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USING A DEEP LEARNING NEURAL NETWORK TO PREDICT FLIGHT PATH 
 

The subject of this paper is a new approach using a deep learning neural network designed for predicting the 

flight path of an unmanned aerial vehicle (UAV). The purpose of this study was to improve the accuracy of drone 

flight path prediction by developing a deep learning-based trajectory forecasting model. The task was to collect 

and prepare a dataset of video and photo materials for training the neural network, develop and implement a 

deep learning model for trajectory prediction, and enhance UAV flight trajectory forecasting through model 

optimization and validation. Methods used included the creation of a synthetic dataset using the 3D modeling 

tool Blender, which enabled the generation of animations representing various drone flight scenarios. These 
scenarios include different environmental conditions and urban landscapes, providing a robust training ground 

for the neural network. To further improve and test the model’s predictive capabilities, real-world data, 

including eyewitness videos, were used. The architecture of the neural network includes long short-term memory 

(LSTM) units that can process sequential data, making them ideal for predicting dynamic UAV trajectories. The 

training process involved several stages, starting with pre-training on general visual features and then fine-

tuning to UAV-specific motion patterns. The results of this study show that the neural network achieved high 

accuracy in trajectory prediction, with the model showing better performance in real-world scenarios compared 

to traditional trajectory prediction methods. The integration of LSTM enabled efficient learning and 

generalization of temporal data, capturing complex motion patterns and interactions with the environment. This 

research not only demonstrates the feasibility of using deep learning to predict UAV trajectories but also offers 

potential applications in civilian security or delivery logistics, where real-time trajectory prediction can 
significantly improve the efficiency and speed of decision-making. Conclusions. The scientific novelty of the 

obtained results lies in the development and training of deep learning models specifically designed for predicting 

drone flight paths. This study demonstrated the effectiveness of the proposed approach by demonstrating its 

ability to enhance the accuracy of UAV trajectory forecasting. 

 

Keywords: neural network; deep learning; trajectory prediction; LSTM; 3D models; synthetic dataset; UAV 

trajectory. 

 

1. Introduction 

1.1. Motivation 

 

In today's world, where technology is developing at 

an extraordinary pace, its use to protect information and 

improve the quality of life is becoming increasingly 

important. Improving cargo delivery logistics, preserving 

the environment, and surveillance to improve safety 

emphasize the urgent need to develop and implement 

innovative technological solutions to develop 

technological capabilities. One such solution is the 

development of new efficient methods to detect and 

predict the trajectories of drones, which are used for 

various purposes, such as entertainment during leisure 

time, photography of unusually beautiful landscapes, and 

in developed countries to catch intruders faster. Most 

methods for predicting the behavior of dynamical 

systems are based on the use of information about the 

parameters of mathematical models and environmental 

properties. However, the lack of such a priori information 

leads to inefficiency in the use of traditional parametric 

methods, and often to their inoperability. In addition, the 

presence of nonstationary, nonlinearity, and various 

types of uncertainties in the models of real systems leads 

to inefficiency when using traditional nonparametric 

methods. Under these conditions, the most effective 

approach is the use of modern methods of computational 

intelligence, in particular neural network methods. The 

neural network-based approach to drone detection 

remains relevant. It provides an opportunity to prevent 

non-ideal human factors and use modern technologies for 

noble purposes. Intelligent recognition by neural network 

of such devices as drones can enrich the delivery of 

products and food, for example, in a non-excepted period 

as a pandemic, to perform unpleasant routine activities 

such as refueling a car autonomous process without the 
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presence of a person but using a drone. It can also help 

protect the integrity of citizens and prevent the spread of 

illegal activities using drones, such as the delivery of 

dangerous substances for human health and life and other 

non-standard and unexpected situations. Using a neural 

network to plot the trajectory of a drone can improve 

public protection and safety throughout the country. 

Protect against illegal invasion of privacy with drones 

that can take photographs and videos. Intelligent 

advancements in technology can and should help to keep 

everyone’s intimate lives safe. 

The purpose of this study was to improve the 

accuracy of drone flight path prediction by developing a 

deep learning-based trajectory forecasting model. Two 

datasets were used to obtain the expected results. The 

first part is an artificially created dataset, including 

animations including models of drones, and different 

types of backgrounds and residential complexes to 

diversify the dataset. These animations were created 

using the 3D modeling program Blender. This approach 

allows us to train the model in conditions as close to 

reality as possible without the need to use real video 

footage, which can be time-consuming and expensive 

and may be legally restricted in some sites. The second 

type includes real videos filmed by ordinary people and 

presented on the Internet and news channels on which the 

trained neural network was tested. 

The task was to collect and preprocess video and 

photo data, develop a deep learning model for flight 

trajectory prediction and improve UAV trajectory 

prediction through optimization and validation. 

 

1.2. State of the art 
 

Currently, there are different methods for trajectory 

prediction depending on the type of trajectory, such as 

trajectories of living beings [1, 2] and inanimate 

objects [3]. There are also two main problems with the 

currently existing trajectory prediction models. The first 

is the prediction accuracy: simple models do not work 

well if there are many objects around or a complex scene. 

The second is the lack of explanation: neural networks 

predict a change in trajectory, but it is not known why it 

was changed. The authors of [1] presented a new method 

for predicting motion trajectory in crowds. The authors 

have created a model that combines physics and neural 

networks. Each person, according to their method, is 

influenced by three main forces: moving toward a 

destination, trying not to run into other people, and 

avoiding obstacles such as walls or cars. The model also 

includes a part of the conditional-variance autoencoder 

(CVAE), which adds a randomness element. The model 

learns from the data when people speed up, slow down, 

or find themselves in unpleasant situations where they go 

in the wrong direction and have to change their 

destination. In such cases, the model adds to the 

predictions. This makes the movements appear more 

realistic and natural, approximating the behavior of 

people. The authors tested the proposed method on real 

trajectories and compared its performance to that of 

existing deep learning models. Their model was better at 

predicting movements, performed better in complicated 

scenes, and had fewer collisions. Detecting human 

motion, which can often be relatively unpredictable, 

shows that combining physics and neural networks gives 

better results for humans and potentially for UAVs. The 

Social-NCE method allows the model to be trained to 

recognize safe trajectories from potentially dangerous 

trajectories that could cause collisions by generating 

negative samples based on the closeness of other objects 

[2]. Recently, model-free methods based on deep 

learning that exhibit surprisingly high prediction 

accuracy have been leading the way in predicting human 

motion trajectories. 

