102 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)

UDC 004.8:004.94:004.67 doi: 10.32620/reks.2025.1.07
Zoya DUDAR, Volodymyr LIASHYK
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

METHOD FOR SOLVING QUANTIFIER LINEAR EQUATIONS BASED
ON THE ALGEBRA OF LINEAR PREDICATE OPERATIONS

The subject involves structured approaches that extend the existing set of mathematical tools for processing
complex relationships within databases and computational systems. This is particularly relevant for
applications requiring efficient information retrieval, knowledge representation, and logical inference in
automated decision-making environments. The task of this article is to develop a method for solving quantifier
linear equations using the algebra of linear predicate operations, aimed at improving database query
optimization and enhancing the capabilities of intelligent systems. The methods used in this research include
algebraic techniques, logical operations, and matrix-based transformations to model and efficiently solve the
predicate equations. By leveraging the algebra of finite predicates, the proposed approach enables a more
systematic and scalable way to handle logical dependencies and optimize computational workflows. The
method integrateslinear logical operators, ensuring that complex queries and constraintsin databasescan be
represented and processed through formal mathematical models. Additionally, it introduces a framework that
enhances the structural representation of knowledge, facilitating intelligent data analysis. Because of the
study, a formal method was developed to solve quantifier linear equations, enabling more effective query
optimization, logical reasoning, and decision-support mechanisms within expert and automated information
systems. The research demonstrates that algebraic approaches can significantly improve the efficiency of
information retrieval processes, particularly in intelligent databases where relational constraints and
dependencies play a crucial role. Benchmarks conducted on synthetic datasets validate the scalability of the

method, showing that it maintains linear execution time growth even with increasing data complexity.
Conclusion: the proposed method expands the mathematical foundation for solving logical equations in

computational environments, providing a powerful tool for intelligent systems and database o ptimization. The
ability to formalize and process complex logical relationships contributes to improved decision-making
accuracy and automation efficiency.

Keywords: quantifier linear equations; algebraic methods; formal modeling; logical methods; algebra of finite
predicates; predicate equation.

Introduction and technical approaches for creating and using
information systems have already been developed [2, 3,
4]. Modemn intelligent information systems can perform
functions previously considered exclusively human
prerogatives, such as proving mathematical theorems,
translating texts from one language to another,
diagnosing diseases, and performing many other
functions. All these problems cannot be solved without
the involvement of a universal mathematical language.

This article aims to present the theoretical basis
and practical applications of the method, illustrating
how predicate equations can be used to simplify data
modelling and enhance the efficiency of data analysis
processes. By bridging the gap between theory and
practice, this work demonstrates the applicability of
predicate equations to real-world problems, offering
new opportunities for the systematic exploration and
understanding ofcomplex datasets.

Motivation

Advances in computational technology,
particularly in microelectronics and computer
architecture, have led to significant technical
capabilities in modern computing machines, such as
high speed and large memory capacity. This has
facilitated the expansion of the range of problems that
can be solved using computers and increased their role
in human life. However, this progress is purely
quantitative. Simple enhancement of computer functions
is effective only when humans can service them;
otherwise, such enhancement becomes pointless.

The rapid development of computing technology
and its widespread application drives high rates of
development in methods for creating intelligent systems
(IS) for various purposes [1]. Today, methodological

Creative Commons Attribution
NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

Applied mathematics and optimization

103

State of the art

The ability of a computer to provide a high degree
of information processing is becoming increasingly
important. The insufficiency of computing machine
software has shown the necessity of creating intelligent
systems that can assist in designing and creating
software products. The form in which this information
is represented on the computer significantly impacts the
speed and quality of information processing by
intelligent systems [1]. Various information systems use
different methods for representing knowledge
depending on the specific application areas. Knowledge
representation involves formalizing beliefs through
records or languages. A formalization that is perceived
by the computer is particularly interesting, for which
formal languages are developed to represent knowledge
in the computer’s memory.

Recently, numerous practical applications of
modern abstract algebra have been found in databases
and intelligent systems, which has led to increased
interest in the possibilities of the algebraic description
of information [2]. Various high-level language
translators and algorithmic algebras were developed on
the basis of algebraic methods in programming theory.

The automation of software development and the
design of computer systems is an important and urgent
problem in computer technology [3]. One of the main
tasks of this theory is the problem of the optimal
translator from one language to another, which consists
of finding the optimal implementation of the algorithm
in another language. The use of algebraic methods
allows you to create effective algorithms for translating
and optimizing programs.

The algebraic approach to the description of
derived information distinguishes a certain algebraic
system — the algebra of queries, in terms of which
derived information is written through the basic one [4].
This allows you to formalize the processes of processing
requests and obtaining information in databases. When
designing relational databases, knowledge about the
subject area is presented in the form of relations, which
is effective when designing expert systems.

Thus, it is necessary to translate from the
programming language to the machine language with
simultaneous optimization of the source program. The
process of solving such a problem is divided into
several intermediate stages, each of which involves a
partial optimization of the algorithm and translation into
an intermediate language corresponding to this stage. A
database is an information system that stores and
processes information and can provide answers to
requests. Moreover, it should be possible to obtain not
only information directly stored in the database but also
derivative information obtained based on basic

information. The task of obtaining derivative
information is directly related to the task of the result in
intelligent systems [5].

Database queries can be written using the formulas
of some logical languages, for example, using the
language of the difference of statements or the
difference of predicates of different orders, and the
expressive possibilities of these differences are different
[6]. There are various differences between classical and
non-classical logic. Boolean algebras, for example,
correspond to the classical difference in statements, and
special Ceiting algebras correspond to the intuitionistic
differences’ statements.

