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USING A DEEP LEARNING NEURAL NETWORK TO PREDICT FLIGHT PATH

The subject of this paper is a new approach using a deep learning neural network designed for predicting the
flight path of an unmanned aerial vehicle (UAV). The purpose of this study was to improve the accuracy of drone
flight path prediction by developing a deep learning-based trajectory forecasting model. The task was to collect
and prepare a dataset of video and photo materials for training the neural network, develop and implement a
deep learning model for trajectory prediction, and enhance UAV flight trajectory forecasting through model
optimization and validation. Methods used included the creation of a synthetic dataset using the 3D modeling
tool Blender, which enabled the generation of animations representing various drone flight scenarios. These
scenarios include different environmental conditions and urban landscapes, providing a robust training ground
for the neural network. To further improve and test the model’s predictive capabilities, real-world data,
including eyewitness videos, were used. The architecture of the neural network includes long short-term memory
(LSTM) units that can process sequential data, making them ideal for predicting dynamic UAV trajectories. The
training process involved several stages, starting with pre-training on general visual features and then fine-
tuning to UAV-specific motion patterns. The results of this study show that the neural network achieved high
accuracy in trajectory prediction, with the model showing better performance in real-world scenarios compared
to traditional trajectory prediction methods. The integration of LSTM enabled efficient learning and
generalization of temporal data, capturing complex motion patterns and interactions with the environment. This
research not only demonstrates the feasibility of using deep learning to predict UAV trajectories but also offers
potential applications in civilian security or delivery logistics, where real-time trajectory prediction can
significantly improve the efficiency and speed of decision-making. Conclusions. The scientific novelty of the
obtained results lies in the development and training of deep learning models specifically designed for predicting
drone flight paths. This study demonstrated the effectiveness of the proposed approach by demonstrating its
ability to enhance the accuracy of UAV trajectory forecasting.

Keywords: neural network; deep learning; trajectory prediction; LSTM; 3D models; synthetic dataset; UAV
trajectory.

systems are based on the use of information about the
parameters of mathematical models and environmental
properties. However, the lack of such a priori information
leads to inefficiency in the use of traditional parametric
methods, and often to their inoperability. In addition, the
presence of nonstationary, nonlinearity, and various
types of uncertainties in the models of real systems leads
to inefficiency when using traditional nonparametric

1. Introduction
1.1. Motivation

In today's world, where technology is developing at
an extraordinary pace, its use to protect information and
improve the quality of life is becoming increasingly
important. Improving cargo delivery logistics, preserving

the environment, and surveillance to improve safety
emphasize the urgent need to develop and implement
innovative  technological solutions to develop
technological capabilities. One such solution is the
development of new efficient methods to detect and
predict the trajectories of drones, which are used for
various purposes, such as entertainment during leisure
time, photography of unusually beautiful landscapes, and
in developed countries to catch intruders faster. Most
methods for predicting the behavior of dynamical

methods. Under these conditions, the most effective
approach is the use of modern methods of computational
intelligence, in particular neural network methods. The
neural network-based approach to drone detection
remains relevant. It provides an opportunity to prevent
non-ideal human factors and use modern technologies for
noble purposes. Intelligent recognition by neural network
of such devices as drones can enrich the delivery of
products and food, for example, in a non-excepted period
as a pandemic, to perform unpleasant routine activities
such as refueling a car autonomous process without the
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presence of a person but using a drone. It can also help
protect the integrity of citizens and prevent the spread of
illegal activities using drones, such as the delivery of
dangerous substances for human health and life and other
non-standard and unexpected situations. Using a neural
network to plot the trajectory of a drone can improve
public protection and safety throughout the country.
Protect against illegal invasion of privacy with drones
that can take photographs and videos. Intelligent
advancements in technology can and should help to keep
everyone’s intimate lives safe.

The purpose of this study was to improve the
accuracy of drone flight path prediction by developing a
deep learning-based trajectory forecasting model. Two
datasets were used to obtain the expected results. The
first part is an artificially created dataset, including
animations including models of drones, and different
types of backgrounds and residential complexes to
diversify the dataset. These animations were created
using the 3D modeling program Blender. This approach
allows us to train the model in conditions as close to
reality as possible without the need to use real video
footage, which can be time-consuming and expensive
and may be legally restricted in some sites. The second
type includes real videos filmed by ordinary people and
presented on the Internet and news channels on which the
trained neural network was tested.

The task was to collect and preprocess video and
photo data, develop a deep learning model for flight
trajectory prediction and improve UAV trajectory
prediction through optimization and validation.

1.2. State of the art

Currently, there are different methods for trajectory
prediction depending on the type of trajectory, such as
trajectories of living beings [1, 2] and inanimate
objects [3]. There are also two main problems with the
currently existing trajectory prediction models. The first
is the prediction accuracy: simple models do not work
well if there are many objects around or a complex scene.
The second is the lack of explanation: neural networks
predict a change in trajectory, but it is not known why it
was changed. The authors of [1] presented a new method
for predicting motion trajectory in crowds. The authors
have created a model that combines physics and neural
networks. Each person, according to their method, is
influenced by three main forces: moving toward a
destination, trying not to run into other people, and
avoiding obstacles such as walls or cars. The model also
includes a part of the conditional-variance autoencoder
(CVAE), which adds a randomness element. The model
learns from the data when people speed up, slow down,
or find themselves in unpleasant situations where they go
in the wrong direction and have to change their

destination. In such cases, the model adds to the
predictions. This makes the movements appear more
realistic and natural, approximating the behavior of
people. The authors tested the proposed method on real
trajectories and compared its performance to that of
existing deep learning models. Their model was better at
predicting movements, performed better in complicated
scenes, and had fewer collisions. Detecting human
motion, which can often be relatively unpredictable,
shows that combining physics and neural networks gives
better results for humans and potentially for UAVs. The
Social-NCE method allows the model to be trained to
recognize safe trajectories from potentially dangerous
trajectories that could cause collisions by generating
negative samples based on the closeness of other objects
[2]. Recently, model-free methods based on deep
learning that exhibit surprisingly high prediction
accuracy have been leading the way in predicting human
motion trajectories.

