
ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
102

UDC 004.8:004.94:004.67 doi: 10.32620/reks.2025.1.07

Zoya DUDAR, Volodymyr LIASHYK

Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

METHOD FOR SOLVING QUANTIFIER LINEAR EQUATIONS BASED

ON THE ALGEBRA OF LINEAR PREDICATE OPERATIONS

The subject involves structured approaches that extend the existing set of mathematical tools for processing

complex relationships within databases and computational systems. This is particularly relevant for

applications requiring efficient information retrieval, knowledge representation, and logical inferen ce in
automated decision-making environments. The task of this article is to develop a method for solving quanti fier

linear equations using the algebra of linear predicate operations, aimed at improving database query

optimization and enhancing the capabilities of intelligent systems. The methods used in this research include

algebraic techniques, logical operations, and matrix-based transformations to model and efficiently solve the

predicate equations. By leveraging the algebra of finite predicates, the p roposed approach enables a more

systematic and scalable way to handle logical dependencies and optimize computational workflows. The

method integrates linear logical operators, ensuring that complex queries and constraints in databases can be

represented and processed through formal mathematical models. Additionally, it introduces a framework that

enhances the structural representation of knowledge, facilitating intelligent data analysis. Because of the

study, a formal method was developed to solve quantifier linear equations, enabling more effective query

optimization, logical reasoning, and decision-support mechanisms within expert and automated information

systems. The research demonstrates that algebraic approaches can significantly improve the efficienc y of

information retrieval processes, particularly in intelligent databases where relational constraints and

dependencies play a crucial role. Benchmarks conducted on synthetic datasets validate the scalability of the

method, showing that it maintains linear execution time growth even with increasing data complexity.
Conclusion: the proposed method expands the mathematical foundation for solving logical equations in

computational environments, providing a powerful tool for intelligent systems and database o ptimization . The

ability to formalize and process complex logical relationships contributes to improved decision -making

accuracy and automation efficiency.

Keywords: quantifier linear equations; algebraic methods; formal modeling; logical methods; algebra of finite

predicates; predicate equation.

Introduction

Motivation
Advances in computational technology,

particularly in microelectronics and computer

architecture, have led to significant technical

capabilities in modern computing machines, such as

high speed and large memory capacity. This has

facilitated the expansion of the range of problems that

can be solved using computers and increased their role

in human life. However, this progress is purely

quantitative. Simple enhancement of computer functions

is effective only when humans can service them;

otherwise, such enhancement becomes pointless.

The rapid development of computing technology

and its widespread application drives high rates of

development in methods for creating intelligent s ystems

(IS) for various purposes [1]. Today, methodological

and technical approaches for creating and using

information systems have already been developed [2, 3,

4]. Modern intelligent information systems can perform

functions previously considered exclusively human

prerogatives, such as proving mathematical theorems,

translating texts from one language to another,

diagnosing diseases, and performing many other

functions. All these problems cannot be solved without

the involvement of a universal mathematical language.

This article aims to present the theoretical basis

and practical applications of the method, illustrating

how predicate equations can be used to simplify data

modelling and enhance the efficiency of data analysis

processes. By bridging the gap between theory and

practice, this work demonstrates the applicability of

predicate equations to real-world problems, offering

new opportunities for the systematic exploration and

understanding of complex datasets .

 Creative Commons Attribution

NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

Applied mathematics and optimization

103

State of the art

The ability of a computer to provide a high degree

of information processing is becoming increasingly

important. The insufficiency of computing machine

software has shown the necessity of creating intelligent

systems that can assist in designing and creating

software products. The form in which this information

is represented on the computer significantly impacts the

speed and quality of information processing by

intelligent systems [1]. Various information systems use

different methods for representing knowledge

depending on the specific application areas. Knowledge

representation involves formalizing beliefs through

records or languages. A formalization that is perceived

by the computer is particularly interesting, for which

formal languages are developed to represent knowledge

in the computer’s memory.

Recently, numerous practical applications of

modern abstract algebra have been found in databases

and intelligent systems, which has led to increased

interest in the possibilities of the algebraic description

of information [2]. Various high-level language

translators and algorithmic algebras were developed on

the basis of algebraic methods in programming theory.

The automation of software development and the

design of computer systems is an important and urgent

problem in computer technology [3]. One of the main

tasks of this theory is the problem of the optimal

translator from one language to another, which consists

of finding the optimal implementation of the algorithm

in another language. The use of algebraic methods

allows you to create effective algorithms for translating

and optimizing programs.

The algebraic approach to the description of

derived information distinguishes a certain algebraic

system – the algebra of queries, in terms of which

derived information is written through the basic one [4].

This allows you to formalize the processes of processing

requests and obtaining information in databases. When

designing relational databases, knowledge about the

subject area is presented in the form of relations, which

is effective when designing expert systems.

Thus, it is necessary to translate from the

programming language to the machine language with

simultaneous optimization of the source program. The

process of solving such a problem is divided into

several intermediate stages, each of which involves a

partial optimization of the algorithm and translation into

an intermediate language corresponding to this stage. A

database is an information system that stores and

processes information and can provide answers to

requests. Moreover, it should be possible to obtain not

only information directly stored in the database but also

derivative information obtained based on basic

information. The task of obtaining derivative

information is directly related to the task of the result in

intelligent systems [5].