To be able to mathematically describe the
functions of the intellect, it was necessary to create a
formal language that could be used to conduct such a
description. The formal language had to be chosen in
such a way that any finite alphabetic operator could be
written down in a convenient form. The algebra of finite
predicates described below is such a language.

Predicate algebra describes only knowledge about
facts Algebra of operations on predicates or the algebra
of predicate operations must formalize operations on
knowledge [7] presented as a relation on some object
space. The algebra of predicates determines the
declarative component of knowledge, and algebraic
predicate operations a procedural component of
knowledge [8]. Two types of facts are distinguished: the
first describes the connection of two entities; moreover,
one of them will be defined as a subject, and the second
- as an object predicate action. In the first case, the fact
is a triplet “subject — predicate — object”, in which the
predicate is relational, and the subject and object
indicate two subjects. The second type of fact is a triplet
“subject — attribute — value”, where subject — this is an
object about which a fact is recorded, an attribute-
named feature of an object that has a certain in advance
property, and the value is some value of this feature, the
scope of which can be in some cases known For
example, these can be attributed facts place and time of
a certain action. The facts of the second type allow you
to split a set of entities on equivalence classes and
narrow the search space ways of conclusion. To obtain
such triples, there is a definition of the entities that form
many approaches. The task is set as a task of predicting
the relationship between a pair of entities, which
determines whether a couple is connected entities
through relation.

In connection with the constant increase in the
degree of computerization, developments in this
direction are considered, which have an urgent need for
a new theoretical and practical base in the field of the
formal description of excellent physical information
objects. BExpectations that the role of a universal
information mediator would improve language

104

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

programming were not fulfilled, it became clear that in
terms of convenience and flexibility, no artificial
language can compare with natural language [9]. At this
time, methodological and technical approaches to the
creation and use of information systems have already
been developed. Currently, available intelligent
information systems can violate functions that were
previously considered an exclusive prerogative of
humans: prove mathematical theorems, translate texts
from one language to another, diagnose diseases, and
affect many otherfunctions.

Another direction of informatization is the creation
of a system of integrated knowledge [10] and the
development of methods of active, mental navigation in
these systems, including through global computer
networks. Currently, the problem of hardware and
software tools that effectively manipulate knowledge of
natural language [11] has revived with such a need that
the efficiency of government institutions and production
systems force to depend on it. It is no coincidence that
among the software tools, the most popular are
programs focused on processing natural language
objects: text and linguistic editors and processors,
programs for automatic correction of grammatical
errors, automatic editing, natural language indexing, and
search, as well as programs for machine translation,
optical text recognition, etc. Recently, natural language
modules have been increasingly included in the
operating systems themselves.

All these problems are impossible without the
involvement of a universal mathematical language [12].
Developments in this field have been carried out for
several decades. Work was carried out on algebraization
in logic, and a special mathematical apparatus was
developed for the formula representation of relations
and operations on them, which are called the algebra of
finite predicates. The central place in the algebra of
predicates is occupied by relations, which reflect the
properties of objects and the connections between them.
However, until now there is no convenient method of
formulating the connection of free connections, which
allows us to implement them programmatically. The
possibility of a formula describing predictions or
relationships is important when designing an automatic
control system when developing a natural language
intelligent interface.

As a result, the apparatus of logical spaces and the
algebra of linear predicate operations were studied, and
a formal representation of correspondence was
developed using the algebraic apparatus of finite
predicates, oriented to real calculations of the
capabilities of the modern computer computing base
and new requirements for information technologies, it is
possible to abandon the modeling of any logical
structures that require a lot of computation in real-time.

Although the primary focus is on modeling natural
language structures, the method can be applied to any
subject area. By analyzing the objects and their
properties, appropriate semantic features and values are
selected. This enables the method to explore complex
data relationships, leading to deeper insights and
improved decision-making, while ensuring robustness
and broad applicability.

Objectives and approach

This study develops and formalizes a method
based on the algebra of predicate equations for solving
quantitative linear equations, while also reviewing the
formal approaches to modeling intelligent systems. The
proposed method overcomes the limitations of existing
algebraic techniques—such as restricted scalability,
difficulties in adapting to dynamic datasets, and
inefficiencies in managing complex logical
dependencies—by establishing a structured framework
for representing logical relationships and constraints
within the data. By expressing relationships within
datasets through predicate equations, the approach
formalizes dependencies and enhances analytical
workflows. Designed to improve both accuracy and
scalability while maintaining computational efficiency,
it is ideally suited for practical data analysis
applications.

To achieve these objectives, the research integrates
theoretical and practical elements. The theoretical
component formalizes the predicate algebra and
explores its application in data analysis. On the practical
side, algorithms are developed to demonstrate the
method's effectiveness in tasks such as filtering,
aggregation, and knowledge exraction, with
benchmarks conducted to assess performance across
datasets of varying sizes and complexity.

Section 1 details the method by defining the initial
data—problem dimensions, semantic features, logical
equations, and resulting variables—and describing an
algorithm that verifies system consistency, deactivates
non-essential features, and transforms a predicate
equation into an equivalent operator (matriX) equation.
Section 2 demonstrates the method’s practical
application in a database contex by modeling
relationships (for example, between factories and parts)
using predicate equations, which are then solved
through corresponding operator equations to optimize
query processing. Section 3 presents a detailed case
study, complete with a flowchart and benchmark tests
using synthetic datasets. The results confirm that the
execution time scales linearly with the dataset size,
thereby verifying the method’s efficiency and
scalability. The final sections discuss the performance
outcomes, suggest further optimizations (such as

Applied mathematics and optimization

105

employing sparse matrices, parallel processing, or GPU
acceleration), and summarize the contributions of this
work to formalizing complex logical relationships and
enhancing intelligent database systems.