The trajectory of inanimate objects usually obeys
the laws of physics and can often be derived using
formulas and equations; thus, detections are sometimes
easier to predict even manually. As an example, in a
previous study [3], the authors proposed a model that
combines an improved LSTM, which predicts the next
point of the trajectory based on the movement history and
captures the dependencies between the time steps. Using
the Kalman filter, the authors demonstrated that the
LSTM-KF algorithm yields a good effect. However, this
approach does not consider dynamic and environmental
factors such as weather conditions, which reduces the
accuracy, and it limits the application in real time.

These methods are effective when applied to the
environment in which they were developed. However,
these methods are not implemented in aerial
environments, and there is not enough data to analyze and
make conclusions using a specific method. In UAV tasks,
drones work in 3D space, where altitude, speed, and
viewing angles are important, and simply following a
trajectory is not enough for such cases.

Another recent vehicle trajectory prediction
approach focuses on modeling potential future
interactions between objects. Social LSTM applies Long
Short-Term Memory (LSTM) networks to model social
interactions and learn from temporal data. LSTM is also
commonly used to predict the motion trajectories of
inanimate objects. Other studies have investigated
vehicle motion and observed that prediction uncertainty
arises from interactions with surrounding objects when
vehicles change their route. Based on this, the authors [4]
proposed a model that incorporates a Future Relation
Module (FRM), which estimates the probability of
vehicles occupying adjacent lanes and interacting. The
module computes lane-level probability distributions and
potential interaction zones by leveraging Graph
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Convolutional Networks (GCN) and Gaussian Mixture
(GM) distributions to simulate interactions, such as
handling current road conditions, and demonstrate
various behaviors. This approach allows the model to
capture long-range interactions and improves prediction
accuracy in complex traffic scenarios. The proposed
method demonstrated strong performance on the
nuScenes and Argoverse benchmarks. The study
investigated vehicular motion; thus, predictions in this
paper stem from uncertainty. Trajectories can change due
to interactions with surrounding objects.

1.3. Objectives and Approach

This section  describes the design and
implementation of a deep learning model for flight
trajectory prediction using deep learning RCNNs and
predictive LSTMs. The basic concept behind these steps
can be described as follows:

- First, the research was divided into working
with RCNNs recognition neural network, creating a
dataset for it, searching for rare drone images under
different conditions, and using software to create an
artificial dataset to expand and diversify the amount of
data on which the neural network is trained. In this way,
the artificial intelligence will be better prepared for
unexpected data and can easily handle the processing of
such data.

- The LSTM neural network was used to design
the estimated drone trajectory. For this purpose, materials
were found, including videos of the desired object flying
at test bases. To add variety to the data, plausible videos
were created in the software to train the neural network
to better predict the drone’s flight path. The training can
be categorized as follows:

- Creating a set of videos and photos for training
and validation;

- Augmenting and annotating the datasets;

- Developing a neural network model capable of
recognizing drone;

- Developing an LSTM model to predict drone
flight trajectories;

- Using a set of videos and photos for training and
validation to recognize and create trajectories;

In this study, a synthetic dataset was created to
represent diverse drone flight scenarios under varying
environmental conditions and landscapes. EXxisting
trajectory prediction methods were analyzed, and a deep
learning-based approach was designed and implemented.

To achieve the objectives of the study, several tasks
were completed, as reflected in the corresponding
sections of the article. The creation of the dataset for
training the neural network is described, where both real
recordings and artificially generated animations in
Blender were used to ensure data diversity (section 2).
Values of high resolution cameras to get an accurate

image (section 2). Value of high resolution cameras to
get an accurate image (section 2.1). Data segmentation
for more precise object recognition and classification is
discussed (section 2.2). Selection of RCNN neural
network architecture (section 3). The process of training
the network is outlined (section 4), then the results are
presented (section 5). Section 6 provides a detailed
explanation of the proposed method for predicting flight
trajectories using the LSTM neural network. The
possibilities for extending the model, including the use of
Google Earth data to analyze object trajectories
(section 7).

2. Methodology

The training of the neural network was a multistage
process that used both artificially generated animations
and real-world footage to provide the model with a
diverse dataset. The artificial animations were created
using Blender, a sophisticated 3D modeling and
animation software. This tool afforded us the precision to
control environmental variables such as lighting
conditions, background, and flight trajectories of drone
models with pinpoint accuracy. The meticulous control
of these variables is crucial in training neural networks
because it ensures that the model can identify and learn
from a wide variety of scenarios in a controlled and
repeatable manner.

For example, using Blender, we could simulate
different weather conditions, ranging from bright
sunlight to overcast skies, or foggy mornings to rainy
evenings. The textures and colors of the background
environments can be altered to represent various
landscapes, such as urban settings, rugged terrains, and
open fields. This level of detail in the animations means
that the neural network can be exposed to almost every
conceivable situation that a drone might encounter in the
real world [5, 6]. A drone model was used, examples of
which are shown in Figure 1.

For example, scaling transformations can be
mathematically represented using the following formula,
where S is the scaling matrix applied to the image
coordinates (X,y):

X7 X] [sx O X (1)
[;]_S*[y]_[ 0 sy] *[y]
where s, and s, — there scaling factors in the horizontal
and vertical directions, respectively;
(x',y") — the new coordinates after scaling.