Database queries can be written using the formulas

of some logical languages, for example, using the

language of the difference of statements or the

difference of predicates of different orders, and the

expressive possibilities of these differences are different

[6]. There are various differences between classical and

non-classical logic. Boolean algebras, for example,

correspond to the classical difference in statements, and

special Geiting algebras correspond to the intuitionistic

differences’ statements .

To be able to mathematically describe the

functions of the intellect, it was necessary to create a

formal language that could be used to conduct such a

description. The formal language had to be chosen in

such a way that any finite alphabetic operator could be

written down in a convenient form. The algebra of finite

predicates described below is such a language.

Predicate algebra describes only knowledge about

facts Algebra of operations on predicates or the algebra

of predicate operations must formalize operations on

knowledge [7] presented as a relation on some object

space. The algebra of predicates determines the

declarative component of knowledge, and algebraic

predicate operations a procedural component of

knowledge [8]. Two types of facts are distinguished: the

first describes the connection of two entities; moreover,

one of them will be defined as a subject, and the second

- as an object predicate action. In the first case, the fact

is a triplet “subject – predicate – object”, in which the

predicate is relational, and the subject and object

indicate two subjects. The second type of fact is a triplet

“subject – attribute – value”, where subject – this is an

object about which a fact is recorded, an attribute-

named feature of an object that has a certain in advance

property, and the value is some value of this feature, the

scope of which can be in some cases known For

example, these can be attributed facts place and time of

a certain action. The facts of the second type allow you

to split a set of entities on equivalence classes and

narrow the search space ways of conclusion. To obtain

such triples, there is a definition of the entities that form

many approaches. The task is set as a task of predicting

the relationship between a pair of entities, which

determines whether a couple is connected entities

through relation.

In connection with the constant increase in the

degree of computerization, developments in this

direction are considered, which have an urgent need for

a new theoretical and practical base in the field of the

formal description of excellent physical information

objects. Expectations that the role of a universal

information mediator would improve language

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
104

programming were not fulfilled, it became clear that in

terms of convenience and flexibility, no artificial

language can compare with natural language [9]. At this

time, methodological and technical approaches to the

creation and use of information systems have already

been developed. Currently, available intelligent

information systems can violate functions that were

previously considered an exclusive prerogative of

humans: prove mathematical theorems, translate texts

from one language to another, diagnose diseases, and

affect many other functions.

Another direction of informatization is the creation

of a system of integrated knowledge [10] and the

development of methods of active, mental navigation in

these systems, including through global computer

networks. Currently, the problem of hardware and

software tools that effectively manipulate knowledge of

natural language [11] has revived with such a need that

the efficiency of government institutions and production

systems force to depend on it. It is no coincidence that

among the software tools, the most popular are

programs focused on processing natural language

objects: text and linguistic editors and processors,

programs for automatic correction of grammatical

errors, automatic editing, natural language indexing, and

search, as well as programs for machine translation,

optical text recognition, etc. Recently, natural language

modules have been increasingly included in the

operating systems themselves .

All these problems are impossible without the

involvement of a universal mathematical language [12].

Developments in this field have been carried out for

several decades. Work was carried out on algebraization

in logic, and a special mathematical apparatus was

developed for the formula representation of relations

and operations on them, which are called the algebra of

finite predicates. The central place in the algebra of

predicates is occupied by relations, which reflect the

properties of objects and the connections between them.

However, until now there is no convenient method of

formulating the connection of free connections, which

allows us to implement them programmatically. The

possibility of a formula describing predictions or

relationships is important when designing an automatic

control system when developing a natural language

intelligent interface.

As a result, the apparatus of logical spaces and the

algebra of linear predicate operations were studied, and

a formal representation of correspondence was

developed using the algebraic apparatus of finite

predicates, oriented to real calculations of the

capabilities of the modern computer computing base

and new requirements for information technologies, it is

possible to abandon the modeling of any logical

structures that require a lot of computation in real-time.

Although the primary focus is on modeling natural

language structures, the method can be applied to any

subject area. By analyzing the objects and their

properties, appropriate semantic features and values are

selected. This enables the method to explore complex

data relationships, leading to deeper insights and

improved decision-making, while ensuring robustness

and broad applicability.

Objectives and approach

This study develops and formalizes a method

based on the algebra of predicate equations for solving

quantitative linear equations, while also reviewing the

formal approaches to modeling intelligent systems. The

proposed method overcomes the limitations of existing

algebraic techniques—such as restricted scalability,

difficulties in adapting to dynamic datasets, and

inefficiencies in managing complex logical

dependencies—by establishing a structured framework

for representing logical relationships and constraints

within the data. By expressing relationships within

datasets through predicate equations, the approach

formalizes dependencies and enhances analytical

workflows. Designed to improve both accuracy and

scalability while maintaining computational efficiency,

it is ideally suited for practical data analysis

applications.

To achieve these objectives, the research integrates

theoretical and practical elements. The theoretical

component formalizes the predicate algebra and

explores its application in data analysis. On the practical

side, algorithms are developed to demonstrate the

method's effectiveness in tasks such as filtering,

aggregation, and knowledge extraction, with

benchmarks conducted to assess performance across

datasets of varying sizes and complexity.