1. Description of the method

At the beginning of the method is the data about
the modeled system: the dimension of the problem,
semantic features (input vector of data), a system of
logical equations, and a set of resulting variables. After
processing this data by the method, during which the
consistency of the system of logical equations is
determined and the non-essential features are turned off,
we obtain the entire array of solutions of the system of
logical equations at the output (Fig. 1).

It

| Array of solutions to the

; system of logical equations

Fig. 1. Model of the developed system

System of logical
equations

Input data vectors

Set of resulting
variables

Based on the theory of linear logical operators
mentioned in the previous section, we will build an
algorithm for solving the equation.

Let it be necessary to find a solution to the
following predicate equation:

Q(Y) =3X(P(X) vTO(Y, X)) , 1)

where Q(Y) and P(X) — predicates are given on the
branch u=(us....,un), consisting of n elements;
Y — vector;
X — predicate value;
TO(Y, X) — binary predicate is given on the
branch uxu.

It is necessary to calculate the predicate P(X),
considering the predicate Q(Y) and the linear logical
operator LO(Y, X) tobe known.

Considering that the existence quantifier connects
the predicate variable X, the equation can be rewritten
in the form:

Q(Y):;}l(P(uj)AK(Y,uj)), ©
where Q, P — predicates;
Y — vector,
u — branch;

K — transposed matrix of the operator.

Equality is fulfilled only if it is true for any value
of the predicate variable Y that runs through the set U.
Thus, we have the following n equalities:

Q(ui,uj)=iy\jn/:1(P(uj)/\K(ui,uj)), ©)

where Q, P — predicates;
uiand uj—branches;
K — transposed matrix of the operator.

Q(ui) and P(uj) — predicates by yi and X
yixe{0,1} and ijel,...,n. We denote the value of the
binary predicate TO(ui, uj) by kij €{0, 1}, ijel,...n.
Considering the following notations, equality will take
the form

n

Yi:.\/(xj/\kij)v ©

=0

where y; and X — predicate values for any iel,..,n
respectively yi, x5 €{0, 1} andijel,...n;
kij— unary operator.
It is known that if for arbitrary predicates P(t) and
Q(t) do the relation y: P(t)—X. From here we get about
the operatorequation of the form:

LO(X) =Y, ©)

where LO — linear logical operator;
X — predicate value;
Y — vector.

Thus, the predicate equation is equivalent to the
operator equation, defined in the logical space.
According to the idea of a continuous type of matrix of
a linear-logical constant operator acting from space to
itself, for reversibility, it is also necessary that in each
row and column of the matrix of such an operator there
should be one and only one element equal to one. If the
matrix satisfies the above conditions of the idea, then
the solution of the equation will be as follows

X =LO™(Y))

where LO —is a linear logical operator;
X — predicate value;
Y — vector.

The matrix of the inverse operator coincides with
the transposed matrix of the operator K. Thus, the
solution operator equation in the matrix type will be as
follows:

X =RT*Y @)

106

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

where X — predicate value;
R — binary predicate;
T — logical vector;
Y — vector.
As a result of solving the predicate equation, it can
be written in the form:

P(X) =3Y(Q(Y)ALO(X,Y)), ®)

where P(X) — predicate;
X — predicate value;
Q, Y —vectors;
LO —is a linear logical operator.

If the operator LO is not regular, the solution of
the predicate equation cannot be written in the form,
however, using the algebraic notation of the predicate
equation, we will look for the solution of the equation in
the following way.

Operator equation in the form of a system of
logical equations. Assume that the vector Y is not
singular.

j\:/l(kmj A X]) = ym

j\i/l(kij A Xj) =Y ©)

j\:/l(knj N XJ) = yn

where kij— unary operator;
yiand x — predicate values for anyiel,...,n.

Let ones be worth in vector Y at places
(ds,...,dy)=D, and zeros at places (z1,...,zy)=Z, DNZ=J,
DuZ=N, N=(1,..,n). The set of places where the zeros
of the vector are X, we will denote as L=(ls,..., Ix). The
symbol * will mark the places where there can be zeros
orones. The algorithm is as follows:

1. Initialization i=z1:

2. We form the set consisting of zero coordinates
of the vector X and ji=1. If TOJij] = 1, then X [j]:=I..
We organize the sorting of indices j from 0 ton;

3. Index i is equated to the next element from the
set Z and the transition to clause 2 until all the elements
of the set Z are selected;

4. We form the set M. We obtain logical vector X
consisting of zeros and symbols *;

5. Checking the system for consistency.
Substituting the found vector into the system. We
organize the solution of the system obtained according
to the formula (13):

(10)

where yjand x — predicate values;
kij— unary operator.

If the systemis incompatible, then the vector is not
a solution to the system;

6. Formation of the system solutions. In vector
X®): we substitute a unit instead of the first symbol *,
and zeros instead of the other symbols. Transition to
clause 5. If the formed logical vector is a solution of the
system, we store it in the array of solutions. We
organize various substitutions of zeros and ones instead
of * symbols, with each new combination going to item
5.

7. We write out all the solutions obtained fromthe
system if the array of solutions is not empty.
Furthermore, if not, the result is a message about the
inconsistency ofthe system.

2. Example application

The given example in this section illustrates the
possibility of using the theory of linear logical operators
and the method of solving the quantifier predicate
equation for processing and storing information in
databases.

Suppose that the database contains information
about four factories that produce parts for cars. Let
factory z1 produce parts di and dz, plant zz, produces
parts dz and ds, factory zz produces parts di1and d4,plant
z4 produces parts ds and d4. The existing “plant-part”
relationship is easily described by the following binary
predicate.