The rotation transformation involves rotating the
image by an angle, which is described by the rotation
matrix R as follows:

X X1 [ cos(0) —sin(O)] X

—| = % = %
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Fig. 1. 3D models of drone

Adjustments in lighting conditions are simulated by
altering the intensity values of the pixels, which can be
represented by a function L that maps the original pixel
values p to new values p' based on the lighting
parameter

p' = L(p.D. @)

Additionally, Blender particle systems can be used
to simulate environmental factors such as rain, snow, or
dust, that can interfere with the drone’s visibility. The
motion of these particles can be described by Newton's
laws of motion as follows:

F = ma, (4)
Vipr = Ve +axAt, 5)
Xep1 = Xp + Ve * At (6)

where F — the force applied to a particle;
m — the mass of the particle;
a — the acceleration;
v — the velocity;
x — the position;
At — the change in time.

In terms of lighting, Blender allows for dynamic
lighting adjustments, which can significantly affect the
appearance of the drone in the animation. By changing
the intensity, color, and position of light sources,
different times of day, weather conditions, and
shadowing effects can be replicated [7]. These lighting
conditions can be described by parameters such as the
light’s intensity I, the angle of incidence 8, and the
distance from the light source d, which affect the
illumination of the object according to the inverse square
law:

_1 @
E= p cos(0),

where E is the illumination experienced by the object.

The lighting and environmental effects, such as
shadows and reflections on the drone's body, were also
meticulously adjusted to simulate different times of day
and weather conditions. The rendering equation, which
Blender uses to simulate light interaction with surfaces,
is as follows (8):

L,(x,m,A,t)= (8)

£ (x,0,0,\,)L; *
L ) ’)\"t + r v’ v ’v ! ry
(600 L (%,0, M) (-0 *n)do

where A - wave length of light, t - time;
L, (x,w, A, t) — the radiance of the outgoing light of
wavelength A at point x and time t, in direction w;
L.(x,w,A,t) - the radiance of the emitted light,

fﬂ ...dw’ — integral over the hemisphere of incoming
directions;
f(x,0, w0t - bidirectional reflectance

distribution function (BRDF), defining the proportion of
light of wavelength A at time t from direction w’ that is
reflected into direction w at point x;

L;(x, w’, A, t) - the radiance of the incoming light of
wavelength A from direction w’ at time t, —w’ *n-
absorption of the incoming value by the set angle.

Blender’s physics engine also allows for the
simulation of collisions and interactions between the
drone and other objects, which can be modeled using the
principles of rigid body dynamics. These interactions can
alter a drone’s flight path in ways that are important for a
neural network to learn if it is to understand the full scope
of potential real-world behaviors.

These transformations significantly bolster the
model’s capacity to recognize objects under various
perspectives and lighting conditions, which closely
simulates the variability that occurs in natural settings.
By incorporating a range of augmented data, the neural
network can be exposed to a broader spectrum of
experiences, thereby enhancing its ability to generalize
from training data to real-world applications.



Intelligent information technologies

75

Incorporating these techniques into the training pipeline
involves randomly applying a series of transformations
to each image in the dataset before it is fed into the neural
network. This ensures that the network rarely sees the
same image twice, which mitigates overfitting and
encourages the development of a more general
understanding of the features associated with the objects
of interest. Ultimately, data augmentation contributes to
the creation of a more versatile and adaptable model that
can deliver reliable performance across several
environmental conditions and variations in object
appearance. This enriched learning process is
fundamental for developing advanced neural networks
that are expected to function effectively in dynamic and
unpredictable real-world scenarios [8].

Blender created many synthetic scenarios with
precise control over every aspect of the animation,
allowing for the simulation of real-life complexities
within a virtual environment. In pursuit of advancing
neural network capabilities for drone recognition and
trajectory prediction, a detailed animation of the drone
was created. Highly realistic and diverse flight patterns
served as training grounds for the neural network. Within
Blender, the drone’s motion is animated using keyframe
interpolation, which defines the start and end points of a
motion sequence, with Blender computing the
intermediate frames. For complex maneuvers, the
animation curve can be mathematically described using a
series of control points that form a spline, typically a
Bezier spline in 3D space (9).

B(t)= Zio (Iil)(l-t)“'itiPi , te[0,1], 9)

where B(t) is the position of the drone on the Bezier curve
attimet;
P, - the control points;

(?) —the binomial coefficients.

This formula ensures smooth transitions between
keyframes and realistic motion paths.

For instance, consider the creation of an animation
sequence in Blender in which a drone model maneuvers
through a virtual urban landscape. The drone's trajectory
is not just a simple linear path but includes various
maneuvers, such as ascent, descent, and sharp turns, to
mimic real-world flight patterns. This can be expressed
mathematically in the animation keyframes as a Bezier
curve, which is defined by control points Py ,P;, P, ... P,
to formula (2) where, B(t) represents the Bezier curve,

(r:) are the binomial coefficients, and t is the parameter

along the curve.

The real-life footage, on the other hand, included
authentic video recordings of drones captured under
several operational conditions. This footage was

instrumental in enhancing the robustness of the model.
By including real-life data, the neural network was
trained on not only the idealized conditions presented in
animations but also the unpredictability and variance
found in real-life scenarios. This included factors such as
unpredictable drone behavior, varying speeds, abrupt
changes in direction, and the presence of obstacles like
birds, aircraft, and man-made structures.

The combination of these two data sources created
a comprehensive learning environment for the neural
network. The model was thus not only trained to
recognize and predict drone behavior in a theoretical
sense but was also well-equipped to handle the
complexities and nuances of real-world operations. The
goal was to create a neural network that could function
with high reliability and accuracy, regardless of the
operating environment.