The trajectory of inanimate objects usually obeys 

the laws of physics and can often be derived using 

formulas and equations; thus, detections are sometimes 

easier to predict even manually. As an example, in a 

previous study [3], the authors proposed a model that 

combines an improved LSTM, which predicts the next 

point of the trajectory based on the movement history and 

captures the dependencies between the time steps. Using 

the Kalman filter, the authors demonstrated that the 

LSTM-KF algorithm yields a good effect. However, this 

approach does not consider dynamic and environmental 

factors such as weather conditions, which reduces the 

accuracy, and it limits the application in real time.  

These methods are effective when applied to the 

environment in which they were developed. However, 

these methods are not implemented in aerial 

environments, and there is not enough data to analyze and 

make conclusions using a specific method. In UAV tasks, 

drones work in 3D space, where altitude, speed, and 

viewing angles are important, and simply following a 

trajectory is not enough for such cases. 

Another recent vehicle trajectory prediction 

approach focuses on modeling potential future 

interactions between objects. Social LSTM applies Long 

Short-Term Memory (LSTM) networks to model social 

interactions and learn from temporal data. LSTM is also 

commonly used to predict the motion trajectories of 

inanimate objects. Other studies have investigated 

vehicle motion and observed that prediction uncertainty 

arises from interactions with surrounding objects when 

vehicles change their route. Based on this, the authors [4] 

proposed a model that incorporates a Future Relation 

Module (FRM), which estimates the probability of 

vehicles occupying adjacent lanes and interacting. The 

module computes lane-level probability distributions and 

potential interaction zones by leveraging Graph 
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Convolutional Networks (GCN) and Gaussian Mixture 

(GM) distributions to simulate interactions, such as 

handling current road conditions, and demonstrate 

various behaviors. This approach allows the model to 

capture long-range interactions and improves prediction 

accuracy in complex traffic scenarios. The proposed 

method demonstrated strong performance on the 

nuScenes and Argoverse benchmarks. The study 

investigated vehicular motion; thus, predictions in this 

paper stem from uncertainty. Trajectories can change due 

to interactions with surrounding objects. 
 

1.3. Objectives and Approach 
 

This section describes the design and 

implementation of a deep learning model for flight 

trajectory prediction using deep learning RCNNs and 

predictive LSTMs. The basic concept behind these steps 

can be described as follows: 

­ First, the research was divided into working 

with RCNNs recognition neural network, creating a 

dataset for it, searching for rare drone images under 

different conditions, and using software to create an 

artificial dataset to expand and diversify the amount of 

data on which the neural network is trained. In this way, 

the artificial intelligence will be better prepared for 

unexpected data and can easily handle the processing of 

such data. 

­ The LSTM neural network was used to design 

the estimated drone trajectory. For this purpose, materials 

were found, including videos of the desired object flying 

at test bases. To add variety to the data, plausible videos 

were created in the software to train the neural network 

to better predict the drone’s flight path. The training can 

be categorized as follows:  

­ Creating a set of videos and photos for training 

and validation; 

­ Augmenting and annotating the datasets; 

­ Developing a neural network model capable of 

recognizing drone; 

­ Developing an LSTM model to predict drone 

flight trajectories; 

­ Using a set of videos and photos for training and 

validation to recognize and create trajectories; 

In this study, a synthetic dataset was created to 

represent diverse drone flight scenarios under varying 

environmental conditions and landscapes. Existing 

trajectory prediction methods were analyzed, and a deep 

learning-based approach was designed and implemented. 

To achieve the objectives of the study, several tasks 

were completed, as reflected in the corresponding 

sections of the article. The creation of the dataset for 

training the neural network is described, where both real 

recordings and artificially generated animations in 

Blender were used to ensure data diversity (section 2). 

Values of high resolution cameras to get an accurate 

image (section 2). Value of high resolution cameras to 

get an accurate image (section 2.1). Data segmentation 

for more precise object recognition and classification is 

discussed (section 2.2). Selection of RCNN neural 

network architecture (section 3). The process of training 

the network is outlined (section 4), then the results are 

presented (section 5). Section 6 provides a detailed 

explanation of the proposed method for predicting flight 

trajectories using the LSTM neural network. The 

possibilities for extending the model, including the use of 

Google Earth data to analyze object trajectories 

(section 7). 
 

2. Methodology 
 

The training of the neural network was a multistage 

process that used both artificially generated animations 

and real-world footage to provide the model with a 

diverse dataset. The artificial animations were created 

using Blender, a sophisticated 3D modeling and 

animation software. This tool afforded us the precision to 

control environmental variables such as lighting 

conditions, background, and flight trajectories of drone 

models with pinpoint accuracy. The meticulous control 

of these variables is crucial in training neural networks 

because it ensures that the model can identify and learn 

from a wide variety of scenarios in a controlled and 

repeatable manner. 

For example, using Blender, we could simulate 

different weather conditions, ranging from bright 

sunlight to overcast skies, or foggy mornings to rainy 

evenings. The textures and colors of the background 

environments can be altered to represent various 

landscapes, such as urban settings, rugged terrains, and 

open fields. This level of detail in the animations means 

that the neural network can be exposed to almost every 

conceivable situation that a drone might encounter in the 

real world [5, 6]. A drone model was used, examples of 

which are shown in Figure 1. 