As a result, the predicate P3(z) corresponding to
the sought information is denoted by a quantifier
equation of the form:

3dP,(z,d) AP,(d) =P,(2) (1)
where d — parts;
P1, P2, P3 — predicates;
z — factory;
d — parts.

The solution of this quantifier predicate equation is
obtained from the solution of the corresponding
operator equation A*X=Y in the linear logical space E".
Matrix 15 represents the solution of the operator
equation A*X=Y in the linear logical space E" and the
vector X=(1 00 0).

12)

O O B
o O - -
= O — O
= P O O

Applied mathematics and optimization

107

Because of the action of operator A on vector X,
we get the vector Y equal to (1 0 1 0) meaning that the
parts di are served by factories z1 and zs. Thus, the
operation of searching for information of interest in the
database is replaced by operating operator
multiplication. Now it is necessary to calculate which
factories produce parts di or ds. Using the additive
property of the linear logical operator A, we obtain

AxX VAxX, =AX, vX;)=AxX,, (13
where A — linear logical operator;
X1, X2, X4 — vectors created by predicates.

Vector Xi and Xz are created by predicates that
describe the details of di1 and ds. Thus, the answers to
more complex queries in the database also come from
the solution of the operator equation. Using the
algorithm for solving the operator equation, described in
the previous subsection, it is possible to search for the
parts that they manufacture by given factories. For
example, let it be necessary to calculate which parts are
manufactured by factory zz. Therefore, the logical
vector Y=(0 10 0).

110 0 x| [0
01 1 0.|x,| |1

7 = 14
000 1 |x/| [0
101 1|x| [0

4

where X1, X, X3, X — vectors.

Because of the decision of the operator equation of
the formula 17.

Relative to X, we obtain the vectors (0 1 0 0) and
(001 0). Therefore, factory zz produces parts d2 and ds.

Next, let's assume that the database contains
information about which parts are used in certain
machines. Let's assume that machine my uses part do,
Machine my uses parts dz and dz, Machine mg uses parts
d2 and dz, and machine my uses parts ds and ds. This
relationship “machine-part” corresponds to the binary
predicate Ki(m, d).

Similar to the previously considered case, it is easy
to extract information about which machines and which
parts are used from the database by solving the
corresponding quantifier predicate equation, replacing it
with an operator equation. We have the following
equation:

JdK, (M, d) AK,(m) =K,(d), (15)
where d — parts;
K1 — binary predicate;
Ko(m) and Ka(d) — unary predicates;
m — machines.

They specify a specific machine and a specific
detail, respectively. Solving this equation concerning
predicate Ko(m) or predicate Ks(d), we will pull the
necessary information from the database. Suppose that
now it is necessary to solve a more complex problem,
namely: to calculate which factories produce parts for a
predetermined machine. The following system of
quantifier predicate equations corresponds to this
condition:

{HdPl(z, d) AP, (d) =Py(2) (16)

3dK, (m,d) AK,(m) =P,(d)’

where d — parts;
K1 — binary predicate;
Kz — unary predicate;
P — predicates;
m — machines;
z - plant.
We will display this system in the form of one
equation:
3dP,(z,d) A(3dK, (m,d) AK, (m))=P,(z2) (17)
where d — parts;
P1 and Ps — predicates;
z—plants;
K1 — binary predicate;
Kz — unary predicate;
m — machines.
The quantifier predicate equation corresponds to
an operator equation of the form:
BxT=X (18)
where B — operator matrix;
T — logical vector;
X — vectors created by predicates.
Logical vectors T and X are constructed,
respectively, from the binary predicates LO2(m) and

LOs(d). The linear logical operator U has the form
matrix

(19)

o O +» O
O B O -
O B kO
= P O O

built on the binary predicate TO1(m, d). Therefore,
the predicate equation corresponds to the operator
equation of the form:

A(B(T) =X, (20)

108

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

where A, B — operators matrix;
T — logical vector;
X — vectors created by predicates.
Let's transform the resulting equation into the
following form:
Z(M) =X, (21)
where Z — linear logical operator;
T — logical vector;
X — vectors created by predicates.

Z is equal to the superposition of operators A and
B. In this case,we have:

(22)

- O O -
o O R K
- O L O
[l i = R =)
S © ~ o
o B O K
o B L O
[i = R =)
S O = =
N =T e
= T = =
[el =)

where C — operator matrix.

A rather large search in the database is reduced to
the calculation of the matrix of the operator I, using the
operation of multiplying the matrices of the operators A
and B. For example, let's calculate which factories make
parts for machine my. The corresponding logical vector
T has the following form (1 0 0 0). Thus,we have:

(23)

o O ~
e
O Rk

As a result, we get that the manufacturers of
machine parts my there are plants z1 and z.

3. Case study

This study provides a demonstration of the
developed method for solving linear equations with
quantifiers, aligned with the stated objectives, and
implemented in Python to enable effective solutions.
Integral to this approach, algebraic methods find
numerous applications in databases [13, 14] and
intelligent systems [15, 16], enhancing the efficiency of
program translation and optimization. The algebra of
queries formalizes request processing and information
retrieval, making it essential for designing expert
systems [17, 18]. This combined methodology
facilitates a formal description of derived information
based on basic information, optimizing query handling
and retrieval processes.

In the context of this study, an important step is to
translate query conditions into a system of linear

equations, which allows for more efficient processing of
database queries and information retrieval.
Transforming selection and aggregation conditions into
linear equations not only formalizes the logic of queries
but also provides the ability to apply mathematical
methods to data analysis.