2.1. High-resolution Technology

The successful implementation and application of
neural networks in trajectory prediction are highly
contingent upon the use of advanced high-resolution
cameras with superior zoom capabilities. Such
sophisticated imaging technology is imperative for
capturing the intricate details and nuances necessary for
the neural network to accurately learn and predict object
trajectories. High-resolution cameras are capable of
capturing images and videos with several pixels, which
directly translate to a higher level of detail in each frame.
This granularity is not just a matter of visual quality; it
provides the neural network with the subtle visual cues
required to differentiate between objects in complex
scenes and to recognize patterns with greater precision.
The importance of high-resolution input data can be
likened to providing a painter with a finer brush, thus
providing the painter with the opportunity to create a
more nuanced and detailed work of art. Furthermore,
cameras with powerful zoom capabilities extend the
range and versatility of the neural network’s predictive
ability. By bringing distant objects into clear view, these
cameras allow the network to effectively learn and
predict the movements of objects that are far away from
the lens. This is particularly crucial when subjects of
interest are often at a significant distance from the
camera. The deployment of cutting-edge cameras should
be accompanied by equally advanced processing
hardware capable of handling the large volumes of data
generated. High-resolution imagery requires significant
storage capacity and powerful computational resources to
process detailed images in real-time, especially when
feeding these data into a neural network for immediate
trajectory prediction [9]. Additionally, cameras must be
equipped with high dynamic range (HDR) capabilities to
handle a wide spectrum of lighting conditions, from
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darkest shadows to brightest highlights, ensuring
consistent performance regardless of environmental
lighting challenges to fully realize its potential across
various conditions. This approach empowers the neural
network to operate at its highest capability, increasing
accuracy and reliability in trajectory prediction camera
examples (Figure 2).

AXiSa. $FLIR

Fig. 2. Examples of high-resolution camera

2.2. UAV dataset

Data segmentation is the process of dividing an
image into smaller parts or segments for more detailed
analysis. The primary purpose of segmentation in
computer vision is to extract and classify objects in an
image. It is an important step in various tasks, such as
object detection, pattern recognition, and automatic
image processing and analysis.

To illustrate data segmentation, an example using
the drone model is shown in Figure 3.

To begin with, it is worth noting that the process of
training a model for trajectory prediction is a rather
variable topic and can be interpreted differently
depending on the requirements and settings of the model
for real-world applications. Models can be adapted to
recognize objects that inherently move differently than
other objects; thus, each case should be investigated
separately. As a result, a test system was developed for
trajectory finding, which involves recognizing an object
in a video and calculating the possible direction of the
target.

To successfully investigate a high-speed flying
object, we faced limitations in the available materials. In
this situation, computer graphics, especially 3D
modeling, was a useful tool to overcome data scarcity
problems. After collecting information about the objects
and creating virtual models for different scenarios, we
developed and trained a machine learning model capable
of recognizing the objects we needed among the data
obtained from the simulation [10].

This approach allowed us to work efficiently with
limited resources and produce meaningful results despite
the constraints of physical access to the object and
limited amount of data. As a result, we developed a tool
that can automatically identify and analyze objects of
interest in environments where direct observation is
limited or impossible.

Fig. 3. Segmentation results

3. Neural network architectures

For this study, an architecture was selected that
could ensure the detection of objects in video footage,
thereby  necessitating  high-precision  recognition
capabilities. Among the various options considered,
particular attention was given to the convolutional neural
network architecture known as RCNN (Region-based
Convolutional Neural Networks). This architecture has
distinct advantages and disadvantages. It was selected for
its ability to precisely delineate and classify objects in
images and videos. RCNNs are effective in detecting
visual patterns and structures in images due to their
capacity for local perception and hierarchical information
processing. They are perfectly suited to processing static
images and video content.

RCNNs are applied to video by processing each
frame as a separate image because they do not consider
the temporal dependencies between successive frames.
As the research did not require the speed of the objects to
be taken into account, the video could be dis-segmented
into individual frames. Ultimately, a hybrid model was
chosen to achieve the objectives, combining
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convolutional layers for effective perception of visual
patterns within frames and layers based on attention
mechanisms for processing temporal dependencies
within the frame sequence. This approach considers both
the spatial and temporal aspects of the video stream,
ensuring high object detection accuracy and trajectory
prediction [11].

The hybrid model's design strategically leverages
the strengths of RCNNs while compensating for their
limitations. By integrating attention mechanisms, the
model gains the ability to track objects across frames,
which is critical for capturing motion and predicting
future locations. This dual focus on both the immediate
visual details and the broader temporal context creates a
robust framework for understanding and interpreting
dynamic scenes. The hybrid model's versatility makes it
a powerful tool for a wide range of applications, from
automated surveillance systems to advanced driver-
assistance systems (ADAS) in vehicles, where the precise
tracking of objects around the vehicle can be vital for
safety and navigation.

In summary, this sophisticated video analysis
approach harnesses the latest advances in neural network
technology, thereby setting a new standard for accurate
and efficient object detection and trajectory forecasting.
The potential of this technology to revolutionize how we
interact with and analyze visual data is immense, opening
up new possibilities for innovation across numerous
industries and fields of research.

LSTM stands for Long Short-Term Memory. A
recurrent neural network (RNN) architecture is well-
suited for processing and predicting sequences of data.

Figure 4 illustrates the internal structure of LSTM
cell. The main function of LSTM is to capture long-range
dependencies by controlling the flow of information
through three gates: the forget gate, input gate, and output
gate. These gates are regulated by sigmoid ¢ and “tanh”
functions. The forget gate determines which part of the
previous state h.; to discard, the input gate decides what
new information X; should be added to the current cell
state, and the output gate regulates which part of the cell
state should contribute to the output h:. The cell state is
updated and passed to the next time step, which allows
the model to retain information over long sequences. The

)

flow of operations, shown through multiplications,
additions, and non-linear activations, demonstrates that
the proposed LSTM effectively maintains long-term
memory while selectively updating it with new
information.

