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METHOD FOR SOLVING QUANTIFIER LINEAR EQUATIONS BASED  

ON THE ALGEBRA OF LINEAR PREDICATE OPERATIONS 
 
The subject involves structured approaches that extend the existing set of mathematical tools for processing 

complex relationships within databases and computational systems. This is particularly relevant for 

applications requiring efficient information retrieval, knowledge representation, and logical inferen ce in 
automated decision-making environments. The task of this article is to develop a method for solving quanti fier 

linear equations using the algebra of linear predicate operations, aimed at improving database query 

optimization and enhancing the capabilities of intelligent systems. The methods used in this research include 

algebraic techniques, logical operations, and matrix-based transformations to model and efficiently solve the 

predicate equations. By leveraging the algebra of finite predicates, the p roposed approach enables a more 

systematic and scalable way to handle logical dependencies and optimize computational workflows. The 

method integrates linear logical operators, ensuring that complex queries and constraints in databases can  be 

represented and processed through formal mathematical models. Additionally, it introduces a framework that 

enhances the structural representation of knowledge, facilitating intelligent data analysis. Because of the 

study, a formal method was developed to solve quantifier linear equations, enabling more effective query 

optimization, logical reasoning, and decision-support mechanisms within expert and automated information 

systems. The research demonstrates that algebraic approaches can significantly improve the efficienc y of 

information retrieval processes, particularly in intelligent databases where relational constraints and 

dependencies play a crucial role. Benchmarks conducted on synthetic datasets validate the scalability of the 

method, showing that it maintains linear execution time growth even with increasing data complexity. 
Conclusion: the proposed method expands the mathematical foundation for solving logical equations in  

computational environments, providing a powerful tool for intelligent systems and database o ptimization . The 

ability to formalize and process complex logical relationships contributes to improved decision -making 

accuracy and automation efficiency. 
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Introduction 

 

Motivation 
Advances in computational technology, 

particularly in microelectronics and computer 

architecture, have led to significant technical 

capabilities in modern computing machines, such as 

high speed and large memory capacity. This has 

facilitated the expansion of the range of problems that 

can be solved using computers and increased their role 

in human life. However, this progress is purely 

quantitative. Simple enhancement of computer functions 

is effective only when humans can service them; 

otherwise, such enhancement becomes pointless. 

The rapid development of computing technology 

and its widespread application drives high rates of 

development in methods for creating intelligent s ystems 

(IS) for various purposes  [1]. Today, methodological 

and technical approaches for creating and using 

information systems have already been developed [2, 3, 

4]. Modern intelligent information systems can perform 

functions previously considered exclusively human 

prerogatives, such as proving mathematical theorems, 

translating texts from one language to another, 

diagnosing diseases, and performing many other 

functions. All these problems cannot be solved without 

the involvement of a universal mathematical language. 

This article aims to present the theoretical basis 

and practical applications of the method, illustrating 

how predicate equations can be used to simplify data 

modelling and enhance the efficiency of data analysis 

processes. By bridging the gap between theory and 

practice, this work demonstrates the applicability of 

predicate equations to real-world problems, offering 

new opportunities for the systematic exploration and 

understanding of complex datasets . 
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State of the art 

 
The ability of a computer to provide a high degree 

of information processing is becoming increasingly 

important. The insufficiency of computing machine 

software has shown the necessity of creating intelligent 

systems that can assist in designing and creating 

software products. The form in which this information 

is represented on the computer significantly impacts the 

speed and quality of information processing by 

intelligent systems [1]. Various information systems use 

different methods for representing knowledge 

depending on the specific application areas. Knowledge 

representation involves formalizing beliefs through 

records or languages. A formalization that is perceived 

by the computer is particularly interesting, for which 

formal languages are developed to represent knowledge 

in the computer’s memory.  

Recently, numerous practical applications of 

modern abstract algebra have been found in databases 

and intelligent systems, which has led to increased 

interest in the possibilities of the algebraic description 

of information [2]. Various high-level language 

translators and algorithmic algebras were developed on 

the basis of algebraic methods in programming theory. 

The automation of software development and the 

design of computer systems is an important and urgent 

problem in computer technology [3]. One of the main 

tasks of this theory is the problem of the optimal 

translator from one language to another, which consists 

of finding the optimal implementation of the algorithm 

in another language. The use of algebraic methods 

allows you to create effective algorithms for translating 

and optimizing programs. 

The algebraic approach to the description of 

derived information distinguishes a certain algebraic 

system – the algebra of queries, in terms of which 

derived information is written through the basic one [4]. 

This allows you to formalize the processes of processing 

requests and obtaining information in databases. When 

designing relational databases, knowledge about the 

subject area is presented in the form of relations, which 

is effective when designing expert systems. 

Thus, it is necessary to translate from the 

programming language to the machine language with 

simultaneous optimization of the source program. The 

process of solving such a problem is divided into 

several intermediate stages, each of which involves a 

partial optimization of the algorithm and translation into 

an intermediate language corresponding to this stage. A 

database is an information system that stores and 

processes information and can provide answers to 

requests. Moreover, it should be possible to obtain not 

only information directly stored in the database but also 

derivative information obtained based on basic 

information. The task of obtaining derivative 

information is directly related to the task of the result in 

intelligent systems [5]. 

