the numerical solution for
moderate and thick layers (h > 0.2R). The use of the
obtained analytical solutions is limited to the initial
height of the surface amplitude (up to 40% of the radius).
It remains valid under the assumptions described in
Section 2. An analytical solution to the problem of
variable viscosity over the thickness of the liquid layer
(formulas (18)+(22)) is obtained. The solution covers
both periodic and axisymmetric problems.

The obtained simple analytical solutions allow us to
solve the main task — determining the surface smoothing
time. The time required to reduce the height of the bulge

(unevenness, roughness) by a factor of k = %> 1

calculated using the following formula

_ 2
t = Ink) @)

In this formula p is the dynamic viscosity; y is the
surface tension; the function f(8) is determined by
formula (16) for the same viscosity of the entire liquid
and by formula (22) if the viscosity changes froma finite
value on the free surface (1) to infinity on the solid
surface; 6 = Ah; h is the average height; A = IE if we are

talking about a periodic problem (Fig. 1,a) and

A= % = 28317080 i1 the axisymmetric case (Fig. 1,b). To

estimate the levelling time of a surface whose shape is
different from the shape of the Bessel function],in an
axisymmetric problem (Fig. 1,b) or cos in a periodic
problem (Fig. 1,a), it is sufficient to use the first function
in the expansion of the free surface shape function into a
Fourier series (point 6).

9. Conclusions

The main contribution of this research is that the
obtained analytical solutions provide a comprehensive
framework for predicting the surface levelling dynamics
of viscous liquids under surface tension forces, with a
particular focus on the thermal energy treatment of
plastic surfaces. Solving the research tasks, in particular
the extension of Orchard's formula to axisymmetric
surface irregularities and taking into account viscosity
variations in the liquid layer, improved the understanding
of surface smoothing mechanisms in  complex
geometries, thereby achieving the research goal, namely,
filling thegapin existing analytical leveling models. The
derived analytical model, validated against numerical
simulations, demonstrated high accuracy for moderate-
to-thick liquid layers (h > 0.2R) and initial surface
amplitudes up to 40% of the characteristic radius, making
it a reliable tool for process optimization.

The results demonstratethe model’s ability to predict
levelling times efficiently while maintaining simplicity.
The addition of thickness-dependent viscosity further
improves its applicability to real-world scenarios in which
material properties vary with temperature. These findings
offer practical benefits for industrial applications,
particularly for optimizing heat input and process
parameters to improve surface quality. By providing
explicit expressions for levelling time, the model enables
precise control over surface evolution, thereby reducing
trial-and-error in thermal treatment processes.

While this study primarily focused on theoretical
and numerical validation, future work will explore
experimental validation to further assess the model’s
accuracy under practical conditions. Further refinements
will enhance the predictive capabilities by incorporating
more complex material behaviors, such as non-
Newtonian effects or transient thermal gradients. The
integration of this analytical approach with advanced
manufacturing techniques could lead to improved surface
engineering strategies, contributing to the development
of more efficient and controlled thermal treatment
processes in industrial applications.
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OCECHUMETPHUUYHA 3AJIAYA 3TJIAJKYBAHHS TIOBEPXHI B'SI3KOI PUIMHA
g AI€I0 CUI NOBEPXHEBOI'O HATATY
B. b. Munmwk, O. B. Illunynw, O. B. Tpugonos, €. B. llezenvnux