Section 1 details the method by defining the initial

data—problem dimensions, semantic features, logical

equations, and resulting variables—and describing an

algorithm that verifies system consistency, deactivates

non-essential features, and transforms a predicate

equation into an equivalent operator (matrix) equation.

Section 2 demonstrates the method’s practical

application in a database context by modeling

relationships (for example, between factories and parts)

using predicate equations, which are then solved

through corresponding operator equations to optimize

query processing. Section 3 presents a detailed case

study, complete with a flowchart and benchmark tests

using synthetic datasets. The results confirm that the

execution time scales linearly with the dataset size,

thereby verifying the method’s efficiency and

scalability. The final sections discuss the performance

outcomes, suggest further optimizations (such as

Applied mathematics and optimization

105

employing sparse matrices, parallel processing, or GPU

acceleration), and summarize the contributions of this

work to formalizing complex logical relationships and

enhancing intelligent database systems .

1. Description of the method

At the beginning of the method is the data about

the modeled system: the dimension of the problem,

semantic features (input vector of data), a system of

logical equations, and a set of resulting variables. After

processing this data by the method, during which the

consistency of the system of logical equations is

determined and the non-essential features are turned off,

we obtain the entire array of solutions of the system of

logical equations at the output (Fig. 1).

Fig. 1. Model of the developed system

Based on the theory of linear logical operators

mentioned in the previous section, we will build an

algorithm for solving the equation.

Let it be necessary to find a solution to the

following predicate equation:

 Q(Y) X(P(X) TO(Y,X))   , (1)

where Q(Y) and P(X) — predicates are given on the

branch u=(u1,...,un), consisting of n elements ;

Y – vector;

X – predicate value;

TO(Y, X) — binary predicate is given on the

branch u×u.

It is necessary to calculate the predicate P(X),

considering the predicate Q(Y) and the linear logical

operator LО(Y, X) to be known.

Considering that the existence quantifier connects

the predicate variable X, the equation can be rewritten

in the form:

     
n

j j
j 1

Q(Y) P u K Y,u


   , (2)

where Q, P — predicates;

Y – vector;

u – branch;

K – transposed matrix of the operator.

Equality is fulfilled only if it is true for any value

of the predicate variable Y that runs through the set U.

Thus, we have the following n equalities:

     
n

i j j i j
i, j 1

Q(u ,u) P u K u ,u


   , (3)

where Q, P — predicates;

ui and uj – branches;

K – transposed matrix of the operator.

Q(ui) and P(uj) – predicates by y i and xj

yi,xj{0,1} and i,j1,…,n. We denote the value of the

binary predicate TO(u i, uj) by kij {0, 1}, i,j1,…,n.

Considering the following notations, equality will take

the form

  
n

i j ij
j 0

y x k


   , (4)

where yi and xj — predicate values for any i1,...,n

respectively yi, xj {0, 1} and i,j1,…,n;

kij – unary operator.

It is known that if for arbitrary predicates P(t) and

Q(t) do the relation : P(t)X. From here we get about

the operator equation of the form:

 LO(X) Y , (5)

where LO – linear logical operator;

X – predicate value;

Y – vector.

Thus, the predicate equation is equivalent to the

operator equation, defined in the logical space.

According to the idea of a continuous type of matrix of

a linear-logical constant operator acting from space to

itself, for reversibility, it is also necessary that in each

row and column of the matrix of such an operator there

should be one and only one element equal to one. If the

matrix satisfies the above conditions of the idea, then

the solution of the equation will be as follows

1X LO (Y) (6)

where LO – is a linear logical operator;

X – predicate value;

Y – vector.

The matrix of the inverse operator coincides with

the transposed matrix of the operator K. Thus, the

solution operator equation in the matrix type will be as

follows:

 X RT*Y (7)

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
106

where X – predicate value;

R – binary predicate;

T – logical vector;

Y – vector.

As a result of solving the predicate equation, it can

be written in the form:

     P(X) Y Q Y LO X,Y   , (8)

where P(X) – predicate;

X – predicate value;

Q, Y – vectors;

LO – is a linear logical operator.

If the operator LO is not regular, the solution of

the predicate equation cannot be written in the form,

however, using the algebraic notation of the predicate

equation, we will look for the solution of the equation in

the following way.

Operator equation in the form of a system of

logical equations. Assume that the vector Y is not

singular.

n

mj j m
j 1

n

ij j i
j 1

n

nj j n
j 1

(k x) y

(k x) y

(k x) y








  



  



  



 (9)

where kij – unary operator;

yi and xj — predicate values for any i1,...,n.

Let ones be worth in vector Y at places

(d1,…,dy)=D, and zeros at places (z1,…,zy)=Z, DZ,

DZ=N, N=(1,...,n). The set of places where the zeros

of the vector are X, we will denote as L=(l1,…, lx). The

symbol * will mark the places where there can be zeros

or ones. The algorithm is as follows:

1. Initialization i:=z1;

2. We form the set consisting of zero coordinates

of the vector X and j:=1. If TO[i,j] = 1, then X [j]:= l1.