For example, scaling transformations can be 

mathematically represented using the following formula, 

where S is the scaling matrix applied to the image 

coordinates (x,y): 
 

[
x'

y'
] = S* [

x

y] = [ 
sx 0

0 sy
 ]  * [

x

y] , 
 (1) 

 

where 𝑠𝑥 and  𝑠𝑦 – there scaling factors in the horizontal 

and vertical directions, respectively; 

(𝑥′, 𝑦′) – the new coordinates after scaling.  

The rotation transformation involves rotating the 

image by an angle, which is described by the rotation 

matrix R as follows: 
 

[
x'

y'
] = R(θ)* [

x

y] = [ 
cos(θ) -sin(θ)

sin(θ) cos(θ)
 ]  * [

x

y] , 
 

(2) 
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Fig. 1. 3D models of drone 

 

Adjustments in lighting conditions are simulated by 

altering the intensity values of the pixels, which can be 

represented by a function L that maps the original pixel 

values p to new values p' based on the lighting 

parameter l:  

 

p′ =  L(p, l). (3) 

 

Additionally, Blender particle systems can be used 

to simulate environmental factors such as rain, snow, or 

dust, that can interfere with the drone’s visibility. The 

motion of these particles can be described by Newton's 

laws of motion as follows: 

 

F =  ma, (4) 

vt+1  =  vt + a ∗ Δt, (5) 

xt+1  =  xt + vt ∗ Δt, (6) 

 

where F – the force applied to a particle; 

m – the mass of the particle; 

a – the acceleration; 

v – the velocity; 

x – the position; 

Δt – the change in time. 

In terms of lighting, Blender allows for dynamic 

lighting adjustments, which can significantly affect the 

appearance of the drone in the animation. By changing 

the intensity, color, and position of light sources, 

different times of day, weather conditions, and 

shadowing effects can be replicated [7]. These lighting 

conditions can be described by parameters such as the 

light’s intensity I, the angle of incidence θ, and the 

distance from the light source d, which affect the 

illumination of the object according to the inverse square 

law:  

 

E =
I

d2
cos(θ), 

(7) 

 

where E is the illumination experienced by the object. 

The lighting and environmental effects, such as 

shadows and reflections on the drone's body, were also 

meticulously adjusted to simulate different times of day 

and weather conditions. The rendering equation, which 

Blender uses to simulate light interaction with surfaces, 

is as follows (8): 

 

Lo(x,ω,λ,t)= 

 Le(x,ω,λ,t) + ∫
fr(x,ω',ω,λ,t)Li ∗

(x,ω',λ,t)(-ω'*n)dω'
Ω

, 

(8) 

 

where  λ –  wave length of light, t –  time; 

Lo(x, ω, λ, t) – the radiance of the outgoing light of 

wavelength λ at point x and time t, in direction ω; 

Le(x, ω, λ, t) – the radiance of the emitted light, 

∫
Ω

… dω′ − integral over the hemisphere of incoming 

directions; 

fr(x, ω′, ω, λ, t) – bidirectional reflectance 

distribution function (BRDF), defining the proportion of 

light of wavelength λ at time t from direction ω′ that is 

reflected into direction ω at point x; 

Li(x, ω′, λ, t) – the radiance of the incoming light of 

wavelength λ from direction ω′ at time t, −ω′ ∗ n – 

absorption of the incoming value by the set angle. 

Blender’s physics engine also allows for the 

simulation of collisions and interactions between the 

drone and other objects, which can be modeled using the 

principles of rigid body dynamics. These interactions can 

alter a drone’s flight path in ways that are important for a 

neural network to learn if it is to understand the full scope 

of potential real-world behaviors. 

These transformations significantly bolster the 

model’s capacity to recognize objects under various 

perspectives and lighting conditions, which closely 

simulates the variability that occurs in natural settings. 

By incorporating a range of augmented data, the neural 

network can be exposed to a broader spectrum of 

experiences, thereby enhancing its ability to generalize 

from training data to real-world applications. 



Intelligent information technologies 
 

75 

Incorporating these techniques into the training pipeline 

involves randomly applying a series of transformations 

to each image in the dataset before it is fed into the neural 

network. This ensures that the network rarely sees the 

same image twice, which mitigates overfitting and 

encourages the development of a more general 

understanding of the features associated with the objects 

of interest. Ultimately, data augmentation contributes to 

the creation of a more versatile and adaptable model that 

can deliver reliable performance across several 

environmental conditions and variations in object 

appearance. This enriched learning process is 

fundamental for developing advanced neural networks 

that are expected to function effectively in dynamic and 

unpredictable real-world scenarios [8]. 

Blender created many synthetic scenarios with 

precise control over every aspect of the animation, 

allowing for the simulation of real-life complexities 

within a virtual environment. In pursuit of advancing 

neural network capabilities for drone recognition and 

trajectory prediction, a detailed animation of the drone 

was created. Highly realistic and diverse flight patterns 

served as training grounds for the neural network. Within 

Blender, the drone’s motion is animated using keyframe 

interpolation, which defines the start and end points of a 

motion sequence, with Blender computing the 

intermediate frames. For complex maneuvers, the 

animation curve can be mathematically described using a 

series of control points that form a spline, typically a 

Bezier spline in 3D space (9). 

 

B(t)= ∑ (
n

i
)(1-t)n-itiPi

n

i=0

, t∈[0,1], 
 

(9) 

 

where B(t) is the position of the drone on the Bezier curve 

at time t; 

Pi – the control points; 

(
n
i
) – the binomial coefficients.  

This formula ensures smooth transitions between 

keyframes and realistic motion paths. 