To address the problem of identifying connections
based on the example discussed earlier, we adopted a
structured data model representing information as
logical matrices. This approach allows us to express
relationships using linear predicate equations, enabling
efficient filtering, searching, and aggregation of data
through matrix computations.

In the following example, we consider how
specific queries can be transformed into a system of
linear equations, illustrating this process in an abstract
scenario.

Let's say we have a database data structure
consisting of three main entities:

— Machines: each machine is uniquely identified
by a MachinelD and has a descriptive name
(MachineName).

— Parts: Each part has a unique
(PartID) and a name (PartName).

— MachineParts (Machine-Part Relationships):
This table defines the relationships between machines
and parts, indicating which parts are used by each
machine.

To process this data and perform logical operations
efficiently, the relationships are transformed into a
matrix MXP, where M is the number of machines (rows)
and P is the number of parts (columns). In this matrix
representation, each element A[i,j] is set to 1 if machine
i uses part j, and O otherwise. This transformation
enables the relationships to be expressed mathematically
using linear predicate equations.

The core equation of this approach is represented
as:

identifier

Y=A-X (24)
where A is the logical operator matrix derived from the
MachineParts table, X is a binary vector representing
the selection conditions for parts (X[j]=1 if part j is
included in the query, 0 otherwise), and Y is the
resulting binary vector where Y[i]=1 indicates that
machine i satisfies the conditions imposed by X. For
example, if a query specifies that we are interested in
parts 101 and 103, the vector X would be represented as
[1,0,1] for a dataset with three parts (101, 102, 103).
Multiplying A by X will produce Y, identifying the
machines that use at least one of the specified parts.

In addition to basic logical operations like "OR,"
more complex queries can be handled. For instance,
finding machines that use both parts 101 and 103
involves a stricter condition, requiring YJi] to equal 2

Applied mathematics and optimization

109

(indicating that machine i uses both parts). Similarly,
negation ("NOT") can be applied by excluding specific
parts from the selection vector X.

—b{ Forming logical vector X I(—‘

| Determining the task size |

| Solving the system of equations I No
| Substituting vector X into the system li—

I

| Solving the system of equations l

Checking the system
Checking system compatibility No=>| of equations for
inconsistency

Fig. 2. Flowchart of the method

To ensure a robust and scalable solution, the
flowchart of the method outlines the logical process of
solving such linear predicate equations (Fig. 2). This
algorithm outlines the step-by-step process forsolving a
system of equations related to tasks in intelligent
systems and databases.

The process begins with the input of necessary
indicators and determining the size of the task. This step
provides the foundation for subsequent calculations.
Based on the input data, the logical vector X is formed,
representing the initial data required for the system's
operation. The next step involves calculating the
operator K[ij]. If the operator cannot be computed, the
vector X is substituted into the system for further
analysis.

If the system is compatible, the solution array is
formed. If not, the algorithm performs an analysis to
identify inconsistencies in the system. Once
compatibility is confirmed, a solution array is generated,
containing the computed values for the task. In the final
stages, the system size is checked. If the task is
complete, the algorithm terminates. Otherwise, it loops
back to the specific steps for adjustments and further
analysis. The algorithm concludes once a valid solution
is found or the systemis determined to be incompatible.

To validate the efficiency and scalability of the
proposed method, an updated benchmark was conducted
using synthetic datasets ofincreasing size.

The benchmark was performed on a machine with
an Intel i7 processorand 16 GB of RAM.

— Software: Python 3.9, NumPy for
operations.

— Datasets: Synthetic datasets were generated
with the following:

matrix

— Machine counts: 100, 500, 1,000, 5,000, and
10,000.

— Part counts: 1,000, 5,000, 10,000, 50,000, and
100,000.

— Relationship density: 10% (to simulate real-
world sparsity).

For each dataset size, the
find_machines_with_parts was run with:

— Arandom selection of 10 parts to include.

— Arandom selection of 5 parts to exclude.

BExecution time was measured for
configuration and averaged over three runs.

Table 1 summarizes the updated benchmark

function

each

results.
Table 1
Number of Number of Execution Time
Machines Parts (secondk)
100 1000 0.0000~
500 5000 0.0028
1000 10000 0.0113
5000 50000 0.2877
10000 100000 1.1573

The execution time scales predictably with the size
of the dataset, demonstrating linear growth. The results
confirm the method's ability to handle large datasets
effectively.

The execution times are plotted below in Figure 3,
showing how the time required increases linearly with
the number of machines.

1.2 1

= = o =
+ (=] =) =]
L L L L

Execution time in seconds

=
[}
|

o
=]
|

4000 6000 8000 10000

Machines count

0 2000

Fig. 3. Execution times

Performance results:

— For small datasets (e.g., 100 machines, 1,000
parts), the execution time is negligible (0.0000 seconds).

— For larger datasets (e.g., 10,000 machines,
100,000 parts), the method maintains reasonable
performance, processing the query in just over one
second.

110

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

These results indicate that the method can handle
real-world datasets of medium to large sizes efficiently.
For example, processing data with 10,000 machines and
100,000 parts representing a realistic industrial scenario
requires just over a second.

4. Discussion

The benchmark results demonstrate that the
proposed method for solving linear predicate equations
is both efficient and scalable. The key observations
from the benchmark analysis are summarized below,
highlighting the performance, scalability, and potential
areas for further improvement.

The benchmark shows that the method scales
linearly with the size of the dataset, as evidenced by the
nearly proportional increase in execution time
concerning the number of machines and parts. This
linear complexity arises from the matrix-vector
multiplication at the core of the method, which is
computationally efficient. For datasets with up to
10,000 machines and 100,000 parts, the execution time
remains just over one second, making the approach
practical for medium to large-scale real-world
applications.