We organize the sorting of indices j from 0 to n;

3. Index i is equated to the next element from the

set Z and the transition to clause 2 until all the elements

of the set Z are selected;

4. We form the set M. We obtain logical vector X

consisting of zeros and symbols *;

5. Checking the system for consistency.

Substituting the found vector into the system. We

organize the solution of the system obtained according

to the formula (13):

  
n

ij j i
j 1

k x y

   (10)

where yi and xj — predicate values;

kij – unary operator.

If the system is incompatible, then the vector is not

a solution to the system;

6. Formation of the system solutions. In vector

X(*), we substitute a unit instead of the first symbol *,

and zeros instead of the other symbols. Transition to

clause 5. If the formed logical vector is a solution of the

system, we store it in the array of solutions. We

organize various substitutions of zeros and ones instead

of * symbols, with each new combination going to item

5.

7. We write out all the solutions obtained from the

system if the array of solutions is not empty.

Furthermore, if not, the result is a message about the

inconsistency of the system.

2. Example application

The given example in this section illustrates the

possibility of using the theory of linear logical operators

and the method of solving the quantifier predicate

equation for processing and storing information in

databases.

Suppose that the database contains information

about four factories that produce parts for cars. Let

factory z1 produce parts d1 and d2, plant z2, produces

parts d2 and d3, factory z3 produces parts d1 and d4, p lan t

z4 produces parts d3 and d4. The existing “plant-part”

relationship is easily described by the following binary

predicate.

As a result, the predicate P3(z) corresponding to

the sought information is denoted by a quantifier

equation of the form:

1 2 3dP (z,d) P (d) P (z)   (11)

where d – parts;

P1, P2, P3 – predicates;

z – factory;

d – parts.

The solution of this quantifier predicate equation is

obtained from the solution of the corresponding

operator equation A*X=Y in the linear logical space En.

Matrix 15 represents the solution of the operator

equation A*X=Y in the linear logical space En and the

vector X=(1 0 0 0).

1 1 0 0

0 1 1 0

0 0 0 1

1 0 1 1

 (12)

Applied mathematics and optimization

107

Because of the action of operator A on vector X,

we get the vector Y equal to (1 0 1 0) meaning that the

parts d1 are served by factories z1 and z3. Thus, the

operation of searching for information of interest in the

database is replaced by operating operator

multiplication. Now it is necessary to calculate which

factories produce parts d1 or d3. Using the additive

property of the linear logical operator A, we obtain

1 3 1 3 4A X A X A(X X) A X       , (13)

where A – linear logical operator;

X1, X2, X4 – vectors created by predicates.

Vector X1 and X3 are created by predicates that

describe the details of d1 and d3. Thus, the answers to

more complex queries in the database also come from

the solution of the operator equation. Using the

algorithm for solving the operator equation, described in

the previous subsection, it is possible to search for the

parts that they manufacture by given factories. For

example, let it be necessary to calculate which parts are

manufactured by factory z2. Therefore, the logical

vector Y=(0 1 0 0).

1

2

3

4

x1 1 0 0 0

x0 1 1 0 1
*

x0 0 0 1 0

1 0 1 1 0x

 (14)

where x1, x2, x3, x4 – vectors.

Because of the decision of the operator equation of

the formula 17.

Relative to X, we obtain the vectors (0 1 0 0) and

(0 0 1 0). Therefore, factory z2 produces parts d2 and d3.

Next, let's assume that the database contains

information about which parts are used in certain

machines. Let's assume that machine m1 uses part d2,

Machine m2 uses parts d2 and d3, Machine m3 uses parts

d2 and d3, and machine m4 uses parts d3 and d4. This

relationship “machine-part” corresponds to the binary

predicate K1(m, d).

Similar to the previously considered case, it is easy

to extract information about which machines and which

parts are used from the database by solving the

corresponding quantifier predicate equation, replacing it

with an operator equation. We have the following

equation:

 1 2 3dK (m,d) K (m) K (d)   , (15)

where d – parts;

K1 – binary predicate;

K2(m) and K3(d) – unary predicates;

m – machines.

They specify a specific machine and a specific

detail, respectively. Solving this equation concerning

predicate K2(m) or predicate K3(d), we will pull the

necessary information from the database. Suppose that

now it is necessary to solve a more complex problem,

namely: to calculate which factories produce parts for a

predetermined machine. The following system of

quantifier predicate equations corresponds to this

condition:

1 2 3

1 2 2

dP (z,d) P (d) P (z)

dK (m,d) K (m) P (d)

  

  

, (16)

where d – parts;

K1 – binary predicate;

K2 – unary predicate;

P – predicates;

m – machines;

z – plant.

We will display this system in the form of one

equation:

     1 1 2 3dP (z,d) dK m,d K m P (z)     (17)

where d – parts;

P1 and P3 – predicates;

z – plants;

K1 – binary predicate;

K2 – unary predicate;

m – machines.

The quantifier predicate equation corresponds to

an operator equation of the form:

 B T X  (18)

where B – operator matrix;

T – logical vector;

X – vectors created by predicates.

Logical vectors T and X are constructed,

respectively, from the binary predicates LО2(m) and

LО3(d). The linear logical operator U has the form

matrix

0 1 0 0

1 0 1 0

0 1 1 1

0 0 0 1

 (19)

built on the binary predicate TO1(m, d). Therefore,

the predicate equation corresponds to the operator

equation of the form:

 A(B(T)) X , (20)

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
108

where A, B – operators matrix;

T – logical vector;

X – vectors created by predicates.