For instance, consider the creation of an animation 

sequence in Blender in which a drone model maneuvers 

through a virtual urban landscape. The drone's trajectory 

is not just a simple linear path but includes various 

maneuvers, such as ascent, descent, and sharp turns, to 

mimic real-world flight patterns. This can be expressed 

mathematically in the animation keyframes as a Bezier 

curve, which is defined by control points P0 , P1, P2, . . . Pn 

to formula (2) where, B(t) represents the Bezier curve, 

(
n
i
) are the binomial coefficients, and t is the parameter 

along the curve. 

The real-life footage, on the other hand, included 

authentic video recordings of drones captured under 

several operational conditions. This footage was 

instrumental in enhancing the robustness of the model. 

By including real-life data, the neural network was 

trained on not only the idealized conditions presented in 

animations but also the unpredictability and variance 

found in real-life scenarios. This included factors such as 

unpredictable drone behavior, varying speeds, abrupt 

changes in direction, and the presence of obstacles like 

birds, aircraft, and man-made structures. 

The combination of these two data sources created 

a comprehensive learning environment for the neural 

network. The model was thus not only trained to 

recognize and predict drone behavior in a theoretical 

sense but was also well-equipped to handle the 

complexities and nuances of real-world operations. The 

goal was to create a neural network that could function 

with high reliability and accuracy, regardless of the 

operating environment. 

 

2.1. High-resolution Technology 

 
The successful implementation and application of 

neural networks in trajectory prediction are highly 

contingent upon the use of advanced high-resolution 

cameras with superior zoom capabilities. Such 

sophisticated imaging technology is imperative for 

capturing the intricate details and nuances necessary for 

the neural network to accurately learn and predict object 

trajectories. High-resolution cameras are capable of 

capturing images and videos with several pixels, which 

directly translate to a higher level of detail in each frame. 

This granularity is not just a matter of visual quality; it 

provides the neural network with the subtle visual cues 

required to differentiate between objects in complex 

scenes and to recognize patterns with greater precision. 

The importance of high-resolution input data can be 

likened to providing a painter with a finer brush, thus 

providing the painter with the opportunity to create a 

more nuanced and detailed work of art. Furthermore, 

cameras with powerful zoom capabilities extend the 

range and versatility of the neural network’s predictive 

ability. By bringing distant objects into clear view, these 

cameras allow the network to effectively learn and 

predict the movements of objects that are far away from 

the lens. This is particularly crucial when subjects of 

interest are often at a significant distance from the 

camera. The deployment of cutting-edge cameras should 

be accompanied by equally advanced processing 

hardware capable of handling the large volumes of data 

generated. High-resolution imagery requires significant 

storage capacity and powerful computational resources to 

process detailed images in real-time, especially when 

feeding these data into a neural network for immediate 

trajectory prediction [9]. Additionally, cameras must be 

equipped with high dynamic range (HDR) capabilities to 

handle a wide spectrum of lighting conditions, from 
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darkest shadows to brightest highlights, ensuring 

consistent performance regardless of environmental 

lighting challenges to fully realize its potential across 

various conditions. This approach empowers the neural 

network to operate at its highest capability, increasing 

accuracy and reliability in trajectory prediction camera 

examples (Figure 2). 

 
Fig. 2. Examples of high-resolution camera 

 

2.2. UAV dataset 

 
Data segmentation is the process of dividing an 

image into smaller parts or segments for more detailed 

analysis. The primary purpose of segmentation in 

computer vision is to extract and classify objects in an 

image. It is an important step in various tasks, such as 

object detection, pattern recognition, and automatic 

image processing and analysis. 

To illustrate data segmentation, an example using 

the drone model is shown in Figure 3. 

To begin with, it is worth noting that the process of 

training a model for trajectory prediction is a rather 

variable topic and can be interpreted differently 

depending on the requirements and settings of the model 

for real-world applications. Models can be adapted to 

recognize objects that inherently move differently than 

other objects; thus, each case should be investigated 

separately. As a result, a test system was developed for 

trajectory finding, which involves recognizing an object 

in a video and calculating the possible direction of the 

target. 

To successfully investigate a high-speed flying 

object, we faced limitations in the available materials. In 

this situation, computer graphics, especially 3D 

modeling, was a useful tool to overcome data scarcity 

problems. After collecting information about the objects 

and creating virtual models for different scenarios, we 

developed and trained a machine learning model capable 

of recognizing the objects we needed among the data 

obtained from the simulation [10]. 

This approach allowed us to work efficiently with 

limited resources and produce meaningful results despite 

the constraints of physical access to the object and 

limited amount of data. As a result, we developed a tool 

that can automatically identify and analyze objects of 

interest in environments where direct observation is 

limited or impossible. 

 
 

Fig. 3. Segmentation results 

 

3. Neural network architectures 
 

For this study, an architecture was selected that 

could ensure the detection of objects in video footage, 

thereby necessitating high-precision recognition 

capabilities. Among the various options considered, 

particular attention was given to the convolutional neural 

network architecture known as RCNN (Region-based 

Convolutional Neural Networks). This architecture has 

distinct advantages and disadvantages. It was selected for 

its ability to precisely delineate and classify objects in 

images and videos. RCNNs are effective in detecting 

visual patterns and structures in images due to their 

capacity for local perception and hierarchical information 

processing. They are perfectly suited to processing static 

images and video content. 

RCNNs are applied to video by processing each 

frame as a separate image because they do not consider 

the temporal dependencies between successive frames. 

As the research did not require the speed of the objects to 

be taken into account, the video could be dis-segmented 

into individual frames. Ultimately, a hybrid model was 

chosen to achieve the objectives, combining 
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convolutional layers for effective perception of visual 

patterns within frames and layers based on attention 

mechanisms for processing temporal dependencies 

within the frame sequence. This approach considers both 

the spatial and temporal aspects of the video stream, 

ensuring high object detection accuracy and trajectory 

prediction [11]. 