The results confirm the method's suitability for
real-world use cases. Scenarios involving medium to
large datasets, such as industrial systems with thousands
of machines and parts, can be handled with minimal
computational overhead. This makes the method ideal
for applications in intelligent systems, database
optimization, and information retrieval.

While the method performs well computationally,
memory usage could become a limiting factor for
extremely large datasets with millions of machines and
parts. This is particularly relevant for dense datasets
where the matrix representation might require
significant storage.

Future Optimization Opportunities:

1. Sparse Matrix Optimization: For datasets
where the relationships between machines and parts are
sparse (@ common scenario in industrial applications),
leveraging sparse matrix libraries, such as scipy.sparse,
could significantly reduce memory usage and improve
computational efficiency.

2. Parallel and Distributed Computing: The
method could benefit from parallelization, especially for
datasets with millions of rows and columns. Using

multi-threading, multiprocessing, or distributed
computing frameworks could further improve
performance.

3. GPU Acceleration: By leveraging GPU-based
matrix computations using libraries such as cupy or
PyTorch, the method could achieve substantial speedups
for very large-scale datasets.

The proposed method provides a scalable and
efficient solution for solving linear predicate equations,
demonstrating robust performance on datasets of
various sizes. The linear growth in execution time and
practical applicability to large datasets make it a
valuable tool for a range of applications. However, for
datasets exceeding millions of entries, additional
optimizations such as sparse matrix representations,
parallelization, or GPU acceleration would be necessary
to maintain the method's efficiency and scalability.
These enhancements could further extend its
applicability to massive datasets in modern intelligent
systems and data-driven industries.

Conclusions

The presented work introduces a novel approach
for the formal representation of complex relationships
and operations in intelligent systems through the algebra
of finite predicates. This approach focuses on
addressing the lack of a convenient method for
programmatically implementing formulaic connections
of free relationships, which is critical for applications in
natural language processing and automatic control
systems.

This research contributes to the field by
developing a formal representation of correspondence
using logical spaces and the algebra of linear predicate
operations. This representation is tailored for real-time
computations, leveraging the capabilities of modern
computing technologies and addressing the new
demands of information systems. The novelty lies in the
flexibility of the proposed method, which allows the
modeling of diverse subject areas by systematically
defining and using semantic features.

From a practical perspective, the proposed method
facilitates the development of intelligent interfaces, such
as natural language processing systems, which are
crucial for applications like machine translation,
grammatical error correction, and optical text
recognition. Moreover, the approach ensures scalability
and robustness, enabling its application across various
domains, from knowledge systems [19] to decision-
making frameworks, ultimately enhancing the efficiency
and adaptability of intelligent systems [20].

Contributions of authors: conceptualization,
methodology, formulation of tasks — Zoya Dudar;
analysis — Volodymyr Liashyk; development of model,
verification — Volodymyr Liashyk; analysis of results,
visualization — Zoya Dudar; writing — original draft
preparation visualization - Volodymyr Liashyk;
writing — review and editing — Zoya Dudar.

Applied mathematics and optimization 111
Conflict of Interest 7. Shubin, 1., & Karataiev, O. Problemy

The authors declare that they have no conflict of ~ povtornoho vykorystannya znan'u protsesi
interest about this research, whether financial, personal, ~ Proyektuvannya prohramnykh system [Reuse of

authorship or otherwise, that could affect the research,
and its results presented in this paper.

Financing
This study was conducted without financial
support.

Data Availability
The work has associated data
repository.

in the data

Use of Artificial Intelligence
The authors confirm they did not use artificial
intelligence methods while creating the presented work.

All authors have read and agreed to the published
version of this manuscript.

References

1. Karataiev, O., & Shubin, I. Formal Model of
Multi-Agent Architecture of a Software System Based
on Knowledge Interpretation. Radioelectronic and
Computer Systems, 2023, no. 4, pp. 53-64. DOL:
10.32620/reks.2023.4.05.

2. Shubin, 1., Kozyriev, A., Liashyk, V, &
Chetverykov, G Methods of adaptive knowledge testing
based on the theory of logical networks. CEUR
Workshop Proceedings, 2021, vol. 2870, pp. 1184-1193.
Available at: https://ceur-ws.org/\o1-2870/paper86.pdf
(accessed May 11, 2024).

3. Shubin, I. Development of Conjunctive
Decomposition Tools. CEUR Workshop Proceedings,
2021, vol. 2870, pp. 890-900. Available at: https://ceur-
ws.org/\bI1-2870/paper67.pdf (accessed May 15, 2024).

4. Jansma, A., Mediano, P. A. M., & Rosas, F. E.
The Fast Mobius Transform: An algebraic approach to
information decomposition, 2024. DOI:
10.48550/ar Xiv.2410.06224.

5. Dudar, Z., & Litvin, S. Metod ontolohichnoho
opysu Vv pobudovi servis-oriyentovanykh system
rozpodilenoho navchannya [Formalization and
Application of Algebraic Methods in Automated
Intelligent Systems]. Suchasnyy stan naukovykh
doslidzhen'ta tekhnolohiy v promyslovosti — Innovative
Technologies and Scientific Solutions for Industries,
2024, pp. 39-53. DOI: 10.30837/ITSSI.2024.27.039. (In
Ukrainian).

6. Zhanlav, T., Otgondorj, Kh., Mijiddorj, R.-O.,
& Saruul, L. A unified approach to the construction of
higher-order derivative-free iterative methods for
solving systems of nonlinear equations. Proceedings of
the Mongolian Academy of Sciences, 2024, vol. 64, no.
02, pp. 24-35. DOI: 10.5564/pmas.v64i02.3649.

information based on the interpretation of knowledge].
Suchasnyy stan naukovykh doslidzhen' tatekhnolohiy v
promyslovosti — Innovative Technologies and Scientific
Solutions for Industries, 2023, no. 2, pp. 62-71. DOI:
10.30837/1TSS1.2023.24.062. (In Ukrainian).