Let's transform the resulting equation into the

following form:

 Z(T) X , (21)

where Z – linear logical operator;

T – logical vector;

X – vectors created by predicates.

Z is equal to the superposition of operators A and

B. In this case, we have:

1 1 0 0 0 1 0 0 1 1 1 0

0 1 1 0 1 0 1 0 1 1 1 1
C *

0 0 0 1 0 1 1 1 0 1 0 1

1 0 1 1 0 0 0 1 0 1 1 1

  (22)

where C – operator matrix.

A rather large search in the database is reduced to

the calculation of the matrix of the operator Iz using the

operation of multiplying the matrices of the operators A

and B. For example, let's calculate which factories make

parts for machine m1. The corresponding logical vector

T has the following form (1 0 0 0). Thus, we have:

1 1 1 0 1 1

1 1 1 1 0 1
*

0 1 0 1 0 0

0 1 1 1 0 0

 (23)

As a result, we get that the manufacturers of

machine parts m1 there are plants z1 and z2.

3. Case study

This study provides a demonstration of the

developed method for solving linear equations with

quantifiers, aligned with the stated objectives, and

implemented in Python to enable effective solutions.

Integral to this approach, algebraic methods find

numerous applications in databases [13, 14] and

intelligent systems [15, 16], enhancing the efficiency of

program translation and optimization. The algebra of

queries formalizes request processing and information

retrieval, making it essential for designing expert

systems [17, 18]. This combined methodology

facilitates a formal description of derived information

based on basic information, optimizing query handling

and retrieval processes.

In the context of this study, an important step is to

translate query conditions into a system of linear

equations, which allows for more efficient processing of

database queries and information retrieval.

Transforming selection and aggregation conditions into

linear equations not only formalizes the logic of queries

but also provides the ability to apply mathematical

methods to data analysis.

To address the problem of identifying connections

based on the example discussed earlier, we adopted a

structured data model representing information as

logical matrices. This approach allows us to express

relationships using linear predicate equations, enabling

efficient filtering, searching, and aggregation of data

through matrix computations.

In the following example, we consider how

specific queries can be transformed into a system of

linear equations, illustrating this process in an abstract

scenario.

Let's say we have a database data structure

consisting of three main entities:

 Machines: each machine is uniquely identified

by a MachineID and has a descriptive name

(MachineName).

 Parts: Each part has a unique identifier

(PartID) and a name (PartName).

 MachineParts (Machine-Part Relationships):

This table defines the relationships between machines

and parts, indicating which parts are used by each

machine.

To process this data and perform logical operations

efficiently, the relationships are transformed into a

matrix M×P, where M is the number of machines (rows)

and P is the number of parts (columns). In this matrix

representation, each element A[i,j] is set to 1 if machine

i uses part j, and 0 otherwise. This transformation

enables the relationships to be expressed mathematically

using linear predicate equations.

The core equation of this approach is represented

as:

 Y A X  (24)

where A is the logical operator matrix derived from the

MachineParts table, X is a binary vector representing

the selection conditions for parts (X[j]=1 if part j is

included in the query, 0 otherwise), and Y is the

resulting binary vector where Y[i]=1 indicates that

machine i satisfies the conditions imposed by X. For

example, if a query specifies that we are interested in

parts 101 and 103, the vector X would be represented as

[1,0,1] for a dataset with three parts (101, 102, 103).

Multiplying A by X will produce Y, identifying the

machines that use at least one of the specified parts.

In addition to basic logical operations like "OR,"

more complex queries can be handled. For instance,

finding machines that use both parts 101 and 103

involves a stricter condition, requiring Y[i] to equal 2

Applied mathematics and optimization

109

(indicating that machine i uses both parts). Similarly,

negation ("NOT") can be applied by excluding specific

parts from the selection vector X.

Fig. 2. Flowchart of the method

To ensure a robust and scalable solution, the

flowchart of the method outlines the logical process of

solving such linear predicate equations (Fig. 2). This

algorithm outlines the step-by-step process for solving a

system of equations related to tasks in intelligent

systems and databases.

The process begins with the input of necessary

indicators and determining the size of the task. This step

provides the foundation for subsequent calculations.

Based on the input data, the logical vector X is formed,

representing the initial data required for the system's

operation. The next step involves calculating the

operator K[i,j]. If the operator cannot be computed, the

vector X is substituted into the system for further

analysis.

If the system is compatible, the solution array is

formed. If not, the algorithm performs an analysis to

identify inconsistencies in the system. Once

compatibility is confirmed, a solution array is generated,

containing the computed values for the task. In the final

stages, the system size is checked. If the task is

complete, the algorithm terminates. Otherwise, it loops

back to the specific steps for adjustments and further

analysis. The algorithm concludes once a valid solution

is found or the system is determined to be incompatible.

To validate the efficiency and scalability of the

proposed method, an updated benchmark was conducted

using synthetic datasets of increasing size.

The benchmark was performed on a machine with

an Intel i7 processor and 16 GB of RAM.

 Software: Python 3.9, NumPy for matrix

operations.

 Datasets: Synthetic datasets were generated

with the following:

 Machine counts: 100, 500, 1,000, 5,000, and

10,000.