VY 11bOMY JIOCTIDKEHHI PO3IILIIA€TECS aHAJITHYHE PO3B’SI3aHHS 3a/1adi BUPIBHIOBAHHSA MOBEPXHI B’SI3KHUX PiflH
I BIUIMBOM CHJI TIOBEPXHEBOTO HATATY, 30CEPE/DKYIOUMCH Ha 3I7Ia/PKyBaHHI IUIACTHKOBHX ITOBEPXOHB I dYac
IXHPOTO TepPMOEHEPTeTHUHOTO 00poOeHHss. MeTolo po6oTH € posmupenHs Gopmyim Opyapaa Ha OCECUMETPUIHI
HEepIBHOCTI TIOBEPXHI Ta PO3POOJICHHS aHAITHYHOT MOJENI U IPOTHO 3yBaHHS Yacy BUPIBHIOBAHHS, IO 3a0e3MeUnTh
e(heKTUBHHN KOHTPOJIb MPOIIECY TEPMOCHEPTETHUYHOTO 00pOOICHHs. 3aBIaHHsl JOCIIDKEHHS BKIIOYAM BHBEJCHH S
AQHATITHYHOTO PO3B’SI3KY UII OCECHMETPHYHOTO BHPIBHIOBAHHS, WOTrO BEpHUQIKAIiO 32 JOMOMOTOI YHCIOBHX
MonemoBanb y LS-DYNA ta BpaxyBaHHS 3MIiHM B’S3KOCTI B MeXaxX PIIMHHOTO mapy. MeToAM MOCTIDKEHHS
nepen0avany aHANMITHYHY (OpMali3allifo Ta YHCJIOBE MOJCIIOBAaHHSA €BOJIOLIl MOBEPXHI, 3 ypaxXyBaHHSIM PI3HHUX
MOYaTKOBUX TEOMETpiil HEepiBHOCTEH Ta po3moauly B’sA3kocTi. Bepudikarmis aHamTHYHOTO pIMIEHHS Ha OCHOBI
YHUCIOBUX PO3PaxyHKIB IOKa3aja BHCOKY TOYHICTh i1 CepelmHix 1 ToBcTuxX pimuaHux mapis (h > 0.2R) ta
MOYaTKOBUX aMIUNTyA HepiBHocTedt no 40% Bin xapaxtepuctuuHoro pagiyca. Ilicms Bepudikanii mozens Oyma
3acTOCOBaHa [Ui1 OLIHKM Yacy BHUPIBHIOBaHHS pi3HUX KOH(]irypauii moBepxHi, 30epiraroun OpPOCTOTY MpHU
MiIBUIIEHHI MPOTHOCTUYHOI TOYHOCTL. Pe3yapTarm mokasaiu, IO po3wupeHa ¢opmyia eheKTUBHO OmUCye
JMHaMIKy 3T7IaJDKyBaHHs MOBEPXHI, BKIIOYAIOUM BHUIAJKU 3 B’A3KICTIO, IO 3MIHIOETHCS 3aJIeXKHO BiJ TOBLIMHHU LIApY,
Ta 3a0e3mevye sBHI BHpa3w Ml PO3paXyHKy Yacy BupiBHIOBaHHsA. OTpuMaHi pe3yJbTaTd JO3BOJAIOTH TOYHO
KOHTPOJIIOBAaTH TEIUIOBE HABAHTAXKCHHS I 4Yac TEPMIYHOTO OOpPOOJICHHS, ONTHMI3YyIOUM SKICTh MOBEPXHI.
BucHoBKkH. 3amporoHOBaHI aHAMTAYHI pIlIeHHS € MNPaKTHYHUM IHCTPYMEHTOM i1 aHaji3y BHUPIBHIOBAHH S
MOBEPXOHb, PO3UIHUPIOIOYHN 3aCTOCyBaHHA mmimxoxy Opdvapaa Ha OUTbII CKJIAJHI TeoMeTpil Ta Bapiaiii B’sS3KOCTI.
Tomanbm AocHipKeHHsT OyayTh 30CepeDKEHI Ha eKCIEpUMEHTAIBHIA MEepeBIpIli Ta MOJATBIIOMY BIOCKOHAICHHI
MOJeNei I MiIBUIIEHHS TOYHOCTI y MPOMHUCIIOBHX 3aCTOCYBAHHSX.

KmiouoBi cjoBa: 3miamkyBaHHs moBepxHi; (opmyna Opdyapia; OCECHMETPUYHI HEPIBHOCTI; MOCTAHOBKA
nepioMIHOT 3a/1adi.
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