8. Omran, P. G, Wang, Z., & Wang, K., Learning
Rules with Attributes and Relations in Knowledge
Graphs. AAAI Spring Symposium: MAKE, 2020, vol.
3121. Available at: https://ceur-ws.org/\ol-
3121/paperl0.pdf (accessed 2 April 2024).

9. Wsotska \, Shubin I, Mezentsev M.,
Kobernyk K., & Chetverikov G Ukrainian Big Data:
The Problem Of Databases Localization. The 8th
International Conference on Computational Linguistics
and Intelligent Systems. (COLINS-2024), Lviv, Ukraine,
IEEE, April 12-13, 2024, vol. 3688, pp. 122-133.
Available at: https://ceur-ws.org/\ol-3688/paper9.pdf
(accessed May 14, 2024).

10. Pellissier-Tanon, T., Weikum, G., & Suchanek,
F., YAGO 4. A Reason-able Knowledge Base. 17th
International Conference, ESWC 2020, Heraklion,
Crete, Greece, IEEE, 2020, pp. 583-596. DOI:
10.1007/978-3-030-49461-2_34.

11. Barkovska, O. Research into Speech-to-text
Transformation Module in the Proposed Model of a
Speaker’s Automatic Speech Annotation. Innovative
Technologies and Scientific Solutions for Industries,
2022, no. 4, wvol. 22, pp. 513 DOL
10.30837/1T SS1.2022.22.005.

12. Martinsson, A., & Su, P. Mastermind with a
Linear Number of Queries. Journal of Mathematical
Analysis and Applications, 2023, no. 3, pp. 92-94. DOI:
10.48550/ar Xiv.2011.05921.

13. Kamide, N. Sequential Fuzzy Description
Logic. Reasoning for Fuzzy Knowledge Bases with
Sequential Information. 2020 IEEE 50th International
Symposium on Multiple-Valued Logic (ISMVL),
Miyazaki, Japan, IEEE, 2020 pp. 218-223. DOI:
10.1109/ISM VL 49045.2020.000-2.

14. Qing-Hu, H., & Yarong, W. Rational solutions
to the first order difference equations in the bivariate
difference field. Journal of Symbolic Computation,
2024, vol. 124. DOI: 10.1016/j.js¢.2024.102308.

15. Shivappriya, S. N., Priyadarsini, M. J. P,
Stateczny, A., Puttamadappa, C., & Parameshachari, B.
D. Cascade Object Detection and Remote Sensing
Object Detection Method Based on Trainable Activation
Function. Remote Sensing, 2021, vol. 13, no. 2. DOI:
10.3390/rs13020200.

16. Zhao, Y, & Tao, C. The accurate and efficient
solutions of linear systems for generalized sign regular

matrices with certain signature. Journal of
Computational and Applied Mathematics, 2023, vol.
431, article no. 115280. DOl:

10.1016/j.cam.2023.115280.
17. Shubin, 1., Snisar, S., & Litvin, S. Categorical
Analysis of Logical Networks in Application to

112

Radioelectronic and Computer Systems, 2025, no. 1(113)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Intelligent Radar Systems. 2020 IEEE International
Conference on Problems of Infocommunications.
Science and Technology (PIC S&T), 6-9 October 2020,
Kharkiv, Ukraine, IEEE, pp. 235-238. DOI:
10.1109/picst51311.2020.9467893.

18. Karataiev A., & Shubin I. Formalna model
multyahentnoi arkhitektury prohramnoi systemy na

19. Chen, Z., & Wang, Y. Knowledge graph
completion: A review. IEEE Access, 2020, vol. 8, pp.
192435-192456. DOL: 10.1109/ACCESS.2020.
3030076.

20. Beskorovainyi, V., Kuropatenko, O., & Gobov,
D. Optimization of transportation routes in a closed
logistics system. Innovative Technologiesand Scientific

osnovi interpretatsii znan [Formal model of multi-agent
architecture of a software system based on knowledge
interpretation]. Radioelectronic and Computer Systems,
2023, no. 4, pp.53-64. DOI: 10.32620/reks.2023.4.05.

Solutions for Industries, 2019, pp. 24-32. DOI:
10.30837/2522-9818.2019.10.024.