The LSTM updates its internal state by considering
both the current input (the spatial coordinates of the
drone at the current time step) and the information
retained from previous time steps. This allows the LSTM
to capture temporal dependencies and patterns in
trajectory data. After processing the input, the LSTM unit
generates an output, which represents the predicted
spatial coordinates of the drone at the next time step. This
predictive capability is facilitated by the LSTM's ability
to learn and remember relevant information from past
observations, enabling it to make informed predictions
about future trajectory movements.

Once the LSTM model generated predictions for the
next time step, these predictions were compared with the
ground truth spatial coordinates of the drone.
Discrepancies between the predicted and actual positions
provide feedback to the model, which is used to update
its parameters during the training process. By iteratively
adjusting the parameters based on this feedback, the
LSTM gradually improved its predictive accuracy over
time. The training and refinement process is crucial for
ensuring that the LSTM effectively learns the underlying
dynamics of the drone movements and can make accurate
predictions even in complex and unpredictable scenarios.
Additionally, the LSTM's ability to handle sequential
data makes it well-suited for modeling dynamic systems
like the drone trajectory, where past observations
significantly influence future behavior.

4. Training process

The training process of a neural network can be
described by the following formula, which characterizes
the updating of the network's weights at each training
step:

Wipr = Wy — ax VL(W), (10)

(b by

tanh

» X

Fig. 4. Long Short-Term Memory
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where, W, represents the model weights at step t;

a — denotes the learning rate;

VL(W,) — the gradient of the loss function relative to
the weights at step t.

Training was conducted using the error
backpropagation technique, which facilitated the
efficient tuning of the network weights to minimize
recognition and prediction errors. Backpropagation is a
cornerstone neural network training algorithm that is
particularly adept at dealing with complex tasks that
involve high levels of computational intricacy, such as
the prediction of object trajectories in video streams.

During backpropagation, after a forward pass
through the network, where the inputs are processed layer
by layer to produce an output, the error is calculated. This
error is the difference between the predicted and actual
desired output. The backpropagation algorithm then
proceeds to calculate the error gradient with respect to
each weight by the chain rule, propagating the error
backward from the output layer to the input layer. This
systematic approach allows for the identification and
correction of each weight's contribution to the overall
error.

This equation is a fundamental component of the
backpropagation algorithm, where W, are the updated
weights after taking a step guided by the gradient of the
loss function, and « is a scalar that controls the size of
the step, which is known as the learning rate. The
learning rate is a critical hyperparameter in the training
of neural networks because it determines how much the
weights are adjusted during each update. If the learning
rate is too large, the network may overshoot the minimum
of the loss function, which results in divergent behavior.
Conversely, if the learning rate is too small, the training
process may become excessively slow and become stuck
in local minima.

The gradient VL(W,) provides the direction in
which the loss function increases most rapidly.
Therefore, to minimize loss, we move in the opposite
direction, i.e., we subtract the gradient from the current
weights. This process is repeated iteratively over many
epochs or iterations, with each update aiming to reduce
the loss function until the algorithm converges to a
minimum, ideally the global minimum [12].

Further, by extending this concept, other variations
of the gradient descent algorithm can be introduced to
enhance the training process. For instance, momentum-
based methods, such as SGD with momentum, can help
accelerate gradient vectors in the right direction, thereby
leading to faster convergence [13]:

Vier =B * Vo + VL(WY), (11)

Wity = We — (12)

o* Viyge

where V; represents the velocity (i.e., the accumulated
gradient);

B — the momentum coefficient, typically set between
0.9 and 0.99.

The velocity term helps to smooth out the updates
and can also help to navigate the rough landscapes of the
loss functions more effectively.

In addition to momentum, algorithms such as
RMSprop and Adam introduce adaptive learning rates for
each parameter as follows:

St41 =0 S+ (1 —08) = (VL(Wp))?, (13)

(14)

Wiy =W — * VL(WY).

a
VSir1 + €

In the RMSprop update rule, S; is the running
average of the squared gradients, & is the decay rate, and
€ is a small scalar added to the denominator to avoid
division by zero. This adaptive mechanism helps reduce
the gradient of weights that receive large updates, thereby
leading to more stable and efficient training.

Carefully crafted animation data were created in a
blender and used to teach the model to recognize and
predict the drone’s flight behavior. Convolutional layers
are adept at extracting features from images and are
essential for interpreting the visual information of a drone
against various backgrounds and lighting conditions [14].
The convolution operation within these layers can be
represented as:

C90=[ ee-i (15)

where f is the image function, g is the kernel function,
and * denotes the convolution operation.

The neural network was trained using
backpropagation, adjusting its weights to minimize the
error between the predicted and actual drone positions.
The loss function used could have been the mean squared
error (MSE), which is standard for regression problems
(16).

n

1 52
MSE ZHZ i — 9%

i=1

(16)

where y; is the true value (the actual frame position of the
drone) and y; is the value predicted by the network,
where n is the number of samples.

By iterating over numerous epochs, the network
optimizes its weights to reduce this loss, effectively
learning to predict the drone's trajectory based on the
animated data. This method not only provided a safe and
controlled way to generate training data but also allowed
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for the inclusion of scenarios that might be rare or
difficult to capture in real-life footage, thereby enhancing
the neural network's exposure and experience.

By utilizing these advanced optimization
techniques, the training of neural networks becomes
more reliable and efficient, allowing for the development
of sophisticated models that can perform a wide array of
tasks, from simple classification to complex trajectory
predictions in dynamic environments.

In addition, this approach fosters continuous
improvement and adaptation, ensuring that the neural
network remains robust and adaptable to evolving
challenges and environments. This iterative process not
only enhances the network's accuracy and
generalizability, enabling it to excel in real-world
scenarios beyond the scope of its training data.