Database queries can be written using the formulas 

of some logical languages, for example, using the 

language of the difference of statements or the 

difference of predicates of different orders, and the 

expressive possibilities of these differences are different 

[6]. There are various differences between classical and 

non-classical logic. Boolean algebras, for example, 

correspond to the classical difference in statements, and 

special Geiting algebras correspond to the intuitionistic 

differences’ statements . 

To be able to mathematically describe the 

functions of the intellect, it was necessary to create a 

formal language that could be used to conduct such a 

description. The formal language had to be chosen in 

such a way that any finite alphabetic operator could be 

written down in a convenient form. The algebra of finite 

predicates described below is such a language. 

Predicate algebra describes only knowledge about 

facts Algebra of operations on predicates or the algebra 

of predicate operations must formalize operations on 

knowledge [7] presented as a relation on some object 

space. The algebra of predicates determines the 

declarative component of knowledge, and algebraic 

predicate operations a procedural component of 

knowledge [8]. Two types of facts are distinguished: the 

first describes the connection of two entities; moreover, 

one of them will be defined as a subject, and the second 

- as an object predicate action. In the first case, the fact 

is a triplet “subject – predicate – object”, in which the 

predicate is relational, and the subject and object 

indicate two subjects. The second type of fact is a triplet 

“subject – attribute – value”, where subject – this is an 

object about which a fact is recorded, an attribute-

named feature of an object that has a certain in advance 

property, and the value is some value of this feature, the 

scope of which can be in some cases known For 

example, these can be attributed facts place and time of 

a certain action. The facts of the second type allow you 

to split a set of entities on equivalence classes and 

narrow the search space ways of conclusion. To obtain 

such triples, there is a definition of the entities that form 

many approaches. The task is set as a task of predicting 

the relationship between a pair of entities, which 

determines whether a couple is connected entities 

through relation. 

In connection with the constant increase in the 

degree of computerization, developments in this 

direction are considered, which have an urgent need for 

a new theoretical and practical base in the field of the 

formal description of excellent physical information 

objects. Expectations that the role of a universal 

information mediator would improve language 
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programming were not fulfilled, it became clear that in 

terms of convenience and flexibility, no artificial 

language can compare with natural language [9]. At this 

time, methodological and technical approaches to the 

creation and use of information systems have already 

been developed. Currently, available intelligent 

information systems can violate functions that were 

previously considered an exclusive prerogative of 

humans: prove mathematical theorems, translate texts 

from one language to another, diagnose diseases, and 

affect many other functions. 

Another direction of informatization is the creation 

of a system of integrated knowledge [10] and the 

development of methods of active, mental navigation in 

these systems, including through global computer 

networks. Currently, the problem of hardware and 

software tools that effectively manipulate knowledge of 

natural language [11] has revived with such a need that 

the efficiency of government institutions and production 

systems force to depend on it. It is no coincidence that 

among the software tools, the most popular are 

programs focused on processing natural language 

objects: text and linguistic editors and processors, 

programs for automatic correction of grammatical 

errors, automatic editing, natural language indexing, and 

search, as well as programs for machine translation, 

optical text recognition, etc. Recently, natural language 

modules have been increasingly included in the 

operating systems themselves . 

All these problems are impossible without the 

involvement of a universal mathematical language [12]. 

Developments in this field have been carried out for 

several decades. Work was carried out on algebraization 

in logic, and a special mathematical apparatus was 

developed for the formula representation of relations 

and operations on them, which are called the algebra of 

finite predicates. The central place in the algebra of 

predicates is occupied by relations, which reflect the 

properties of objects and the connections between them. 

However, until now there is no convenient method of 

formulating the connection of free connections, which 

allows us to implement them programmatically. The 

possibility of a formula describing predictions or 

relationships is important when designing an automatic 

control system when developing a natural language 

intelligent interface. 

As a result, the apparatus of logical spaces and the 

algebra of linear predicate operations were studied, and 

a formal representation of correspondence was 

developed using the algebraic apparatus of finite 

predicates, oriented to real calculations of the 

capabilities of the modern computer computing base 

and new requirements for information technologies, it is 

possible to abandon the modeling of any logical 

structures that require a lot of computation in real-time. 

Although the primary focus is on modeling natural 

language structures, the method can be applied to any 

subject area. By analyzing the objects and their 

properties, appropriate semantic features and values are 

selected. This enables the method to explore complex 

data relationships, leading to deeper insights and 

improved decision-making, while ensuring robustness 

and broad applicability. 

 

Objectives and approach 

 

This study develops and formalizes a method 

based on the algebra of predicate equations for solving 

quantitative linear equations, while also reviewing the 

formal approaches to modeling intelligent systems. The 

proposed method overcomes the limitations of existing 

algebraic techniques—such as restricted scalability, 

difficulties in adapting to dynamic datasets, and 

inefficiencies in managing complex logical 

dependencies—by establishing a structured framework 

for representing logical relationships and constraints 

within the data. By expressing relationships within 

datasets through predicate equations, the approach 

formalizes dependencies and enhances analytical 

workflows. Designed to improve both accuracy and 

scalability while maintaining computational efficiency, 

it is ideally suited for practical data analysis 

applications. 

To achieve these objectives, the research integrates 

theoretical and practical elements. The theoretical 

component formalizes the predicate algebra and 

explores its application in data analysis. On the practical 

side, algorithms are developed to demonstrate the 

method's effectiveness in tasks such as filtering, 

aggregation, and knowledge extraction, with 

benchmarks conducted to assess performance across 

datasets of varying sizes and complexity. 