 Part counts: 1,000, 5,000, 10,000, 50,000, and

100,000.

 Relationship density: 10% (to simulate real-

world sparsity).

For each dataset size, the function

find_machines_with_parts was run with:

 A random selection of 10 parts to include.

 A random selection of 5 parts to exclude.

Execution time was measured for each

configuration and averaged over three runs.

Table 1 summarizes the updated benchmark

results.

Table 1

Number of

Machines

Number of

Parts

Execution Time

(seconds)

100 1000 0.0000~

500 5000 0.0028

1000 10000 0.0113

5000 50000 0.2877

10000 100000 1.1573

The execution time scales predictably with the size

of the dataset, demonstrating linear growth. The results

confirm the method's ability to handle large datasets

effectively.

The execution times are plotted below in Figure 3,

showing how the time required increases linearly with

the number of machines.

Fig. 3. Execution times

Performance results:

 For small datasets (e.g., 100 machines, 1,000

parts), the execution time is negligible (0.0000 seconds).

 For larger datasets (e.g., 10,000 machines,

100,000 parts), the method maintains reasonable

performance, processing the query in just over one

second.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
110

These results indicate that the method can handle

real-world datasets of medium to large sizes efficiently.

For example, processing data with 10,000 machines and

100,000 parts representing a realistic industrial scenario

requires just over a second.

4. Discussion

The benchmark results demonstrate that the

proposed method for solving linear predicate equations

is both efficient and scalable. The key observations

from the benchmark analysis are summarized below,

highlighting the performance, scalability, and potential

areas for further improvement.

The benchmark shows that the method scales

linearly with the size of the dataset, as evidenced by the

nearly proportional increase in execution time

concerning the number of machines and parts . This

linear complexity arises from the matrix-vector

multiplication at the core of the method, which is

computationally efficient. For datasets with up to

10,000 machines and 100,000 parts, the execution time

remains just over one second, making the approach

practical for medium to large-scale real-world

applications.

The results confirm the method's suitability for

real-world use cases. Scenarios involving medium to

large datasets, such as industrial systems with thousands

of machines and parts, can be handled with minimal

computational overhead. This makes the method ideal

for applications in intelligent systems, database

optimization, and information retrieval.

While the method performs well computationally,

memory usage could become a limiting factor for

extremely large datasets with millions of machines and

parts. This is particularly relevant for dense datasets

where the matrix representation might require

significant storage.

Future Optimization Opportunities :

1. Sparse Matrix Optimization: For datasets

where the relationships between machines and parts are

sparse (a common scenario in industrial applications),

leveraging sparse matrix libraries, such as scipy.sparse,

could significantly reduce memory usage and improve

computational efficiency.

2. Parallel and Distributed Computing: The

method could benefit from parallelization, especially for

datasets with millions of rows and columns. Using

multi-threading, multiprocessing, or distributed

computing frameworks could further improve

performance.

3. GPU Acceleration: By leveraging GPU-based

matrix computations using libraries such as cupy or

PyTorch, the method could achieve substantial speedups

for very large-scale datasets.

The proposed method provides a scalable and

efficient solution for solving linear predicate equations,

demonstrating robust performance on datasets of

various sizes. The linear growth in execution time and

practical applicability to large datasets make it a

valuable tool for a range of applications. However, for

datasets exceeding millions of entries, additional

optimizations such as sparse matrix representations,

parallelization, or GPU acceleration would be necessary

to maintain the method's efficiency and scalability.

These enhancements could further extend its

applicability to massive datasets in modern intelligent

systems and data-driven industries.

Conclusions

The presented work introduces a novel approach

for the formal representation of complex relationships

and operations in intelligent systems through the algebra

of finite predicates. This approach focuses on

addressing the lack of a convenient method for

programmatically implementing formulaic connections

of free relationships, which is critical for applications in

natural language processing and automatic control

systems.

This research contributes to the field by

developing a formal representation of correspondence

using logical spaces and the algebra of linear predicate

operations. This representation is tailored for real-time

computations, leveraging the capabilities of modern

computing technologies and addressing the new

demands of information systems. The novelty lies in the

flexibility of the proposed method, which allows the

modeling of diverse subject areas by systematically

defining and using semantic features.

From a practical perspective, the proposed method

facilitates the development of intelligent interfaces, such

as natural language processing systems, which are

crucial for applications like machine translation,

grammatical error correction, and optical text

recognition. Moreover, the approach ensures scalability

and robustness, enabling its application across various

domains, from knowledge systems [19] to decision-

making frameworks, ultimately enhancing the efficiency

and adaptability of intelligent systems [20].

Contributions of authors: conceptualization,

methodology, formulation of tasks – Zoya Dudar;

analysis – Volodymyr Liashyk; development of model,

verification – Volodymyr Liashyk; analysis of results,

visualization – Zoya Dudar; writing – original draft

preparation visualization – Volodymyr Liashyk;

writing – review and editing – Zoya Dudar.

Applied mathematics and optimization

111

Conflict of Interest
The authors declare that they have no conflict of

interest about this research, whether financial, personal,

authorship or otherwise, that could affect the research,

and its results presented in this paper.

Financing

This study was conducted without financial

support.

Data Availability
The work has associated data in the data

repository.