5. Results

The RCNN model was trained for recognition
through a multi-step process. Initially, a large dataset
containing images with labeled instances of drones was
compiled, including both actual video footage of
witnesses and images taken in Blender. These images
were then used to pretrain the model on generic visual
features through techniques like supervised learning with
convolutional neural networks (CNNs). During training,
the model learned to distinguish between different
objects, including the drone, by iteratively adjusting its
parameters to minimize a predefined loss function. The
performance of the trained RCNN model was evaluated
using separate validation datasets and measuring metrics
such as precision, recall, and mean average precision
(mAP) across different images. Through this iterative
training process, the RCNN model achieved high

accuracy in recognizing drones within images,
demonstrating  its  effectiveness in  real-world
applications.

Figure 5 shows some examples of well-recognized
objects using the proposed model. The model's
effectiveness in analyzing objects was commendable for
medium- to large scale analyses. However, it exhibited
inaccuracies and errors when tasked with too small
resolutions or objects that were diminutive. Its
performance was reduced when confronted with minute
details or miniature entities. Despite its proficiency at
larger scales, the model struggled to maintain precision
when evaluating smaller elements.

Fine-tuning may be necessary to enhance the
accuracy of the model for objects of various scales and
sizes. More precise parameters of the results are
presented in Table 1.

To calculate the mean accuracy (mAP) and mean
completeness (MAR), we averaged the AP and AR values
over all classes and areas of the image.

Fig. 5. Drone detection

First, let's average the AP values over all classes and
image areas as follows:

mAP = (77 +65+82+45+ 71+ 73) /6 = 68.5

Now let's average the AR values over all classes and
areas of the image:

mAR =(65+69+78+40+71+78)/6~ 66.83

Thus, the average accuracy (mAP) is approximately
68.5 and the average completeness (MAR) is
approximately 66.83.

6. Trajectory prediction

The motion trajectory is predicted based on the
trajectory data provided by all drones. It is assumed that
each scene undergoes preprocessing, yielding spatial
coordinates for each i-th subject at time t.
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Table 1 According to Table 2, for trajectory durations
Metrics for assessing model quality varying from 1 to 5 s, we obtained diverse data for
. Max Value, different trajectory types. This allows us to evaluate the
Metrics loU detect Area % accuracy of motion prediction at different time intervals.
Average 0.50:0.95 | 100 all 77 The lowest average error was observed for slow motion
Precision (AP) in both short and long trajectories. At the same time, turns
Average 0.50 100 all 65 are characterized by a higher average error, especially for
Precision (AP) longer trajectories. These findings suggest that the
Preﬁ}\s/?gﬁg(;P) 0.75 100 all 82 difficulty of trajectory prediction is directly related to the
Average 05095 100 T small 75 type and duration of the motion [16].
Precision (AP)
Average 0.5:0.95 | 100 | medi- | 71 (@
Precision (AP) um
Average 0.5:0.95 100 | large 73
Precision (AP)
Average 0.5:0.95 1 all 65
Recall (AR)
Average 0.5:0.95 10 all 69 o
Recall (AR) —o--e -7
Average 0.5:0.95 100 all 78
Recall (AR) (b)
Average 0.5:0.95 100 | small 40
Recall (AR)
Average 0.5:0.95 100 | medi- 71
Recall (AR) um
Average 0.5:0.95 100 | large 78
Recall (AR)

The preprocessed information is derived from
images, which are presented in bounding boxes
encompassing the respective subjects of interest. The
input comprises a vector of coordinates {x;, Vi}
representing the minimum and maximum spatial extents
of the subjects at time t.

We can compute the prediction error, which is the
distance between the predicted location and the actual
location at t-s in the future [15], as shown in
equation (17)

- ~ 17)
\/(Xto+t - Xt0+t)2 + (Yt0+t - Yt0+t)2'

This preprocessing step is crucial because it allows
us to isolate and extract the relevant subjects from the
scene, thereby enabling further analysis and prediction of
their motion trajectories. By obtaining the spatial
coordinates of each subject at different time points, we
can observe their movements over time and infer
potential patterns or trends in their behavior.

The changes in trajectory are shown in Figure 6. It
becomes obvious that the model diligently attempts to
predict future trajectories with sufficient accuracy.
Nevertheless, performance errors were observed because
the model lacked fine-tuning. Notably, straight routes
exhibited higher accuracy. Conversely, deviations or
turns in the trajectories can sometimes create problems,
leading to increased detection errors in the model.

— Ground truth trajectory;

-4 Predicted trajectory;

—o- Detected object.
Fig. 6. Two subplots (a) and (b) illustrate the difference
between ground truth (actual) and predicted trajectories
for an object over a short-term prediction window of 1 s.
In subplot (a), the object's trajectory appears to follow a
more curved path, where the predicted trajectory is close
to the actual trajectory but diverges slightly toward the
end. In subplot (b), the trajectory follows a sharper curve,
and the difference between the predicted and actual paths
is more noticeable, with the predicted path diverging
more significantly from the actual ground truth,
especially further along the trajectory. The figure
highlights the challenge of predicting trajectories,
particularly when the object’s movement involves
complex curves or changes in direction

Table 2
Average error of various route types
Route type Average error, % | Duration, s
Straight path 12.5 1
Straight path 9.7 5
Turn 36.2 1
Turn 28.9 5
Slow motion 10.6 1
Slow motion 6.4 5
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7. Discussion

The results presented in this study demonstrate the
high performance of using a hybrid RCNN+LSTM
architecture for detecting and predicting the trajectories
of unmanned aerial vehicles (UAVs). The proposed
approach is based on applying a convolutional region-
based neural network (RCNN) to accurately recognize
objects in video frames and a long-term short-term
memory (LSTM) network to capture temporal
dependencies and generate predictions of future drone
positions. This combined method provides reliable
detection accuracy, as shown in Fig.5 and reasonably
accurate short-term trajectory prediction for a few
seconds, as shown in Fig. 6. Difficulty consists of the
irregular and curved motion of the object under study.