Section 1 details the method by defining the initial 

data—problem dimensions, semantic features, logical 

equations, and resulting variables—and describing an 

algorithm that verifies system consistency, deactivates 

non-essential features, and transforms a predicate 

equation into an equivalent operator (matrix) equation. 

Section 2 demonstrates the method’s practical 

application in a database context by modeling 

relationships (for example, between factories and parts) 

using predicate equations, which are then solved 

through corresponding operator equations to optimize 

query processing. Section 3 presents a detailed case 

study, complete with a flowchart and benchmark tests 

using synthetic datasets. The results confirm that the 

execution time scales  linearly with the dataset size, 

thereby verifying the method’s efficiency and 

scalability. The final sections discuss the performance 

outcomes, suggest further optimizations (such as 
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employing sparse matrices, parallel processing, or GPU 

acceleration), and summarize the contributions of this 

work to formalizing complex logical relationships and 

enhancing intelligent database systems . 

 

1. Description of the method 
 

At the beginning of the method is the data about 

the modeled system: the dimension of the problem, 

semantic features (input vector of data), a system of 

logical equations, and a set of resulting variables. After 

processing this data by the method, during which the 

consistency of the system of logical equations is 

determined and the non-essential features are turned off, 

we obtain the entire array of solutions of the system of 

logical equations at the output (Fig. 1). 

 

 
Fig. 1. Model of the developed system 

 

Based on the theory of linear logical operators 

mentioned in the previous section, we will build an 

algorithm for solving the equation. 

Let it be necessary to find a solution to the 

following predicate equation: 

 

 Q(Y) X(P(X) TO(Y,X))   , (1) 

 

where Q(Y) and P(X) — predicates are given on the 

branch u=(u1,...,un), consisting of n elements ; 

Y – vector; 

X – predicate value; 

TO(Y, X) — binary predicate is given on the 

branch u×u. 

It is necessary to calculate the predicate P(X), 

considering the predicate Q(Y) and the linear logical 

operator LО(Y, X) to be known.  

Considering that the existence quantifier connects 

the predicate variable X, the equation can be rewritten 

in the form: 

 

     
n

j j
j 1

Q(Y) P u K Y,u


   , (2) 

 

where Q, P — predicates; 

Y – vector; 

u – branch; 

K – transposed matrix of the operator. 

 

Equality is fulfilled only if it is true for any value 

of the predicate variable Y that runs through the set U. 

Thus, we have the following n equalities: 

 

     
n

i j j i j
i, j 1

Q(u ,u ) P u K u ,u


   , (3) 

 

where Q, P — predicates; 

ui and uj – branches; 

K – transposed matrix of the operator. 

Q(ui) and P(uj) – predicates by y i and xj 

yi,xj{0,1} and i,j1,…,n. We denote the value of the 

binary predicate TO(u i, uj) by kij {0, 1}, i,j1,…,n. 

Considering the following notations, equality will take 

the form 

 

  
n

i j ij
j 0

y x k


   , (4) 

 

where yi and xj — predicate values for any i1,...,n 

respectively yi, xj {0, 1} and i,j1,…,n; 

kij – unary operator. 

It is known that if for arbitrary predicates P(t) and 

Q(t) do the relation : P(t)X. From here we get about 

the operator equation of the form: 

 

 LO(X) Y , (5) 

 

where LO – linear logical operator; 

X – predicate value; 

Y – vector. 

Thus, the predicate equation is equivalent to the 

operator equation, defined in the logical space. 

According to the idea of a continuous type of matrix of 

a linear-logical constant operator acting from space to 

itself, for reversibility, it is also necessary that in each 

row and column of the matrix of such an operator there 

should be one and only one element equal to one. If the 

matrix satisfies the above conditions of the idea, then 

the solution of the equation will be as follows 

 

 
1X LO (Y)  (6) 

 

where LO – is a linear logical operator; 

X – predicate value; 

Y – vector. 

The matrix of the inverse operator coincides with 

the transposed matrix of the operator K. Thus, the 

solution operator equation in the matrix type will be as 

follows: 

 

 X RT*Y  (7) 
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where X – predicate value; 

R – binary predicate; 

T – logical vector; 

Y – vector. 

As a result of solving the predicate equation, it can 

be written in the form: 

 

     P(X) Y Q Y LO X,Y   , (8) 

 

where P(X) – predicate; 

X – predicate value; 

Q, Y – vectors; 

LO – is a linear logical operator. 

If the operator LO is not regular, the solution of 

the predicate equation cannot be written in the form, 

however, using the algebraic notation of the predicate 

equation, we will look for the solution of the equation in 

the following way. 

Operator equation in the form of a system of 

logical equations. Assume that the vector Y is not 

singular. 

 

 

n

mj j m
j 1

n

ij j i
j 1

n

nj j n
j 1

(k x ) y

(k x ) y

(k x ) y








  



  



  



 (9) 

 

where kij – unary operator; 

yi and xj — predicate values for any i1,...,n. 

Let ones be worth in vector Y at places 

(d1,…,dy)=D, and zeros at places (z1,…,zy)=Z, DZ, 

DZ=N, N=(1,...,n). The set of places where the zeros 

of the vector are X, we will denote as  L=(l1,…, lx). The 

symbol * will mark the places where there can be zeros 

or ones. The algorithm is as follows:  

1. Initialization i:=z1; 

2. We form the set consisting of zero coordinates 

of the vector X and j:=1. If TO[i,j] = 1, then X [j]:= l1. 