Use of Artificial Intelligence
The authors confirm they did not use artificial

intelligence methods while creating the presented work.

All authors have read and agreed to the published

version of this manuscript.

References

1. Karataiev, О., & Shubin, І. Formal Model of

Multi-Agent Architecture of a Software System Based

on Knowledge Interpretation. Radioelectronic and

Computer Systems, 2023, no. 4, pp. 53–64. DOI:

10.32620/reks.2023.4.05.

2. Shubin, I., Kozyriev, A., Liashyk, V., &

Chetverykov, G. Methods of adaptive knowledge testing

based on the theory of logical networks. CEUR

Workshop Proceedings, 2021, vol. 2870, pp. 1184-1193.

Available at: https://ceur-ws.org/Vol-2870/paper86.pdf

(accessed May 11, 2024).

3. Shubin, I. Development of Conjunctive

Decomposition Tools. CEUR Workshop Proceedings,

2021, vol. 2870, pp. 890-900. Available at: https://ceur-

ws.org/Vol-2870/paper67.pdf (accessed May 15, 2024).

4. Jansma, A., Mediano, P. A. M., & Rosas, F. E.

The Fast Möbius Transform: An algebraic approach to

information decomposition, 2024. DOI:

10.48550/arXiv.2410.06224.

5. Dudar, Z., & Litvin, S. Metod ontolohichnoho

opysu v pobudovi servis-oriyentovanykh system

rozpodilenoho navchannya [Formalization and

Application of Algebraic Methods in Automated

Intelligent Systems]. Suchasnyy stan naukovykh

doslidzhen' ta tekhnolohiy v promyslovosti — Innovative

Technologies and Scientific Solutions for Industries,

2024, pp. 39-53. DOI: 10.30837/ITSSI.2024.27.039. (In

Ukrainian).

6. Zhanlav, T., Otgondorj, Kh., Mijiddorj, R.-O.,

& Saruul, L. A unified approach to the construction of

higher-order derivative-free iterative methods for

solving systems of nonlinear equations. Proceedings of

the Mongolian Academy of Sciences , 2024, vol. 64, no.

02, pp. 24–35. DOI: 10.5564/pmas.v64i02.3649.

7. Shubin, I., & Karataiev, O. Problemy

povtornoho vykorystannya znan'u protsesi

proyektuvannya prohramnykh system [Reuse of

information based on the interpretation of knowledge].

Suchasnyy stan naukovykh doslidzhen' ta tekhnoloh iy v

promyslovosti – Innovative Technologies and Scientific

Solutions for Industries, 2023, no. 2, pp. 62-71. DOI:

10.30837/ITSSI.2023.24.062. (In Ukrainian).

8. Omran, P. G., Wang, Z., & Wang, K., Learning

Rules with Attributes and Relations in Knowledge

Graphs. AAAI Spring Symposium: MAKE, 2020, vol.

3121. Available at: https://ceur-ws.org/Vol-

3121/paper10.pdf (accessed 2 April 2024).

9. Vysotska V., Shubin I., Mezentsev M.,

Kobernyk K., & Chetverikov G. Ukrainian Big Data:

The Problem Of Databases Localization. The 8th

International Conference on Computational Linguistics

and Intelligent Systems. (COLINS-2024), Lviv, Ukraine,

IEEE, April 12–13, 2024, vol. 3688, pp. 122–133.

Available at: https://ceur-ws.org/Vol-3688/paper9.pdf

(аccessed May 14, 2024).

10. Pellissier-Tanon, T., Weikum, G., & Suchanek,

F., YAGO 4: A Reason-able Knowledge Base. 17th

International Conference, ESWC 2020 , Heraklion,

Crete, Greece, IEEE, 2020, pp. 583-596. DOI:

10.1007/978-3-030-49461-2_34.

11. Barkovska, O. Research into Speech-to-text

Transformation Module in the Proposed Model of a

Speaker’s Automatic Speech Annotation. Innovative

Technologies and Scientific Solutions for Industries,

2022, no. 4, vol. 22, pp. 5-13. DOI:

10.30837/ITSSI.2022.22.005.

12. Martinsson, A., & Su, P. Mastermind with a

Linear Number of Queries. Journal of Mathematical

Analysis and Applications, 2023, no. 3, pp. 92-94. DOI:

10.48550/arXiv.2011.05921.

13. Kamide, N. Sequential Fuzzy Description

Logic. Reasoning for Fuzzy Knowledge Bases with

Sequential Information. 2020 IEEE 50th International

Symposium on Multiple-Valued Logic (ISMVL) ,

Miyazaki, Japan, IEEE, 2020 pp. 218–223. DOI:

10.1109/ISMVL49045.2020.000-2.

14. Qing-Hu, H., & Yarong, W. Rational solutions

to the first order difference equations in the bivariate

difference field. Journal of Symbolic Computation ,

2024, vol. 124. DOI: 10.1016/j.jsc.2024.102308.

15. Shivappriya, S. N., Priyadarsini, M. J. P.,

Stateczny, A., Puttamadappa, C., & Parameshachari, B.

D. Cascade Object Detection and Remote Sensing

Object Detection Method Based on Trainable Activation

Function. Remote Sensing, 2021, vol. 13, no. 2. DOI:

10.3390/rs13020200.