The proposed method includes the integration of a
CNN-based detector with an LSTM time-series predictor
and the use of a synthetic dataset created in Blender to
cover a wide range of flight scenarios, lighting, and
weather conditions. The real video data, although limited,
provided further validation by confirming that the RCNN
part maintains good detection performance (table 1) and
that the LSTM module correctly estimates the drone's
motion, including changes in direction (table 2).

Analysis of (table 1) indicates that the model
possesses balanced recall and precision mAP = 68.5%
and mAR = 66.83%, despite the fact that detection
accuracy decreases when the drone takes up very few
pixels in the image, which means small-scale objects.
Table 2 shows that the smallest average errors (about
6.4-10.6%) were obtained on slow-motion flight
trajectories, whereas turns lead to higher prediction errors
of up to 28.9-36.2%. This suggests a general issue for
recurrent approaches: steady motion is predicted to be
sufficiently accurate, whereas sudden turning leads to
higher discrepancy between predicted and real
trajectories. Figure 6 also illustrates this issue, where one
trajectory example shows little discrepancy between the
predicted trajectory and ground truth, whereas the hard
turn greatly amplifies the discrepancy. There are some
limitations to this study. The results obtained show that
the detection accuracy of tiny or distant objects
decreases, indicating the need for improved optics or
additional fine tuning. It is also important to consider that
when working with synthetic data, although the synthetic
flight trajectories are diverse, they do not cover all
possible maneuvers. Therefore, it may be more difficult
for the model to predict trajectory in the presence of
unexpected directional changes.

In practice, these results can be applied to
automated UAV tracking, the creation of safe air
corridors in urban areas, and real-time security systems
above residential buildings and other infrastructures.

The goal of this study is to enhance our model’s
functionality by expanding it from object recognition in
videos and images to analyzing Google Earth data. The
proposed experiment involves projecting the flight and
motion trajectories of objects onto the Earth's surface and
tracking their likely trajectories, as shown in Figure 7.
Using this experimental design, we expect to gain
valuable insights into the behavior of objects in different
environments. Using Google Earth data promises to offer
a new perspective that will enable more accurate analysis
and enrich research.

Through this project, our purpose is to improve the
accuracy of drone flight path prediction by developing a
deep learning-based trajectory forecasting model and for
this we need to advance our understanding of drone flight
dynamics and enhance trajectory prediction by
integrating Google Earth data. By projecting drone flight
paths and motion onto the Earth's surface, we can track
their likely trajectories with greater accuracy. This
approach not only helps us refine prediction models but
also opens up potential applications for drone navigation
and monitoring in diverse environments. The use of
Google Earth data will provide a new perspective,
enabling more precise analysis and enriching research on
drone behavior across different terrains.

Fig. 7. Example of using Google Earth

Using Google Earth can provide an additional
perspective and the ability to more accurately analyze the
behavior of an object in different environments and
conditions, which in turn can advance our research work
and increase its application potential.
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8. Conclusions

This paper demonstrated the effectiveness of a deep
learning-based UAYV trajectory prediction. A set of video
and photo materials was prepared to train the neural
network model, develop a model based on deep learning
for trajectory prediction, and improve the prediction of
UAV drone flight paths.

This study used a hybrid model combining region-
based convolutional neural networks (RCNNSs) and long
short-term memory (LSTM) networks. RCNNs were
used to accurately detect objects in individual frames,
whereas LSTM networks captured temporal depen-
dencies and predicted object trajectories across frames.
The proposed approach allows the model to accurately
track objects and predict their motion in dynamic scenes.
By iteratively adjusting parameters based on feedback
from predicted and actual positions, the model improved
its prediction accuracy over time. In summary, the study
demonstrated the effectiveness of combining spatial
perception and temporal understanding in video analysis,
which may be applicable to video surveillance systems
and driver assistance technologies.

The experiment also contributes to our
understanding of the dynamics of objects and their
potential and allows us to more accurately predict the
movements of objects on the Earth's surface.

The scientific novelty of the study is to demonstrate
the effectiveness of the proposed approach for flight path
prediction.

Future research development. The current dataset
contains a large amount of synthetic data. The next step
is to collect as many examples of real data as possible and
supplement them, possibly with other objects, to
diversify flight trajectories and track changes in
trajectory dependence on the drone type.

Increasing the number of real-world data samples
can be a challenging task because collecting such data
requires time and resources. In addition, data diversity
must be ensured to accurately reflect different flight
scenarios and drone types. This consideration may
include accounting for different meteorological
conditions, terrain types, obstacles, and other factors that
affect the flight path. Another challenge is the need to
train deep learning models to accurately predict
trajectories. This requires not only a large amount of data
but also careful tuning of the model parameters and
possibly the development of specialized algorithms to
account for the peculiarities of different types of objects.
In addition, possible changes in drone or object behavior
over time must be considered, which may require
constant updating and adaptation of prediction models.