We organize the sorting of indices j from 0 to n; 

3. Index i is equated to the next element from the 

set Z and the transition to clause 2 until all the elements 

of the set Z are selected; 

4. We form the set M. We obtain logical vector X 

consisting of zeros and symbols *; 

5. Checking the system for consistency. 

Substituting the found vector into the system. We 

organize the solution of the system obtained according 

to the formula (13): 

 

  
n

ij j i
j 1

k x y

    (10) 

 

where yi and xj — predicate values; 

kij – unary operator. 

If the system is incompatible, then the vector is not 

a solution to the system; 

6. Formation of the system solutions. In vector 

X(*), we substitute a unit instead of the first symbol *, 

and zeros instead of the other symbols. Transition to 

clause 5. If the formed logical vector is a solution of the 

system, we store it in the array of solutions. We 

organize various substitutions of zeros and ones instead 

of * symbols, with each new combination going to item 

5. 

7. We write out all the solutions obtained from the 

system if the array of solutions is not empty. 

Furthermore, if not, the result is a message about the 

inconsistency of the system. 

 

2. Example application 
 

The given example in this section illustrates the 

possibility of using the theory of linear logical operators 

and the method of solving the quantifier predicate 

equation for processing and storing information in 

databases.  

Suppose that the database contains information 

about four factories that produce parts for cars. Let 

factory z1 produce parts d1 and d2, plant z2, produces 

parts d2 and d3, factory z3 produces parts d1 and d4, p lan t  

z4 produces parts d3 and d4. The existing “plant-part” 

relationship is easily described by the following binary 

predicate. 

As a result, the predicate P3(z) corresponding to 

the sought information is denoted by a quantifier 

equation of the form: 

 

 
1 2 3dP (z,d) P (d) P (z)    (11) 

 

where d – parts; 

P1, P2, P3 – predicates; 

z – factory; 

d – parts. 

The solution of this quantifier predicate equation is 

obtained from the solution of the corresponding 

operator equation A*X=Y in the linear logical space En. 

Matrix 15 represents the solution of the operator 

equation A*X=Y in the linear logical space En and the 

vector X=(1 0 0 0). 

 

 

 

1 1 0 0

0 1 1 0

0 0 0 1

1 0 1 1

 (12) 
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Because of the action of operator A on vector X, 

we get the vector Y equal to (1 0 1 0) meaning that the 

parts d1 are served by factories z1 and z3. Thus, the 

operation of searching for information of interest in the 

database is replaced by operating operator 

multiplication. Now it is necessary to calculate which 

factories produce parts d1 or d3. Using the additive 

property of the linear logical operator A, we obtain 
 

 
1 3 1 3 4A X A X A(X X ) A X       , (13) 

 

where A – linear logical operator; 

X1, X2, X4 – vectors created by predicates. 

Vector X1 and X3 are created by predicates that 

describe the details of d1 and d3. Thus, the answers to 

more complex queries in the database also come from 

the solution of the operator equation. Using the 

algorithm for solving the operator equation, described in 

the previous subsection, it is possible to search for the 

parts that they manufacture by given factories. For 

example, let it be necessary to calculate which parts are 

manufactured by factory z2. Therefore, the logical 

vector Y=(0 1 0 0).  

 

 

1

2

3

4

x1 1 0 0 0

x0 1 1 0 1
*

x0 0 0 1 0

1 0 1 1 0x

  (14) 

 

where x1, x2, x3, x4 – vectors. 

Because of the decision of the operator equation of 

the formula 17. 

Relative to X, we obtain the vectors (0 1 0 0) and 

(0 0 1 0). Therefore, factory z2 produces parts d2 and d3. 

Next, let's assume that the database contains 

information about which parts are used in certain 

machines. Let's assume that machine m1 uses part d2, 

Machine m2 uses parts d2 and d3, Machine m3 uses parts 

d2 and d3, and machine m4 uses parts d3 and d4. This 

relationship “machine-part” corresponds to the binary 

predicate K1(m, d). 

Similar to the previously considered case, it is easy 

to extract information about which machines and which 

parts are used from the database by solving the 

corresponding quantifier predicate equation, replacing it 

with an operator equation. We have the following 

equation: 

 

 1 2 3dK (m,d) K (m) K (d)   , (15) 

 

where d – parts; 

K1 – binary predicate; 

K2(m) and K3(d) – unary predicates; 

m – machines. 

They specify a specific machine and a specific 

detail, respectively. Solving this equation concerning 

predicate K2(m) or predicate K3(d), we will pull the 

necessary information from the database. Suppose that 

now it is necessary to solve a more complex problem, 

namely: to calculate which factories produce parts for a 

predetermined machine. The following system of 

quantifier predicate equations corresponds to this 

condition: 

 

 
1 2 3

1 2 2

dP (z,d) P (d) P (z)

dK (m,d) K (m) P (d)

  

  

, (16) 

 

where d – parts; 

K1 – binary predicate; 

K2 – unary predicate; 

P – predicates; 

m – machines; 

z – plant. 

We will display this system in the form of one 

equation: 

 

     1 1 2 3dP (z,d) dK m,d K m P (z)      (17) 

 

where d – parts; 

P1 and P3 – predicates; 

z – plants; 

K1 – binary predicate; 

K2 – unary predicate; 

m – machines. 

The quantifier predicate equation corresponds to 

an operator equation of the form: 

 

 B T X   (18) 

 

where B – operator matrix; 

T – logical vector; 

X – vectors created by predicates. 