16. Zhao, Y., & Tao, C. The accurate and efficient

solutions of linear systems for generalized sign regular

matrices with certain signature. Journal of

Computational and Applied Mathematics, 2023, vol.

431, article no. 115280. DOI:

10.1016/j.cam.2023.115280.

17. Shubin, I., Snisar, S., & Litvin, S. Categorical

Analysis of Logical Networks in Application to

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 1(113) ISSN 2663-2012 (online)
112

Intelligent Radar Systems. 2020 IEEE International

Conference on Problems of Infocommunications.

Science and Technology (PIC S&T) , 6–9 October 2020,

Kharkiv, Ukraine, IEEE, pp. 235-238. DOI:

10.1109/picst51311.2020.9467893.

18. Karataiev A., & Shubin I. Formalna model

multyahentnoi arkhitektury prohramnoi systemy na

osnovi interpretatsii znan [Formal model of multi-agent

architecture of a software system based on knowledge

interpretation]. Radioelectronic and Computer Systems,

2023, no. 4, pp. 53–64. DOI: 10.32620/reks.2023.4.05.

19. Chen, Z., & Wang, Y. Knowledge graph

completion: A review. IEEE Access, 2020, vol. 8, pp.

192435–192456. DOI: 10.1109/ACCESS.2020.

3030076.

20. Beskorovainyi, V., Kuropatenko, O., & Gobov,

D. Optimization of transportation routes in a closed

logistics system. Innovative Technologies and Scientific

Solutions for Industries, 2019, pp. 24-32. DOI:

10.30837/2522-9818.2019.10.024.

Received 17.10.2024, Accepted 17.02.2025

МЕТОД РОЗВ'ЯЗАННЯ КВАНТОРНИХ ЛІНІЙНИХ РІВНЯНЬ

НА БАЗІ АЛГЕБРИ ЛІНІЙНИХ ПРЕДИКАТНИХ ОПЕРАЦІЙ

З. В. Дудар, В. А. Ляшик

Предметом статті є підходи, які розширюють існуючий набір математичних інструментів для обробки

складних зв’язків у базах даних і обчислювальних системах. Це особливо важливо для додатків, які

вимагають ефективного пошуку інформації, представлення знань і логічного висновку в автоматизованих

середовищах прийняття рішень. Завдання передбачає розробку методу розв’язання кванторних лінійних

рівнянь з використанням алгебри лінійних предикатних операцій, спрямованого на покращення оптимізації

запитів до бази даних та розширення можливостей інтелектуальних систем. Методи, які використовуються

в цьому дослідженні, включають алгебраїчні методи, логічні операції та матричні перетворення для

моделювання та ефективного розв’язання предикатних рівнянь. Використовуючи алгебру кінцевих

предикатів, запропонований підхід забезпечує більш систематичний і масштабований спосіб обробки

логічних залежностей і оптимізації обчислювальних процесів. Метод інтегрує лінійні логічні оператори,

гарантуючи, що складні запити та обмеження в базах даних можуть бути представлені та оброблені за

допомогою формальних математичних моделей. Крім того, він представляє структуру, яка покращує

структурне представлення знань, полегшуючи інтелектуальний аналіз даних. У результаті дослідження

було розроблено формальний метод розв’язання кванторних лінійних рівнянь, що забезпечує більш

ефективну оптимізацію запитів, логічне мислення та механізми підтримки прийняття рішень в експертних

та автоматизованих інформаційних системах. Дослідження демонструє, що алгебраїч ні підходи можуть

значно підвищити ефективність процесів пошуку інформації, особливо в інтелектуальних базах даних, де

реляційні обмеження та залежності відіграють вирішальну роль. Тестування, проведене на синтетичних

наборах даних, підтверджує масштабованість методу, показуючи, що він підтримує лінійне зростання часу

виконання навіть із збільшенням складності даних. Висновок: запропонований метод розширює

математичну основу для вирішення логічних рівнянь в обчислювальних середовищах, забезпечуючи

потужний інструмент для інтелектуальних систем і оптимізації баз даних. Здатність формалізувати та

обробляти складні логічні зв’язки сприяє підвищенню точності прийняття рішень та ефективності

автоматизації.

Ключові слова: інтелектуальні системи; алгебраїчні методи; формальне моделювання; логічні методи;

алгебра скінченних предикатів; предикатне рівняння.

Дудар Зоя Володимирівна – канд. техн. наук, проф., зав. каф. програмної інженерії, Харківський

національний університет радіоелектроніки, Харків, Україна.

Ляшик Володимир Андрійович – асп. каф. програмної інженерії, Харківський національний

університет радіоелектроніки, Харків, Україна.

Zoya Dudar – Candidate of Technical Sciences, Professor, Head of the Department of Software Engineering,

Kharkiv National University of Radioelectronics, Kharkiv, Ukraine,

e-mail: zoya.dudar@nure.ua, ORCID: 0000-0001-5728-9253, Scopus Author ID: 6506991522.

Volodymyr Liashyk – Postgraduate Student of the Department of Software Engineering, Kharkiv National

University of Radio Electronics, Kharkiv, Ukraine,

e-mail: volodymyr.liashyk@nure.ua, ORCID: 0000-0001-7326-0813.