The hybrid model's design strategically leverages 

the strengths of RCNNs while compensating for their 

limitations. By integrating attention mechanisms, the 

model gains the ability to track objects across frames, 

which is critical for capturing motion and predicting 

future locations. This dual focus on both the immediate 

visual details and the broader temporal context creates a 

robust framework for understanding and interpreting 

dynamic scenes. The hybrid model's versatility makes it 

a powerful tool for a wide range of applications, from 

automated surveillance systems to advanced driver-

assistance systems (ADAS) in vehicles, where the precise 

tracking of objects around the vehicle can be vital for 

safety and navigation. 

In summary, this sophisticated video analysis 

approach harnesses the latest advances in neural network 

technology, thereby setting a new standard for accurate 

and efficient object detection and trajectory forecasting. 

The potential of this technology to revolutionize how we 

interact with and analyze visual data is immense, opening 

up new possibilities for innovation across numerous 

industries and fields of research. 

LSTM stands for Long Short-Term Memory. A 

recurrent neural network (RNN) architecture is well-

suited for processing and predicting sequences of data.  

Figure 4 illustrates the internal structure of LSTM 

cell. The main function of LSTM is to capture long-range 

dependencies by controlling the flow of information 

through three gates: the forget gate, input gate, and output 

gate. These gates are regulated by sigmoid σ and “tanh” 

functions. The forget gate determines which part of the 

previous state ht-1 to discard, the input gate decides what 

new information Xt should be added to the current cell 

state, and the output gate regulates which part of the cell 

state should contribute to the output ht. The cell state is 

updated and passed to the next time step, which allows 

the model to retain information over long sequences. The 

flow of operations, shown through multiplications, 

additions, and non-linear activations, demonstrates that 

the proposed LSTM effectively maintains long-term 

memory while selectively updating it with new 

information. 

The LSTM updates its internal state by considering 

both the current input (the spatial coordinates of the 

drone at the current time step) and the information 

retained from previous time steps. This allows the LSTM 

to capture temporal dependencies and patterns in 

trajectory data. After processing the input, the LSTM unit 

generates an output, which represents the predicted 

spatial coordinates of the drone at the next time step. This 

predictive capability is facilitated by the LSTM's ability 

to learn and remember relevant information from past 

observations, enabling it to make informed predictions 

about future trajectory movements. 

Once the LSTM model generated predictions for the 

next time step, these predictions were compared with the 

ground truth spatial coordinates of the drone. 

Discrepancies between the predicted and actual positions 

provide feedback to the model, which is used to update 

its parameters during the training process. By iteratively 

adjusting the parameters based on this feedback, the 

LSTM gradually improved its predictive accuracy over 

time. The training and refinement process is crucial for 

ensuring that the LSTM effectively learns the underlying 

dynamics of the drone movements and can make accurate 

predictions even in complex and unpredictable scenarios. 

Additionally, the LSTM's ability to handle sequential 

data makes it well-suited for modeling dynamic systems 

like the drone trajectory, where past observations 

significantly influence future behavior. 

 

4. Training process 
 

The training process of a neural network can be 

described by the following formula, which characterizes 

the updating of the network's weights at each training 

step: 

 

Wt+1 =  Wt  −  α ∗ ∇L(Wt), (10) 

 

 
Fig. 4. Long Short-Term Memory 
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where, Wt represents the model weights at step t; 

α – denotes the learning rate; 

∇L(Wt) – the gradient of the loss function relative to 

the weights at step t. 

Training was conducted using the error 

backpropagation technique, which facilitated the 

efficient tuning of the network weights to minimize 

recognition and prediction errors. Backpropagation is a 

cornerstone neural network training algorithm that is 

particularly adept at dealing with complex tasks that 

involve high levels of computational intricacy, such as 

the prediction of object trajectories in video streams. 

During backpropagation, after a forward pass 

through the network, where the inputs are processed layer 

by layer to produce an output, the error is calculated. This 

error is the difference between the predicted and actual 

desired output. The backpropagation algorithm then 

proceeds to calculate the error gradient with respect to 

each weight by the chain rule, propagating the error 

backward from the output layer to the input layer. This 

systematic approach allows for the identification and 

correction of each weight's contribution to the overall 

error. 

This equation is a fundamental component of the 

backpropagation algorithm, where Wt+1 are the updated 

weights after taking a step guided by the gradient of the 

loss function, and 𝛼 is a scalar that controls the size of 

the step, which is known as the learning rate. The 

learning rate is a critical hyperparameter in the training 

of neural networks because it determines how much the 

weights are adjusted during each update. If the learning 

rate is too large, the network may overshoot the minimum 

of the loss function, which results in divergent behavior. 

Conversely, if the learning rate is too small, the training 

process may become excessively slow and become stuck 

in local minima. 

The gradient ∇L(Wt) provides the direction in 

which the loss function increases most rapidly. 

Therefore, to minimize loss, we move in the opposite 

direction, i.e., we subtract the gradient from the current 

weights. This process is repeated iteratively over many 

epochs or iterations, with each update aiming to reduce 

the loss function until the algorithm converges to a 

minimum, ideally the global minimum [12]. 

Further, by extending this concept, other variations 

of the gradient descent algorithm can be introduced to 

enhance the training process. For instance, momentum-

based methods, such as SGD with momentum, can help 

accelerate gradient vectors in the right direction, thereby 

leading to faster convergence  [13]: 

 

Vt+1 = β ∗ Vt  +  ∇L(Wt), (11) 

  

Wt+1 = Wt  −  α ∗ Vt+1. (12) 

 

where Vt represents the velocity (i.e., the accumulated 

gradient); 

β – the momentum coefficient, typically set between 

0.9 and 0.99.  

The velocity term helps to smooth out the updates 

and can also help to navigate the rough landscapes of the 

loss functions more effectively. 