Logical vectors T and X are constructed, 

respectively, from the binary predicates LО2(m) and 

LО3(d). The linear logical operator U has the form 

matrix 

 

 

0 1 0 0

1 0 1 0

0 1 1 1

0 0 0 1

 (19) 

 

built on the binary predicate TO1(m, d). Therefore, 

the predicate equation corresponds to the operator 

equation of the form: 

 

 A(B(T)) X , (20) 
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where A, B – operators matrix; 

T – logical vector; 

X – vectors created by predicates. 

Let's transform the resulting equation into the 

following form:  

 

 Z(T) X , (21) 

 

where Z – linear logical operator; 

T – logical vector; 

X – vectors created by predicates. 

Z is equal to the superposition of operators A and 

B. In this case, we have: 

 

 

1 1 0 0 0 1 0 0 1 1 1 0

0 1 1 0 1 0 1 0 1 1 1 1
C *

0 0 0 1 0 1 1 1 0 1 0 1

1 0 1 1 0 0 0 1 0 1 1 1

   (22) 

 

where C – operator matrix. 

A rather large search in the database is reduced to 

the calculation of the matrix of the operator Iz using the 

operation of multiplying the matrices of the operators A 

and B. For example, let's calculate which factories make 

parts for machine m1. The corresponding logical vector 

T has the following form (1 0 0 0). Thus, we have: 

 

 

1 1 1 0 1 1

1 1 1 1 0 1
*

0 1 0 1 0 0

0 1 1 1 0 0

  (23) 

 

As a result, we get that the manufacturers of 

machine parts m1 there are plants z1 and z2. 

 

3. Case study 
 

This study provides a demonstration of the 

developed method for solving linear equations with 

quantifiers, aligned with the stated objectives, and 

implemented in Python to enable effective solutions. 

Integral to this approach, algebraic methods find 

numerous applications in databases [13, 14] and 

intelligent systems [15, 16], enhancing the efficiency of 

program translation and optimization. The algebra of 

queries formalizes request processing and information 

retrieval, making it essential for designing expert 

systems [17, 18]. This combined methodology 

facilitates a formal description of derived information 

based on basic information, optimizing query handling 

and retrieval processes. 

In the context of this study, an important step is to 

translate query conditions into a system of linear 

equations, which allows for more efficient processing of 

database queries and information retrieval. 

Transforming selection and aggregation conditions into 

linear equations not only formalizes the logic of queries 

but also provides the ability to apply mathematical 

methods to data analysis.  

To address the problem of identifying connections 

based on the example discussed earlier, we adopted a 

structured data model representing information as 

logical matrices. This approach allows us to express 

relationships using linear predicate equations, enabling 

efficient filtering, searching, and aggregation of data 

through matrix computations. 

In the following example, we consider how 

specific queries can be transformed into a system of 

linear equations, illustrating this process in an abstract 

scenario. 

Let's say we have a database data structure 

consisting of three main entities: 

 Machines: each machine is uniquely identified 

by a MachineID and has a descriptive name 

(MachineName). 

 Parts: Each part has a unique identifier 

(PartID) and a name (PartName). 

 MachineParts (Machine-Part Relationships): 

This table defines the relationships between machines 

and parts, indicating which parts are used by each 

machine. 

To process this data and perform logical operations 

efficiently, the relationships are transformed into a 

matrix M×P, where M is the number of machines (rows) 

and P is the number of parts (columns). In this matrix 

representation, each element A[i,j] is set to 1 if machine 

i uses part j, and 0 otherwise. This transformation 

enables the relationships to be expressed mathematically 

using linear predicate equations. 

The core equation of this approach is represented 

as: 

 Y A X   (24) 

 

where A is the logical operator matrix derived from the 

MachineParts table, X is a binary vector representing 

the selection conditions for parts (X[j]=1 if part j is 

included in the query, 0 otherwise), and Y is the 

resulting binary vector where Y[i]=1 indicates that 

machine i satisfies the conditions imposed by X. For 

example, if a query specifies that we are interested in 

parts 101 and 103, the vector X would be represented as 

[1,0,1] for a dataset with three parts (101, 102, 103). 

Multiplying A by X will produce Y, identifying the 

machines that use at least one of the specified parts. 

In addition to basic logical operations like "OR," 

more complex queries can be handled. For instance, 

finding machines that use both parts 101 and 103 

involves a stricter condition, requiring Y[i] to equal 2 
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(indicating that machine i uses both parts). Similarly, 

negation ("NOT") can be applied by excluding specific 

parts from the selection vector X. 

 

 
Fig. 2. Flowchart of the method 

 

To ensure a robust and scalable solution, the 

flowchart of the method outlines the logical process of 

solving such linear predicate equations (Fig. 2). This 

algorithm outlines the step-by-step process for solving a 

system of equations related to tasks in intelligent 

systems and databases. 

The process begins with the input of necessary 

indicators and determining the size of the task. This step 

provides the foundation for subsequent calculations. 

Based on the input data, the logical vector X is formed, 

representing the initial data required for the system's 

operation. The next step involves calculating the 

operator K[i,j]. If the operator cannot be computed, the 

vector X is substituted into the system for further 

analysis. 

If the system is compatible, the solution array is 

formed. If not, the algorithm performs an analysis to 

identify inconsistencies in the system. Once 

compatibility is confirmed, a solution array is generated, 

containing the computed values for the task. In the final 

stages, the system size is checked. If the task is 

complete, the algorithm terminates. Otherwise, it loops 

back to the specific steps for adjustments and further 

analysis. The algorithm concludes once a valid solution 

is found or the system is determined to be incompatible. 