Received 17.10.2024, Accepted 17.02.2025

METOJ PO3B'SI3AHHSI KBAHTOPHHX JIHIAHUX PIBHSTHb
HA BA3I AJITEGPU JIIHIMHUX TIPEJUKATHHUX OIIEPALIN

3. B. lyoap, B. A. Iawux

IIpeqmMeToM CTaTTi € MiAXOAH, SKi PO3NIUPIOIOTH ICHYIOUHMHA HAOIp MaTeMaTHYHHUX IHCTPYMEHTIB i1 0OpOOKH
CKIQJHUX 3B’S3KIB y 0a3ax IOaHuX 1 oOYHMCIOBaNIBbHHX cHucTeMax. lle 0coONmMBO BaKIMBO Ui JOJATKIB, SIKi
BUMararoTh €(EeKTHBHOTO MOIIYKY iH(pOpMaIil, MpeCTABICHHS 3HaHb 1 JOTIYHOTO BHCHOBKY B aBTOMAaTH30BaHHX
CepeloBUINaX MPUHUHATTA pIlIeHb. 3aBOaHHA Nependadae po3poOKy METOqy pO3B’s3aHHS KBAaHTOPHHX JIHIHHUX
PIBHSHD 3 BHKOPUCTAHHSIM ajireOpu JIHIAHUAX MpeIUKaTHUX ONepalliid, CIpsIMOBAaHOTO Ha MOKPAIICHHS OMTUMIi3allil
3anuTiB 10 0a3M JaHUX Ta PO3LIMPEHHS MOXJIMBOCTEH IHTEJEKTyalbHUX cUCTeM. MeToaH, sIKi BUKOPHCTOBYIOTHCS
B IIbOMY JIOCHI/DKCHHI, BKIIOYAIOTh anreOpaidHi MeEToJau, JIOTIYHI omepamii Ta MaTpu4YHi TEPETBOPEHHS IS
MOJICTIIOBaHHSI Ta e(EKTUBHOIO pO3B’s3aHHS NPEIMKATHUX PIBHSIHb. BHKOPHCTOBYIOUM airedpy KiH EBUX
IpeIrKaTiB, 3alpOTOHOBAHMI mmimxin 3abe3meuye OULBIN cHCTeMATHYHMII 1 MacmTaboBaHWH crocid 00poOxu
JOTIYHUX 3aJeKHOCTeH 1 omTMMi3amil OOYHCIIOBAJIFHHMX IpoIleciB. MeTon IHTeTpye JHIHI JIOTiYHI omepaTopw,
rapaHTylO4Yd, M0 CKIAJHI 3amuTd Ta OOMekeHHs B 0a3ax NaHUX MOXYTh OyTH TpelcTaBiieHi Ta oOpoOieHi 3a
JIOTIOMOTOI0 (OpMallbHUX MaTeMaTHIHUX Mojeneid. KpiM Toro, BiH TpencTaBisie CTPYKTypY, SIKa MOKPAIIy€e
CTPYKTypHE TpPEJACTABJICHHS 3HaHb, TOJETIIYIOYH IHTCICKTyalbHUH aHali3 JMaHuxX. Y pe3yJabTaTi J0CIiDKSHHS
Oymno po3pobieHo GopmaibHUE MeToN pO3B’S3aHHS KBAHTOPHHX JIHIMHWUX pPIiBHSAHB, MO 3a0e3nedye Oiumbin
e(eKTUBHY ONTHMI3Allil0 3aNWTIB, JIOTIYHE MHUCICHHS Ta MEXAHI3MHU IATPUMKH HPUHHATTI PIOIEHb B €KCIEPTHHX
Ta aBTOMATH30BaHMX iHpOpMamiifHMX cucteMax. J{OCHmKEHHS AEMOHCTpY€, Im0 amreOpaldHi MIX0au MOXYTbh
3HAQYHO IBUIINTH e(eKTHBHICTH IpoIeciB moumryKy iHpopmalii, oco6imBO B IHTeNEeKTyalbHHMX 0a3zax NaHHX, JIe
persmiiiHi 0OMeXXeHHsT Ta 3aJeXHOCTI BiiIrpaloTh BHPIMIANbHY pOJb. TecTyBaHHS, MPOBEJCHE HAa CHHTCTHYHHX
Habopax JaHUX, HiATBEP/DKYE MAacIITaboBaHICTH METOJy, MOKA3yIOYH, IO BiH MIATPUMYE JiHIHHE 3pOCTAHHS 4acy
BUKOHAHHA HAaBiTh 13 30UIbIIEHHAM CKJIAJHOCTI JaHUX. BHCHOBOK: 3ampONOHOBAHMKA METOJ PO3LIMPIOE
MaTeMaTUyHy OCHOBY /Ul BHUPIIICHHS JIOTIYHMX PIBHSHb B OOYHMCIIOBAIPHUX CEpEeAOBHIIAX, 3a0e3Meuyrouu
HNOTYXXHHUH IHCTPYMEHT I IHTENeKTyalbHUX CHCTeM 1 omntuMmizamii 0a3 maHux. 37aTHiCTh (opMmamzyBaTH Ta
00poOIsITH CKIANHI JIOTIYHI 3B’S3KM CIPHUS€ MiNBUIICHHIO TOYHOCTI NPUHHATTA pIlIeHp Ta e(QEKTUBHOCTI
aBTOMaTH3allii.

Kiro4doBi cioBa: iHTeNEeKTyalbHI CHCTEMH; anreOpaldHi MeToau; (popMalbHEe MOJCTIOBAHHS; JIOTIYHI METOIH;
anreOpa CKIHUCHHUX MPEAUKATIB; MPEIUKATHE PIBHSIHHS.

Jdynap 3os1 BomogummupiBHa — kaHnI TexH. Hayk, npod., 3aB. kad. mporpaMmHoi imkeHepil, XapKiBChKUit
HaIllOHAJFHUN yHIBEPCHTET PallioCIeKTPOHIKH, XapKiB, YKpaiHa.

Jisumk Bonogumup AmgpiiioBmua — acrm. kad. TporpaMHOi iHKeHepid,
YHIBEpPCHUTET pafdioeeKTpOHIKN, XapkKiB, YkpaiHa.

XapKiBChbKUI HAIIOHATBHAN

Zoya Dudar — Candidate of Technical Sciences, Professor, Head of the Department of Software Engineering,
Kharkiv National University of Radioelectronics, Kharkiv, Ukraine,
e-mail: zoya.dudar@nure.ua, ORCID: 0000-0001-5728-9253, Scopus AuthorID: 6506991522.

Volodymyr Liashyk — Postgraduate Student of the Department of Software Engineering, Kharkiv National
University of Radio Electronics, Kharkiv, Ukraine,
e-mail: volodymyr.liashyk@nure.ua, ORCID: 0000-0001-7326-0813.