In addition to momentum, algorithms such as 

RMSprop and Adam introduce adaptive learning rates for 

each parameter as follows: 

 

St+1 = δ ∗ St + (1 − δ) ∗ (∇L(Wt))2, (13) 

  

Wt+1 = Wt −
α

√St+1 + ϵ
∗ ∇L(Wt). (14) 

 

In the RMSprop update rule, St is the running 

average of the squared gradients, δ is the decay rate, and 

ϵ is a small scalar added to the denominator to avoid 

division by zero. This adaptive mechanism helps reduce 

the gradient of weights that receive large updates, thereby 

leading to more stable and efficient training. 

Carefully crafted animation data were created in a 

blender and used to teach the model to recognize and 

predict the drone’s flight behavior. Convolutional layers 

are adept at extracting features from images and are 

essential for interpreting the visual information of a drone 

against various backgrounds and lighting conditions [14]. 

The convolution operation within these layers can be 

represented as: 

 

(f ∗ g)(t) = ∫
∞

−∞

f(τ)g(t − τ)dτ, 
(15) 

 

where f is the image function, g is the kernel function, 

and ∗ denotes the convolution operation. 

The neural network was trained using 

backpropagation, adjusting its weights to minimize the 

error between the predicted and actual drone positions. 

The loss function used could have been the mean squared 

error (MSE), which is standard for regression problems 

(16). 

 

MSE =
1

n
∑

n

i=1

(yi  − ŷi)
2, 

 

(16) 

 

where 𝑦𝑖 is the true value (the actual frame position of the 

drone) and �̂�𝑖 is the value predicted by the network, 

where n is the number of samples. 

By iterating over numerous epochs, the network 

optimizes its weights to reduce this loss, effectively 

learning to predict the drone's trajectory based on the 

animated data. This method not only provided a safe and 

controlled way to generate training data but also allowed 
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for the inclusion of scenarios that might be rare or 

difficult to capture in real-life footage, thereby enhancing 

the neural network's exposure and experience. 

By utilizing these advanced optimization 

techniques, the training of neural networks becomes 

more reliable and efficient, allowing for the development 

of sophisticated models that can perform a wide array of 

tasks, from simple classification to complex trajectory 

predictions in dynamic environments. 

In addition, this approach fosters continuous 

improvement and adaptation, ensuring that the neural 

network remains robust and adaptable to evolving 

challenges and environments. This iterative process not 

only enhances the network's accuracy and 

generalizability, enabling it to excel in real-world 

scenarios beyond the scope of its training data. 

 

5. Results 
 

The RCNN model was trained for recognition 

through a multi-step process. Initially, a large dataset 

containing images with labeled instances of drones was 

compiled, including both actual video footage of 

witnesses and images taken in Blender. These images 

were then used to pretrain the model on generic visual 

features through techniques like supervised learning with 

convolutional neural networks (CNNs). During training, 

the model learned to distinguish between different 

objects, including the drone, by iteratively adjusting its 

parameters to minimize a predefined loss function. The 

performance of the trained RCNN model was evaluated 

using separate validation datasets and measuring metrics 

such as precision, recall, and mean average precision 

(mAP) across different images. Through this iterative 

training process, the RCNN model achieved high 

accuracy in recognizing drones within images, 

demonstrating its effectiveness in real-world 

applications. 

Figure 5 shows some examples of well-recognized 

objects using the proposed model. The model's 

effectiveness in analyzing objects was commendable for 

medium- to large scale analyses. However, it exhibited 

inaccuracies and errors when tasked with too small 

resolutions or objects that were diminutive. Its 

performance was reduced when confronted with minute 

details or miniature entities. Despite its proficiency at 

larger scales, the model struggled to maintain precision 

when evaluating smaller elements.  

Fine-tuning may be necessary to enhance the 

accuracy of the model for objects of various scales and 

sizes. More precise parameters of the results are 

presented in Table 1. 

To calculate the mean accuracy (mAP) and mean 

completeness (mAR), we averaged the AP and AR values 

over all classes and areas of the image. 

 
 

Fig. 5. Drone detection 

 

First, let's average the AP values over all classes and 

image areas as follows: 

 

mAP = (77 + 65 + 82 + 45 + 71 + 73) / 6 ≈ 68.5 

 

Now let's average the AR values over all classes and 

areas of the image: 

 

mAR = (65 + 69 + 78 + 40 + 71 + 78) / 6 ≈ 66.83 

 

Thus, the average accuracy (mAP) is approximately 

68.5 and the average completeness (mAR) is 

approximately 66.83. 

 

6. Trajectory prediction 

 

The motion trajectory is predicted based on the 

trajectory data provided by all drones. It is assumed that 

each scene undergoes preprocessing, yielding spatial 

coordinates for each i-th subject at time t.  
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Table 1 

Metrics for assessing model quality 

Metrics IoU 
Max 

detect 
Area 

Value, 

% 

Average 

Precision (AP) 

0.50:0.95 100 all 77 

Average 
Precision (AP) 

0.50 100 all 65 

Average 

Precision (AP) 

0.75 100 all 82 

Average 

Precision (AP) 

0.5:0.95  100 small 45 

Average 

Precision (AP) 

0.5:0.95 100 medi-

um 

71 

Average 

Precision (AP) 

0.5:0.95 100 large 73 

Average 

Recall (AR)  

0.5:0.95 1 all 65 

Average 

Recall (AR)  

0.5:0.95 10 all 69 

Average 

Recall (AR)  

0.5:0.95 100 all 78 

Average 

Recall (AR)  

0.5:0.95 100 small 40 

Average 

Recall (AR)  

0.5:0.95 100 medi-

um 

71 

Average 

Recall (AR)  

0.5:0.95 100 large 78 

 

The preprocessed information is derived from 

images, which are presented in bounding boxes 

encompassing the respective subjects of interest. The 

input comprises a vector of coordinates {xt, yt} 

representing the minimum and maximum spatial extents 

of the subjects at time t. 