To validate the efficiency and scalability of the 

proposed method, an updated benchmark was conducted 

using synthetic datasets of increasing size. 

The benchmark was performed on a machine with 

an Intel i7 processor and 16 GB of RAM. 

 Software: Python 3.9, NumPy for matrix 

operations. 

 Datasets: Synthetic datasets were generated 

with the following: 

 Machine counts: 100, 500, 1,000, 5,000, and 

10,000. 

 Part counts: 1,000, 5,000, 10,000, 50,000, and 

100,000. 

 Relationship density: 10% (to simulate real-

world sparsity). 

For each dataset size, the function 

find_machines_with_parts was run with: 

 A random selection of 10 parts to include. 

 A random selection of 5 parts to exclude. 

Execution time was measured for each 

configuration and averaged over three runs. 

Table 1 summarizes the updated benchmark 

results. 

Table 1 

Number of 

Machines 

Number of 

Parts 

Execution Time 

(seconds) 

100 1000 0.0000~ 

500 5000 0.0028 

1000 10000 0.0113 

5000 50000 0.2877 

10000 100000 1.1573 

 

The execution time scales predictably with the size 

of the dataset, demonstrating linear growth. The results 

confirm the method's ability to handle large datasets 

effectively.  

The execution times are plotted below in Figure 3, 

showing how the time required increases linearly with 

the number of machines. 

 

 
Fig. 3. Execution times 

 

Performance results: 

 For small datasets (e.g., 100 machines, 1,000 

parts), the execution time is negligible (0.0000 seconds). 

 For larger datasets (e.g., 10,000 machines, 

100,000 parts), the method maintains reasonable 

performance, processing the query in just over one 

second. 
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These results indicate that the method can handle 

real-world datasets of medium to large sizes efficiently. 

For example, processing data with 10,000 machines and 

100,000 parts representing a realistic industrial scenario 

requires just over a second. 

 

4. Discussion 
 

The benchmark results demonstrate that the 

proposed method for solving linear predicate equations 

is both efficient and scalable. The key observations 

from the benchmark analysis are summarized below, 

highlighting the performance, scalability, and potential 

areas for further improvement. 

The benchmark shows that the method scales 

linearly with the size of the dataset, as evidenced by the 

nearly proportional increase in execution time 

concerning the number of machines and parts . This 

linear complexity arises from the matrix-vector 

multiplication at the core of the method, which is 

computationally efficient. For datasets with up to 

10,000 machines and 100,000 parts, the execution time 

remains just over one second, making the approach 

practical for medium to large-scale real-world 

applications. 

The results confirm the method's suitability for 

real-world use cases. Scenarios involving medium to 

large datasets, such as industrial systems with thousands 

of machines and parts, can be handled with minimal 

computational overhead. This makes the method ideal 

for applications in intelligent systems, database 

optimization, and information retrieval. 

While the method performs well computationally, 

memory usage could become a limiting factor for 

extremely large datasets with millions of machines and 

parts. This is particularly relevant for dense datasets 

where the matrix representation might require 

significant storage. 

Future Optimization Opportunities : 

1. Sparse Matrix Optimization: For datasets 

where the relationships between machines and parts are 

sparse (a common scenario in industrial applications), 

leveraging sparse matrix libraries, such as scipy.sparse, 

could significantly reduce memory usage and improve 

computational efficiency. 

2. Parallel and Distributed Computing: The 

method could benefit from parallelization, especially for 

datasets with millions of rows and columns. Using 

multi-threading, multiprocessing, or distributed 

computing frameworks could further improve 

performance. 

3. GPU Acceleration: By leveraging GPU-based 

matrix computations using libraries such as cupy or 

PyTorch, the method could achieve substantial speedups 

for very large-scale datasets. 

The proposed method provides a scalable and 

efficient solution for solving linear predicate equations, 

demonstrating robust performance on datasets of 

various sizes. The linear growth in execution time and 

practical applicability to large datasets make it a 

valuable tool for a range of applications. However, for 

datasets exceeding millions of entries, additional 

optimizations such as sparse matrix representations, 

parallelization, or GPU acceleration would be necessary 

to maintain the method's efficiency and scalability. 

These enhancements could further extend its 

applicability to massive datasets in modern intelligent 

systems and data-driven industries. 

 

Conclusions 
 

The presented work introduces a novel approach 

for the formal representation of complex relationships 

and operations in intelligent systems through the algebra 

of finite predicates. This approach focuses on 

addressing the lack of a convenient method for 

programmatically implementing formulaic connections 

of free relationships, which is critical for applications in 

natural language processing and automatic control 

systems. 

This research contributes to the field by 

developing a formal representation of correspondence 

using logical spaces and the algebra of linear predicate 

operations. This representation is tailored for real-time 

computations, leveraging the capabilities of modern 

computing technologies and addressing the new 

demands of information systems. The novelty lies in the 

flexibility of the proposed method, which allows the 

modeling of diverse subject areas by systematically 

defining and using semantic features. 

From a practical perspective, the proposed method 

facilitates the development of intelligent interfaces, such 

as natural language processing systems, which are 

crucial for applications like machine translation, 

grammatical error correction, and optical text 

recognition. Moreover, the approach ensures scalability 

and robustness, enabling its application across various 

domains, from knowledge systems  [19] to decision-

making frameworks, ultimately enhancing the efficiency 

and adaptability of intelligent systems  [20]. 