Since the existing architecture is relatively simple,
future research will focus on improving tracking and
integrating the context into the model.
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BUKOPUCTAHHSA HEMPOMEPEXI I''TMBOKOIO HABUAHH A
JIUISI MPOTHO3YBAHHSA TPAEKTOPII BILIA
0. O. Bbesconos, C. O. JIawenko, O. I. Pyoenxo,
C. I1. Pyyvka, K. C. Bawenko

IIpenmMeToM BHBUYEHHS B CTATTi € HOBUH MiJXiJ 3 BUKOPHCTAHHSIM HEHPOHHOI Mepexi IIMOOKOTr0 HABYAHHI,
CreniaJbHO PO3POOJIEHOI Ui MPOTHO3YBAHHS TPAEKTOpii MOmsoTy Oe3misorHoro JitambHoro amaparty (BILIA).
MerTol0 11i€1 CTAaTTi € MiIBUIIEHHS TOYHOCTI IPOTHO3YBaHHS TPAEKTOPIl MOIHOTY IPOHA MUITXOM PO3POOKH MOJEINi
MIPOTHO3YBAaHHS TPAEKTOpil Ha OCHOBI TIIMOOKOrO0 HaBYaHHS. 3aBJaHHS TONSTajlo B ToMy, o0 3i0patu Ta
miarorysatu Habip Bizeo- Ta (hoTO MaTepiatiB U1 HABUYAHHS HEMPOHHOI MEPEeXi, pO3pOOHUTH Ta BIIPOBAAUTH MOJIEINH
TIIMOOKOT0 HAaBUAHHS JJISl MIPOTHO3YBAHHS TPAEKTOpIi Ta MOKPAIIWTH HPOTHO3YBAaHHS TpaekTopil moisory BITJIA
IUIIXOM ONTHMIi3alii Ta Bajifamii Moneni. BukopucToByBammcs Taki MeTOAM SIK CTBOPEHHSI CHHTETHUYHOTO HAO0py
JlaHUX OYyJI0 CTBOPEHO 3a J0MOMOrok0 iHCTpyMeHTy 3D-MonentoBanus Blender, sikuii moseruie reHepaiito aHimariii,
0 BigoOpaskae pi3Hi ciieHapii momboty ApoHiB. Lli ceHapii BKITIOYar0Th pi3HI YMOBH HABKOJHIITHHOTI'O CEPEIOBHINA
Ta MIChKI NaHAmadTH, 3a0e3Meuyrour HANIHHUKA TpPEHYBANbHUA MaWmaHUYWK A HeHpoHHOI Mepexi. Jms
TTOJANTBIIIOTO BIOCKOHAJICHHS Ta TECTYBAHHS IPOTHOCTHYHUX MOYKITUBOCTEH MOZENi OyiIr BUKOPUCTAaHI peabHi aHi,
30KpeMa BifeoMaTepiaiy, 3HATI OYCBHIOISIMHA. APXIiTEKTypa HEHpPOHHOI Mepei, IO BUKOPHCTOBYETHCS, BKITFOUAE
Omoku HOBroTpuBainoi koporkodacHoi mam'sti (LSTM), siki BMitOTe 0OpOONSATH MOCTINOBHI NaHi, MO POOHTH iX
ileaTbHIMU [UTS TIPOTHO3YBAHHS TUHAMIYHUX TpaekTopiit pyxy BIIJIA. Tlporiec HaB4aHHS BKIIOYAaB KUJTbKA €TAIiB,
MOYMHAIOYN 3 TONEPEeAHHOI0 HABYAHHS HA 3arajbHUX Bi3yaJlbHUX O3HAKaX, a MOTIM TOYHE HANAINTYBaHHS Ha
cnenudivunai mist BIUJIA mateprm pyxy. Pe3yabTaTH HOCHiKEHHS TOKa3yIOTh, IO HEHpOHHA Mepexa Jocsriia
BHCOKOI TOYHOCTI B IPOTHO3YBaHHI TPAEKTOPii, IPUUOMY MOJIENb IMOKa3ana Kpally NMPOAYKTUBHICTh B PEATbHHUX
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CIIEHapisX NOPIBHIHO 3 TPAAWIIHHIMH METOJaMH NpOTrHO3YyBaHHS TpaekTopii. IHTerpamis LSTM no3Bommina
e(EeKTUBHO HaBYATHCS Ta Yy3arajbHIOBAaTH YacoBi IaHi, (IKCYOUM CKJIQJAHI TaTepHH pPyXy Ta B3aEMOMII0 3
HaBKOJIMIIHIM cepenoBuiieM. Lle mocnmipkeHHS He TiAbKH JAEMOHCTPYE MOXKIIMBICTH BHKOPHCTaHHS TJIMOOKOTO
HaBYaHHS Ul [IPOrHO3yBaHHS Tpaektopii BIIJIA, ane i mpomoHye moTeHiiHI 3acTocyBaHHS y cdepi IUBUTBHOL
0e3IeKn YW JIOTICTHKH JIOCTaBKH, J€ NPOTHO3YBAaHHS TPAeKTOpil B pealbHOMY 4Yaci MOXE 3HAYyHO ITiABHIINTH
€(EeKTUBHICTh 1 MBHUAKICTh MPUHHATTS pimieHb. BucHoBkH. HaykoBa HOBH3HA OTpHMaHHX PE3YNIBTATIB IOJSTAE B
po3po0IIi Ta HaBYAHHI MOJIENEH TIIMOOKOro HaBYaHHS, CHELiAIbHO NMPU3HAYEHUX /ISl MPOTHO3YBAaHHS TPAEKTOPIil
nonboTy ApoHiB. Lle mocmipkeHHsS AEMOHCTpYE e(EeKTUBHICTH 3alpONOHOBAHOTO MiJXOAY, AEMOHCTPYIOUU HOTo
3/IaTHICTB MiIBUIYBaTH TOYHICTh MPOrHO3yBaHH: TpaekTopii BITJIA.

KuarouoBi cioBa: HelipoHHA Mepexa; TIIMOOKE HaBYAHHS; NMPOrHO3yBaHHsA Tpaektopii; LSTM; 3D-moneri;
CHUHTETUYHUI HaOlp nanux; Tpaektopis BILIA.
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