We can compute the prediction error, which is the 

distance between the predicted location and the actual 

location at t-s in the future [15], as shown in 

equation (17) 
 

√(xt0+t − x̃t0+t)
2

+ (yt0+t − ỹt0+t)
2

. 
(17) 

 

This preprocessing step is crucial because it allows 

us to isolate and extract the relevant subjects from the 

scene, thereby enabling further analysis and prediction of 

their motion trajectories. By obtaining the spatial 

coordinates of each subject at different time points, we 

can observe their movements over time and infer 

potential patterns or trends in their behavior. 

The changes in trajectory are shown in Figure 6. It 

becomes obvious that the model diligently attempts to 

predict future trajectories with sufficient accuracy. 

Nevertheless, performance errors were observed because 

the model lacked fine-tuning. Notably, straight routes 

exhibited higher accuracy. Conversely, deviations or 

turns in the trajectories can sometimes create problems, 

leading to increased detection errors in the model. 

According to Table 2, for trajectory durations 

varying from 1 to 5 s, we obtained diverse data for 

different trajectory types. This allows us to evaluate the 

accuracy of motion prediction at different time intervals. 

The lowest average error was observed for slow motion 

in both short and long trajectories. At the same time, turns 

are characterized by a higher average error, especially for 

longer trajectories. These findings suggest that the 

difficulty of trajectory prediction is directly related to the 

type and duration of the motion [16]. 

 
Fig. 6. Two subplots (a) and (b) illustrate the difference 

between ground truth (actual) and predicted trajectories 

for an object over a short-term prediction window of 1 s. 

In subplot (a), the object's trajectory appears to follow a 

more curved path, where the predicted trajectory is close 

to the actual trajectory but diverges slightly toward the 

end. In subplot (b), the trajectory follows a sharper curve, 

and the difference between the predicted and actual paths 

is more noticeable, with the predicted path diverging 

more significantly from the actual ground truth, 

especially further along the trajectory. The figure 

highlights the challenge of predicting trajectories, 

particularly when the object’s movement involves 

complex curves or changes in direction 
 

Table 2 

Average error of various route types 

Route type Average error, % Duration, s 

Straight path 12.5 1 

Straight path 9.7 5 

Turn 36.2 1 

Turn 28.9 5 

Slow motion 10.6 1 

Slow motion 6.4 5 
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7. Discussion 

 

The results presented in this study demonstrate the 

high performance of using a hybrid RCNN+LSTM 

architecture for detecting and predicting the trajectories 

of unmanned aerial vehicles (UAVs). The proposed 

approach is based on applying a convolutional region-

based neural network (RCNN) to accurately recognize 

objects in video frames and a long-term short-term 

memory (LSTM) network to capture temporal 

dependencies and generate predictions of future drone 

positions. This combined method provides reliable 

detection accuracy, as shown in Fig.5 and reasonably 

accurate short-term trajectory prediction for a few 

seconds, as shown in Fig. 6. Difficulty consists of the 

irregular and curved motion of the object under study. 

The proposed method includes the integration of a 

CNN-based detector with an LSTM time-series predictor 

and the use of a synthetic dataset created in Blender to 

cover a wide range of flight scenarios, lighting, and 

weather conditions. The real video data, although limited, 

provided further validation by confirming that the RCNN 

part maintains good detection performance (table 1) and 

that the LSTM module correctly estimates the drone's 

motion, including changes in direction (table 2). 

Analysis of (table 1) indicates that the model 

possesses balanced recall and precision mAP ≈ 68.5% 

and mAR ≈ 66.83%, despite the fact that detection 

accuracy decreases when the drone takes up very few 

pixels in the image, which means small-scale objects. 

Table 2 shows that the smallest average errors (about 

6.4–10.6%) were obtained on slow-motion flight 

trajectories, whereas turns lead to higher prediction errors 

of up to 28.9–36.2%. This suggests a general issue for 

recurrent approaches: steady motion is predicted to be 

sufficiently accurate, whereas sudden turning leads to 

higher discrepancy between predicted and real 

trajectories. Figure 6 also illustrates this issue, where one 

trajectory example shows little discrepancy between the 

predicted trajectory and ground truth, whereas the hard 

turn greatly amplifies the discrepancy. There are some 

limitations to this study. The results obtained show that 

the detection accuracy of tiny or distant objects 

decreases, indicating the need for improved optics or 

additional fine tuning. It is also important to consider that 

when working with synthetic data, although the synthetic 

flight trajectories are diverse, they do not cover all 

possible maneuvers. Therefore, it may be more difficult 

for the model to predict trajectory in the presence of 

unexpected directional changes. 

In practice, these results can be applied to 

automated UAV tracking, the creation of safe air 

corridors in urban areas, and real-time security systems 

above residential buildings and other infrastructures. 

The goal of this study is to enhance our model’s 

functionality by expanding it from object recognition in 

videos and images to analyzing Google Earth data. The 

proposed experiment involves projecting the flight and 

motion trajectories of objects onto the Earth's surface and 

tracking their likely trajectories, as shown in Figure 7. 

Using this experimental design, we expect to gain 

valuable insights into the behavior of objects in different 

environments. Using Google Earth data promises to offer 

a new perspective that will enable more accurate analysis 

and enrich research. 

Through this project, our purpose is to improve the 

accuracy of drone flight path prediction by developing a 

deep learning-based trajectory forecasting model and for 

this we need to advance our understanding of drone flight 

dynamics and enhance trajectory prediction by 

integrating Google Earth data. By projecting drone flight 

paths and motion onto the Earth's surface, we can track 

their likely trajectories with greater accuracy. This 

approach not only helps us refine prediction models but 

also opens up potential applications for drone navigation 

and monitoring in diverse environments. The use of 

Google Earth data will provide a new perspective, 

enabling more precise analysis and enriching research on 

drone behavior across different terrains. 