 

Contributions of authors: conceptualization, 

methodology, formulation of tasks – Zoya Dudar; 

analysis – Volodymyr Liashyk; development of model, 

verification – Volodymyr Liashyk; analysis of results, 

visualization – Zoya Dudar; writing – original draft 

preparation visualization – Volodymyr Liashyk; 

writing – review and editing – Zoya Dudar.  

 



Applied mathematics and optimization 
 

111 

Conflict of Interest 
The authors declare that they have no conflict of 

interest about this research, whether financial, personal, 

authorship or otherwise, that could affect the research, 

and its results presented in this paper. 

 

Financing 

This study was conducted without financial 

support. 

 

Data Availability 
The work has associated data in the data 

repository. 

 

Use of Artificial Intelligence 
The authors confirm they did not use artificial 

intelligence methods while creating the presented work. 

 
All authors have read and agreed to the published 

version of this manuscript. 

 

References 
 

1. Karataiev, О., & Shubin, І. Formal Model of 

Multi-Agent Architecture of a Software System Based 

on Knowledge Interpretation. Radioelectronic and 

Computer Systems, 2023, no. 4, pp. 53–64. DOI: 

10.32620/reks.2023.4.05. 

2. Shubin, I., Kozyriev, A., Liashyk, V., & 

Chetverykov, G. Methods of adaptive knowledge testing 

based on the theory of logical networks. CEUR 

Workshop Proceedings, 2021, vol. 2870, pp. 1184-1193. 

Available at: https://ceur-ws.org/Vol-2870/paper86.pdf 

(accessed May 11, 2024). 

3. Shubin, I. Development of Conjunctive 

Decomposition Tools. CEUR Workshop Proceedings, 

2021, vol. 2870, pp. 890-900. Available at: https://ceur-

ws.org/Vol-2870/paper67.pdf (accessed May 15, 2024). 

4. Jansma, A., Mediano, P. A. M., & Rosas, F. E. 

The Fast Möbius Transform: An algebraic approach to 

information decomposition, 2024. DOI: 

10.48550/arXiv.2410.06224. 

5. Dudar, Z., & Litvin, S. Metod ontolohichnoho 

opysu v pobudovi servis-oriyentovanykh system 

rozpodilenoho navchannya  [Formalization and 

Application of Algebraic Methods in Automated 

Intelligent Systems]. Suchasnyy stan naukovykh 

doslidzhen' ta tekhnolohiy v promyslovosti — Innovative 

Technologies and Scientific Solutions for Industries, 

2024, pp. 39-53. DOI: 10.30837/ITSSI.2024.27.039. (In 

Ukrainian). 

6. Zhanlav, T., Otgondorj, Kh., Mijiddorj, R.-O., 

& Saruul, L. A unified approach to the construction of 

higher-order derivative-free iterative methods for 

solving systems of nonlinear equations. Proceedings of 

the Mongolian Academy of Sciences , 2024, vol. 64, no. 

02, pp. 24–35. DOI: 10.5564/pmas.v64i02.3649. 

7. Shubin, I., & Karataiev, O. Problemy 

povtornoho vykorystannya znan'u protsesi 

proyektuvannya prohramnykh system [Reuse of 

information based on the interpretation of knowledge]. 

Suchasnyy stan naukovykh doslidzhen' ta tekhnoloh iy v 

promyslovosti – Innovative Technologies and Scientific 

Solutions for Industries, 2023, no. 2, pp. 62-71. DOI: 

10.30837/ITSSI.2023.24.062. (In Ukrainian). 

8. Omran, P. G., Wang, Z., & Wang, K., Learning 

Rules with Attributes and Relations in Knowledge 

Graphs. AAAI Spring Symposium: MAKE, 2020, vol. 

3121. Available at: https://ceur-ws.org/Vol-

3121/paper10.pdf (accessed 2 April 2024). 

9. Vysotska V., Shubin I., Mezentsev M., 

Kobernyk K., & Chetverikov G. Ukrainian Big Data: 

The Problem Of Databases Localization. The 8th 

International Conference on Computational Linguistics 

and Intelligent Systems. (COLINS-2024), Lviv, Ukraine, 

IEEE, April 12–13, 2024, vol. 3688, pp. 122–133. 

Available at: https://ceur-ws.org/Vol-3688/paper9.pdf 

(аccessed May 14, 2024). 

10. Pellissier-Tanon, T., Weikum, G., & Suchanek, 

F., YAGO 4: A Reason-able Knowledge Base. 17th 

International Conference, ESWC 2020 , Heraklion, 

Crete, Greece, IEEE, 2020, pp. 583-596. DOI: 

10.1007/978-3-030-49461-2_34. 

11. Barkovska, O. Research into Speech-to-text 

Transformation Module in the Proposed Model of a 

Speaker’s Automatic Speech Annotation. Innovative 

Technologies and Scientific Solutions for Industries, 

2022, no. 4, vol. 22, pp. 5-13. DOI: 

10.30837/ITSSI.2022.22.005. 

12. Martinsson, A., & Su, P. Mastermind with a 

Linear Number of Queries. Journal of Mathematical 

Analysis and Applications, 2023, no. 3, pp. 92-94. DOI: 

10.48550/arXiv.2011.05921. 

13. Kamide, N. Sequential Fuzzy Description 

Logic. Reasoning for Fuzzy Knowledge Bases with 

Sequential Information. 2020 IEEE 50th International 

Symposium on Multiple-Valued Logic (ISMVL) , 

Miyazaki, Japan, IEEE, 2020 pp. 218–223. DOI: 

10.1109/ISMVL49045.2020.000-2. 

14. Qing-Hu, H., & Yarong, W. Rational solutions 

to the first order difference equations in the bivariate 

difference field. Journal of Symbolic Computation , 

2024, vol. 124. DOI: 10.1016/j.jsc.2024.102308. 

15. Shivappriya, S. N., Priyadarsini, M. J. P., 

Stateczny, A., Puttamadappa, C., & Parameshachari, B. 

D. Cascade Object Detection and Remote Sensing 

Object Detection Method Based on Trainable Activation 

Function. Remote Sensing, 2021, vol. 13, no. 2. DOI: 

10.3390/rs13020200. 

16. Zhao, Y., & Tao, C. The accurate and efficient 

solutions of linear systems for generalized sign regular 

matrices with certain signature. Journal of 

Computational and Applied Mathematics, 2023, vol. 

431, article no. 115280. DOI: 

10.1016/j.cam.2023.115280. 

17. Shubin, I., Snisar, S., & Litvin, S. Categorical 

Analysis of Logical Networks in Application to 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 1(113)               ISSN 2663-2012 (online) 
112 

Intelligent Radar Systems. 2020 IEEE International 

Conference on Problems of Infocommunications. 

Science and Technology (PIC S&T) , 6–9 October 2020, 

Kharkiv, Ukraine, IEEE, pp. 235-238. DOI: 

10.1109/picst51311.2020.9467893. 

18. Karataiev A., & Shubin I. Formalna model 

multyahentnoi arkhitektury prohramnoi systemy na 

osnovi interpretatsii znan [Formal model of multi-agent 

architecture of a software system based on knowledge 

interpretation]. Radioelectronic and Computer Systems, 

2023, no. 4, pp. 53–64. DOI: 10.32620/reks.2023.4.05. 

19. Chen, Z., & Wang, Y. Knowledge graph 

completion: A review. IEEE Access, 2020, vol. 8, pp. 

192435–192456. DOI: 10.1109/ACCESS.2020. 

3030076. 

20. Beskorovainyi, V., Kuropatenko, O., & Gobov, 

D. Optimization of transportation routes in a closed 

logistics system. Innovative Technologies and Scientific  

Solutions for Industries, 2019, pp. 24-32. DOI: 

10.30837/2522-9818.2019.10.024.

 

Received 17.10.2024, Accepted 17.02.2025 

 

МЕТОД РОЗВ'ЯЗАННЯ КВАНТОРНИХ ЛІНІЙНИХ РІВНЯНЬ  

НА БАЗІ АЛГЕБРИ ЛІНІЙНИХ ПРЕДИКАТНИХ ОПЕРАЦІЙ 

З. В. Дудар, В. А. Ляшик 

Предметом статті є підходи, які розширюють існуючий набір математичних інструментів для обробки 

складних зв’язків у базах даних і обчислювальних системах. Це особливо важливо для додатків, які 

вимагають ефективного пошуку інформації, представлення знань і логічного  висновку в автоматизованих 

середовищах прийняття рішень. Завдання передбачає розробку методу розв’язання кванторних лінійних 

рівнянь з використанням алгебри лінійних предикатних операцій, спрямованого на покращення оптимізації 

запитів до бази даних та розширення можливостей інтелектуальних систем. Методи, які використовуються 

в цьому дослідженні, включають алгебраїчні методи, логічні операції та матричні перетворення для 

моделювання та ефективного розв’язання предикатних рівнянь. Використовуючи алгебру кінцевих 

предикатів, запропонований підхід забезпечує більш систематичний і масштабований спосіб обробки 

логічних залежностей і оптимізації обчислювальних процесів. Метод інтегрує лінійні логічні оператори, 

гарантуючи, що складні запити та обмеження в базах даних можуть бути представлені та оброблені за 

допомогою формальних математичних моделей. Крім того, він представляє структуру, яка покращує 

структурне представлення знань, полегшуючи інтелектуальний аналіз даних. У результаті дослідження 

було розроблено формальний метод розв’язання кванторних лінійних рівнянь, що забезпечує більш 

ефективну оптимізацію запитів, логічне мислення та механізми підтримки прийняття рішень в експертних 

та автоматизованих інформаційних системах. Дослідження демонструє, що алгебраїч ні підходи можуть 

значно підвищити ефективність процесів пошуку інформації, особливо в інтелектуальних базах даних, де 

реляційні обмеження та залежності відіграють вирішальну роль. Тестування, проведене на синтетичних 

наборах даних, підтверджує масштабованість методу, показуючи, що він підтримує лінійне зростання часу 

виконання навіть із збільшенням складності даних. Висновок: запропонований метод розширює 

математичну основу для вирішення логічних рівнянь в обчислювальних середовищах, забезпечуючи 

потужний інструмент для інтелектуальних систем і оптимізації баз даних. Здатність формалізувати та 

обробляти складні логічні зв’язки сприяє підвищенню точності прийняття рішень та ефективності 

автоматизації. 

Ключові слова: інтелектуальні системи; алгебраїчні методи; формальне моделювання; логічні методи; 

алгебра скінченних предикатів; предикатне рівняння. 
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