 

 
 

Fig. 7. Example of using Google Earth 

 

Using Google Earth can provide an additional 

perspective and the ability to more accurately analyze the 

behavior of an object in different environments and 

conditions, which in turn can advance our research work 

and increase its application potential. 
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8. Conclusions 
 

This paper demonstrated the effectiveness of a deep 

learning-based UAV trajectory prediction. A set of video 

and photo materials was prepared to train the neural 

network model, develop a model based on deep learning 

for trajectory prediction, and improve the prediction of 

UAV drone flight paths.  

This study used a hybrid model combining region-

based convolutional neural networks (RCNNs) and long 

short-term memory (LSTM) networks. RCNNs were 

used to accurately detect objects in individual frames, 

whereas LSTM networks captured temporal depen-

dencies and predicted object trajectories across frames. 

The proposed approach allows the model to accurately 

track objects and predict their motion in dynamic scenes. 

By iteratively adjusting parameters based on feedback 

from predicted and actual positions, the model improved 

its prediction accuracy over time. In summary, the study 

demonstrated the effectiveness of combining spatial 

perception and temporal understanding in video analysis, 

which may be applicable to video surveillance systems 

and driver assistance technologies. 

The experiment also contributes to our 

understanding of the dynamics of objects and their 

potential and allows us to more accurately predict the 

movements of objects on the Earth's surface.  

The scientific novelty of the study is to demonstrate 

the effectiveness of the proposed approach for flight path 

prediction. 

Future research development. The current dataset 

contains a large amount of synthetic data. The next step 

is to collect as many examples of real data as possible and 

supplement them, possibly with other objects, to 

diversify flight trajectories and track changes in 

trajectory dependence on the drone type. 

Increasing the number of real-world data samples 

can be a challenging task because collecting such data 

requires time and resources. In addition, data diversity 

must be ensured to accurately reflect different flight 

scenarios and drone types. This consideration may 

include accounting for different meteorological 

conditions, terrain types, obstacles, and other factors that 

affect the flight path. Another challenge is the need to 

train deep learning models to accurately predict 

trajectories. This requires not only a large amount of data 

but also careful tuning of the model parameters and 

possibly the development of specialized algorithms to 

account for the peculiarities of different types of objects. 

In addition, possible changes in drone or object behavior 

over time must be considered, which may require 

constant updating and adaptation of prediction models. 

Since the existing architecture is relatively simple, 

future research will focus on improving tracking and 

integrating the context into the model. 
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ВИКОРИСТАННЯ НЕЙРОМЕРЕЖІ ГЛИБОКОГО НАВЧАННЯ  

ДЛЯ ПРОГНОЗУВАННЯ ТРАЕКТОРІЇ БПЛА 

O. O. Безсонов, С. О. Ляшенко, О. Г. Руденко,  

С. П. Руцька, К. С. Ващенко 

Предметом вивчення в статті є новий підхід з використанням нейронної мережі глибокого навчання, 

спеціально розробленої для прогнозування траєкторії польоту безпілотного літального апарату (БПЛА). 
Метою цієї статті є підвищення точності прогнозування траєкторії польоту дрона шляхом розробки моделі 

прогнозування траєкторії на основі глибокого навчання. Завдання полягало в тому, щоб зібрати та 

підготувати набір відео- та фото матеріалів для навчання нейронної мережі, розробити та впровадити модель 

глибокого навчання для прогнозування траєкторії та покращити прогнозування траєкторії польоту БПЛА 

шляхом оптимізації та валідації моделі. Використовувалися такі методи як створення синтетичного набору 

даних було створено за допомогою інструменту 3D-моделювання Blender, який полегшив генерацію анімації, 

що відображає різні сценарії польоту дронів. Ці сценарії включають різні умови навколишнього середовища 

та міські ландшафти, забезпечуючи надійний тренувальний майданчик для нейронної мережі. Для 

подальшого вдосконалення та тестування прогностичних можливостей моделі були використані реальні дані, 

зокрема відеоматеріали, зняті очевидцями. Архітектура нейронної мережі, що використовується, включає 

блоки довготривалої короткочасної пам'яті (LSTM), які вміють обробляти послідовні дані, що робить їх 

ідеальними для прогнозування динамічних траєкторій руху БПЛА. Процес навчання включав кілька етапів, 
починаючи з попереднього навчання на загальних візуальних ознаках, а потім точне налаштування на 

специфічні для БПЛА патерни руху. Результати дослідження показують, що нейронна мережа досягла 

високої точності в прогнозуванні траєкторії, причому модель показала кращу продуктивність в реальних 
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сценаріях порівняно з традиційними методами прогнозування траєкторії. Інтеграція LSTM дозволила 

ефективно навчатися та узагальнювати часові дані, фіксуючи складні патерни руху та взаємодію з 

навколишнім середовищем. Це дослідження не тільки демонструє можливість використання глибокого 

навчання для прогнозування траєкторії БПЛА, але й пропонує потенційні застосування у сфері цивільної 

безпеки чи логістики доставки, де прогнозування траєкторії в реальному часі може значно підвищити 

ефективність і швидкість прийняття рішень. Висновки. Наукова новизна отриманих результатів полягає в 

розробці та навчанні моделей глибокого навчання, спеціально призначених для прогнозування траєкторії 

польоту дронів. Це дослідження демонструє ефективність запропонованого підходу, демонструючи його 

здатність підвищувати точність прогнозування траєкторії БПЛА. 

Ключові слова: нейронна мережа; глибоке навчання; прогнозування траєкторії; LSTM; 3D-моделі; 

синтетичний набір даних; траєкторія БПЛА. 
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